

- Table of Contents -

1 INTRODUCTION ... 1

1.1 OBJECTIVES OF THIS GUIDE ... 1

1.2 ORGANIZATION OF THIS GUIDE ... 2

1.3 COMMON CRITERIA STANDARDS DOCUMENTS ... 3

1.4 TERMS AND DEFINITIONS ... 5

2 BASIC KNOWLEDGE OF SECURITY ARCHITECTURE .. 6

2.1 SECURITY ARCHITECTURE ... 6

2.2 ATTACK AGAINST SECURITY FUNCTIONS .. 7

2.3 CONDITIONS FOR PROTECTING SECURITY FUNCTIONS ... 10

2.3.1 Security domain .. 11

2.3.2 TSF self-protection ... 14

2.3.3 TSF non-bypassability .. 15

2.3.4 TSF secure initialization ... 16

3 SECURITY ARCHITECTURE DESCRIPTION .. 18

3.1 CONTENT OF SECURITY ARCHITECTURE DESCRIPTIONS ... 18

3.2 SECURITY DOMAIN .. 19

3.2.1 Specification of security domain ... 20

3.2.2 Description of security domain ... 24

3.2.3 Confirmation of the description contents .. 25

3.2.4 Important notes for domain separation ... 26

3.3 TSF SELF-PROTECTION .. 26

3.3.1 Self-protection mechanism by means of domain separation 27

3.3.2 Self-protection mechanism by means of ways other than domain separation 28

3.3.3 Confirmation of the descriptions ... 32

3.4 TSF NON-BYPASSABILITY .. 32

3.4.1 Measures on the interfaces to the security functions ... 33

3.4.2 Measures on the interfaces irrelevant to the security functions 35

3.4.3 Interfaces that developers tend to fail to notice .. 36

3.4.4 Confirmation of the descriptions ... 38

3.5 TSF SECURE INITIALIZATION .. 38

3.5.1 Specification of the initialization process of the security functions 40

3.5.2 Ensuring the integrity of the security functions to be initialized 41

3.5.3 Protection of the protected assets during the initialization process 43

3.5.4 Prevention of exploiting the initialization process ... 44

- Table of Contents -

3.5.5 Confirmation of the descriptions ... 45

3.6 THE LEVEL OF DETAIL IN THE SECURITY ARCHITECTURE DESCRIPTION 45

4 CONCLUSION ... 47

End of this guide: Addendum A "Essential points for security architecture"

1 Introduction

 - 1 -

1 Introduction

The design concept for ensuring that security functions directly countering threats

themselves can work properly without being hindered is referred to as security

architecture.

A worldwide standard for IT security evaluation, Common Criteria (hereinafter

referred to as "CC"), verifies the validity of the security architecture to be evaluated.

This guide explains the concept of the security architecture and how to prepare

documents in which the design contents are described (hereinafter referred to as

"security architecture description").

The assumed readers of this guide include developers who design and implement

security functions of IT products and developers who need to prepare security

architecture descriptions for undergoing CC-based evaluations of IT products.

1.1 Objectives of this guide

Security architecture is an important concept for CC-based security evaluations.

However, CC-related standards documents have generic and abstract expressions for

describing security architecture, which apparently makes it difficult for developers who

have only little experience especially with basic software to understand the contents.

Therefore, this guide is intended to support the understanding of the concept of

security architecture, the design and implementation in accordance with the concept,

and the preparation of security architecture descriptions, through explaining the

concept of security architecture and the contents that should be included in security

architecture descriptions required for the CC evaluations with concrete examples.

Note that this guide uses plain expressions in the explanations in order to facilitate

the readers' understanding, part of which may not accurately correspond to the CC

standards. If you have a plan to obtain a certification for the CC evaluation, it is advised

to read the CC-related standards documents listed in "1.3 Common Criteria standards

documents" in this guide as well.

1 Introduction

 - 2 -

1.2 Organization of this guide

This section explains the organization of this guide and the contents of each chapter.

 Chapter 1 Introduction

This chapter includes the objectives of this guide, the target readers, and the

scope of application.

 Chapter 2 Basic knowledge of security architecture

This chapter explains the concept and necessity of security architecture, as well

as the concepts of "security domain," "TSF self-protection," "TSF

non-bypassability," and "TSF secure initialization," which are important in

understanding security architecture.

 Chapter 3 Security architecture description

This chapter provides the concrete explanations on how to describe security

architecture descriptions required for the CC evaluations.

 Chapter 4 Conclusion

This chapter explains the points that should be taken care of in designing

security architecture on the basis of the contents explained in this guide.

1 Introduction

 - 3 -

1.3 Common Criteria standards documents

The evaluation criteria and evaluation methodology of this guide are based on the

standards documents listed in Table 1-1 and Table 1-2 below. The evaluation criteria

and evaluation methodology are referred to as "CC" and "CEM," respectively, in their

abbreviations.

Table 1-1: CC/CEM standards documents (Japanese translation versions)

CC/CEM version 3.1 Release 3 (CC/CEM v3.1 Release 3)

Evaluation criteria: Common Criteria for Information Technology Security Evaluation

(CC version 3.1 Release 3)

 Part 1: Introduction and general model Version 3.1

Revision 3 [Japanese version 1.0]

Part 2: Security functional components Version 3.1

Revision 3 [Japanese version 1.0]

Part 3: Security assurance components Version 3.1

Revision 3 [Japanese version 1.0]

Evaluation methodology: Common Methodology for Information Technology Security

Evaluation

(CEM version 3.1 Release 3)

 Evaluation methodology Version 3.1

Revision 3 [Japanese version 1.0]

Table 1-2: CC/CEM standards documents (Original versions)

CC/CEM v3.1 Release 3

Evaluation criteria: Common Criteria for Information Technology Security Evaluation

(CC v3.1 Release 3)

 Part 1: Introduction and general model Version 3.1 Revision 3

Part 2: Security functional components Version 3.1 Revision 3

Part 3: Security assurance components Version 3.1 Revision 3

Evaluation methodology: Common Methodology for Information Technology Security

Evaluation

(CEM v3.1 Release 3)

 Evaluation methodology Version 3.1 Revision 3

Reference: Evaluation criteria Common Criteria, IPA

http://www.ipa.go.jp/security/jisec/cc/index.html

http://www.ipa.go.jp/security/jisec/cc/documents/CCPART1V3.1R3-J1.0.pdf
http://www.ipa.go.jp/security/jisec/cc/documents/CCPART2V3.1R3-J1.0.pdf
http://www.ipa.go.jp/security/jisec/cc/documents/CCPART3V3.1R3-J1.0.pdf
http://www.ipa.go.jp/security/jisec/cc/documents/CEMV3.1R3-J1.0.pdf
http://www.ipa.go.jp/security/jisec/cc/documents/CCPART1V3.1R3.pdf
http://www.ipa.go.jp/security/jisec/cc/documents/CCPART2V3.1R3.pdf
http://www.ipa.go.jp/security/jisec/cc/documents/CCPART3V3.1R3.pdf
http://www.ipa.go.jp/security/jisec/cc/documents/CEMV3.1R3.pdf
http://www.ipa.go.jp/security/jisec/cc/index.html

1 Introduction

 - 4 -

This guide is based on the contents stated in the sections below, which are taken

from the CC and CEM standards documents, "CC Version 3.1 Release 3 Part 3" and

"CEM Version 3.1 Release 3."

 CC Part 3, "12 Class ADV: Development"

page 76, paragraphs 208-209

 CC Part 3, "12.1 Security architecture (ADV_ARC)"

pages 78-79

 CC Part 3, "Annex A Development (ADV)"

pages 173-177, "A.1 ADV_ARC: Supplementary material on security

architectures"

 CEM, "11.3 Security architecture (ADV_ARC)"

pages 91-96

1 Introduction

 - 5 -

1.4 Terms and definitions

Table 1-3 shows the terms related to the CC evaluation criteria and evaluation

methodology used in this guide.

Table 1-3: CC/CEM terms and definitions

Terms Explanation

CC

(Common Criteria)

The international standard ISO/IEC 15408 for evaluating

whether a product or system has been properly designed

and the design has been accurately implemented from the

viewpoint of information security. This is referred to as CC,

which is the abbreviation of "Common Criteria."

CEM

(Common Evaluation

Methodology)

A common evaluation methodology that defines the

approach of the CC-based evaluation (e.g., what target to

evaluate, what judgment is required). This is referred to as

CEM, which is the abbreviation of "Common Evaluation

Methodology."

TOE

(Target of Evaluation)

A software product or hardware product, etc., that is the

target of the CC-based evaluation. This is referred to as

TOE, which is the abbreviation of "Target of Evaluation."

TSF

(TOE Security

Functionality)

Functions required for properly implementing the security

requirements that should be satisfied by the TOE, including

security functions and supporting functions for ensuring

proper behavior of security functions. It consists of hardware

and software in the TOE. Note that, to make it a plain

expression, it may be simply expressed as "security function"

in this guide. This is referred to as TSF, which is the

abbreviation of "TOE Security Functionality."

Security Target A document describing the security requirements and

security-related specifications that serves as a basis for the

evaluation of the TOE. This is referred to as ST, which is the

abbreviation of "Security Target."

2 Basic knowledge of security architecture

 - 6 -

2 Basic knowledge of security architecture

This chapter explains the knowledge, terms, and ideas necessary for understanding

the requirements for preparing the security architecture description, including the details

of security architecture and its realization procedure.

2.1 Security architecture

To put it briefly, security architecture is a mechanism for protecting the security

functions in a product and ensures their proper behavior even when the security

functions themselves become the target of an attack.

The following explains the relation between "security functions" and "security

architecture."

 Security functions

Security functions are comprised of functions for protecting assets to be protected

(hereinafter "protected assets"), including the users' important data, from

unauthorized access and functions for realizing organizational security policies

(security-related requirements needed as the policies of an organization, such as

"audit logs shall be obtained," which may not necessarily be associated with the

protection of unauthorized access directly).

For example, the identification and authentication function and access control

function for preventing unauthorized access to protected assets, encryption function

for protecting confidential information in protected assets, and audit logging function

for monitoring the operating status of the security functions fall under the category of

"security functions."

 Security architecture

Security architecture is a mechanism for protecting security functions from attacks

to ensure their proper behavior.

Even when security functions are implemented in a product, it cannot possibly be

claimed that protected assets are protected and the organizational security policies

have been achieved if the security functions themselves become the target of attacks

and fail to behave properly. Therefore, when security functions such as

identification/authentication and access control are implemented, "security

architecture," which is a mechanism that can protect the security functions

2 Basic knowledge of security architecture

 - 7 -

themselves from attacks, is absolutely essential.

