

Common Criteria
for Information Technology

Security Evaluation

Part 3: Security assurance components

July 2009

Version 3.1

Revision 3

Final

CCMB-2009-07-003

Page 2 of 232 Version 3.1 July 2009

Foreword

This version of the Common Criteria for Information Technology Security Evaluation (CC

v3.1) is the first major revision since being published as CC v2.3 in 2005.

CC v3.1 aims to: eliminate redundant evaluation activities; reduce/eliminate activities that

contribute little to the final assurance of a product; clarify CC terminology to reduce

misunderstanding; restructure and refocus the evaluation activities to those areas where

security assurance is gained; and add new CC requirements if needed.

CC version 3.1 consists of the following parts:

 Part 1: Introduction and general model

 Part 2: Security functional components

 Part 3: Security assurance components

Trademarks:

 UNIX is a registered trademark of The Open Group in the United States and other

countries

 Windows is a registered trademark of Microsoft Corporation in the United States

and other countries

July 2009 Version 3.1 Page 3 of 232

Legal Notice:

The governmental organisations listed below contributed to the development of this version

of the Common Criteria for Information Technology Security Evaluation. As the joint

holders of the copyright in the Common Criteria for Information Technology Security

Evaluation, version 3.1 Parts 1 through 3 (called “CC 3.1”), they hereby grant non-

exclusive license to ISO/IEC to use CC 3.1 in the continued development/maintenance of the

ISO/IEC 15408 international standard. However, these governmental organisations retain

the right to use, copy, distribute, translate or modify CC 3.1 as they see fit.

Australia/New Zealand: The Defence Signals Directorate and the

 Government Communications Security Bureau respectively;

Canada: Communications Security Establishment;

France: Direction Centrale de la Sécurité des Systèmes d'Information;

Germany: Bundesamt für Sicherheit in der Informationstechnik;

Japan: Information Technology Promotion Agency

Netherlands: Netherlands National Communications Security Agency;

Spain: Ministerio de Administraciones Públicas and

 Centro Criptológico Nacional;

United Kingdom: Communications-Electronics Security Group;

United States: The National Security Agency and the

 National Institute of Standards and Technology.

Table of contents

Page 4 of 232 Version 3.1 July 2009

Table of Contents

1 INTRODUCTION ... 10

2 SCOPE ... 11

3 NORMATIVE REFERENCES ... 12

4 TERMS AND DEFINITIONS, SYMBOLS AND ABBREVIATED TERMS 13

5 OVERVIEW ... 14

5.1 Organisation of CC Part 3 ... 14

6 ASSURANCE PARADIGM ... 15

6.1 CC philosophy .. 15

6.2 Assurance approach ... 15
6.2.1 Significance of vulnerabilities .. 15
6.2.2 Cause of vulnerabilities .. 16
6.2.3 CC assurance .. 16
6.2.4 Assurance through evaluation... 17

6.3 The CC evaluation assurance scale ... 17

7 SECURITY ASSURANCE COMPONENTS .. 18

7.1 Security assurance classes, families and components structure ... 18
7.1.1 Assurance class structure .. 18
7.1.2 Assurance family structure ... 19
7.1.3 Assurance component structure .. 20
7.1.4 Assurance elements .. 23
7.1.5 Component taxonomy... 23

7.2 EAL structure ... 24
7.2.1 EAL name ... 24
7.2.2 Objectives ... 24
7.2.3 Application notes .. 25
7.2.4 Assurance components ... 25
7.2.5 Relationship between assurances and assurance levels .. 25

7.3 CAP structure ... 26
7.3.1 CAP name ... 27
7.3.2 Objectives ... 27
7.3.3 Application notes .. 27
7.3.4 Assurance components ... 28
7.3.5 Relationship between assurances and assurance levels .. 28

8 EVALUATION ASSURANCE LEVELS .. 30

8.1 Evaluation assurance level (EAL) overview .. 30

Table of contents

July 2009 Version 3.1 Page 5 of 232

8.2 Evaluation assurance level details ... 31

8.3 Evaluation assurance level 1 (EAL1) - functionally tested ... 32

8.4 Evaluation assurance level 2 (EAL2) - structurally tested .. 34

8.5 Evaluation assurance level 3 (EAL3) - methodically tested and checked .. 36

8.6 Evaluation assurance level 4 (EAL4) - methodically designed, tested, and reviewed 38

8.7 Evaluation assurance level 5 (EAL5) - semiformally designed and tested .. 40

8.8 Evaluation assurance level 6 (EAL6) - semiformally verified design and tested 42

8.9 Evaluation assurance level 7 (EAL7) - formally verified design and tested 44

9 COMPOSED ASSURANCE PACKAGES .. 46

9.1 Composed assurance package (CAP) overview ... 46

9.2 Composed assurance package details ... 47

9.3 Composition assurance level A (CAP-A) - Structurally composed .. 48

9.4 Composition assurance level B (CAP-B) - Methodically composed ... 50

9.5 Composition assurance level C (CAP-C) - Methodically composed, tested and reviewed 52

10 CLASS APE: PROTECTION PROFILE EVALUATION.............................. 54

10.1 PP introduction (APE_INT) ... 56

10.2 Conformance claims (APE_CCL) .. 57

10.3 Security problem definition (APE_SPD) ... 59

10.4 Security objectives (APE_OBJ) .. 60

10.5 Extended components definition (APE_ECD) .. 62

10.6 Security requirements (APE_REQ) ... 63

11 CLASS ASE: SECURITY TARGET EVALUATION 65

11.1 ST introduction (ASE_INT) ... 66

11.2 Conformance claims (ASE_CCL) .. 67

11.3 Security problem definition (ASE_SPD) ... 69

11.4 Security objectives (ASE_OBJ) .. 70

11.5 Extended components definition (ASE_ECD) .. 72

11.6 Security requirements (ASE_REQ) ... 73

11.7 TOE summary specification (ASE_TSS) ... 75

Table of contents

Page 6 of 232 Version 3.1 July 2009

12 CLASS ADV: DEVELOPMENT .. 77

12.1 Security Architecture (ADV_ARC) ... 84

12.2 Functional specification (ADV_FSP) ... 86
12.2.1 Detail about the Interfaces ... 88
12.2.2 Components of this Family .. 89

12.3 Implementation representation (ADV_IMP) .. 96

12.4 TSF internals (ADV_INT) .. 100

12.5 Security policy modelling (ADV_SPM) ... 104

12.6 TOE design (ADV_TDS) ... 107
12.6.1 Detail about the Subsystems and Modules .. 108

13 CLASS AGD: GUIDANCE DOCUMENTS .. 116

13.1 Operational user guidance (AGD_OPE) ... 117

13.2 Preparative procedures (AGD_PRE) .. 120

14 CLASS ALC: LIFE-CYCLE SUPPORT .. 122

14.1 CM capabilities (ALC_CMC) .. 124

14.2 CM scope (ALC_CMS) ... 133

14.3 Delivery (ALC_DEL) .. 138

14.4 Development security (ALC_DVS) .. 140

14.5 Flaw remediation (ALC_FLR) ... 142

14.6 Life-cycle definition (ALC_LCD) .. 147

14.7 Tools and techniques (ALC_TAT) ... 150

15 CLASS ATE: TESTS .. 153

15.1 Coverage (ATE_COV) .. 154

15.2 Depth (ATE_DPT) ... 157

15.3 Functional tests (ATE_FUN) .. 161

15.4 Independent testing (ATE_IND) .. 164

16 CLASS AVA: VULNERABILITY ASSESSMENT 168

16.1 Vulnerability analysis (AVA_VAN) ... 169

17 CLASS ACO: COMPOSITION .. 174

Table of contents

July 2009 Version 3.1 Page 7 of 232

17.1 Composition rationale (ACO_COR) .. 178

17.2 Development evidence (ACO_DEV) .. 179

17.3 Reliance of dependent component (ACO_REL) ... 183

17.4 Composed TOE testing (ACO_CTT) ... 185

17.5 Composition vulnerability analysis (ACO_VUL) ... 188

A DEVELOPMENT (ADV) .. 191

A.1 ADV_ARC: Supplementary material on security architectures ... 191
A.1.1 Security architecture properties .. 191
A.1.2 Security architecture descriptions ... 192

A.2 ADV_FSP: Supplementary material on TSFIs ... 196
A.2.1 Determining the TSFI ... 196
A.2.2 Example: A complex DBMS .. 199
A.2.3 Example Functional Specification .. 201

A.3 ADV_INT: Supplementary material on TSF internals .. 203
A.3.1 Structure of procedural software ... 203
A.3.2 Complexity of procedural software .. 206

A.4 ADV_TDS: Subsystems and Modules .. 206
A.4.1 Subsystems ... 207
A.4.2 Modules .. 208
A.4.3 Levelling Approach .. 211

A.5 Supplementary material on formal methods... 213

B COMPOSITION (ACO) ... 215

B.1 Necessity for composed TOE evaluations .. 215

B.2 Performing Security Target evaluation for a composed TOE ... 217

B.3 Interactions between composed IT entities ... 218

C CROSS REFERENCE OF ASSURANCE COMPONENT DEPENDENCIES 225

D CROSS REFERENCE OF PPS AND ASSURANCE COMPONENTS 230

E CROSS REFERENCE OF EALS AND ASSURANCE COMPONENTS 231

F CROSS REFERENCE OF CAPS AND ASSURANCE COMPONENTS 232

List of figures

Page 8 of 232 Version 3.1 July 2009

List of figures

Figure 1 - Assurance class/family/component/element hierarchy .. 19

Figure 2 - Assurance component structure ... 21
Figure 3 - Sample class decomposition diagram .. 23
Figure 4 - EAL structure ... 24
Figure 5 - Assurance and assurance level association .. 26
Figure 6 - CAP structure ... 27

Figure 7 - Assurance and composed assurance package association 29
Figure 8 - APE: Protection Profile evaluation class decomposition 55
Figure 9 - ASE: Security Target evaluation class decomposition .. 65

Figure 10 - Relationships of ADV constructs to one another and to other families 79
Figure 11 - ADV: Development class decomposition .. 83
Figure 12 - AGD: Guidance documents class decomposition .. 116
Figure 13 - ALC: Life-cycle support class decomposition ... 123
Figure 14 - ATE: Tests class decomposition .. 153

Figure 15 - AVA: Vulnerability assessment class decomposition...................................... 168
Figure 16 - Relationship between ACO families and interactions between components ... 175
Figure 17 - Relationship between ACO families .. 176

Figure 18 - ACO: Composition class decomposition ... 177
Figure 19 - Wrappers .. 198
Figure 20 - Interfaces in a DBMS system ... 200

Figure 21 - Subsystems and Modules ... 207

Figure 22 - Base component abstraction ... 219
Figure 23 - Dependent component abstraction ... 220
Figure 24 - Composed TOE abstraction ... 221

Figure 25 - Composed component interfaces ... 221

List of tables

July 2009 Version 3.1 Page 9 of 232

List of tables

Table 1 - Evaluation assurance level summary ... 31

Table 2 - EAL1 .. 33
Table 3 - EAL2 .. 35
Table 4 - EAL3 .. 37
Table 5 - EAL4 .. 39
Table 6 - EAL5 .. 41

Table 7 - EAL6 .. 43
Table 8 - EAL7 .. 45
Table 9 - Composition assurance level summary .. 47

Table 10 - CAP-A .. 49
Table 11 - CAP-B .. 51
Table 12 - CAP-C .. 53
Table 13 - PP assurance packages ... 54
Table 14 Description Detail Levelling .. 213

Table 15 Dependency table for Class ACO: Composition .. 225
Table 16 Dependency table for Class ADV: Development ... 226
Table 17 Dependency table for Class AGD: Guidance documents 226

Table 18 Dependency table for Class ALC: Life-cycle support ... 227
Table 19 Dependency table for Class APE: Protection Profile evaluation 227
Table 20 Dependency table for Class ASE: Security Target evaluation 228

Table 21 Dependency table for Class ATE: Tests ... 228

Table 22 Dependency table for Class AVA: Vulnerability assessment 229
Table 23 PP assurance level summary .. 230
Table 24 Evaluation assurance level summary ... 231

Table 25 Composition assurance level summary .. 232

Introduction

Page 10 of 232 Version 3.1 July 2009

1 Introduction

1 Security assurance components, as defined in this CC Part 3, are the basis for

the security assurance requirements expressed in a Protection Profile (PP) or

a Security Target (ST).