For instance, a mechanism that checks unauthorized inputs from users for

eliminating them and a mechanism where separate memory spaces are allocated for

each process in response to user input processing for restricting such processes

from affecting memory spaces used by another process fall under the category of

"security architecture."

As described above, security architecture has to be taken into account for all

security functions as a countermeasure against threats and for realizing the

organizational security policies. The following provides an explanation using an

attacker's attempt to make unauthorized access to protected assets as an example.

2.2 Attack against security functions

In general, products have interfaces to use protected assets, and the users access

the protected assets via such interfaces. Normally, as described in Figure 2-1, security

functions of some sort, such as identification/authentication and access control, prevent

unauthorized access and protect protected assets.

Security functions

Protected

assets

Product

Unauthorized access is
prevented by means of
security functions

Attacker Attacks cannot reach
the protected assets
as a result of
the protection
by the security functions.

In
te

rf
a

c
e

Blocked

Blocked

Security functions

Protected

assets

Product

Unauthorized access is
prevented by means of
security functions

AttackerAttacker Attacks cannot reach
the protected assets
as a result of
the protection
by the security functions.

In
te

rf
a

c
e

Blocked

Blocked

Figure 2-1: Image of a security function protecting protected assets

In case the security functions themselves in the figure above are attacked to be

bypassed (avoided) or tampered with, the security functions will not be able to behave

properly and might let the attacker conduct unauthorized access.

The next section explains what the "bypassing (evasion)" and "tampering" attacks

against security functions are.

2 Basic knowledge of security architecture

 - 8 -

 Bypassing

"Bypassing" of security functions denotes a situation where a security function that

ought to be applied when the product is used under normal circumstances is avoided

without being applied.

Figure 2-2 shows an image of bypassing.

Security functions

Protected

assets

Product

Bypassing (2)
Unauthorized access
using an interface to
which the security
functions are not
applied

Bypassing (1)
Unauthorized access
avoiding the application
of the security functions

Attacker

Interface

In
te

rf
a
c
e

Security functions

Protected

assets

Product

Bypassing (2)
Unauthorized access
using an interface to
which the security
functions are not
applied

Bypassing (1)
Unauthorized access
avoiding the application
of the security functions

AttackerAttacker

Interface

In
te

rf
a
c
e

Figure 2-2: Image of a security function being bypassed (avoided)

For instance, the following cases are included in "bypassing."

 Cases where an insufficient design or implementation of an interface of a

product prevents the application of the security functions when the product is

used

 Cases where a product contains processing in which the influence prevents the

application of the security functions when the product is used in a way

exceeding assumptions, for example, by changing the assumed order of use or

by modifying the value of a parameter out of the scope of the assumption

 Cases where a leakage or presumption of confidential data on which security

functions depend, such as a cryptographic key, allows for the decryption without

using the security functions of the product

 Tampering

"Tampering" of security functions denotes not only physical modification of the

security functions but also attacks as a whole, including unauthorized inputs having

adverse effects on the behavior of the security functions.

Figure 2-3 shows an image of "tampering."

2 Basic knowledge of security architecture

 - 9 -

Security functions

Protected

assets

Product

Tampering
Attacks aiming at
security functions
prevent them from
working properly

Attacker

In
te

rf
a

c
e

Security functions

Protected

assets

Product

Tampering
Attacks aiming at
security functions
prevent them from
working properly

AttackerAttacker

In
te

rf
a

c
e

Security functions

Protected

assets

Product

Attacker

In
te

rf
a

c
e

Unauthorized access
to the protected assets
due to the failure of
security functions to
work properly

Security functions

Protected

assets

Product

AttackerAttacker

In
te

rf
a

c
e

Unauthorized access
to the protected assets
due to the failure of
security functions to
work properly

Figure 2-3: Image of a tampered security function

For instance, the following cases are included in "tampering."

 Modification of program codes that realize security functions or data on which

the behavior of security functions depend

 Unauthorized inputs that cause unexpected behavior of the product, such as

buffer overflow and SQL injection

 Attacks that prevent the behavior of security functions, for example, by

suspending a process that records audit logs

Note that tampering of security functions can result in the suspension of the

security functions, and the execution of a command infiltrated from outside can result

in bypassing of security functions. Therefore, such bypassing resulting from

tampering is treated as "tampering" in the explanations of this guide.

2 Basic knowledge of security architecture

 - 10 -

With the understanding to the types of those attacks of "bypassing" and

"tampering" as explained above, what is important for security architecture is to

exhaustively consider the possibility of intrusion to security functions.

2.3 Conditions for protecting security functions

CC evaluations require developers to design and implement their products in a

manner in which security functions cannot be bypassed or tampered with, and at the

same time, to describe the concrete mechanisms designed and implemented in the

products as the security architecture description.

In security architecture descriptions, it is important to consider the protection of the

security functions from the four perspectives as follows: "security domain," "TSF

self-protection," "TSF non-bypassability," and "TSF secure initialization."

* TSF (TSF: TOE Security Functionality, TOE: Target of Evaluation) means all the portions

in a product that are required for proper behaviors of the security functions, including

both of the mechanisms for realizing security functions and for realizing the security

architecture.

(1) Security domain

Security domain is an idea that serves as a basis for the design and

implementation intended to prevent the security functions from being bypassed or

tampered with. Realizing the following "TSF self-protection" and "TSF

non-bypassability" on the basis of security domain will lead to an efficient and

robust implementation to prevent bypassing and tampering of security functions.

(2) TSF self-protection

TSF self-protection refers to a mechanism in which security functions protect

themselves for preventing the security functions from being tampered with.

(3) TSF non-bypassability

TSF non-bypassability refers to a mechanism of security functions that ensures the

application of necessary security functions at a proper timing for the prevention of

bypassing.

(4) TSF secure initialization

TSF secure initialization refers to a mechanism that prevents intrusions to the

security during the initialization process of a product from startup to the beginning

2 Basic knowledge of security architecture

 - 11 -

of the operation mode for ensuring that the security functions are initialized in

perfect conditions and enter the operation mode.

The following sections explain those four perspectives.

2.3.1 Security domain

(1) Concept of security domain

Security domain is, in short, the concept of confining the behavior of programs

having a risk of adversely affecting security functions or protected assets within a

certain limited scope.

The behavior of programs having a risk of adverse effects refers to the "behavior" of

programs existing in an environment from which security functions or protected assets

can be accessed.

Examples of applicable behaviors are attacks by unauthorized programs such as

computer viruses, as well as various behaviors even of authorized programs, including

abnormal behaviors caused by the attacker's unauthorized manipulations,

malfunctions caused by the user's operational errors, and faulty behaviors caused by

implementation errors. All such behaviors having adverse effects can be regarded as

"attacks."

Figure 2-4 shows an image of the attacks by the behavior of such programs.

Protected

assets

Security

functions

Security functions and protected assets can be adversely affected in
various ways from the behaviors of the programs in an environment from
which the security functions or protected assets can be accessed.

Faulty

behaviors

caused by

implementation

errors

Abnormal

behaviors

caused by

the attacker's

unauthorized

manipulations

Attacks by

computer

viruses

Malfunctions

caused by

the user's

operational

errors

Program Program

ProgramProgram

Protected

assets

Security

functions

Security functions and protected assets can be adversely affected in
various ways from the behaviors of the programs in an environment from
which the security functions or protected assets can be accessed.

Faulty

behaviors

caused by

implementation

errors

Abnormal

behaviors

caused by

the attacker's

unauthorized

manipulations

Attacks by

computer

viruses

Malfunctions

caused by

the user's

operational

errors

Program Program

ProgramProgram

Figure 2-4: Image of behaviors adversely affecting security functions or

protected assets

2 Basic knowledge of security architecture

 - 12 -

"Security domain" refers to a scope or environment in which such a program is

isolated for preventing attacks by its behavior.

Surrounding a program with security domain will restrict the scope that the program

can access inside the security domain, thus resulting in restraining the attacks by the

behavior of the program in a collective manner.

Figure 2-5 shows an image of the security domain.

Against security functions and protected assets, the behaviors of the
programs in an environment from which the security functions or protected
assets can be accessed, can be protected from adverse effects by
surrounding with and confining to security domains.

Protected

assets

Security

functions

Abnormal

behaviors

caused by

the attacker‘s

unauthorized

manipulation

Malfunctions

caused by

the user's

operational

errors

Security domainSecurity domain

Attacks by

computer

viruses

Security domain

Faulty

behaviors

caused by

implementation

errors

Security domain

Against security functions and protected assets, the behaviors of the
programs in an environment from which the security functions or protected
assets can be accessed, can be protected from adverse effects by
surrounding with and confining to security domains.

Protected

assets

Security

functions

Abnormal

behaviors

caused by

the attacker‘s

unauthorized

manipulation

Malfunctions

caused by

the user's

operational

errors

Security domainSecurity domain

Attacks by

computer

viruses

Security domain

Faulty

behaviors

caused by

implementation

errors

Security domain

Figure 2-5: Image of security domain

As a concrete example, general operating systems have a mechanism, in which the

execution of applications running under user operations is controlled through the

process management and memory management of the operating system, restricting

the scope that the application can freely read and write to the memory in the same

process. The scope of the processes that the application can execute and the memory

that it can use, which is controlled through the mechanisms of process management

and memory management, can be considered to be security domain.

(2) Mechanism of domain separation

A mechanism called "domain separation" is required for restricting security domain,

i.e., the scope of the memory area where a program having a risk of adverse effects

can freely read and write.

2 Basic knowledge of security architecture

 - 13 -

For instance, hardware systems and address administration methods that distinctly

separate the address space used by the users and that used by the system are often

adopted as the mechanism of domain separation. Some application software products

utilize a mechanism offered by the operating system, which is out of the scope of the

product, for realizing domain separation.

(3) Effectiveness of domain separation

Figures 2-6 and 2-7 show the cases where domain separation is not implemented

and where domain separation is implemented, respectively, as the preventive

measures against the bypassing and tampering of security functions.

Protected

assets

Security functions

If the scope that the program can access is
not restricted, there are countless attacking
paths in addition to the path to the authorized
interface, such as access to memory out of
the area.

The existence of countless paths means:
 Countermeasures for the prevention of bypassing and

tampering are required to all the paths individually,
thereby resulting in an increased quantity of work,
posing additional risk of overlooked attacking paths or
insufficient consideration to measures.

Authorized interface

Attack

Normal operation

Programs Protected

assets

Security functions

If the scope that the program can access is
not restricted, there are countless attacking
paths in addition to the path to the authorized
interface, such as access to memory out of
the area.

The existence of countless paths means:
 Countermeasures for the prevention of bypassing and

tampering are required to all the paths individually,
thereby resulting in an increased quantity of work,
posing additional risk of overlooked attacking paths or
insufficient consideration to measures.

Authorized interface

Attack

Normal operation

Programs

Figure 2-6: When domain separation is not implemented

Security functions

Protected

assets

Restricting the paths by means of security domain means:
 This protection is highly efficient because

bypassing and tampering can be prevented in the
majority of the paths, eliminating the need for
individual measures.

The scope that the program can access is
restricted to the inside of the security
domain with the exception of the path to
the authorized interface.

Program

Attack

Normal operationSecurity
domain

Authorized interface

The authorized interface is protected

from attacks by taking countermeasures

for the prevention of bypassing and

tampering.

Security functions

Protected

assets

Restricting the paths by means of security domain means:
 This protection is highly efficient because

bypassing and tampering can be prevented in the
majority of the paths, eliminating the need for
individual measures.

The scope that the program can access is
restricted to the inside of the security
domain with the exception of the path to
the authorized interface.

Program

Attack

Normal operationSecurity
domain

Authorized interface

The authorized interface is protected

from attacks by taking countermeasures

for the prevention of bypassing and

tampering.

Figure 2-7: When domain separation is implemented

2 Basic knowledge of security architecture

 - 14 -

When domain separation has not been implemented, there are countless paths of

attacks by the behavior of the program. This calls for taking countermeasures against

individual attacks, posing additional risk of overlooked attacking paths or insufficient

consideration to measures.

Use of domain separation, however, makes it possible to counter attacks by the

behavior of programs that were formerly able to access protected assets or security

functions in a collective manner, eliminating the need to take measures individually.

Note that it is still needed to take preventive measures against the bypassing and

tampering of the security functions on authorized interfaces. In this way, domain

separation is a method that can realize the prevention of the bypassing and tampering

of security functions robustly and efficiently. For the protection of security functions, it

would be advisable to adopt the concept of security domain and implement the

mechanism of domain separation.

2.3.2 TSF self-protection

(1) The concept of TSF self-protection

TSF self-protection refers to a mechanism in which security functions (TSF) of a

product protect themselves from tampering attacks against security functions.

(2) How to realize TSF self-protection

The methods for realizing TSF self-protection can be divided into two; using domain

separation described above and using a mechanism other than domain separation. It

is common to use both in combination for countermeasures.

(a) Using domain separation

As described above, programs having a risk of tampering attacks can be

efficiently countered by surrounding them with security domain. However,

attacks to interfaces connected to security functions cannot be covered by this

method.

(b) Using a mechanism other than domain separation

Countering tampering attacks using interfaces requires a mechanism other

than domain separation. Examples of such attacks are buffer overflow, SQL

injection, and other unauthorized inputs to interfaces. Individual

countermeasures suitable for the nature of those attacks are required of the

interfaces.

2 Basic knowledge of security architecture

 - 15 -

Recognizing all paths having the risk of attacks to the security functions and their

ways of tampering, developers are required to design and implement the

countermeasures for preventing tampering without omission by using domain

separation or other mechanisms.

(3) TSF self-protection using a mechanism other than the product

A product can realize TSF self-protection by using a mechanism offered by a

function outside the product.

When the product is an application program, for instance, it can realize domain

separation by using the process management and memory management that are

provided by the operating system, which is the execution environment of the program.

Although those functions provided by the operating system are not functions of the

product itself, the parts where the product protects itself by using external functions

can fall under the category of "TSF self-protection."

Going into further detail about the example above, suppose that the product is an

application program, the processing of the application program that uses system calls

provided by the operating system for generating a process or executing a program is

processing inside the application program necessary for using an operating

system-based domain separation mechanism, thus falling under the category of "TSF

self-protection."

2.3.3 TSF non-bypassability

(1) Overview of TSF non-bypassability

TSF non-bypassability refers to a mechanism of security functions (TSF) that

ensures the application of security functions at a proper timing when the program is

used for preventing the security functions from being bypassed.

Bypassing paths can be categorized into two types as follows: when the product has

an interface to which security functions are not applicable, and when the security

functions of the product internally have a usage that can hinder the application of the

security functions. Developers are required to take countermeasures against both

cases.

(2) How to realize TSF non-bypassability

When realizing TSF non-bypassability, developers have to pay attention to the

following points.

2 Basic knowledge of security architecture

 - 16 -

 Prevention of omissions in the application of security functions

Developers have to clarify all interfaces that can access the protected assets in

the product and make sure that there are no omissions in the application of the

security functions. This is because all interfaces that can access the protected

assets are supposed to be designed so that the security functions are applied to

them without fail.

Note that the more access paths to the protected assets there are, the more

difficult it becomes to ensure that there is no omission in the application of the

security functions in every path. In such cases, using domain separation for

limiting the paths that can access the protected assets will facilitate the

prevention of omissions in the application of security functions.

 Prevention of bypassing inside security functions

Developers should design the interfaces of a product with care so that the

security functions internally have no processing, in which the influence from the

unexpected order of use or the entry of an unexpected parameter may hinder the

application of the security functions.

For instance, Web applications may require the implementation of a mechanism

that can control the session management and the order of screen transition so

that the security functions such as identification/authentication and access

control are applied without fail.

2.3.4 TSF secure initialization

TSF secure initialization is a mechanism that ensures the security of the product in

the middle of startup.

Since the security functions of a product in the middle of startup have not yet been

working properly, the security functions may fail to counter attacks, or a special function

having an influence to the security can be used for a short time. This state in the middle

of startup, where security measures tend to be overlooked in general, can be a good

opportunity for attackers to attack.

For instance, a product in the middle of startup may enter dangerous states as

follows:

 If the network communication function is activated earlier than the activation of

the access control function (filtering) in the middle of startup of a firewall, the

2 Basic knowledge of security architecture

 - 17 -

filtering will not function, posing a risk of communications aimed at attacks

passing through the firewall.

 Taking a server operable only by the administrators as an example, the server

may enter a state in which general users other than the administrators can use

special maintenance functions (e.g., the single user mode) if a special operation

is carried out or a failure occurs in the middle of startup of the operating system,

posing the risk of, for example, the change of the administrator password and the

copy of confidential data to external storage media.

Because of the risks described above, developers shall design and implement a

mechanism in which the product can counter attacks to ensure that the initialization

process of the security functions is properly conducted even in the period from the

startup of the product to the beginning of the operation mode.

3 Security architecture description

 - 18 -

3 Security architecture description

This chapter explains the contents to be described in the security architecture

description, a document that the certification for the CC evaluation requires developers

to submit, with concrete methods of description and examples.

3.1 Content of security architecture descriptions

The security architecture description should contain descriptions about how the

product is designed and implemented for preventing the security functions of the

product from being bypassed or tampered with, which are sorted out into the four

perspectives explained in Chapter 2.

- Security domain

- TSF self-protection

- TSF non-bypassability

- TSF secure initialization

Among the four perspectives above, "TSF self-protection" and "TSF

non-bypassability" are mechanisms that protect security functions of a product in the

operation mode from attacks of bypassing and tampering, whereas "security domain" is

an idea that serves as a basis for the implementation of those two mechanisms. "TSF

secure initialization" refers to a mechanism that protects a product during the

initialization process from the startup of the product to the beginning of the operation

mode. The next section and subsequent sections explain how to describe each of those

perspectives.

Note that the contents described in the security architecture description are the

mechanisms that have actually been implemented in products in terms of the

perspectives above. Therefore, the security architecture description and design

documents actually prepared in the product development must maintain consistency

without fail.

3 Security architecture description

 - 19 -

3.2 Security domain

Security domain is defined as a "collection of resources to which an active entity has

access privileges" in the CC standards. An active entity typically refers to a program

running in the product in accordance with the operations (hereinafter referred to as

"program acting on the user's behalf") when a user or a terminal used by a user

(hereinafter collectively referred to as "user") operates a product.

In the security architecture description, the item of security domain has to contain the

descriptions about the definition of the security domain implemented in the product and

the mechanism of the domain separation. In particular, it is important to describe the

following information clearly.

 Definition of security domain

The resources that programs acting on the user's behalf can access without

restrictions must be defined. Typically, address spaces assigned on a

process-by-process basis fall under this category. In addition, address spaces of a

virtual machine, such as JavaVM, may also fall under this category when programs

running on the virtual machine are executed in a restricted environment for

preventing unauthorized system manipulations (generally, referred to as

"sandbox"). When defining security domain, developers should be careful that

security functions to be protected or protected assets are not included in the scope.

 Domain separation mechanism

On the basis of the definition of the security domain above, the restriction

mechanism must be clarified to prevent the programs acting on the user's behalf

from accessing outside the scope of the security domain.

There are various functions to be provided, usage, and implementation methods of

programs depending on products, so that the interpretation of the security domain and

the mechanism of the domain separation differ accordingly. It can be said that product

developers shall design and implement proper security domain in view of the

properties of those products.

In the next section, examples of how to specify the security domain of a product and

to describe the items in the security architecture description are introduced for your

improved understanding. Note that the following methods are just examples, and there

are different methods as well.

3 Security architecture description

 - 20 -

3.2.1 Specification of security domain

One of the primary objectives of security domain is to prevent the tampering of

security functions. For that objective, it is required to prevent programs acting on the

user's behalf from writing without any restrictions to memory areas to which codes and

data constituting the security functions of the product are located.

This section introduces how to specify the mechanisms of the security domain and

domain separation, focusing attention on what mechanism can prevent programs acting

on the user's behalf from accessing a memory area to which security functions are

located. The following is the explanation of a concrete procedure with examples.

(1) Specification of the programs acting on the user's behalf and the security

functions

First, the security functions of the product and the parts of the programs acting on

the user's behalf should be specified. Products, in general, have user functions, which

are the principal purpose of the product, and security functions for the purpose of

restricting user access and preventing unauthorized access.

With an Internet banking system, for instance, the functions for inquiring the balance

of user accounts and making transfers are user functions, while the functions to

identify and authenticate users on the log-in screen and impose restrictions for

preventing them from inquiring accounts of others are security functions. In the

product, the parts of programs that realize the former user functions (parts of the

programs acting on the user's behalf) and the parts of programs that realize the latter

security functions should be separately specified.

Next, the implementation styles used for locating of the security functions of the

product and the programs acting on the user's behalf should be specified. It can be

considered that, in general, the implementation styles of the security functions and the

programs acting on the user's behalf are categorized into one of the following four

types.