2 These requirements establish a standard way of expressing the assurance

requirements for TOEs. This CC Part 3 catalogues the set of assurance

components, families and classes. This CC Part 3 also defines evaluation

criteria for PPs and STs and presents evaluation assurance levels that define

the predefined CC scale for rating assurance for TOEs, which is called the

Evaluation Assurance Levels (EALs).

3 The audience for this CC Part 3 includes consumers, developers, and

evaluators of secure IT products. CC Part 1 Chapter 7 provides additional

information on the target audience of the CC, and on the use of the CC by the

groups that comprise the target audience. These groups may use this part of

the CC as follows:

a) Consumers, who use this CC Part 3 when selecting components to

express assurance requirements to satisfy the security objectives

expressed in a PP or ST, determining required levels of security

assurance of the TOE.

b) Developers, who respond to actual or perceived consumer security

requirements in constructing a TOE, reference this CC Part 3 when

interpreting statements of assurance requirements and determining

assurance approaches of TOEs.

c) Evaluators, who use the assurance requirements defined in this part of

the CC as mandatory statement of evaluation criteria when

determining the assurance of TOEs and when evaluating PPs and

STs.

Scope

July 2009 Version 3.1 Page 11 of 232

2 Scope

4 This CC Part 3 defines the assurance requirements of the CC. It includes the

evaluation assurance levels (EALs) that define a scale for measuring

assurance for component TOEs, the composed assurance packages (CAPs)

that define a scale for measuring assurance for composed TOEs, the

individual assurance components from which the assurance levels and

packages are composed, and the criteria for evaluation of PPs and STs.

Normative references

Page 12 of 232 Version 3.1 July 2009

3 Normative references

5 The following referenced documents are indispensable for the application of

this document. For dated references, only the edition cited applies. For

undated references, the latest edition of the referenced document (including

any amendments) applies.

[CC-1] Common Criteria for Information Technology

Security Evaluation, Version 3.1, revision 3, July

2009. Part 1: Introduction and general model.

[CC-2] Common Criteria for Information Technology

Security Evaluation, Version 3.1, revision 3, July

2009. Part 2: Functional security components.

Terms and definitions, symbols and abbreviated terms

July 2009 Version 3.1 Page 13 of 232

4 Terms and definitions, symbols and
abbreviated terms

6 For the purposes of this document, the terms, definitions, symbols and

abbreviated terms given in CC Part 1 apply.

Overview

Page 14 of 232 Version 3.1 July 2009

5 Overview

5.1 Organisation of CC Part 3

7 Chapter 6 describes the paradigm used in the security assurance requirements

of CC Part 3.

8 Chapter 7 describes the presentation structure of the assurance classes,

families, components, evaluation assurance levels along with their

relationships, and the structure of the composed assurance packages. It also

characterises the assurance classes and families found in Chapters 10 through

17.

9 Chapter 8 provides detailed definitions of the EALs.

10 Chapter 9 provides detailed definitions of the CAPs.

11 Chapters 10 through 17 provide the detailed definitions of the CC Part 3

assurance classes.

12 Annex A provides further explanations and examples of the concepts behind

the Development class.

13 Annex B provides an explanation of the concepts behind composed TOE

evaluations and the Composition class.

14 Annex C provides a summary of the dependencies between the assurance

components.

15 Annex D provides a cross reference between PPs and the families and

components of the APE class.

16 Annex E provides a cross reference between the EALs and the assurance

components.

17 Annex F provides a cross reference between the CAPs and the assurance

components.

Assurance paradigm

July 2009 Version 3.1 Page 15 of 232

6 Assurance paradigm

18 The purpose of this Chapter is to document the philosophy that underpins the

CC approach to assurance. An understanding of this Chapter will permit the

reader to understand the rationale behind the CC Part 3 assurance

requirements.

6.1 CC philosophy

19 The CC philosophy is that the threats to security and organisational security

policy commitments should be clearly articulated and the proposed security

measures be demonstrably sufficient for their intended purpose.

20 Furthermore, measures should be adopted that reduce the likelihood of

vulnerabilities, the ability to exercise (i.e. intentionally exploit or

unintentionally trigger) a vulnerability, and the extent of the damage that

could occur from a vulnerability being exercised. Additionally, measures

should be adopted that facilitate the subsequent identification of

vulnerabilities and the elimination, mitigation, and/or notification that a

vulnerability has been exploited or triggered.

6.2 Assurance approach

21 The CC philosophy is to provide assurance based upon an evaluation (active

investigation) of the IT product that is to be trusted. Evaluation has been the

traditional means of providing assurance and is the basis for prior evaluation

criteria documents. In aligning the existing approaches, the CC adopts the

same philosophy. The CC proposes measuring the validity of the

documentation and of the resulting IT product by expert evaluators with

increasing emphasis on scope, depth, and rigour.

22 The CC does not exclude, nor does it comment upon, the relative merits of

other means of gaining assurance. Research continues with respect to

alternative ways of gaining assurance. As mature alternative approaches

emerge from these research activities, they will be considered for inclusion

in the CC, which is so structured as to allow their future introduction.

6.2.1 Significance of vulnerabilities

23 It is assumed that there are threat agents that will actively seek to exploit

opportunities to violate security policies both for illicit gains and for well-

intentioned, but nonetheless insecure actions. Threat agents may also

accidentally trigger security vulnerabilities, causing harm to the organisation.

Due to the need to process sensitive information and the lack of availability

of sufficiently trusted products, there is significant risk due to failures of IT.

It is, therefore, likely that IT security breaches could lead to significant loss.

24 IT security breaches arise through the intentional exploitation or the

unintentional triggering of vulnerabilities in the application of IT within

business concerns.

Assurance paradigm

Page 16 of 232 Version 3.1 July 2009

25 Steps should be taken to prevent vulnerabilities arising in IT products. To the

extent feasible, vulnerabilities should be:

a) eliminated -- that is, active steps should be taken to expose, and

remove or neutralise, all exercisable vulnerabilities;

b) minimised -- that is, active steps should be taken to reduce, to an

acceptable residual level, the potential impact of any exercise of a

vulnerability;

c) monitored -- that is, active steps should be taken to ensure that any

attempt to exercise a residual vulnerability will be detected so that

steps can be taken to limit the damage.

6.2.2 Cause of vulnerabilities

26 Vulnerabilities can arise through failures in:

a) requirements -- that is, an IT product may possess all the functions

and features required of it and still contain vulnerabilities that render

it unsuitable or ineffective with respect to security;

b) development -- that is, an IT product does not meet its specifications

and/or vulnerabilities have been introduced as a result of poor

development standards or incorrect design choices;

c) operation -- that is, an IT product has been constructed correctly to a

correct specification but vulnerabilities have been introduced as a

result of inadequate controls upon the operation.

6.2.3 CC assurance

27 Assurance is grounds for confidence that an IT product meets its security

objectives. Assurance can be derived from reference to sources such as

unsubstantiated assertions, prior relevant experience, or specific experience.

However, the CC provides assurance through active investigation. Active

investigation is an evaluation of the IT product in order to determine its

security properties.

Assurance paradigm

July 2009 Version 3.1 Page 17 of 232

6.2.4 Assurance through evaluation

28 Evaluation has been the traditional means of gaining assurance, and is the

basis of the CC approach. Evaluation techniques can include, but are not

limited to:

a) analysis and checking of process(es) and procedure(s);

b) checking that process(es) and procedure(s) are being applied;

c) analysis of the correspondence between TOE design representations;

d) analysis of the TOE design representation against the requirements;

e) verification of proofs;

f) analysis of guidance documents;

g) analysis of functional tests developed and the results provided;

h) independent functional testing;

i) analysis for vulnerabilities (including flaw hypothesis);

j) penetration testing.

6.3 The CC evaluation assurance scale

29 The CC philosophy asserts that greater assurance results from the application

of greater evaluation effort, and that the goal is to apply the minimum effort

required to provide the necessary level of assurance. The increasing level of

effort is based upon:

a) scope -- that is, the effort is greater because a larger portion of the IT

product is included;

b) depth -- that is, the effort is greater because it is deployed to a finer

level of design and implementation detail;

c) rigour -- that is, the effort is greater because it is applied in a more

structured, formal manner.

Security assurance components

Page 18 of 232 Version 3.1 July 2009

7 Security assurance components

7.1 Security assurance classes, families and components
structure

30 The following Sections describe the constructs used in representing the

assurance classes, families, and components.

31 Figure 1 illustrates the SARs defined in this CC Part 3. Note that the most

abstract collection of SARs is referred to as a class. Each class contains

assurance families, which then contain assurance components, which in turn

contain assurance elements. Classes and families are used to provide a

taxonomy for classifying SARs, while components are used to specify SARs

in a PP/ST.

7.1.1 Assurance class structure

32 Figure 1 illustrates the assurance class structure.

7.1.1.1 Class name

33 Each assurance class is assigned a unique name. The name indicates the

topics covered by the assurance class.

34 A unique short form of the assurance class name is also provided. This is the

primary means for referencing the assurance class. The convention adopted

is an “A” followed by two letters related to the class name.

7.1.1.2 Class introduction

35 Each assurance class has an introductory Section that describes the

composition of the class and contains supportive text covering the intent of

the class.

7.1.1.3 Assurance families

36 Each assurance class contains at least one assurance family. The structure of

the assurance families is described in the following Section.

Security assurance components

July 2009 Version 3.1 Page 19 of 232

Figure 1 - Assurance class/family/component/element hierarchy

7.1.2 Assurance family structure

37 Figure 1 illustrates the assurance family structure.

7.1.2.1 Family name

38 Every assurance family is assigned a unique name. The name provides

descriptive information about the topics covered by the assurance family.

Each assurance family is placed within the assurance class that contains other

families with the same intent.

39 A unique short form of the assurance family name is also provided. This is

the primary means used to reference the assurance family. The convention

adopted is that the short form of the class name is used, followed by an

underscore, and then three letters related to the family name.

Security assurance components

Page 20 of 232 Version 3.1 July 2009

7.1.2.2 Objectives

40 The objectives Section of the assurance family presents the intent of the

assurance family.

41 This Section describes the objectives, particularly those related to the CC

assurance paradigm, that the family is intended to address. The description

for the assurance family is kept at a general level. Any specific details

required for objectives are incorporated in the particular assurance

component.

7.1.2.3 Component levelling

42 Each assurance family contains one or more assurance components. This

Section of the assurance family describes the components available and

explains the distinctions between them. Its main purpose is to differentiate

between the assurance components once it has been determined that the

assurance family is a necessary or useful part of the SARs for a PP/ST.

43 Assurance families containing more than one component are levelled and

rationale is provided as to how the components are levelled. This rationale is

in terms of scope, depth, and/or rigour.

7.1.2.4 Application notes

44 The application notes Section of the assurance family, if present, contains

additional information for the assurance family. This information should be

of particular interest to users of the assurance family (e.g. PP and ST authors,

designers of TOEs, evaluators). The presentation is informal and covers, for

example, warnings about limitations of use and areas where specific attention

may be required.

7.1.2.5 Assurance components

45 Each assurance family has at least one assurance component. The structure

of the assurance components is provided in the following Section.

7.1.3 Assurance component structure

46 Figure 2 illustrates the assurance component structure.

Security assurance components

July 2009 Version 3.1 Page 21 of 232

Figure 2 - Assurance component structure

47 The relationship between components within a family is highlighted using a

bolding convention. Those parts of the requirements that are new, enhanced

or modified beyond the requirements of the previous component within a

hierarchy are bolded.

7.1.3.1 Component identification

48 The component identification Section provides descriptive information

necessary to identify, categorise, register, and reference a component.

49 Every assurance component is assigned a unique name. The name provides

descriptive information about the topics covered by the assurance

component. Each assurance component is placed within the assurance family

that shares its security objective.

50 A unique short form of the assurance component name is also provided. This

is the primary means used to reference the assurance component. The

convention used is that the short form of the family name is used, followed

by a period, and then a numeric character. The numeric characters for the

components within each family are assigned sequentially, starting from 1.

7.1.3.2 Objectives

51 The objectives Section of the assurance component, if present, contains

specific objectives for the particular assurance component. For those

assurance components that have this Section, it presents the specific intent of

the component and a more detailed explanation of the objectives.