(a) Implemented as a kernel (e.g., device driver) of the operating system

(b) Implemented as processes on a program-by-program basis

(c) Implemented as threads in a process on a program-by-program basis

(d) Implemented as a shared library that can be commonly used by multiple

programs

There are various implementation styles depending on the product, where, for

instance, (a) is used for the security functions and (c) for the programs acting on the

3 Security architecture description

 - 21 -

user's behalf, or (b) is used for both the security functions and the programs acting on

the user's behalf.

(2) Judgment of domain separation

Then, after determining which implementation the programs acting on the user's

behalf and the security functions falls under, respectively, among the implementation

styles (a) to (d) specified in Section (1), it should be examined whether or not the

memory areas to which the security functions are located are protected from the

programs acting on the user's behalf.

In general, memory areas to which security functions are located are protected by

one of the following mechanisms or a combination of them. Under those mechanisms,

programs acting on the user's behalf cannot affect the security functions no matter

what behavior they conduct. In other words, the security functions are

domain-separated.

 Mechanism of domain separation based on the execution modes of the

processor

This mechanism is relevant to cases where the security functions are

implemented in the kernel of the operating system and the programs acting on

the user's behalf are implemented as general processes running on the

operating system. Figure 3-1 shows an implementation example of domain

separation.

3 Security architecture description

 - 22 -

Memory area accessible

with the unprivileged mode

DataData

Memory area and I/O accessible

only with the privileged mode

Protected

assets

Protected

assets

Security

functions

Security

functions

Security domain

Accessible without

limitation

Direct access not permitted

Privileged

mode

System call

(Executing the

security functions

after the transition

from the unprivileged

mode to the

privileged mode)

Program

acting on the

user's behalf

Program

acting on the

user's behalf

Unprivileged

mode

Memory area accessible

with the unprivileged mode

DataData

Memory area and I/O accessible

only with the privileged mode

Protected

assets

Protected

assets

Security

functions

Security

functions

Security domain

Accessible without

limitation

Direct access not permitted

Privileged

mode

System call

(Executing the

security functions

after the transition

from the unprivileged

mode to the

privileged mode)

Program

acting on the

user's behalf

Program

acting on the

user's behalf

Unprivileged

mode

Figure 3-1: Example of domain separation (based on the execution modes

of the processor)

In this case, when a general process executes a program acting on the user's

behalf, the operating system controls the program to be executed in the

unprivileged mode of the processor by utilizing the execution modes of the

processor. On the other hand, the kernel in which the security functions are

located is so controlled that execution, read, and write operations are permitted

only in the privileged mode of the processor.

As a result, the area where general processes can freely execute, read, and

write is limited to the scope permitted in the unprivileged mode, preventing them

from executing, reading, and writing in the kernel area where the privileged

mode is required.

 Mechanism of domain separation based on the logical address spaces of

processes

This mechanism is relevant to cases where the security functions are

implemented as processes, and the programs acting on the user's behalf are

implemented as processes other than those for security functions. Figure 3-2

3 Security architecture description

 - 23 -

shows an implementation example of domain separation.

DataData

Program acting

on the user's

behalf

Program acting

on the user's

behalf

Security domain
Logical address

0x00..00

0x00..01

0x00..02

.

.

.

.

.

0xFF..FF

Logical address space

for user processes

Protected

assets

Protected

assets

Security functionsSecurity functions

Logical address space

for processes that realize

the security functions

Different processes access different data even if the logical addresses are the same.

Programs in each process can access only the address space assigned to its own process.

Other

processes

Interprocess communication, shared memory

DataData

Program acting

on the user's

behalf

Program acting

on the user's

behalf

Security domain
Logical address

0x00..00

0x00..01

0x00..02

.

.

.

.

.

0xFF..FF

Logical address space

for user processes

Protected

assets

Protected

assets

Security functionsSecurity functions

Logical address space

for processes that realize

the security functions

Different processes access different data even if the logical addresses are the same.

Programs in each process can access only the address space assigned to its own process.

Other

processes

Interprocess communication, shared memory

Figure 3-2: Example of domain separation (based on the logical address spaces)

In this case, the operation system executes processes by allocating different

logical address spaces to each process. As a result, the area that each process

can access will be limited to the logical address space assigned to its own

process. Therefore, the programs acting on the user's behalf cannot access the

codes and data of the processes that execute the security functions in principle

because the logical address spaces are different.

 Mechanism of domain separation based on a restricted software execution

environment

Although the examples above depend on the hardware for the major part, there

can be domain separation mechanism that is realized primarily by software.

Such mechanism is relevant to cases, such as JavaVM which interprets and

executes Java program codes at the same time, where a software execution

mechanism provides the programs acting on the user's behalf with an execution

environment in which the resources (e.g., programs and data) they can freely

access are restricted. On the other hand, the security functions are implemented

as separate programs from the programs acting on the user's behalf with another

execution environment assigned. In this way, the domains can be separated.

3 Security architecture description

 - 24 -

With the following implementation style, the memory area to which the security

functions are located is not protected, posing a risk of being interfered with by the

programs acting on the user's behalf. In this case, the programs acting on the user's

behalf are not domain separated.

 Implementation in the same logical address space in the same processor

execution mode

This category is relevant to cases where the security functions and the programs

acting on the user's behalf are implemented in the same process. It includes not

only cases in which both of them are not clearly separated in implementation, but

also cases which have implementation styles where threads or shared libraries

run in a process sharing a logical address space.

Such implementation styles as described above require another mechanism in

accordance with the individual implementation style for preventing the security

functions of the product from being tampered with. For instance, it is required for

threads running in a process sharing a logical address space to be implemented on the

basis of an additional mechanism of some kind or implementation rules for preventing

interference between threads.

3.2.2 Description of security domain

On the basis of the analysis in Section 3.2.1, the specified security domain should be

described in the security architecture description. As explained above, the domains for

the programs acting on the user's behalf should be separated so that they cannot

interfere with the security functions. There are exceptional cases, however, where such

domains are not separated. The following explains the contents of the description for

both cases.

(1) When domain separation is implemented

In this case, the definition of the security domain and the mechanism of the domain

separation are to be described. The mechanism of the domain separation includes

both cases where the product realizes the entire domain separation by itself and

where the product realizes the domain separation utilizing external functions.

As an example, the following explains the case where the programs acting on the

user's behalf are realized as processes, and the security function are also realized as

processes.

3 Security architecture description

 - 25 -

In this case, the security domain is formed on a process-by-process basis, so that

the environments assigned to each of the processes (address spaces, in this case)

should be described as the definition of the security domain. In addition, in order to

explain the mechanism of the domain separation, it should be described that the

security functions are also realized as processes. The mechanism of the domain

separation can be explained as follows. Different logical address spaces are allocated

to processes on a process-by-process basis. Therefore, the scope that each process

can access is limited to the logical address space for its own process, thus preventing

it from accessing a logical address space for other process.

(2) When domain separation is not implemented

First of all, whether domain separation is not required in a product should be

examined.

In a processing of complicated data entered by a user (e.g., display processing of

PDF format data), it would be more secure if the interpretation process of the data is

executed in security domain that is restricted in order not to interfere with the security

functions.

If domain separation is not implemented, there are substantial risks of the

interference to the behavior of the security functions caused by implementation errors

of the program, malfunctions, or attacks exploiting flaws. If the preventive measures

against them have not been taken into account, the implementation architecture of the

product has to be reconsidered.

If it is appropriate for the product that domain separation is not implemented, the

rationale of its validity has to be described.

The following can be an example for such rationale. The only interface of the

product is physical buttons for menu selection. User input is strictly restricted,

eliminating the possibility of unpredictable behavior. Therefore, even though domain

separation is not implemented, adverse effects to the security functions can be

completely eliminated only by validating input values from the interface without

omission.

3.2.3 Confirmation of the description contents

In the certification for the CC evaluation, the security functions are evaluated

according to the security functional requirements described in the Security Target.

Therefore, it is required that the description of the security domain is consistent with the

security functional requirements. The following should be conducted for confirmation.

3 Security architecture description

 - 26 -

(1) Viewpoint of the security functions

It should be confirmed whether or not all parts of the security functions for realizing

the security functional requirements have been taken into account in the domain

separation mechanism. For instance, the security functions can be realized both in

drivers in the kernel of the operating system and in processes running on the operating

system. In this case, the programs acting on the user's behalf have to be domain

separated from both viewpoints of drivers and processes in order not to interfere with

the security functions.

(2) Viewpoint of the programs acting on the user's behalf

With the parts of the programs acting on the user's behalf, it should be confirmed

whether or not the subjects of the security functional requirements stated in the

Security Target have been taken into account. The target programs that examine

domain separation may vary, depending on the difference in users, such as between

general users and administrators, or the difference in the user's access style, such as

on the console device of the product and via a network.

3.2.4 Important notes for domain separation

The objective of domain separation is to prevent the security functions from being

bypassed or tampered with. For this reason, as previously introduced, domain

separation is said to be realized in general by a mechanism other than the functions

shown in the security functional requirements, such as the execution mode of the

processor, memory management, and software execution environment.

Therefore, it should be noted that such assertion that unauthorized users can be

domain-separated by means of, for instance, the identification and authentication

function (e.g., ID and password) or the access control function, which are part of the

security functions, is not expected as a description for security architecture.

3.3 TSF self-protection

In the item of TSF self-protection in the security architecture description, it is required

to describe the mechanisms of the security functions (TSF) for preventing the security

functions of the product from being tampered with. TSF self-protection mechanism can

be broadly divided into the following two categories:

- Self-protection mechanism by means of domain separation

- Self-protection mechanism by means of ways other than domain separation

3 Security architecture description

 - 27 -

(Countermeasures against tampering that cannot be countered only by domain

separation, such as user input)

Note that tampering prevention of TSF may be realized by utilizing not only the

security functions of the product but also functions outside the product. In the security

architecture description, it is required to clarify the division of roles between the

mechanisms realized by the security functions themselves and those offered by

functions outside the product.

The reason is that security functions of the product and functions outside the product

are handled differently in the CC evaluation. Security functions of the product are the

subjects of the CC evaluation, such as the design, test, and vulnerability analysis. They

also include mechanisms in the product that utilizes functions outside the product. On

the other hand, functions outside the product themselves are not considered the

subjects of the CC evaluation.

In the following sections, example methods of stating TSF self-protection as the

security architecture description are introduced.

3.3.1 Self-protection mechanism by means of domain separation

As already explained in Section 3.2, although it is preferable that a domain separation

mechanism is implemented in products, there are exceptional cases where domain

separation is not implemented. This section is not applicable when domain separation is

not implemented.

As for the domain separation explained in Section 3.2, additionally, the parts

conducted in the evaluated product and the parts conducted outside the scope of the

evaluation, such as functions outside the product, should be distinguished. Then, the

parts conducted in the evaluated product as the TSF self-protection mechanism should

be described in the security architecture description because such parts can be

regarded as part of the security functions.

For instance, in the cases of the domain separation explained in Section 3.2 that uses

the execution mode of the processor or the logical address spaces of processes, the

contents can be described as follows:

 When domain separation is realized in the product

In this case, all concrete mechanisms contributing to the separation of security

domain will be described, such as the details of the processing that realizes the

logical address spaces on a process-by-process basis and the details of the

processing that realizes the execution mode management of the processor.

3 Security architecture description

 - 28 -

 When domain separation is realized depending on functions outside the product

In this case, the usage in the evaluated product and its timing will be described

with regard to the domain separation mechanism offered by functions outside the

product.

For instance, the following can be an example description. The evaluated

product (security function) is executed at startup as a resident process with

administrator privilege. When receiving an input from a user, the security function

identifies and authenticates the user. After that, it generates a process for each

user using system calls offered by the operating system, which are functions

outside the product, and executes the programs acting on the user's behalf with

general-user privilege.

3.3.2 Self-protection mechanism by means of ways other than domain
separation

As already explained in Section 3.2, there are products with and without domain

separation. This section is applicable to both cases.

With regard to input from users and programs acting on the user's behalf (hereinafter

collectively referred to as "user side"), the mechanisms that protect the security

functions from being tampered with should be described in the security architecture

description. The following shows an example of the procedure.

(1) Specification of target interfaces for self-protection

First of all, all the interfaces through which the user side uses the protected assets

will be identified without omission. Such interfaces include screen inputs for Web and

other applications, network interfaces, and interfaces between programs in the product.

Figure 3-3 shows the target interfaces for self-protection.

3 Security architecture description

 - 29 -

Interface is countered by means of domain separation

Interfaces become the target of TSF self-protection

Program acting on the

user's behalf
(Not domain separated)

Program acting on the

user's behalf
(Not domain separated)

Security domain

Security functions

Users

User interface

Inter-program

interface

(2)

User interface

User interface

(1)

Product

(3)

Program

acting on the

user's behalf

Program

acting on the

user's behalf

(4)

(5)

Figure 3-3: Target interfaces for self-protection

The interface (1) has no impact on the security functions because the connected

program acting on the user's behalf is domain-separated. Therefore, this interface can

be excluded from the target of self-protection.

All the other interfaces are connected to programs located outside the security

domain; (2) and (5) are connected to a program acting on the user's behalf that is not

connected to the security functions, and (3) and (4) are connected to programs of the

security functions themselves, respectively. Those programs can interfere with each

other because they are not domain-separated. In other words, regardless of whether

the security functions are implemented to the connected program or not, all the

interfaces (2) to (5) connected to programs that are not domain-separated become the

target of self-protection.

When the product does not have a domain separation mechanism, self-protection

mechanism has to be examined for all the interfaces.

3 Security architecture description

 - 30 -

(2) Description of the self-protection mechanism on an interface-by-interface

basis

Next, the mechanism that protects the security functions from being tampered with

for each of the specified interfaces will be specified, and then the contents will be

described.

Interfaces must be equipped with a mechanism that can properly handle any input

with no exceptions, even if they have out-of-specification inputs beyond the scope,

size, or pattern defined in the design specification. Such mechanisms include the

following:

 Buffer overflow measures

Buffer overflow is a problem that occurs when a character input processing, etc.,

reads in a character string longer than the size of the buffer area prepared for

reading input characters. The occurrence of buffer overflow poses the risks of an

abnormal end of the program and the execution of an unexpected code infiltrated

from the outside. As a countermeasure, the input processing must have such a

restriction that prevents reading-in of character strings longer than the specified

size into the buffer area. Those contents will be described in the security

architecture description. Note that the countermeasure of checking the length of

input characters alone will leave the possibility that buffer overflow may occur at

the moment when the input characters are read-in for checking purposes.

 Prevention of the injection of scripts and commands

When processing character strings entered from the outside, there is a risk of the

execution of an unintended script or command contained in the character strings.

Familiar examples include the injection of SQLs, operating system commands,

and JavaScripts. Required processing as a countermeasure includes checking

the entry of special characters for eliminating them or replacing them with other

characters to avoid adverse impacts. An implementation without the need for

error-susceptible concatenating processing of character strings (e.g., use of the

bind mechanism of SQL) can also be presumed. Those contents will be

described in the security architecture description.

 Countermeasures against an unauthorized memory area or file name specified

by the user side

The memory area or file name, in which input or output data is stored, can be

3 Security architecture description

 - 31 -

specified as a parameter for the use of an interface of the product. On this

occasion, an unauthorized memory area or file name that is not supposed to be

accessed by the user side may be specified, posing a risk that the area or file is

read and written by the input-output processing in the product. As a

countermeasure, checking validity such as the access privilege is required for

the memory areas and file names specified by the user side. Those contents will

be described in the security architecture description.

 Countermeasures against rewriting of memory areas specified by the user side

When the product performs processing by referring to the content of the memory

area specified as an input parameter several times, the user side may alter the

content of the memory area during the processing. For instance, if the user side

rewrites an input value to an authorized value after the product validates the

input value, there is a risk that the rewritten unauthorized value may be used in

subsequent processing in the product. A possible countermeasure can be to

copy the content of the memory area specified as a parameter to a secure area

that cannot be accessed by the user side when interface processing is called,

and from this point onward, to perform various processing referring to the copied

content. Those contents will be described in the security architecture description.

 Countermeasures against data formats or network protocols to be configured

without authorization

Even when a data format or network protocol is specified, the input data to the

product is not necessarily valid. For instance, when a data format or network

protocol handles variable-length data, an offset value from the top or a data

length may be specified for indicating the ending position of the data. There is a

risk that unauthorized values could be specified in the input data. If the product

trusts the input data and performs the processing under such a circumstance,

the product may access data out of the area, posing a risk of unexpected

behavior. As a countermeasure, validity checking of the data content is required.

Those contents will be described in the security architecture description.

 Others

If the product has other mechanisms than those mentioned above for the

prevention of adverse effects to the security functions (TSF) associated with the

use of an interface from the user side, the contents should be described.

3 Security architecture description

 - 32 -

Examples include the confliction measures for interfaces using shared memory

and the confliction measures for in-process data shared between threads. Those

contents will be described in the security architecture description.

3.3.3 Confirmation of the descriptions

By comparing the mechanisms stated in the security architecture description with the

specifications used in the actual product development, it should be confirmed that the

contents are consistent and there are no omissions in the descriptions for each other.

All the mechanisms that contribute to the prevention of the tampering of the security

functions, such as the prevention of the modification or suspension of the security

functions and unexpected command execution, should be described.

3.4 TSF non-bypassability

In the item of TSF non-bypassability in the security architecture description, it is

required to describe the mechanisms that ensure the application of the security

functions for protecting the protected assets whenever the user accesses the protected

assets.

To that end, it is required to demonstrate that all the interfaces of the product fall

under either of the following, and that the product has no interface that is capable of

bypassing the security functions.

 The security functions are applied to interfaces that are capable of accessing the

protected assets without fail.

 Interfaces other than the above are not capable of accessing the protected

assets.

In the security architecture description, the respective descriptions should be stated

as follows, regarding the interfaces to which the security functions are applied when the

protected assets are accessed (hereinafter referred to as "interface to the security

functions") and other interfaces (hereinafter referred to as "interface irrelevant to the

security functions").

 Interface to the security functions

The mechanism should be described, which ensures the application of all

security functions required for protecting the protected assets at a proper timing

whenever the protected assets are accessed through the interface. This

3 Security architecture description

 - 33 -

description should also include the absence of the mode and setting in the

interface for bypassing the required security functions.

 Interface irrelevant to the security functions

The reason why the interfaces other than the above are irrelevant to the

protected assets and security functions should be described. It would be

insufficient to merely assert that there is no relevance. The irrelevance to the

security functions should be clearly described to indicate a concrete processing

mechanism.

In the following sections, example methods of stating TSF non-bypassability as the

security architecture description are introduced.

3.4.1 Measures on the interfaces to the security functions

(1) Specification of the interfaces to the security functions

First, the interfaces that the user and programs acting on the user's behalf can use

for accessing the protected assets should be specified. Such interfaces should have

been implemented with security functions for protecting the protected assets, such as

identification/authentication and access control. If there is an interface that can be

used for accessing the protected assets without the intervention of security functions,

it must be reviewed whether the interface and the security functions are appropriate or

not.

Note that there are exceptional cases where the security is assured by a function

outside the product, such as physical access control to the installation location,

thereby allowing those interfaces which do not require the security functions by the

product. Such cases will be discussed in Section "3.4.2 Interface irrelevant to the

security functions."

(2) Description of the mechanisms that ensure the application of the security

functions

Next, the mechanisms that ensure the application of the security functions to the

interface should be described. The following are examples of descriptions.

 When the security functions are simple

When the relationship between interfaces and security functions is simple, it

would be sufficient to describe the processing in the security architecture

description at a level commensurate with the simplicity. For instance, it will be

3 Security architecture description

 - 34 -

described that the processing is sequentially performed in response to a user input,

in the order from the input parameter processing, to the security functions, the

access to the intended protected assets, and the response of the processing

results. Using the description, it should be made clear that there is no conditional

branch that can bypass the security functions depending on the input parameter

from the user and that the interface has been designed and implemented so that

the user cannot change the order of processing.

If there is processing that disables the security functions referring a setting value

inside the interface, a mechanism or operational measure is required for ensuring

that the security functions are always enabled during operation. For example, it will

be described that the setting of enabling/disabling can be accessed only by the

administrators and not by general users, and also that the administrator's guidance

manual has a description reminding that the product should be operated with the

security functions enabled.

 When there are many paths that can be used for accessing the protected assets

When there are many paths that can be used for accessing the protected assets,

a special mechanism may be required for ensuring that the security functions are

applied to all the paths without omission.

As an example, security requirements of encrypting data are considered when

the data is stored to a hard disk drive. A user can use various APIs and commands

of the operating system for writing data to the hard disk drive. A mechanism will be

required that can ensure the application of the security functions to all of them. In

such cases, a commonly used method is to apply encryption to the input-output

data of the hard disk drive at the device driver level, utilizing the fact that all the

hard disk drive input-output offered by operating systems are performed through a

device driver. By using this method, the security functions are applied without fail

no matter what API or command the user uses. Those contents will be described in

the security architecture description.