7.1.3.3 Application notes

52 The application notes Section of an assurance component, if present,

contains additional information to facilitate the use of the component.

Security assurance components

Page 22 of 232 Version 3.1 July 2009

7.1.3.4 Dependencies

53 Dependencies among assurance components arise when a component is not

self-sufficient, and relies upon the presence of another component.

54 Each assurance component provides a complete list of dependencies to other

assurance components. Some components may list “No dependencies”, to

indicate that no dependencies have been identified. The components

depended upon may have dependencies on other components.

55 The dependency list identifies the minimum set of assurance components

which are relied upon. Components which are hierarchical to a component in

the dependency list may also be used to satisfy the dependency.

56 In specific situations the indicated dependencies might not be applicable. The

PP/ST author, by providing rationale for why a given dependency is not

applicable, may elect not to satisfy that dependency.

7.1.3.5 Assurance elements

57 A set of assurance elements is provided for each assurance component. An

assurance element is a security requirement which, if further divided, would

not yield a meaningful evaluation result. It is the smallest security

requirement recognised in the CC.

58 Each assurance element is identified as belonging to one of the three sets of

assurance elements:

a) Developer action elements: the activities that shall be performed by

the developer. This set of actions is further qualified by evidential

material referenced in the following set of elements. Requirements

for developer actions are identified by appending the letter “D” to the

element number.

b) Content and presentation of evidence elements: the evidence

required, what the evidence shall demonstrate, and what information

the evidence shall convey. Requirements for content and presentation

of evidence are identified by appending the letter “C” to the element

number.

c) Evaluator action elements: the activities that shall be performed by

the evaluator. This set of actions explicitly includes confirmation that

the requirements prescribed in the content and presentation of

evidence elements have been met. It also includes explicit actions and

analysis that shall be performed in addition to that already performed

by the developer. Implicit evaluator actions are also to be performed

as a result of developer action elements which are not covered by

content and presentation of evidence requirements. Requirements for

evaluator actions are identified by appending the letter “E” to the

element number.

Security assurance components

July 2009 Version 3.1 Page 23 of 232

59 The developer actions and content and presentation of evidence define the

assurance requirements that are used to represent a developer's

responsibilities in demonstrating assurance in the TOE meeting the SFRs of

a PP or ST.

60 The evaluator actions define the evaluator's responsibilities in the two

aspects of evaluation. The first aspect is validation of the PP/ST, in

accordance with the classes APE and ASE in Chapters APE: Protection

Profile evaluation and ASE: Security Target evaluation. The second aspect is

verification of the TOE's conformance with its SFRs and SARs. By

demonstrating that the PP/ST is valid and that the requirements are met by

the TOE, the evaluator can provide a basis for confidence that the TOE in its

operational environment solves the defined security problem.

61 The developer action elements, content and presentation of evidence

elements, and explicit evaluator action elements, identify the evaluator effort

that shall be expended in verifying the security claims made in the ST of the

TOE.

7.1.4 Assurance elements

62 Each element represents a requirement to be met. These statements of

requirements are intended to be clear, concise, and unambiguous. Therefore,

there are no compound sentences: each separable requirement is stated as an

individual element.

7.1.5 Component taxonomy

63 This CC Part 3 contains classes of families and components that are grouped

on the basis of related assurance. At the start of each class is a diagram that

indicates the families in the class and the components in each family.

Figure 3 - Sample class decomposition diagram

64 In Figure 3, above, the class as shown contains a single family. The family

contains three components that are linearly hierarchical (i.e. component 2

requires more than component 1, in terms of specific actions, specific

evidence, or rigour of the actions or evidence). The assurance families in this

CC Part 3 are all linearly hierarchical, although linearity is not a mandatory

criterion for assurance families that may be added in the future.

Security assurance components

Page 24 of 232 Version 3.1 July 2009

7.2 EAL structure

65 Figure 4 illustrates the EALs and associated structure defined in this CC Part

3. Note that while the figure shows the contents of the assurance

components, it is intended that this information would be included in an EAL

by reference to the actual components defined in the CC.

Figure 4 - EAL structure

7.2.1 EAL name

66 Each EAL is assigned a unique name. The name provides descriptive

information about the intent of the EAL.

67 A unique short form of the EAL name is also provided. This is the primary

means used to reference the EAL.

7.2.2 Objectives

68 The objectives Section of the EAL presents the intent of the EAL.

Security assurance components

July 2009 Version 3.1 Page 25 of 232

7.2.3 Application notes

69 The application notes Section of the EAL, if present, contains information of

particular interest to users of the EAL (e.g. PP and ST authors, designers of

TOEs targeting this EAL, evaluators). The presentation is informal and

covers, for example, warnings about limitations of use and areas where

specific attention may be required.

7.2.4 Assurance components

70 A set of assurance components have been chosen for each EAL.

71 A higher level of assurance than that provided by a given EAL can be

achieved by:

a) including additional assurance components from other assurance

families; or

b) replacing an assurance component with a higher level assurance

component from the same assurance family.

7.2.5 Relationship between assurances and assurance levels

72 Figure 5 illustrates the relationship between the SARs and the assurance

levels defined in the CC. While assurance components further decompose

into assurance elements, assurance elements cannot be individually

referenced by assurance levels. Note that the arrow in the figure represents a

reference from an EAL to an assurance component within the class where it

is defined.

Security assurance components

Page 26 of 232 Version 3.1 July 2009

Figure 5 - Assurance and assurance level association

7.3 CAP structure

73 The structure of the CAPs is similar to that of the EALs. The main difference

between these two types of package is the type of TOE they apply to; the

EALs applying to component TOEs and the CAPs applying to composed

TOEs.

74 Figure 6 illustrates the CAPs and associated structure defined in this CC Part

3. Note that while the figure shows the contents of the assurance

components, it is intended that this information would be included in a CAP

by reference to the actual components defined in the CC.

Security assurance components

July 2009 Version 3.1 Page 27 of 232

Figure 6 - CAP structure

7.3.1 CAP name

75 Each CAP is assigned a unique name. The name provides descriptive

information about the intent of the CAP.

76 A unique short form of the CAP name is also provided. This is the primary

means used to reference the CAP.

7.3.2 Objectives

77 The objectives Section of the CAP presents the intent of the CAP.

7.3.3 Application notes

78 The application notes Section of the CAP, if present, contains information of

particular interest to users of the CAP (e.g. PP and ST authors, integrators of

composed TOEs targeting this CAP, evaluators). The presentation is

informal and covers, for example, warnings about limitations of use and

areas where specific attention may be required.

Security assurance components

Page 28 of 232 Version 3.1 July 2009

7.3.4 Assurance components

79 A set of assurance components have been chosen for each CAP.

80 Some dependencies identify the activities performed during the evaluation of

the dependent component on which the composed TOE activity relies. Where

it is not explicitly identified that the dependency is on a dependent

component activity, the dependency is to another evaluation activity of the

composed TOE.

81 A higher level of assurance than that provided by a given CAP can be

achieved by:

a) including additional assurance components from other assurance

families; or

b) replacing an assurance component with a higher level assurance

component from the same assurance family.

82 The ACO: Composition components included in the CAP assurance

packages should not be used as augmentations for component TOE

evaluations, as this would provide no meaningful assurance for the

component.

7.3.5 Relationship between assurances and assurance levels

83 Figure 7 illustrates the relationship between the SARs and the composed

assurance packages defined in the CC. While assurance components further

decompose into assurance elements, assurance elements cannot be

individually referenced by assurance packages. Note that the arrow in the

figure represents a reference from a CAP to an assurance component within

the class where it is defined.

Security assurance components

July 2009 Version 3.1 Page 29 of 232

Figure 7 - Assurance and composed assurance package association

Evaluation assurance levels

Page 30 of 232 Version 3.1 July 2009

8 Evaluation assurance levels

84 The Evaluation Assurance Levels (EALs) provide an increasing scale that

balances the level of assurance obtained with the cost and feasibility of

acquiring that degree of assurance. The CC approach identifies the separate

concepts of assurance in a TOE at the end of the evaluation, and of

maintenance of that assurance during the operational use of the TOE.

85 It is important to note that not all families and components from CC Part 3

are included in the EALs. This is not to say that these do not provide

meaningful and desirable assurances. Instead, it is expected that these

families and components will be considered for augmentation of an EAL in

those PPs and STs for which they provide utility.

8.1 Evaluation assurance level (EAL) overview

86 Table 1 represents a summary of the EALs. The columns represent a

hierarchically ordered set of EALs, while the rows represent assurance

families. Each number in the resulting matrix identifies a specific assurance

component where applicable.

87 As outlined in the next Section, seven hierarchically ordered evaluation

assurance levels are defined in the CC for the rating of a TOE's assurance.

They are hierarchically ordered inasmuch as each EAL represents more

assurance than all lower EALs. The increase in assurance from EAL to EAL

is accomplished by substitution of a hierarchically higher assurance

component from the same assurance family (i.e. increasing rigour, scope,

and/or depth) and from the addition of assurance components from other

assurance families (i.e. adding new requirements).

88 These EALs consist of an appropriate combination of assurance components

as described in Chapter 7 of this CC Part 3. More precisely, each EAL

includes no more than one component of each assurance family and all

assurance dependencies of every component are addressed.

89 While the EALs are defined in the CC, it is possible to represent other

combinations of assurance. Specifically, the notion of “augmentation” allows

the addition of assurance components (from assurance families not already

included in the EAL) or the substitution of assurance components (with

another hierarchically higher assurance component in the same assurance

family) to an EAL. Of the assurance constructs defined in the CC, only EALs

may be augmented. The notion of an “EAL minus a constituent assurance

component” is not recognised by the standard as a valid claim. Augmentation

carries with it the obligation on the part of the claimant to justify the utility

and added value of the added assurance component to the EAL. An EAL

may also be augmented with extended assurance requirements.

Evaluation assurance levels

July 2009 Version 3.1 Page 31 of 232

Assurance

class

Assurance

Family

Assurance Components by Evaluation

Assurance Level

EAL1 EAL2 EAL3 EAL4 EAL5 EAL6 EAL7

Development

ADV_ARC 1
1 1 1 1 1

ADV_FSP 1 2 3 4 5
5 6

ADV_IMP 1
1 2

2

ADV_INT 2 3
3

ADV_SPM 1
1

ADV_TDS 1 2 3 4 5 6

Guidance

documents

AGD_OPE 1
1 1 1 1 1 1

AGD_PRE 1
1 1 1 1 1 1

Life-cycle

support

ALC_CMC 1 2 3 4
4 5

5

ALC_CMS 1 2 3 4 5
5 5

ALC_DEL 1
1 1 1 1 1

ALC_DVS 1
1 1 2

2

ALC_FLR

ALC_LCD 1
1 1 1 2

ALC_TAT 1 2 3
3

Security

Target

evaluation

ASE_CCL 1
1 1 1 1 1 1

ASE_ECD 1
1 1 1 1 1 1

ASE_INT 1
1 1 1 1 1 1

ASE_OBJ 1 2
2 2 2 2 2

ASE_REQ 1 2
2 2 2 2 2

ASE_SPD 1
1 1 1 1 1

ASE_TSS 1
1 1 1 1 1 1

Tests

ATE_COV 1 2
2 2 3

3

ATE_DPT 1
1 3

3 4

ATE_FUN 1
1 1 1 2

2

ATE_IND 1 2
2 2 2 2 3

Vulnerability

assessment
AVA_VAN 1 2

2 3 4 5
5

Table 1 - Evaluation assurance level summary

8.2 Evaluation assurance level details

90 The following Sections provide definitions of the EALs, highlighting

differences between the specific requirements and the prose characterisations

of those requirements using bold type.

Evaluation assurance levels

Page 32 of 232 Version 3.1 July 2009

8.3 Evaluation assurance level 1 (EAL1) - functionally
tested

Objectives

91 EAL1 is applicable where some confidence in correct operation is required,

but the threats to security are not viewed as serious. It will be of value where

independent assurance is required to support the contention that due care has

been exercised with respect to the protection of personal or similar

information.

92 EAL1 requires only a limited security target. It is sufficient to simply state

the SFRs that the TOE must meet, rather than deriving them from threats,

OSPs and assumptions through security objectives.