 When various operations are available for users

When a user can change the order of operations to the interface or parameters

to input, a special mechanism may be required for ensuring that the security

functions are applied without omission no matter what operation the user performs.

As an example, a case referring to the data to be protected in a Web system is

considered. With a correct screen transition, the log-in screen appears first, and

the intended data referencing screen can be accessed only when the identification

3 Security architecture description

 - 35 -

and authentication are successfully completed with the ID and password entered to

the log-in screen. With Web browsers, however, the user can try to access any

screen, in addition to the first log-in screen, by specifying the URL directly. By using

the function, there is a risk of displaying data referencing screens that cannot be

accessed without logging-in under normal conditions. A mechanism is required that

can ensure the application of the security functions, such as

identification/authentication and access control, no matter what URL is specified.

As a countermeasure, it is required to have controls that maintain the state

(session) in which identification and authentication were successfully completed

and permit only the access of authorized sessions. Those contents will be

described in the security architecture description.

Note that the session management of Web systems attracts many attackers'

interest, so various attacks are known. Developers have to make consideration for

countermeasures against attacks to the session management mechanism.

3.4.2 Measures on the interfaces irrelevant to the security functions

The interfaces explained in this section include all other interfaces that do not fall

under the interfaces to the security functions explained in the previous section. The

processing mechanism of the interface should be described so that the readers can

understand the irrelevance between the security functions or protected assets, and the

said interface. The following are example descriptions.

 When depending on domain separation

When the program part activated by the said interface is domain-separated from

the security function part and the protected asset part, the said interface is

irrelevant to the security functions and protected assets. In this case, by specifying

the security domain including the program part activated by the said interface, it will

be described that bypassing is prevented by means of domain separation.

 When no special mechanism exists

There is a risk that the program part activated by the said interface may, when it

is not domain-separated, access the security functions or the protected assets via

various paths. It will be described that such processing does not exist in the

relevant program.

For instance, by describing the processing of the program part activated by the

said interface and the scope that its effects can reach (e.g., the scope of the data to

be accessed, effects to other program part), it will be explained that no functions

3 Security architecture description

 - 36 -

reachable to the security functions or protected assets have been implemented.

 When depending on measures other than the product (exceptional cases)

The reason should be described if no security functions for protecting the

protected assets are required even though the interface can be used for accessing

the protected assets. As an example, when the security depends on a function

outside the product or operational measures, the dependent contents should be

described, as well as the fact that the administrator's guidance manual has a

description reminding that the dependent contents should be conducted without

fail.

3.4.3 Interfaces that developers tend to fail to notice

Up to this section, the bypassing prevention mechanisms have been considered

with respect to interfaces developed by developers and provided to users. However,

interfaces not intended by the developers and interfaces undisclosed to general users

also involve the risk of being exploited for bypassing the security functions.

Developers are required to employ some measures for preventing the security

functions from being bypassed through such interfaces. The measures will be

described in the security architecture description. The following sections show

examples of interfaces that are often overlooked.

(1) Example of interfaces not intended by the developers

 Interfaces of the operating system

Operating systems offer various interfaces, including the physical memory space,

logical address spaces on a process-by-process basis, and direct access to the

devices. There is a risk that the protected assets are accessed from those

interfaces. Possible measures include a description on the guidance manual

reminding that those interfaces can be used only by the administrators and

provided with an access privilege that prohibits general users from accessing it.

 Web server

Web servers are equipped with a function of displaying the content when a

directory or file name on the Web server is directly specified from a Web browser.

The function poses a risk of disclosure of undisclosed information. As a

countermeasure, attention should be given to, for example, the settings of the Web

server and the placement of the contents (i.e., undisclosed information should not

be placed in a public directory).

3 Security architecture description

 - 37 -

 Deciphering of cryptographic keys

When the protected assets are encrypted for ensuring confidentiality, there is a

risk that attackers can decrypt the encrypted protected assets without using the

decryption mechanism provided by the product if only they can know the

cryptographic key in some way or another. For example, when generating a

cryptographic key, the use of an algorithm without security assurance, as well as

the easy use of time information or the serial number of the product, may lead to

the deciphering or presumption of the cryptographic key. As a countermeasure,

due considerations are required to the generation mechanism of cryptographic

keys and the seed information used for generating cryptographic keys so that the

cryptographic keys are not easily deciphered or presumed.

 Hidden channels

IC cards and similar devices have a risk that the cryptographic key is deciphered

by means of analyzing the power waveforms instead of the regular input-output

interfaces. When the password verification is so implemented as to compare to a

password on a character-by-character basis, the password may be analyzed in a

short time if the attacker knows how many characters had been entered before the

verification failed by means of, for example, measuring the time required for the

verification. Possible measures include devising a method of processing so that

intended computations have no correlation to the power consumption and

processing time in danger of being observed.

(2) Examples of undisclosed interfaces

 Maintenance interfaces

A product may have undisclosed interfaces for the purpose of maintenance, etc.

Even though they are undisclosed to the public, they still have a risk of being found

out and exploited by attackers. In such a case, it should be noted that keeping the

usage of the interface confidential is not necessarily a sufficient countermeasure.

As a countermeasure, due considerations are required for the security measures

for preventing the interface from being exploited by means of, for example,

identification and authentication, as well as strengthening the mechanism of

identification and authentication at the same time.

 Debugging interfaces for development

If debugging interfaces that were used for the development remain in the product,

they likewise pose a risk of being exploited for unauthorized access. As a

3 Security architecture description

 - 38 -

countermeasure, it should be confirmed that no unnecessary interfaces are left in

the product.

3.4.4 Confirmation of the descriptions

As is the case with TSF self-protection, by comparing the mechanisms stated in the

security architecture description with the specifications used in the actual product

development, it should be confirmed that the contents are consistent. In addition, it

should be confirmed that the non-bypassability has been demonstrated not only for

identification/authentication and access control, but also for audit logging function and

all the other security functions required for protecting the protected assets.

Furthermore, it should also be confirmed that the non-bypassability has been

demonstrated for all interfaces available for each of the security functions.

3.5 TSF secure initialization

In the items of TSF self-protection and TSF non-bypassability in the security

architecture description previously mentioned, the states where the product is in

operation are explained. On the other hand, in the item of TSF secure initialization in

the security architecture description, the mechanisms that ensure the security should

be described by focusing on the initialization process of the security functions in the

period from the startup of the product triggered by power-on to the beginning of the

operation mode.

Although the security measures during the initialization process tend to be

overlooked, the security must be ensured even during the initialization process by

means of some mechanisms, such as processing itself in the product and operational

measures.

TSF secure initialization includes the following items.

(1) Specification of the initialization process of the security functions

By specifying the part of the product where the initialization process of the

security functions is performed, the overview of the processing will be described.

With respect to the initialization process specified in this stage, the mechanisms

that ensure the security of the process will be described in the viewpoints

explained in the next sections.

(2) Ensuring the integrity of the initialization process of the security functions to be

initialized

The mechanisms that ensure the integrity of the security functions to be

3 Security architecture description

 - 39 -

initialized in the initialization process of the security functions specified above will

be described.

(3) Protection of the protected assets during the initialization process

The mechanisms that prevent unauthorized access to the protected assets

during the initialization process, in which the security functions have not yet been

working, will be described.

(4) Prevention of exploiting the initialization process

The mechanisms that prevent exploiting the initialization process of the security

functions by executing it in the operation mode will be described.

Figure 3-4 shows the overview of TSF secure initialization in accordance with the

items (1), (2), (3), and (4) above.

Initialization process such as

memory area allocation

Aborting process of the

initialization process

Initialization process such as

the reading-in of setting values

Other initialization process

YES

YES

YES

NO

NO

NO

In operation

Occurrence of

an error

Initial secure state

(e.g., log-in screen) (4)

Demonstrate the mechanisms that prevent

exploiting the initialization process by

executing it in the operation mode.

(4)

Demonstrate the mechanisms that prevent

exploiting the initialization process by

executing it in the operation mode.

Occurrence of

an error

Occurrence of

an error

(2)

Demonstrate the

mechanisms that

maintain the integrity of

the security functions to

be initialized (e.g., the

flow for the occurrence

of an error during the

initialization process).

(2)

Demonstrate the

mechanisms that

maintain the integrity of

the security functions to

be initialized (e.g., the

flow for the occurrence

of an error during the

initialization process).

(1)

Specify the initialization

process of the security

functions in the period

from the startup of the

product to the transition

to the initial secure state.

(1)

Specify the initialization

process of the security

functions in the period

from the startup of the

product to the transition

to the initial secure state.

(3)

Demonstrate the prevention

measures against

unauthorized access to the

protected assets during the

initialization process

(protection mechanisms by the

product and or operational

conditions).
* Depending on the circumstances,

the state before startup and the

aborted state of the initialization

process are also included.

(3)

Demonstrate the prevention

measures against

unauthorized access to the

protected assets during the

initialization process

(protection mechanisms by the

product and or operational

conditions).
* Depending on the circumstances,

the state before startup and the

aborted state of the initialization

process are also included.

From this point onward,

the protected assets are

protected by the security

functions.

Aborted state of the

initialization process
Startup of the product

Initialization process such as

memory area allocation

Aborting process of the

initialization process

Initialization process such as

the reading-in of setting values

Other initialization process

YES

YES

YES

NO

NO

NO

In operation

Occurrence of

an error

Initial secure state

(e.g., log-in screen) (4)

Demonstrate the mechanisms that prevent

exploiting the initialization process by

executing it in the operation mode.

(4)

Demonstrate the mechanisms that prevent

exploiting the initialization process by

executing it in the operation mode.

Occurrence of

an error

Occurrence of

an error

(2)

Demonstrate the

mechanisms that

maintain the integrity of

the security functions to

be initialized (e.g., the

flow for the occurrence

of an error during the

initialization process).

(2)

Demonstrate the

mechanisms that

maintain the integrity of

the security functions to

be initialized (e.g., the

flow for the occurrence

of an error during the

initialization process).

(1)

Specify the initialization

process of the security

functions in the period

from the startup of the

product to the transition

to the initial secure state.

(1)

Specify the initialization

process of the security

functions in the period

from the startup of the

product to the transition

to the initial secure state.

(3)

Demonstrate the prevention

measures against

unauthorized access to the

protected assets during the

initialization process

(protection mechanisms by the

product and or operational

conditions).
* Depending on the circumstances,

the state before startup and the

aborted state of the initialization

process are also included.