93 EAL1 provides an evaluation of the TOE as made available to the customer,

including independent testing against a specification, and an examination of

the guidance documentation provided. It is intended that an EAL1 evaluation

could be successfully conducted without assistance from the developer of the

TOE, and for minimal outlay.

94 An evaluation at this level should provide evidence that the TOE functions in

a manner consistent with its documentation.

Assurance components

95 EAL1 provides a basic level of assurance by a limited security target and

an analysis of the SFRs in that ST using a functional and interface

specification and guidance documentation, to understand the security

behaviour.

96 The analysis is supported by a search for potential vulnerabilities in the

public domain and independent testing (functional and penetration) of

the TSF.

97 EAL1 also provides assurance through unique identification of the TOE

and of the relevant evaluation documents.

98 This EAL provides a meaningful increase in assurance over unevaluated

IT.

Evaluation assurance levels

July 2009 Version 3.1 Page 33 of 232

Assurance Class Assurance components

ADV: Development ADV_FSP.1 Basic functional specification

AGD: Guidance documents
AGD_OPE.1 Operational user guidance

AGD_PRE.1 Preparative procedures

ALC: Life-cycle support
ALC_CMC.1 Labelling of the TOE

ALC_CMS.1 TOE CM coverage

ASE: Security Target evaluation

ASE_CCL.1 Conformance claims

ASE_ECD.1 Extended components definition

ASE_INT.1 ST introduction

ASE_OBJ.1 Security objectives for the

operational environment

ASE_REQ.1 Stated security requirements

ASE_TSS.1 TOE summary specification

ATE: Tests ATE_IND.1 Independent testing - conformance

AVA: Vulnerability assessment AVA_VAN.1 Vulnerability survey

Table 2 - EAL1

Evaluation assurance levels

Page 34 of 232 Version 3.1 July 2009

8.4 Evaluation assurance level 2 (EAL2) - structurally
tested

Objectives

99 EAL2 requires the co-operation of the developer in terms of the delivery of

design information and test results, but should not demand more effort on the

part of the developer than is consistent with good commercial practise. As

such it should not require a substantially increased investment of cost or

time.

100 EAL2 is therefore applicable in those circumstances where developers or

users require a low to moderate level of independently assured security in the

absence of ready availability of the complete development record. Such a

situation may arise when securing legacy systems, or where access to the

developer may be limited.

Assurance components

101 EAL2 provides assurance by a full security target and an analysis of the

SFRs in that ST, using a functional and interface specification, guidance

documentation and a basic description of the architecture of the TOE, to

understand the security behaviour.

102 The analysis is supported by independent testing of the TSF, evidence of

developer testing based on the functional specification, selective

independent confirmation of the developer test results, and a

vulnerability analysis (based upon the functional specification, TOE

design, security architecture description and guidance evidence

provided) demonstrating resistance to penetration attackers with a basic

attack potential.

103 EAL2 also provides assurance through use of a configuration management

system and evidence of secure delivery procedures.

104 This EAL represents a meaningful increase in assurance from EAL1 by

requiring developer testing, a vulnerability analysis (in addition to the

search of the public domain), and independent testing based upon more

detailed TOE specifications.

Evaluation assurance levels

July 2009 Version 3.1 Page 35 of 232

Assurance Class Assurance components

ADV: Development

ADV_ARC.1 Security architecture description

ADV_FSP.2 Security-enforcing functional

specification

ADV_TDS.1 Basic design

AGD: Guidance documents
AGD_OPE.1 Operational user guidance

AGD_PRE.1 Preparative procedures

ALC: Life-cycle support

ALC_CMC.2 Use of a CM system

ALC_CMS.2 Parts of the TOE CM coverage

ALC_DEL.1 Delivery procedures

ASE: Security Target evaluation

ASE_CCL.1 Conformance claims

ASE_ECD.1 Extended components definition

ASE_INT.1 ST introduction

ASE_OBJ.2 Security objectives

ASE_REQ.2 Derived security requirements

ASE_SPD.1 Security problem definition

ASE_TSS.1 TOE summary specification

ATE: Tests

ATE_COV.1 Evidence of coverage

ATE_FUN.1 Functional testing

ATE_IND.2 Independent testing - sample

AVA: Vulnerability assessment AVA_VAN.2 Vulnerability analysis

Table 3 - EAL2

Evaluation assurance levels

Page 36 of 232 Version 3.1 July 2009

8.5 Evaluation assurance level 3 (EAL3) - methodically
tested and checked

Objectives

105 EAL3 permits a conscientious developer to gain maximum assurance from

positive security engineering at the design stage without substantial alteration

of existing sound development practises.

106 EAL3 is applicable in those circumstances where developers or users require

a moderate level of independently assured security, and require a thorough

investigation of the TOE and its development without substantial re-

engineering.

Assurance components

107 EAL3 provides assurance by a full security target and an analysis of the

SFRs in that ST, using a functional and interface specification, guidance

documentation, and an architectural description of the design of the TOE,

to understand the security behaviour.

108 The analysis is supported by independent testing of the TSF, evidence of

developer testing based on the functional specification and TOE design,

selective independent confirmation of the developer test results, and a

vulnerability analysis (based upon the functional specification, TOE design,

security architecture description and guidance evidence provided)

demonstrating resistance to penetration attackers with a basic attack

potential.

109 EAL3 also provides assurance through the use of development

environment controls, TOE configuration management, and evidence of

secure delivery procedures.

110 This EAL represents a meaningful increase in assurance from EAL2 by

requiring more complete testing coverage of the security functionality and

mechanisms and/or procedures that provide some confidence that the
TOE will not be tampered with during development.

Evaluation assurance levels

July 2009 Version 3.1 Page 37 of 232

Assurance Class Assurance components

ADV: Development

ADV_ARC.1 Security architecture description

ADV_FSP.3 Functional specification with

complete summary

ADV_TDS.2 Architectural design

AGD: Guidance documents
AGD_OPE.1 Operational user guidance

AGD_PRE.1 Preparative procedures

ALC: Life-cycle support

ALC_CMC.3 Authorisation controls

ALC_CMS.3 Implementation representation

CM coverage

ALC_DEL.1 Delivery procedures

ALC_DVS.1 Identification of security

measures

ALC_LCD.1 Developer defined life-cycle

model

ASE: Security Target evaluation

ASE_CCL.1 Conformance claims

ASE_ECD.1 Extended components definition

ASE_INT.1 ST introduction

ASE_OBJ.2 Security objectives

ASE_REQ.2 Derived security requirements

ASE_SPD.1 Security problem definition

ASE_TSS.1 TOE summary specification

ATE: Tests

ATE_COV.2 Analysis of coverage

ATE_DPT.1 Testing: basic design

ATE_FUN.1 Functional testing

ATE_IND.2 Independent testing - sample

AVA: Vulnerability assessment AVA_VAN.2 Vulnerability analysis

Table 4 - EAL3

Evaluation assurance levels

Page 38 of 232 Version 3.1 July 2009

8.6 Evaluation assurance level 4 (EAL4) - methodically
designed, tested, and reviewed

Objectives

111 EAL4 permits a developer to gain maximum assurance from positive

security engineering based on good commercial development practises

which, though rigorous, do not require substantial specialist knowledge,

skills, and other resources. EAL4 is the highest level at which it is likely to

be economically feasible to retrofit to an existing product line.

112 EAL4 is therefore applicable in those circumstances where developers or

users require a moderate to high level of independently assured security in

conventional commodity TOEs and are prepared to incur additional security-

specific engineering costs.

Assurance components

113 EAL4 provides assurance by a full security target and an analysis of the

SFRs in that ST, using a functional and complete interface specification,

guidance documentation, a description of the basic modular design of the

TOE, and a subset of the implementation, to understand the security

behaviour.

114 The analysis is supported by independent testing of the TSF, evidence of

developer testing based on the functional specification and TOE design,

selective independent confirmation of the developer test results, and a

vulnerability analysis (based upon the functional specification, TOE design,

implementation representation, security architecture description and

guidance evidence provided) demonstrating resistance to penetration

attackers with an Enhanced-Basic attack potential.

115 EAL4 also provides assurance through the use of development environment

controls and additional TOE configuration management including

automation, and evidence of secure delivery procedures.

116 This EAL represents a meaningful increase in assurance from EAL3 by

requiring more design description, the implementation representation for

the entire TSF, and improved mechanisms and/or procedures that provide

confidence that the TOE will not be tampered with during development.

Evaluation assurance levels

July 2009 Version 3.1 Page 39 of 232

Assurance Class Assurance components

ADV: Development

ADV_ARC.1 Security architecture description

ADV_FSP.4 Complete functional specification

ADV_IMP.1 Implementation representation of

the TSF

ADV_TDS.3 Basic modular design

AGD: Guidance documents
AGD_OPE.1 Operational user guidance

AGD_PRE.1 Preparative procedures

ALC: Life-cycle support

ALC_CMC.4 Production support, acceptance

procedures and automation

ALC_CMS.4 Problem tracking CM coverage

ALC_DEL.1 Delivery procedures

ALC_DVS.1 Identification of security

measures

ALC_LCD.1 Developer defined life-cycle

model

ALC_TAT.1 Well-defined development tools

ASE: Security Target evaluation

ASE_CCL.1 Conformance claims

ASE_ECD.1 Extended components definition

ASE_INT.1 ST introduction

ASE_OBJ.2 Security objectives

ASE_REQ.2 Derived security requirements

ASE_SPD.1 Security problem definition

ASE_TSS.1 TOE summary specification

ATE: Tests

ATE_COV.2 Analysis of coverage

ATE_DPT.1 Testing: basic design

ATE_FUN.1 Functional testing

ATE_IND.2 Independent testing - sample

AVA: Vulnerability assessment AVA_VAN.3 Focused vulnerability analysis

Table 5 - EAL4

Evaluation assurance levels

Page 40 of 232 Version 3.1 July 2009

8.7 Evaluation assurance level 5 (EAL5) - semiformally
designed and tested

Objectives

117 EAL5 permits a developer to gain maximum assurance from security

engineering based upon rigorous commercial development practises

supported by moderate application of specialist security engineering

techniques. Such a TOE will probably be designed and developed with the

intent of achieving EAL5 assurance. It is likely that the additional costs

attributable to the EAL5 requirements, relative to rigorous development

without the application of specialised techniques, will not be large.

118 EAL5 is therefore applicable in those circumstances where developers or

users require a high level of independently assured security in a planned

development and require a rigorous development approach without incurring

unreasonable costs attributable to specialist security engineering techniques.

Assurance components

119 EAL5 provides assurance by a full security target and an analysis of the

SFRs in that ST, using a functional and complete interface specification,

guidance documentation, a description of the design of the TOE, and the

implementation, to understand the security behaviour. A modular TSF

design is also required.

120 The analysis is supported by independent testing of the TSF, evidence of

developer testing based on the functional specification, TOE design,

selective independent confirmation of the developer test results, and an

independent vulnerability analysis demonstrating resistance to penetration

attackers with a moderate attack potential.

121 EAL5 also provides assurance through the use of a development

environment controls, and comprehensive TOE configuration management

including automation, and evidence of secure delivery procedures.

122 This EAL represents a meaningful increase in assurance from EAL4 by

requiring semiformal design descriptions, a more structured (and hence

analysable) architecture, and improved mechanisms and/or procedures that

provide confidence that the TOE will not be tampered with during

development.

Evaluation assurance levels

July 2009 Version 3.1 Page 41 of 232

Assurance Class Assurance components

ADV: Development

ADV_ARC.1 Security architecture description

ADV_FSP.5 Complete semi-formal functional

specification with additional error information

ADV_IMP.1 Implementation representation of

the TSF

ADV_INT.2 Well-structured internals

ADV_TDS.4 Semiformal modular design

AGD: Guidance documents
AGD_OPE.1 Operational user guidance

AGD_PRE.1 Preparative procedures

ALC: Life-cycle support

ALC_CMC.4 Production support, acceptance

procedures and automation

ALC_CMS.5 Development tools CM coverage

ALC_DEL.1 Delivery procedures

ALC_DVS.1 Identification of security

measures

ALC_LCD.1 Developer defined life-cycle

model

ALC_TAT.2 Compliance with implementation

standards

ASE: Security Target evaluation

ASE_CCL.1 Conformance claims

ASE_ECD.1 Extended components definition

ASE_INT.1 ST introduction

ASE_OBJ.2 Security objectives

ASE_REQ.2 Derived security requirements

ASE_SPD.1 Security problem definition

ASE_TSS.1 TOE summary specification

ATE: Tests

ATE_COV.2 Analysis of coverage

ATE_DPT.3 Testing: modular design

ATE_FUN.1 Functional testing

ATE_IND.2 Independent testing - sample

AVA: Vulnerability assessment AVA_VAN.4 Methodical vulnerability analysis

Table 6 - EAL5

Evaluation assurance levels

Page 42 of 232 Version 3.1 July 2009

8.8 Evaluation assurance level 6 (EAL6) - semiformally
verified design and tested

Objectives

123 EAL6 permits developers to gain high assurance from application of security

engineering techniques to a rigorous development environment in order to

produce a premium TOE for protecting high value assets against significant

risks.