(3)

Demonstrate the prevention

measures against

unauthorized access to the

protected assets during the

initialization process

(protection mechanisms by the

product and or operational

conditions).
* Depending on the circumstances,

the state before startup and the

aborted state of the initialization

process are also included.

From this point onward,

the protected assets are

protected by the security

functions.

Aborted state of the

initialization process
Startup of the product

Figure 3-4: Overview of TSF secure initialization

In the following sections, example methods of stating TSF secure initialization as the

security architecture description are introduced.

3 Security architecture description

 - 40 -

3.5.1 Specification of the initialization process of the security functions

The targets of the initialization process are the processing part in the product during

the period from the startup of the product to the transition to the state where the entire

part of the security functions (TSF) of the product is operable (hereinafter referred to as

"initial secure state"). The scope covers not only the initialization process directly

related to the security functions, but also the initialization process for all the

mechanisms in the product for supporting the security functions, including the security

architecture.

By specifying the initialization process as follows, the results should be described in

the security architecture description.

(1) Specification of the startup methods of the product

First, the startup methods of the product should be specified. In the case of products

containing hardware devices and software products controlling the entire hardware,

the startup of the product is triggered by power-on or reset, etc. In the case of software

products running on an operating system, they can be launched automatically at the

start-up of the operating system or launched in accordance with an administrator's

instruction after the start-up of the operating system.

In addition, when rebooting of the product or when the product is equipped with the

functions of suspension and resume of the operation, the resume instruction are also

included in the start-up methods of the product.

(2) Definition of the initial secure state

The state falling under the initial secure state varies depending on the product. The

initial secure state after the start-up of the product (i.e., operable state) is defined in

accordance with the properties of the product.

For example, it may include a state where a software product that is automatically

launched at the power-on of the computer device displays a log-in prompt to a user,

while it may include a state where the filtering processing enters the waiting-for-input

state of network packet in a firewall product.

(3) Specification of the initialization process

Among the processing during the period from the startup of the product to the

transition to the initial secure state, the process that falls under the initialization

process of the security functions is specified.

It should be noted that every processing related to the security functions covered in

the scope of the product can be the target when the relevant processing is specified.

3 Security architecture description

 - 41 -

For example, not only security function-specific processing, such as the reading-in of

the setting values used by the security functions, but also the setup of the memory

management in preparation for domain separation and other similar processing, as

long as they are covered in the scope of the product, are included in the initialization

process that should be stated in the security architecture description.

Depending on the product, the processing executed in the initial start-up can be

different from that executed after reboot or resume. Paying attention also to those

points, the initialization process part of the security functions during the period from the

down state of the product to the transition to the initial secure state should be specified

without omission.

(4) Description of the security architecture description

The start-up methods of the product and the definition of the initial secure state

should be explicitly described in the security architecture description. In addition, the

overview of the initialization process detailed enough to understand the

correspondence to the design specifications should also be described.

3.5.2 Ensuring the integrity of the security functions to be initialized

In spite of the situation that the security functions were not working properly owing to

a failure in the initialization process caused by tampering through unauthorized access

or some factor during the period from the startup of the product to the transition to the

initial secure state, it would be very dangerous if the administrator, without noticing

such a situation, continued the operation of the product with the security functions

working insufficiency. To prevent such a situation and to achieve a secure operating

state, a mechanism for ensuring the integrity of the security functions will be required

in the initialization process of the security functions.

With respect to this viewpoint, the following contents should be described in the

security architecture description.

(1) Achievement of the initial secure state

The reading-in of the setting values for the security functions, the allocation of the

memory area used by the security functions, and other various conditions have to be

achieved for establishing the initial secure state. In the security architecture

description, the mechanisms that can securely achieve the conditions required for the

establishment of the initial secure state by means of the initialization process specified

in the previous section will be described.

3 Security architecture description

 - 42 -

In the statement, it is insufficient to merely describe that successful completion of a

series of the initialization process will result in the initial secure state. It is required to

specify the factors with which the initialization process can fail and then to

demonstrate that the security is not compromised under any circumstances.

In most cases, the initialization process is sequentially executed until the initial

secure state is established. One thing it should be noted in this stage is the case

where an error occurs in processing, such as a failure in the allocation of the memory

area. In the initialization process, if the processing is continued regardless of the

occurrence of an error owing to an insufficient checking of the return value from a

function, the operation may be started with the security functions not working properly.

In this case, therefore, the occurrence of errors in the return values of functions must

be securely checked, and it is required to implement a mechanism that, for example,

aborts the initialization process upon detection of an error.

(2) Protection of the aborted states during the initialization process

There is a risk that attackers may exploit the states where the initialization process

has been aborted due to the occurrence of an error, etc. Depending on the operating

system, for instance, the product can be switched into the command prompt mode with

the administrator privilege, or the operating system can be booted in a special mode

such as the Safe Boot option of Windows, which allows the attackers to use the

product in a state where the security functions are not sufficiently working. To prevent

such situations, it is required to implement mechanisms ensuring that the protected

assets do not allow unauthorized access through the prevention of exploiting the

aborted state during the initialization process. Examples of such measures include

restricting operations available for the users to power-off in the aborted state during

the initialization process. Note that the same countermeasures as the operational

measures explained in Section 3.5.3 will be required when it is difficult to take

countermeasures by means of the functions of the product.

(3) Cautions required for rebooting

The reboot and resume of the product should be handled in the same way as the

case with "(1) Achievement of the initial secure state" in principle. However, it should

be noted that problems specific to rebooting or resuming the product may occur. For

instance, if the administrator rebooting the product omits some part of the initialization

process based on the assumption that all the previous initialization process has

successfully completed, the operation may be started with the security functions

working insufficiently in case the previous initialization process was actually

3 Security architecture description

 - 43 -

incomplete due to the occurrence of an error.

Another example is a product that is designed to reset security-related settings at

reboot, which are made by the administrators during the operating state, posing a risk

that the administrators may start the operation without noticing that the settings have

been reset at the reboot. Possible countermeasures in such a case include displaying

a warning message so that the administrators can recognize the timing when the

security-related settings are changed, such as reboot or operation resume of the

product, as well as calling attention in a guidance manual.

3.5.3 Protection of the protected assets during the initialization process

In the middle of the initialization process, the protected assets may be accessed

without authorization because the security functions have not entered the operation

modes. With a firewall product, for instance, if the TCP/IP packet processing starts

relaying TCP/IP packets before the filtering function starts the operation, there is a risk

that the packets that are supposed to have been filtered are relayed without the

application of the filtering function during the period from the power-on to the transition

to the operation mode.

In addition, with a product originally intended that programs are started from the

internal hard disk drive, there can be a risk of unauthorized access to the protected

assets stored in the internal hard disk drive by starting another program from a USB

memory, etc. There is a risk that attackers may launch another operating system

stored in a USB memory for performing various operations with the administrator

privilege; for example, by intentionally suspending the initialization process of the

product for instructing that the product should be launched from the USB memory

using BIOS, or by starting the product with the USB memory left inserted, depending

on the BIOS settings.

The following are possible measures for preventing such unauthorized access.

(1) Measures by the product

The mechanisms should be described when measures by the product have been

implemented. In most cases, the function to access the protected assets is not working

in the middle of the initialization, and the access function to the protected assets starts

working only after the security functions are ready for operation. As for a firewall

product, for instance, the relaying of TCP/IP packets is prohibited in the initial state,

and then the relaying of TCP/IP packets is permitted after the filtering becomes ready

for operation.

3 Security architecture description

 - 44 -

In the security architecture description, the order of the processing steps performed

in the initialization process should be concretely described in order to demonstrate that

the protected assets cannot be accessed in the middle of the initialization.

(2) Operational measures

When measures by the product have not been taken, the obligations that the

operations manager shall perform as the operational conditions of the product should

be described.

Citing as an example of a firewall product previously mentioned, possible

operational measures include the operations manager's compulsory attendance at the

startup of the product for ensuring that the LAN cable is disconnected before the

startup of the product and reconnected after the product has entered the operation

mode. When operational measures where the operations manager attends only during

the initialization process is assumed, as is the case with this example, it is also

necessary to clarify the method to determine that the product has entered the

operation mode, such as by checking the lamp display or the console messages of the

device.

As another example, many server machines are required to be physically isolated in

order to prevent anyone except for the operations manager from conducting

unauthorized operations to the console of the machine.

With products running on a PC, it sometimes may be required to restrict the

bootable devices in the BIOS settings during the initial settings so that the PC can be

booted only from the internal hard disk drive, or to set a BIOS password for protecting

the BIOS settings from being modified.

Note that those descriptions have to be stated not only in the security architecture

description, but also in the guidance manual of the product for calling attention to the

operations manager for certain implementation.

3.5.4 Prevention of exploiting the initialization process

To make the security functions ready for operation, the initialization process performs

the setting of special data and hardware required for the operation of the security

functions. There is a risk of the security functions being tampered with if those

initialization processes are executed in the operation mode. To prevent such situations,

the initialization process must be protected from being executed in the operation mode,

and the mechanisms that realize such protection should be described in the security

architecture description. It will be described that, for instance, although the initialization

3 Security architecture description

 - 45 -

process is sequentially executed at power-on, no interfaces that can be used for

executing the initialization process are provided once the system has entered the

operation mode.

When the initialization process is realized with programs running on the operating

system, a mechanism that controls whether the initialization process has been already

executed or not may be implemented to prevent the initialization process, which is

supposed to be executed only once, from being executed multiple times by reexecuting

such programs. Such descriptions will be described in the security architecture

description.

If the system provides an interface that can be used for executing the initialization

process even in the operation mode, the mechanisms for ensuring that attackers

cannot tamper with the security functions by using the interface have to be described.

3.5.5 Confirmation of the descriptions

By comparing the mechanisms stated in the security architecture description with the

specifications used in the actual product development, it will be confirmed that the

initialization process has been described without omission, as is the case with the other

security functions, and that the contents are consistent.

3.6 The level of detail in the security architecture description

As previously explained, the security architecture description is required to include

the mechanisms that the product is equipped with in order to prevent bypassing and

tampering of the security functions. This section explains at what level of detail the

contents should be described.

In the CC evaluation, the security functions to protect the protected assets, such as

identification/authentication and access control, are evaluated whether they have been

accurately implemented and are capable of countering attacks on the basis of the

design materials provided by the developers. The design materials required for the

evaluation are determined according to the seven-stage evaluation assurance level

(EAL). The higher the EAL is, the more detailed the information has to be. The same

level of detailed information as the security functions to protect the protected assets is

required for the mechanism of the security architecture. The following shows the level of

details required for each of the EALs.