124 EAL6 is therefore applicable to the development of security TOEs for

application in high risk situations where the value of the protected assets

justifies the additional costs.

Assurance components

125 EAL6 provides assurance by a full security target and an analysis of the

SFRs in that ST, using a functional and complete interface specification,

guidance documentation, the design of the TOE, and the implementation to

understand the security behaviour. Assurance is additionally gained

through a formal model of select TOE security policies and a semiformal
presentation of the functional specification and TOE design. A modular,

layered and simple TSF design is also required.

126 The analysis is supported by independent testing of the TSF, evidence of

developer testing based on the functional specification, TOE design,

selective independent confirmation of the developer test results, and an

independent vulnerability analysis demonstrating resistance to penetration

attackers with a high attack potential.

127 EAL6 also provides assurance through the use of a structured development

process, development environment controls, and comprehensive TOE

configuration management including complete automation, and evidence of

secure delivery procedures.

128 This EAL represents a meaningful increase in assurance from EAL5 by

requiring more comprehensive analysis, a structured representation of

the implementation, more architectural structure (e.g. layering), more

comprehensive independent vulnerability analysis, and improved

configuration management and development environment controls.

Evaluation assurance levels

July 2009 Version 3.1 Page 43 of 232

Assurance Class Assurance components

ADV: Development

ADV_ARC.1 Security architecture description

ADV_FSP.5 Complete semi-formal functional

specification with additional error information

ADV_IMP.2 Complete mapping of the

implementation representation of the TSF

ADV_INT.3 Minimally complex internals

ADV_SPM.1 Formal TOE security policy

model

ADV_TDS.5 Complete semiformal modular

design

AGD: Guidance documents
AGD_OPE.1 Operational user guidance

AGD_PRE.1 Preparative procedures

ALC: Life-cycle support

ALC_CMC.5 Advanced support

ALC_CMS.5 Development tools CM coverage

ALC_DEL.1 Delivery procedures

ALC_DVS.2 Sufficiency of security measures

ALC_LCD.1 Developer defined life-cycle

model

ALC_TAT.3 Compliance with implementation

standards - all parts

ASE: Security Target evaluation

ASE_CCL.1 Conformance claims

ASE_ECD.1 Extended components definition

ASE_INT.1 ST introduction

ASE_OBJ.2 Security objectives

ASE_REQ.2 Derived security requirements

ASE_SPD.1 Security problem definition

ASE_TSS.1 TOE summary specification

ATE: Tests

ATE_COV.3 Rigorous analysis of coverage

ATE_DPT.3 Testing: modular design

ATE_FUN.2 Ordered functional testing

ATE_IND.2 Independent testing - sample

AVA: Vulnerability assessment
AVA_VAN.5 Advanced methodical

vulnerability analysis

Table 7 - EAL6

Evaluation assurance levels

Page 44 of 232 Version 3.1 July 2009

8.9 Evaluation assurance level 7 (EAL7) - formally verified
design and tested

Objectives

129 EAL7 is applicable to the development of security TOEs for application in

extremely high risk situations and/or where the high value of the assets

justifies the higher costs. Practical application of EAL7 is currently limited

to TOEs with tightly focused security functionality that is amenable to

extensive formal analysis.

Assurance components

130 EAL7 provides assurance by a full security target and an analysis of the

SFRs in that ST, using a functional and complete interface specification,

guidance documentation, the design of the TOE, and a structured

presentation of the implementation to understand the security behaviour.

Assurance is additionally gained through a formal model of select TOE

security policies and a semiformal presentation of the functional

specification and TOE design. A modular, layered and simple TSF design is

also required.

131 The analysis is supported by independent testing of the TSF, evidence of

developer testing based on the functional specification, TOE design and

implementation representation, complete independent confirmation of the

developer test results, and an independent vulnerability analysis

demonstrating resistance to penetration attackers with a high attack potential.

132 EAL7 also provides assurance through the use of a structured development

process, development environment controls, and comprehensive TOE

configuration management including complete automation, and evidence of

secure delivery procedures.

133 This EAL represents a meaningful increase in assurance from EAL6 by

requiring more comprehensive analysis using formal representations and

formal correspondence, and comprehensive testing.

Evaluation assurance levels

July 2009 Version 3.1 Page 45 of 232

Assurance Class Assurance components

ADV: Development

ADV_ARC.1 Security architecture description

ADV_FSP.6 Complete semi-formal functional

specification with additional formal

specification

ADV_IMP.2 Complete mapping of the

implementation representation of the TSF

ADV_INT.3 Minimally complex internals

ADV_SPM.1 Formal TOE security policy

model

ADV_TDS.6 Complete semiformal modular

design with formal high-level design

presentation

AGD: Guidance documents
AGD_OPE.1 Operational user guidance

AGD_PRE.1 Preparative procedures

ALC: Life-cycle support

ALC_CMC.5 Advanced support

ALC_CMS.5 Development tools CM coverage

ALC_DEL.1 Delivery procedures

ALC_DVS.2 Sufficiency of security measures

ALC_LCD.2 Measurable life-cycle model

ALC_TAT.3 Compliance with implementation

standards - all parts

ASE: Security Target evaluation

ASE_CCL.1 Conformance claims

ASE_ECD.1 Extended components definition

ASE_INT.1 ST introduction

ASE_OBJ.2 Security objectives

ASE_REQ.2 Derived security requirements

ASE_SPD.1 Security problem definition

ASE_TSS.1 TOE summary specification

ATE: Tests

ATE_COV.3 Rigorous analysis of coverage

ATE_DPT.4 Testing: implementation

representation

ATE_FUN.2 Ordered functional testing

ATE_IND.3 Independent testing - complete

AVA: Vulnerability assessment
AVA_VAN.5 Advanced methodical

vulnerability analysis

Table 8 - EAL7

Composed assurance packages

Page 46 of 232 Version 3.1 July 2009

9 Composed assurance packages

134 The Composed Assurance Packages (CAPs) provide an increasing scale that

balances the level of assurance obtained with the cost and feasibility of

acquiring that degree of assurance for composed TOEs.

135 It is important to note that there are only a small number of families and

components from CC Part 3 included in the CAPs. This is due to their nature

of building upon evaluation results of previously evaluated entities (base

components and dependent components), and is not to say that these do not

provide meaningful and desirable assurances.

9.1 Composed assurance package (CAP) overview

136 CAPs are to be applied to composed TOEs, which are comprised of

components that have been (are going through) component TOE evaluation

(see Annex B). The individual components will have been certified to an

EAL or another assurance package specified in the ST. It is expected that a

basic level of assurance in a composed TOE will be gained through

application of EAL1, which can be achieved with information about the

components that is generally available in the public domain. (EAL1 can be

applied as specified within to both component and composed TOEs.) CAPs

provide an alternative approach to obtaining higher levels of assurance for a

composed TOE than application of the EALs above EAL1.

137 While a dependent component can be evaluated using a previously evaluated

and certified base component to satisfy the IT platform requirements in the

environment, this does not provide any formal assurance of the interactions

between the components or the possible introduction of vulnerabilities

resulting from the composition. Composed assurance packages consider

these interactions and, at higher levels of assurance, ensure that the interface

between the components has itself been the subject of testing. A vulnerability

analysis of the composed TOE is also performed to consider the possible

introduction of vulnerabilities as a result of composing the components.

138 Table 9 represents a summary of the CAPs. The columns represent a

hierarchically ordered set of CAPs, while the rows represent assurance

families. Each number in the resulting matrix identifies a specific assurance

component where applicable.

139 As outlined in the next Section, three hierarchically ordered composed

assurance packages are defined in the CC for the rating of a composed TOE's

assurance. They are hierarchically ordered inasmuch as each CAP represents

more assurance than all lower CAPs. The increase in assurance from CAP to

CAP is accomplished by substitution of a hierarchically higher assurance

component from the same assurance family (i.e. increasing rigour, scope,

and/or depth) and from the addition of assurance components from other

assurance families (i.e. adding new requirements). These increases result in

greater analysis of the composition to identify the impact on the evaluation

results gained for the individual component TOEs.

Composed assurance packages

July 2009 Version 3.1 Page 47 of 232

140 These CAPs consist of an appropriate combination of assurance components

as described in Chapter 7 of this CC Part 3. More precisely, each CAP

includes no more than one component of each assurance family and all

assurance dependencies of every component are addressed.

141 The CAPs only consider resistance against an attacker with an attack

potential up to Enhanced-Basic. This is due to the level of design information

that can be provided through the ACO_DEV, limiting some of the factors

associated with attack potential (knowledge of the composed TOE) and

subsequently affecting the rigour of vulnerability analysis that can be

performed by the evaluator. Therefore, the level of assurance in the

composed TOE is limited, although the assurance in the individual

components within the composed TOE may be much higher.

Assurance class
Assurance

Family

Assurance Components by

Composition Assurance

Package

CAP-A CAP-B CAP-C

Composition

ACO_COR 1
1 1

ACO_CTT 1 2
2

ACO_DEV 1 2 3

ACO_REL 1
1 2

ACO_VUL 1 2 3

Guidance

documents

AGD_OPE 1
1 1

AGD_PRE 1
1 1

Life-cycle

support

ALC_CMC 1
1 1

ALC_CMS 2
2 2

ALC_DEL

ALC_DVS

ALC_FLR

ALC_LCD

ALC_TAT

Security Target

evaluation

ASE_CCL 1
1 1

ASE_ECD 1
1 1

ASE_INT 1
1 1

ASE_OBJ 1 2
2

ASE_REQ 1 2
2

ASE_SPD 1
1

ASE_TSS 1
1 1

Table 9 - Composition assurance level summary

9.2 Composed assurance package details

142 The following Sections provide definitions of the CAPs, highlighting

differences between the specific requirements and the prose characterisations

of those requirements using bold type.

Composed assurance packages

Page 48 of 232 Version 3.1 July 2009

9.3 Composition assurance level A (CAP-A) - Structurally
composed

Objectives

143 CAP-A is applicable when a composed TOE is integrated and confidence in

the correct security operation of the resulting composite is required. This

requires the cooperation of the developer of the dependent component in

terms of delivery of design information and test results from the dependent

component certification, without requiring the involvement of the base

component developer.

144 CAP-A is therefore applicable in those circumstances where developers or

users require a low to moderate level of independently assured security in the

absence of ready availability of the complete development record.

Assurance components

145 CAP-A provides assurance by analysis of a security target for the

composed TOE. The SFRs in the composed TOE ST are analysed using

the outputs from the evaluations of the component TOEs (e.g. ST,

guidance documentation) and a specification for the interfaces between

the component TOEs in the composed TOE to understand the security

behaviour.

146 The analysis is supported by independent testing of the interfaces of the

base component that are relied upon by the dependent component, as

described in the reliance information, evidence of developer testing

based on the reliance information, development information and

composition rationale, and selective independent confirmation of the

developer test results. The analysis is also supported by a vulnerability

review of the composed TOE by the evaluator.

147 CAP-A also provides assurance through unique identification of the

composed TOE (i.e. IT TOE and guidance documentation).

Composed assurance packages

July 2009 Version 3.1 Page 49 of 232

Assurance Class Assurance components

ACO: Composition

ACO_COR.1 Composition rationale

ACO_CTT.1 Interface testing

ACO_DEV.1 Functional Description

ACO_REL.1 Basic reliance information

ACO_VUL.1 Composition vulnerability review

AGD: Guidance documents
AGD_OPE.1 Operational user guidance

AGD_PRE.1 Preparative procedures

ALC: Life-cycle support
ALC_CMC.1 Labelling of the TOE

ALC_CMS.2 Parts of the TOE CM coverage

ASE: Security Target evaluation

ASE_CCL.1 Conformance claims

ASE_ECD.1 Extended components definition

ASE_INT.1 ST introduction

ASE_OBJ.1 Security objectives for the

operational environment

ASE_REQ.1 Stated security requirements

ASE_TSS.1 TOE summary specification

Table 10 - CAP-A

Composed assurance packages

Page 50 of 232 Version 3.1 July 2009

9.4 Composition assurance level B (CAP-B) - Methodically
composed

Objectives

148 CAP-B permits a conscientious developer to gain maximum assurance from

understanding, at a subsystem level, the affects of interactions between

component TOEs integrated in the composed TOE, whilst minimising the

demand of involvement of the base component developer.

149 CAP-B is applicable in those circumstances where developers or users

require a moderate level of independently assured security, and require a

thorough investigation of the composed TOE and its development without

substantial re-engineering.

Assurance components

150 CAP-B provides assurance by analysis of a full security target for the

composed TOE. The SFRs in the composed TOE ST are analysed using the

outputs from the evaluations of the component TOEs (e.g. ST, guidance

documentation), a specification for the interfaces between the component

TOEs and the TOE design (describing TSF subsystems) contained in the

composed development information to understand the security behaviour.

151 The analysis is supported by independent testing of the interfaces of the base

component that are relied upon by the dependent component, as described in

the reliance information (now also including TOE design), evidence of

developer testing based on the reliance information, development

information and composition rationale, and selective independent

confirmation of the developer test results. The analysis is also supported by a

vulnerability analysis of the composed TOE by the evaluator demonstrating

resistance to attackers with basic attack potential.

152 This CAP represents a meaningful increase in assurance from CAP-A by

requiring more complete testing coverage of the security functionality.

Composed assurance packages

July 2009 Version 3.1 Page 51 of 232

Assurance Class Assurance components

ACO: Composition

ACO_COR.1 Composition rationale

ACO_CTT.2 Rigorous interface testing

ACO_DEV.2 Basic evidence of design

ACO_REL.1 Basic reliance information

ACO_VUL.2 Composition vulnerability

analysis

AGD: Guidance documents
AGD_OPE.1 Operational user guidance

AGD_PRE.1 Preparative procedures

ALC: Life-cycle support
ALC_CMC.1 Labelling of the TOE

ALC_CMS.2 Parts of the TOE CM coverage

ASE: Security Target evaluation

ASE_CCL.1 Conformance claims

ASE_ECD.1 Extended components definition

ASE_INT.1 ST introduction

ASE_OBJ.2 Security objectives

ASE_REQ.2 Derived security requirements

ASE_SPD.1 Security problem definition

ASE_TSS.1 TOE summary specification

Table 11 - CAP-B

Composed assurance packages

Page 52 of 232 Version 3.1 July 2009

9.5 Composition assurance level C (CAP-C) - Methodically
composed, tested and reviewed

Objectives

153 CAP-C permits a developer to gain maximum assurance from positive

analysis of the interactions between the components of the composed TOE,

which, though rigorous, do not require full access to all evaluation evidence

of the base component.

154 CAP-C is therefore applicable in those circumstances where developers or

users require a moderate to high level of independently assured security in

conventional commodity composed TOEs and are prepared to incur

additional security-specific engineering costs.

Assurance components

155 CAP-C provides assurance by analysis of a full security target for the

composed TOE. The SFRs in the composed TOE ST are analysed using the

outputs from the evaluations of the component TOEs (e.g. ST, guidance

documentation), a specification for the interfaces between the component

TOEs and the TOE design (describing TSF modules) contained in the

composed development information to understand the security behaviour.

156 The analysis is supported by independent testing of the interfaces of the base

component that are relied upon by the dependent component, as described in

the reliance information (now including TOE design), evidence of developer

testing based on the reliance information, development information and

composition rationale, and selective independent confirmation of the

developer test results. The analysis is also supported by a vulnerability

analysis of the composed TOE by the evaluator demonstrating resistance to

attackers with Enhanced-Basic attack potential.

157 This CAP represents a meaningful increase in assurance from CAP-B by

requiring more design description and demonstration of resistance to a

higher attack potential.

Composed assurance packages

July 2009 Version 3.1 Page 53 of 232

Assurance Class Assurance components

ACO: Composition

ACO_COR.1 Composition rationale

ACO_CTT.2 Rigorous interface testing

ACO_DEV.3 Detailed evidence of design

ACO_REL.2 Reliance information

ACO_VUL.3 Enhanced-Basic Composition

vulnerability analysis

AGD: Guidance documents
AGD_OPE.1 Operational user guidance

AGD_PRE.1 Preparative procedures

ALC: Life-cycle support
ALC_CMC.1 Labelling of the TOE

ALC_CMS.2 Parts of the TOE CM coverage

ASE: Security Target evaluation

ASE_CCL.1 Conformance claims

ASE_ECD.1 Extended components definition

ASE_INT.1 ST introduction

ASE_OBJ.2 Security objectives

ASE_REQ.2 Derived security requirements

ASE_SPD.1 Security problem definition

ASE_TSS.1 TOE summary specification

Table 12 - CAP-C

Class APE: Protection Profile evaluation

Page 54 of 232 Version 3.1 July 2009

10 Class APE: Protection Profile evaluation

158 Evaluating a PP is required to demonstrate that the PP is sound and internally

consistent, and, if the PP is based on one or more other PPs or on packages,

that the PP is a correct instantiation of these PPs and packages. These

properties are necessary for the PP to be suitable for use as the basis for

writing an ST or another PP.

159 This Chapter should be used in conjunction with Annexes A, B and C in CC

Part 1, as these Annexes clarify the concepts here and provide many

examples.

160 This standard defines two assurance packages for PP evaluation as follows:

a) Low assurance PP evaluation package;

b) (Standard) PP evaluation package.

161 The assurance components for these packages are defined by table 13.

Assurance class
Assurance

family

Assurance component

Low Assurance

PP
PP

Protection Profile

evaluation

APE_CCL 1 1

APE_ECD 1 1

APE_INT 1 1

APE_OBJ 1 2

APE_REQ 1 2

APE_SPD

1

Table 13 - PP assurance packages

162 Figure 8 shows the families within this class, and the hierarchy of

components within the families.

Class APE: Protection Profile evaluation

July 2009 Version 3.1 Page 55 of 232

Figure 8 - APE: Protection Profile evaluation class decomposition

Class APE: Protection Profile evaluation

Page 56 of 232 Version 3.1 July 2009

10.1 PP introduction (APE_INT)

Objectives

163 The objective of this family is to describe the TOE in a narrative way.

164 Evaluation of the PP introduction is required to demonstrate that the PP is

correctly identified, and that the PP reference and TOE overview are

consistent with each other.

APE_INT.1 PP introduction

Dependencies: No dependencies.

Developer action elements:

APE_INT.1.1D The developer shall provide a PP introduction.

Content and presentation elements:

APE_INT.1.1C The PP introduction shall contain a PP reference and a TOE overview.

APE_INT.1.2C The PP reference shall uniquely identify the PP.

APE_INT.1.3C The TOE overview shall summarise the usage and major security

features of the TOE.

APE_INT.1.4C The TOE overview shall identify the TOE type.

APE_INT.1.5C The TOE overview shall identify any non-TOE

hardware/software/firmware available to the TOE.

Evaluator action elements:

APE_INT.1.1E The evaluator shall confirm that the information provided meets all

requirements for content and presentation of evidence.

Class APE: Protection Profile evaluation

July 2009 Version 3.1 Page 57 of 232

10.2 Conformance claims (APE_CCL)

Objectives

165 The objective of this family is to determine the validity of the conformance

claim. In addition, this family specifies how STs and other PPs are to claim

conformance with the PP.

APE_CCL.1 Conformance claims

Dependencies: APE_INT.1 PP introduction

 APE_ECD.1 Extended components definition

 APE_REQ.1 Stated security requirements

Developer action elements:

APE_CCL.1.1D The developer shall provide a conformance claim.

APE_CCL.1.2D The developer shall provide a conformance claim rationale.

APE_CCL.1.3D The developer shall provide a conformance statement.

Content and presentation elements:

APE_CCL.1.1C The conformance claim shall contain a CC conformance claim that

identifies the version of the CC to which the PP claims conformance.

APE_CCL.1.2C The CC conformance claim shall describe the conformance of the PP to

CC Part 2 as either CC Part 2 conformant or CC Part 2 extended.

APE_CCL.1.3C The CC conformance claim shall describe the conformance of the PP to

CC Part 3 as either CC Part 3 conformant or CC Part 3 extended.

APE_CCL.1.4C The CC conformance claim shall be consistent with the extended

components definition.

APE_CCL.1.5C The conformance claim shall identify all PPs and security requirement

packages to which the PP claims conformance.

APE_CCL.1.6C The conformance claim shall describe any conformance of the PP to a

package as either package-conformant or package-augmented.

APE_CCL.1.7C The conformance claim rationale shall demonstrate that the TOE type is

consistent with the TOE type in the PPs for which conformance is being

claimed.

APE_CCL.1.8C The conformance claim rationale shall demonstrate that the statement

of the security problem definition is consistent with the statement of the

security problem definition in the PPs for which conformance is being

claimed.

Class APE: Protection Profile evaluation

Page 58 of 232 Version 3.1 July 2009

APE_CCL.1.9C The conformance claim rationale shall demonstrate that the statement

of security objectives is consistent with the statement of security

objectives in the PPs for which conformance is being claimed.

APE_CCL.1.10C The conformance claim rationale shall demonstrate that the statement

of security requirements is consistent with the statement of security

requirements in the PPs for which conformance is being claimed.

APE_CCL.1.11C The conformance statement shall describe the conformance required of

any PPs/STs to the PP as strict-PP or demonstrable-PP conformance.

Evaluator action elements:

APE_CCL.1.1E The evaluator shall confirm that the information provided meets all

requirements for content and presentation of evidence.

Class APE: Protection Profile evaluation

July 2009 Version 3.1 Page 59 of 232

10.3 Security problem definition (APE_SPD)

Objectives

166 This part of the PP defines the security problem to be addressed by the TOE

and the operational environment of the TOE.

167 Evaluation of the security problem definition is required to demonstrate that

the security problem intended to be addressed by the TOE and its operational

environment, is clearly defined.

APE_SPD.1 Security problem definition

Dependencies: No dependencies.

Developer action elements:

APE_SPD.1.1D The developer shall provide a security problem definition.

Content and presentation elements:

APE_SPD.1.1C The security problem definition shall describe the threats.

APE_SPD.1.2C All threats shall be described in terms of a threat agent, an asset, and an

adverse action.

APE_SPD.1.3C The security problem definition shall describe the OSPs.

APE_SPD.1.4C The security problem definition shall describe the assumptions about the

operational environment of the TOE.

Evaluator action elements:

APE_SPD.1.1E The evaluator shall confirm that the information provided meets all

requirements for content and presentation of evidence.

Class APE: Protection Profile evaluation

Page 60 of 232 Version 3.1 July 2009

10.4 Security objectives (APE_OBJ)

Objectives

168 The security objectives are a concise statement of the intended response to

the security problem defined through the Security problem definition

(APE_SPD) family.

169 Evaluation of the security objectives is required to demonstrate that the

security objectives adequately and completely address the security problem

definition and that the division of this problem between the TOE and its

operational environment is clearly defined.

Component levelling

170 The components in this family are levelled on whether they prescribe only

security objectives for the operational environment, or also security

objectives for the TOE.

APE_OBJ.1 Security objectives for the operational environment

Dependencies: No dependencies.

Developer action elements:

APE_OBJ.1.1D The developer shall provide a statement of security objectives.

Content and presentation elements:

APE_OBJ.1.1C The statement of security objectives shall describe the security objectives

for the operational environment.

Evaluator action elements:

APE_OBJ.1.1E The evaluator shall confirm that the information provided meets all

requirements for content and presentation of evidence.

APE_OBJ.2 Security objectives

Dependencies: APE_SPD.1 Security problem definition

Developer action elements:

APE_OBJ.2.1D The developer shall provide a statement of security objectives.

APE_OBJ.2.2D The developer shall provide a security objectives rationale.