(1) EAL 1

At EAL 1, the external interface specifications of the product are evaluated.

3 Security architecture description

 - 46 -

Therefore, the security architecture description, which only includes the mechanisms

inside the product, is not necessary for the CC evaluation.

(2) EAL 2 and EAL 3

At EAL 2 and EAL 3, the outline level of design information inside the product is

evaluated, in addition to the external interface specifications of the product. With

regard to the parts that realize the security functions for protecting protected assets,

in particular, the design information must be so detailed that important data

transferred between different functions and the outline of such processing can be

clarified.

For instance, the design information should include the input-output parameters

described in the external interface specifications, the setting parameters, the user IDs

and other information retained in the product for access control after identification and

authentication, and the outline of those processing.

At EAL 3, in addition to those, the design information should include the information

about the important data used in the security functions. Also in the security

architecture description, it is required to clarify the important data and the outline of

the processing in the same level of details as those.

(3) EAL 4 or higher

At EAL 4 or higher, the design information that includes the detailed data structures

and process flows at a program implementation level and the source codes are

evaluated, in addition to the external interface specifications of the product and the

outline level of design information inside the product. In other words, the design

information must be so detailed that third parties other than the developers

(evaluators) can interpret the source codes.

Also in the security architecture description, it is required to clarify the detailed data

and the process flows in the same level of details as those.

Note that the security architecture description should include the coding rules

because they may also contribute to the proof of the protection of the security

functions. For instance, the rule for checking the length of data to be stored for

preventing the data from exceeding the scope of the allocated input-output buffer falls

under self-protection measures for the prevention of buffer overflow.

4 Conclusion

 - 47 -

4 Conclusion

Security architecture is a mechanism to protect security functions themselves from

unauthorized access to security functions for protecting protected assets. This guide

has explained the contents of the security architecture description required for CC

evaluations and how to describe them.

The contents of this guide include many reminders to the points that are often

overlooked during the development and design regarding the security of products.

When designing and developing a product, it would be useful for readers to realize

more secure products by referring to this guide, regardless of having those products to

be considered for the CC evaluation.

Note that developers should pay attention to the following.

 As the planning of the security functions for protecting protected assets is out of

the scope of this guide, it does not include its explanation.

 The protection measures of the security functions may have already been

realized in an execution environment including the employed operating system

and existing libraries and frameworks. Possible options include domain

separation by means of the execution environment and the adoption of a

mechanism that can lead to countermeasures against problems, such as buffer

overflow and SQL infection. After examining the mechanisms that can prevent the

bypassing and tampering of the security functions and clarifying the dependence

with those options in mind, the developers should state them in the security

architecture description.

 Parts of the contents of the security architecture description that are realized by

means of a mechanism of the product must be described in the design documents

of the product in the same manner as general functions, and tested for confirming

that they are working properly.

 Parts of the contents of the security architecture description that are realized by

means of operational measures must be reminded in a guidance manual or other

documents for ensuring the users' implementation.

Lastly, the following are references that would be helpful for examining and

implementing security architecture.

4 Conclusion

 - 48 -

- How to Secure Your Web Site

http://www.ipa.go.jp/security/vuln/websecurity.html

- Secure Programming Course

http://www.ipa.go.jp/security/awareness/vendor/programmingv2/index.html

- CEM "B.2.1 Generic vulnerability guidance"

(For CEM, refer to "1.3 Common Criteria standard documents" in this guide.)

http://www.ipa.go.jp/security/vuln/websecurity.html
http://www.ipa.go.jp/security/awareness/vendor/programmingv2/index.html

Addendum A Essential points for security architecture

Table A-1 below is a summary of the points of this guide, intended for use as a reference

for examining and realizing security architecture. Note that this table does not assure the

exhaustiveness of the requirements to be stated in the security architecture description.

Table A-1 Essential points for security architecture

Perspective Overview Summary Section

1-1

Security domain
(Domain
separation)

- "Security domain" refers to a scope
or environment, in which resources,
such as memory areas that programs
acting on the user's behalf can
access without restrictions, are
isolated.
- "Domain separation" refers to
confining the above mentioned
resources, such as memory areas, in
an isolated scope or environment.

* Domain separation is realized by
means of mechanisms other than the
security functions of the product.

When the necessity or unnecessity of security
domain is examined

3.2

The necessity or unnecessity of security domain
should be examined and realized for every part
of the security functions to realize the security
functional requirements.

1-2

When security domain is not necessary

With respect to security functional requirements
that do not need security domain, appropriate
rationales should be given for the assertion that
the absence of security domain will not
adversely affect the realization of TSF
self-protection and TSF non-bypassability as
well as other protected assets and security
functions.

*1

2-1

TSF
self-protection

A mechanism to protect security
functions of the product from being
tampered with

Self-protection mechanism by means of domain
separation

3.3
3.3.1

The mechanisms or operational measures for
protecting the product itself by means of domain
separation should be examined and realized.

2-2

Self-protection mechanism by means of ways
other than domain separation

3.3
3.3.2

The mechanisms or operational measures for
protecting the product itself without domain
separation should be examined and realized.
* There are cases such as user input where
adverse effects cannot be prevented only by
security domain.

3-1

TSF
non-bypassability

A mechanism to ensure that the
security functions for protecting the
protected assets are applied at a
proper timing without fail and cannot
be bypassed

Interfaces to the security functions
*2

 3.4
3.4.1 The mechanisms or operational measures for

realizing the non-bypassability, in which all the
security functions are applied at a proper timing
without fail when the protected assets are
accessed via the interface, should be examined
and realized.
The absence of the mode and setting in the
interface for bypassing the security functions is
also included.

3-2

Interfaces irrelevant to the security functions
*2

 3.4
3.4.2 With respect to interfaces irrelevant to the

security functions, what mechanisms or
operational measures can prevent adverse
effects to the protected assets and the security
functions should be indicated without omission.

3-3

Interfaces that developers tend to fail to notice
*2

 3.4
3.4.3 With respect to interfaces that can be used for

bypassing the security functions of the product
among the interfaces that developers tend to fail
to notice, some measures should be examined
and realized without omission.

4-1

TSF secure
initialization

A mechanism to ensure that the
security functions can be initialized in
a perfect state and the product can
enter the operation mode, preventing
the compromise of the security during
the initialization process in the period
from the startup of the product to the
transition to the operation mode of
the product.
(The protection in the period from the
down state to the transition to the
initial secure state is also included.)

Specification of the initialization process of the
security functions

3.5
3.5.1

After specifying the startup methods of the
product, defining the initial secure state of the
product, and specifying the part where the
initialization process of the security functions is
carried out toward the transition to that state, the
outline of the processing should be described,
including the steps in the middle of the transition
as well as the occurrence of errors in the
initialization process.

4-2

Ensuring the integrity of the security functions to
be initialized

3.5
3.5.2

The mechanisms or operational measures for
ensuring the integrity of the security functions to
be initialized in the initialization process of the
security functions should be examined and
realized.

4-3

Protection of the protected assets during the
initialization process

3.5
3.5.3

The mechanisms or operational measures for
preventing unauthorized access to the protected
assets even during the initialization process in
which the security functions have not yet been
working should be examined and realized.

4-4

Prevention of exploiting the initialization process 3.5
3.5.4 The mechanisms or operational measures for

preventing the programs for the initialization
process of the security functions from being
exploited after the product enters the initial
secure state should be examined and realized.

(*1) Refer to Section 3.2.2 (2) for the examples that do not require security domain.

(*2) As is the case with #2 "TSF self-protection," there are two cases where domain separation is used and

not used.

Security Architecture Guide for Developers

March 21, 2012 First edition

Author and Publisher Information-Technology Promotion Agency, Japan (IPA)

Writers Information Security Certification Office

© 2012 Information-technology Promotion Agency, Japan

	1 Introduction
	1.1 Objectives of this guide
	1.2 Organization of this guide
	1.3 Common Criteria standards documents
	1.4 Terms and definitions

	2 Basic knowledge of security architecture
	2.1 Security architecture
	2.2 Attack against security functions
	2.3 Conditions for protecting security functions
	2.3.1 Security domain
	(1) Concept of security domain
	(2) Mechanism of domain separation
	(3) Effectiveness of domain separation

	2.3.2 TSF self-protection
	(1) The concept of TSF self-protection
	(2) How to realize TSF self-protection
	(3) TSF self-protection using a mechanism other than the product

	2.3.3 TSF non-bypassability
	(1) Overview of TSF non-bypassability
	(2) How to realize TSF non-bypassability

	2.3.4 TSF secure initialization

	3 Security architecture description
	3.1 Content of security architecture descriptions
	3.2 Security domain
	3.2.1 Specification of security domain
	(1) Specification of the programs acting on the user's behalf and the security functions
	(2) Judgment of domain separation

	3.2.2 Description of security domain
	(1) When domain separation is implemented
	(2) When domain separation is not implemented

	3.2.3 Confirmation of the description contents
	(1) Viewpoint of the security functions
	(2) Viewpoint of the programs acting on the user's behalf

	3.2.4 Important notes for domain separation

	3.3 TSF self-protection
	3.3.1 Self-protection mechanism by means of domain separation
	3.3.2 Self-protection mechanism by means of ways other than domain separation
	(1) Specification of target interfaces for self-protection
	(2) Description of the self-protection mechanism on an interface-by-interface basis

	3.3.3 Confirmation of the descriptions

	3.4 TSF non-bypassability
	3.4.1 Measures on the interfaces to the security functions
	(1) Specification of the interfaces to the security functions
	(2) Description of the mechanisms that ensure the application of the security functions

	3.4.2 Measures on the interfaces irrelevant to the security functions
	3.4.3 Interfaces that developers tend to fail to notice
	(1) Example of interfaces not intended by the developers
	(2) Examples of undisclosed interfaces

	3.4.4 Confirmation of the descriptions

	3.5 TSF secure initialization
	3.5.1 Specification of the initialization process of the security functions
	(1) Specification of the startup methods of the product
	(2) Definition of the initial secure state
	(3) Specification of the initialization process
	(4) Description of the security architecture description

	3.5.2 Ensuring the integrity of the security functions to be initialized
	(1) Achievement of the initial secure state
	(2) Protection of the aborted states during the initialization process
	(3) Cautions required for rebooting

	3.5.3 Protection of the protected assets during the initialization process
	(1) Measures by the product
	(2) Operational measures

	3.5.4 Prevention of exploiting the initialization process
	3.5.5 Confirmation of the descriptions

	3.6 The level of detail in the security architecture description

	4 Conclusion