Content and presentation elements:

APE_OBJ.2.1C The statement of security objectives shall describe the security objectives for

the TOE and the security objectives for the operational environment.

Class APE: Protection Profile evaluation

July 2009 Version 3.1 Page 61 of 232

APE_OBJ.2.2C The security objectives rationale shall trace each security objective for

the TOE back to threats countered by that security objective and OSPs

enforced by that security objective.

APE_OBJ.2.3C The security objectives rationale shall trace each security objective for

the operational environment back to threats countered by that security

objective, OSPs enforced by that security objective, and assumptions

upheld by that security objective.

APE_OBJ.2.4C The security objectives rationale shall demonstrate that the security

objectives counter all threats.

APE_OBJ.2.5C The security objectives rationale shall demonstrate that the security

objectives enforce all OSPs.

APE_OBJ.2.6C The security objectives rationale shall demonstrate that the security

objectives for the operational environment uphold all assumptions.

Evaluator action elements:

APE_OBJ.2.1E The evaluator shall confirm that the information provided meets all

requirements for content and presentation of evidence.

Class APE: Protection Profile evaluation

Page 62 of 232 Version 3.1 July 2009

10.5 Extended components definition (APE_ECD)

Objectives

171 Extended security requirements are requirements that are not based on

components from CC Part 2 or CC Part 3, but are based on extended

components: components defined by the PP author.

172 Evaluation of the definition of extended components is necessary to

determine that they are clear and unambiguous, and that they are necessary,

i.e. they may not be clearly expressed using existing CC Part 2 or CC Part 3

components.

APE_ECD.1 Extended components definition

Dependencies: No dependencies.

Developer action elements:

APE_ECD.1.1D The developer shall provide a statement of security requirements.

APE_ECD.1.2D The developer shall provide an extended components definition.

Content and presentation elements:

APE_ECD.1.1C The statement of security requirements shall identify all extended

security requirements.

APE_ECD.1.2C The extended components definition shall define an extended component

for each extended security requirement.

APE_ECD.1.3C The extended components definition shall describe how each extended

component is related to the existing CC components, families, and

classes.

APE_ECD.1.4C The extended components definition shall use the existing CC

components, families, classes, and methodology as a model for

presentation.

APE_ECD.1.5C The extended components shall consist of measurable and objective

elements such that conformance or nonconformance to these elements

can be demonstrated.

Evaluator action elements:

APE_ECD.1.1E The evaluator shall confirm that the information provided meets all

requirements for content and presentation of evidence.

APE_ECD.1.2E The evaluator shall confirm that no extended component may be clearly

expressed using existing components.

Class APE: Protection Profile evaluation

July 2009 Version 3.1 Page 63 of 232

10.6 Security requirements (APE_REQ)

Objectives

173 The SFRs form a clear, unambiguous and well-defined description of the

expected security behaviour of the TOE. The SARs form a clear,

unambiguous and well-defined description of the expected activities that will

be undertaken to gain assurance in the TOE.

174 Evaluation of the security requirements is required to ensure that they are

clear, unambiguous and well-defined.

Component levelling

175 The components in this family are levelled on whether they are stated as is,

or whether the SFRs are derived from security objectives for the TOE.

APE_REQ.1 Stated security requirements

Dependencies: APE_ECD.1 Extended components definition

Developer action elements:

APE_REQ.1.1D The developer shall provide a statement of security requirements.

APE_REQ.1.2D The developer shall provide a security requirements rationale.

Content and presentation elements:

APE_REQ.1.1C The statement of security requirements shall describe the SFRs and the

SARs.

APE_REQ.1.2C All subjects, objects, operations, security attributes, external entities and

other terms that are used in the SFRs and the SARs shall be defined.

APE_REQ.1.3C The statement of security requirements shall identify all operations on

the security requirements.

APE_REQ.1.4C All operations shall be performed correctly.

APE_REQ.1.5C Each dependency of the security requirements shall either be satisfied,

or the security requirements rationale shall justify the dependency not

being satisfied.

APE_REQ.1.6C The statement of security requirements shall be internally consistent.

Evaluator action elements:

APE_REQ.1.1E The evaluator shall confirm that the information provided meets all

requirements for content and presentation of evidence.

Class APE: Protection Profile evaluation

Page 64 of 232 Version 3.1 July 2009

APE_REQ.2 Derived security requirements

Dependencies: APE_OBJ.2 Security objectives

 APE_ECD.1 Extended components definition

Developer action elements:

APE_REQ.2.1D The developer shall provide a statement of security requirements.

APE_REQ.2.2D The developer shall provide a security requirements rationale.

Content and presentation elements:

APE_REQ.2.1C The statement of security requirements shall describe the SFRs and the

SARs.

APE_REQ.2.2C All subjects, objects, operations, security attributes, external entities and

other terms that are used in the SFRs and the SARs shall be defined.

APE_REQ.2.3C The statement of security requirements shall identify all operations on the

security requirements.

APE_REQ.2.4C All operations shall be performed correctly.

APE_REQ.2.5C Each dependency of the security requirements shall either be satisfied, or the

security requirements rationale shall justify the dependency not being

satisfied.

APE_REQ.2.6C The security requirements rationale shall trace each SFR back to the

security objectives for the TOE.

APE_REQ.2.7C The security requirements rationale shall demonstrate that the SFRs

meet all security objectives for the TOE.

APE_REQ.2.8C The security requirements rationale shall explain why the SARs were

chosen.

APE_REQ.2.9C The statement of security requirements shall be internally consistent.

Evaluator action elements:

APE_REQ.2.1E The evaluator shall confirm that the information provided meets all

requirements for content and presentation of evidence.

Class ASE: Security Target evaluation

July 2009 Version 3.1 Page 65 of 232

11 Class ASE: Security Target evaluation

176 Evaluating an ST is required to demonstrate that the ST is sound and

internally consistent, and, if the ST is based on one or more PPs or packages,

that the ST is a correct instantiation of these PPs and packages. These

properties are necessary for the ST to be suitable for use as the basis for a

TOE evaluation.

177 This Chapter should be used in conjunction with Annexes A, B and C in CC

Part 1, as these Annexes clarify the concepts here and provide many

examples.

178 Figure 9 shows the families within this class, and the hierarchy of

components within the families.

Figure 9 - ASE: Security Target evaluation class decomposition

Class ASE: Security Target evaluation

Page 66 of 232 Version 3.1 July 2009

11.1 ST introduction (ASE_INT)

Objectives

179 The objective of this family is to describe the TOE in a narrative way on

three levels of abstraction: TOE reference, TOE overview and TOE

description.

180 Evaluation of the ST introduction is required to demonstrate that the ST and

the TOE are correctly identified, that the TOE is correctly described at three

levels of abstraction and that these three descriptions are consistent with each

other.

ASE_INT.1 ST introduction

Dependencies: No dependencies.

Developer action elements:

ASE_INT.1.1D The developer shall provide an ST introduction.

Content and presentation elements:

ASE_INT.1.1C The ST introduction shall contain an ST reference, a TOE reference, a

TOE overview and a TOE description.

ASE_INT.1.2C The ST reference shall uniquely identify the ST.

ASE_INT.1.3C The TOE reference shall identify the TOE.

ASE_INT.1.4C The TOE overview shall summarise the usage and major security

features of the TOE.

ASE_INT.1.5C The TOE overview shall identify the TOE type.

ASE_INT.1.6C The TOE overview shall identify any non-TOE

hardware/software/firmware required by the TOE.

ASE_INT.1.7C The TOE description shall describe the physical scope of the TOE.

ASE_INT.1.8C The TOE description shall describe the logical scope of the TOE.

Evaluator action elements:

ASE_INT.1.1E The evaluator shall confirm that the information provided meets all

requirements for content and presentation of evidence.

ASE_INT.1.2E The evaluator shall confirm that the TOE reference, the TOE overview,

and the TOE description are consistent with each other.

Class ASE: Security Target evaluation

July 2009 Version 3.1 Page 67 of 232

11.2 Conformance claims (ASE_CCL)

Objectives

181 The objective of this family is to determine the validity of the conformance

claim. In addition, this family specifies how STs are to claim conformance

with the PP.

ASE_CCL.1 Conformance claims

Dependencies: ASE_INT.1 ST introduction

 ASE_ECD.1 Extended components definition

 ASE_REQ.1 Stated security requirements

Developer action elements:

ASE_CCL.1.1D The developer shall provide a conformance claim.

ASE_CCL.1.2D The developer shall provide a conformance claim rationale.

Content and presentation elements:

ASE_CCL.1.1C The conformance claim shall contain a CC conformance claim that

identifies the version of the CC to which the ST and the TOE claim

conformance.

ASE_CCL.1.2C The CC conformance claim shall describe the conformance of the ST to

CC Part 2 as either CC Part 2 conformant or CC Part 2 extended.

ASE_CCL.1.3C The CC conformance claim shall describe the conformance of the ST to

CC Part 3 as either CC Part 3 conformant or CC Part 3 extended.

ASE_CCL.1.4C The CC conformance claim shall be consistent with the extended

components definition.

ASE_CCL.1.5C The conformance claim shall identify all PPs and security requirement

packages to which the ST claims conformance.

ASE_CCL.1.6C The conformance claim shall describe any conformance of the ST to a

package as either package-conformant or package-augmented.

ASE_CCL.1.7C The conformance claim rationale shall demonstrate that the TOE type is

consistent with the TOE type in the PPs for which conformance is being

claimed.

ASE_CCL.1.8C The conformance claim rationale shall demonstrate that the statement

of the security problem definition is consistent with the statement of the

security problem definition in the PPs for which conformance is being

claimed.

Class ASE: Security Target evaluation

Page 68 of 232 Version 3.1 July 2009

ASE_CCL.1.9C The conformance claim rationale shall demonstrate that the statement

of security objectives is consistent with the statement of security

objectives in the PPs for which conformance is being claimed.

ASE_CCL.1.10C The conformance claim rationale shall demonstrate that the statement

of security requirements is consistent with the statement of security

requirements in the PPs for which conformance is being claimed.

Evaluator action elements:

ASE_CCL.1.1E The evaluator shall confirm that the information provided meets all

requirements for content and presentation of evidence.

Class ASE: Security Target evaluation

July 2009 Version 3.1 Page 69 of 232

11.3 Security problem definition (ASE_SPD)

Objectives

182 This part of the ST defines the security problem to be addressed by the TOE

and the operational environment of the TOE.

183 Evaluation of the security problem definition is required to demonstrate that

the security problem intended to be addressed by the TOE and its operational

environment, is clearly defined.

ASE_SPD.1 Security problem definition

Dependencies: No dependencies.

Developer action elements:

ASE_SPD.1.1D The developer shall provide a security problem definition.

Content and presentation elements:

ASE_SPD.1.1C The security problem definition shall describe the threats.

ASE_SPD.1.2C All threats shall be described in terms of a threat agent, an asset, and an

adverse action.

ASE_SPD.1.3C The security problem definition shall describe the OSPs.

ASE_SPD.1.4C The security problem definition shall describe the assumptions about the

operational environment of the TOE.

Evaluator action elements:

ASE_SPD.1.1E The evaluator shall confirm that the information provided meets all

requirements for content and presentation of evidence.

Class ASE: Security Target evaluation

Page 70 of 232 Version 3.1 July 2009

11.4 Security objectives (ASE_OBJ)

Objectives

184 The security objectives are a concise statement of the intended response to

the security problem defined through the Security problem definition

(ASE_SPD) family.

185 Evaluation of the security objectives is required to demonstrate that the

security objectives adequately and completely address the security problem

definition, that the division of this problem between the TOE and its

operational environment is clearly defined.

Component levelling

186 The components in this family are levelled on whether they prescribe only

security objectives for the operational environment, or also security

objectives for the TOE.

ASE_OBJ.1 Security objectives for the operational environment

Dependencies: No dependencies.

Developer action elements:

ASE_OBJ.1.1D The developer shall provide a statement of security objectives.

Content and presentation elements:

ASE_OBJ.1.1C The statement of security objectives shall describe the security objectives

for the operational environment.

Evaluator action elements:

ASE_OBJ.1.1E The evaluator shall confirm that the information provided meets all

requirements for content and presentation of evidence.

ASE_OBJ.2 Security objectives

Dependencies: ASE_SPD.1 Security problem definition

Developer action elements:

ASE_OBJ.2.1D The developer shall provide a statement of security objectives.

ASE_OBJ.2.2D The developer shall provide a security objectives rationale.

Content and presentation elements:

ASE_OBJ.2.1C The statement of security objectives shall describe the security objectives

for the TOE and the security objectives for the operational environment.

Class ASE: Security Target evaluation

July 2009 Version 3.1 Page 71 of 232

ASE_OBJ.2.2C The security objectives rationale shall trace each security objective for

the TOE back to threats countered by that security objective and OSPs

enforced by that security objective.

ASE_OBJ.2.3C The security objectives rationale shall trace each security objective for

the operational environment back to threats countered by that security

objective, OSPs enforced by that security objective, and assumptions

upheld by that security objective.

ASE_OBJ.2.4C The security objectives rationale shall demonstrate that the security

objectives counter all threats.

ASE_OBJ.2.5C The security objectives rationale shall demonstrate that the security

objectives enforce all OSPs.

ASE_OBJ.2.6C The security objectives rationale shall demonstrate that the security

objectives for the operational environment uphold all assumptions.

Evaluator action elements:

ASE_OBJ.2.1E The evaluator shall confirm that the information provided meets all

requirements for content and presentation of evidence.

Class ASE: Security Target evaluation

Page 72 of 232 Version 3.1 July 2009

11.5 Extended components definition (ASE_ECD)

Objectives

187 Extended security requirements are requirements that are not based on

components from CC Part 2 or CC Part 3, but are based on extended

components: components defined by the ST author.

188 Evaluation of the definition of extended components is necessary to

determine that they are clear and unambiguous, and that they are necessary,

i.e. they may not be clearly expressed using existing CC Part 2 or CC Part 3

components.

ASE_ECD.1 Extended components definition

Dependencies: No dependencies.

Developer action elements:

ASE_ECD.1.1D The developer shall provide a statement of security requirements.

ASE_ECD.1.2D The developer shall provide an extended components definition.

Content and presentation elements:

ASE_ECD.1.1C The statement of security requirements shall identify all extended

security requirements.

ASE_ECD.1.2C The extended components definition shall define an extended component

for each extended security requirement.

ASE_ECD.1.3C The extended components definition shall describe how each extended

component is related to the existing CC components, families, and

classes.

ASE_ECD.1.4C The extended components definition shall use the existing CC

components, families, classes, and methodology as a model for

presentation.

ASE_ECD.1.5C The extended components shall consist of measurable and objective

elements such that conformance or nonconformance to these elements

can be demonstrated.

Evaluator action elements:

ASE_ECD.1.1E The evaluator shall confirm that the information provided meets all

requirements for content and presentation of evidence.

ASE_ECD.1.2E The evaluator shall confirm that no extended component can be clearly

expressed using existing components.

Class ASE: Security Target evaluation

July 2009 Version 3.1 Page 73 of 232

11.6 Security requirements (ASE_REQ)

Objectives

189 The SFRs form a clear, unambiguous and well-defined description of the

expected security behaviour of the TOE. The SARs form a clear,

unambiguous and canonical description of the expected activities that will be

undertaken to gain assurance in the TOE.

190 Evaluation of the security requirements is required to ensure that they are

clear, unambiguous and well-defined.

Component levelling

191 The components in this family are levelled on whether they are stated as is.

ASE_REQ.1 Stated security requirements

Dependencies: ASE_ECD.1 Extended components definition

Developer action elements:

ASE_REQ.1.1D The developer shall provide a statement of security requirements.

ASE_REQ.1.2D The developer shall provide a security requirements rationale.

Content and presentation elements:

ASE_REQ.1.1C The statement of security requirements shall describe the SFRs and the

SARs.

ASE_REQ.1.2C All subjects, objects, operations, security attributes, external entities and

other terms that are used in the SFRs and the SARs shall be defined.

ASE_REQ.1.3C The statement of security requirements shall identify all operations on

the security requirements.

ASE_REQ.1.4C All operations shall be performed correctly.

ASE_REQ.1.5C Each dependency of the security requirements shall either be satisfied,

or the security requirements rationale shall justify the dependency not

being satisfied.

ASE_REQ.1.6C The statement of security requirements shall be internally consistent.

Evaluator action elements:

ASE_REQ.1.1E The evaluator shall confirm that the information provided meets all

requirements for content and presentation of evidence.

Class ASE: Security Target evaluation

Page 74 of 232 Version 3.1 July 2009

ASE_REQ.2 Derived security requirements

Dependencies: ASE_OBJ.2 Security objectives

 ASE_ECD.1 Extended components definition

Developer action elements:

ASE_REQ.2.1D The developer shall provide a statement of security requirements.

ASE_REQ.2.2D The developer shall provide a security requirements rationale.

Content and presentation elements:

ASE_REQ.2.1C The statement of security requirements shall describe the SFRs and the

SARs.

ASE_REQ.2.2C All subjects, objects, operations, security attributes, external entities and

other terms that are used in the SFRs and the SARs shall be defined.

ASE_REQ.2.3C The statement of security requirements shall identify all operations on the

security requirements.

ASE_REQ.2.4C All operations shall be performed correctly.

ASE_REQ.2.5C Each dependency of the security requirements shall either be satisfied, or the

security requirements rationale shall justify the dependency not being

satisfied.

ASE_REQ.2.6C The security requirements rationale shall trace each SFR back to the

security objectives for the TOE.

ASE_REQ.2.7C The security requirements rationale shall demonstrate that the SFRs

meet all security objectives for the TOE.

ASE_REQ.2.8C The security requirements rationale shall explain why the SARs were

chosen.

ASE_REQ.2.9C The statement of security requirements shall be internally consistent.

Evaluator action elements:

ASE_REQ.2.1E The evaluator shall confirm that the information provided meets all

requirements for content and presentation of evidence.

Class ASE: Security Target evaluation

July 2009 Version 3.1 Page 75 of 232

11.7 TOE summary specification (ASE_TSS)

Objectives

192 The TOE summary specification enables evaluators and potential consumers

to gain a general understanding of how the TOE is implemented.

193 Evaluation of the TOE summary specification is necessary to determine

whether it is adequately described how the TOE:

 meets its SFRs;

 protects itself against interference, logical tampering and bypass.

and whether the TOE summary specification is consistent with other

narrative descriptions of the TOE.

Component levelling

194 The components in this family are levelled on whether the TOE summary

specification only needs to describe how the TOE meets the SFRs, or

whether the TOE summary specification also needs to describe how the TOE

protects itself against logical tampering and bypass. This additional

description may be used in special circumstances where there might be a

specific concern regarding the TOE security architecture.

ASE_TSS.1 TOE summary specification

Dependencies: ASE_INT.1 ST introduction

 ASE_REQ.1 Stated security requirements

 ADV_FSP.1 Basic functional specification

Developer action elements:

ASE_TSS.1.1D The developer shall provide a TOE summary specification.

Content and presentation elements:

ASE_TSS.1.1C The TOE summary specification shall describe how the TOE meets each

SFR.

Evaluator action elements:

ASE_TSS.1.1E The evaluator shall confirm that the information provided meets all

requirements for content and presentation of evidence.

ASE_TSS.1.2E The evaluator shall confirm that the TOE summary specification is

consistent with the TOE overview and the TOE description.

Class ASE: Security Target evaluation

Page 76 of 232 Version 3.1 July 2009

ASE_TSS.2 TOE summary specification with architectural design summary

Dependencies: ASE_INT.1 ST introduction

 ASE_REQ.1 Stated security requirements

 ADV_ARC.1 Security architecture description

Developer action elements:

ASE_TSS.2.1D The developer shall provide a TOE summary specification.

Content and presentation elements:

ASE_TSS.2.1C The TOE summary specification shall describe how the TOE meets each

SFR.

ASE_TSS.2.2C The TOE summary specification shall describe how the TOE protects

itself against interference and logical tampering.

ASE_TSS.2.3C The TOE summary specification shall describe how the TOE protects

itself against bypass.

Evaluator action elements:

ASE_TSS.2.1E The evaluator shall confirm that the information provided meets all

requirements for content and presentation of evidence.

ASE_TSS.2.2E The evaluator shall confirm that the TOE summary specification is

consistent with the TOE overview and the TOE description.

Class ADV: Development

July 2009 Version 3.1 Page 77 of 232

12 Class ADV: Development

195 The requirements of the Development class provide information about the

TOE. The knowledge obtained by this information is used as the basis for

conducting vulnerability analysis and testing upon the TOE, as described in

the AVA and ATE classes.

196 The Development class encompasses six families of requirements for

structuring and representing the TSF at various levels and varying forms of

abstraction. These families include:

 requirements for the description (at the various levels of abstraction)

of the design and implementation of the SFRs (ADV_FSP,

ADV_TDS, ADV_IMP)

 requirements for the description of the architecture-oriented features

of domain separation, TSF self-protection and non-bypassability of

the security functionality (ADV_ARC)

 requirements for a security policy model and for correspondence

mappings between security policy model and the functional

specification (ADV_SPM)

 requirements on the internal structure of the TSF, which covers

aspects such as modularity, layering, and minimisation of complexity

(ADV_INT)

197 When documenting the security functionality of a TOE, there are two

properties that need to be demonstrated. The first property is that the security

functionality works correctly; that is, it performs as specified. The second

property, and one that is arguably harder to demonstrate, is that the TOE

cannot be used in a way such that the security functionality can be corrupted

or bypassed. These two properties require somewhat different approaches in

analysis, and so the families in ADV are structured to support these different

approaches. The families Functional specification (ADV_FSP), TOE design

(ADV_TDS), Implementation representation (ADV_IMP), and Security

policy modelling (ADV_SPM) deal with the first property: the specification

of the security functionality. The families Security Architecture

(ADV_ARC) and TSF internals (ADV_INT) deal with the second property:

the specification of the design of the TOE demonstrating the security

functionality cannot be corrupted or bypassed. It should be noted that both

properties need to be realised: the more confidence one has that the

properties are satisfied, the more trustworthy the TOE is. The components in

the families are designed so that more assurance can be gained as the

components hierarchically increase.

Class ADV: Development

Page 78 of 232 Version 3.1 July 2009

198 The paradigm for the families targeted at the first property is one of design

decomposition. At the highest level, there is a functional specification of the

TSF in terms of its interfaces (describing what the TSF does in terms of

requests to the TSF for services and resulting responses), decomposing the

TSF into smaller units (dependent on the assurance desired and the

complexity of the TOE) and describing how the TSF accomplishes its

functions (to a level of detail commensurate with the assurance level), and

showing the implementation of the TSF. A formal model of the security

behaviour also may be given. All levels of decomposition are used in

determining the completeness and accuracy of all other levels, ensuring that

the levels are mutually supportive. The requirements for the various TSF

representations are separated into different families, to allow the PP/ST

author to specify which TSF representations are required. The level chosen

will dictate the assurance desired/gained.

199 Figure 10 indicates the relationships among the various TSF representations

of the ADV class, as well as their relationships with other classes. As the

figure indicates, the APE and ASE classes define the requirements for the

correspondence between the SFRs and the security objectives for the TOE.

Class ASE also defines requirements for the correspondence between both

the security objectives and SFRs, and for the TOE summary specification

which explains how the TOE meets its SFRs. The activities of

ALC_CMC.5.2E include the verification that the TSF that is tested under the

ATE and AVA classes is in fact the one described by all of the ADV

decomposition levels.

Class ADV: Development

July 2009 Version 3.1 Page 79 of 232

Figure 10 - Relationships of ADV constructs to one another and to other

families

200 The requirements for all other correspondence shown in Figure 10 are

defined in the ADV class. The Security policy modelling (ADV_SPM)

family defines the requirements for formally modelling selected SFRs, and

providing correspondence between the functional specification and the

formal model. Each assurance family specific to a TSF representation (i.e.,

Functional specification (ADV_FSP), TOE design (ADV_TDS) and

Implementation representation (ADV_IMP)) defines requirements relating

that TSF representation to the SFRs. All decompositions must accurately

reflect all other decompositions (i.e., be mutually supportive); the developer

supplies the tracings in the last .C elements of the components. Assurance

relating to this factor is obtained during the analysis for each of the levels of

decomposition by referring to other levels of decomposition (in a recursive

fashion) while the analysis of a particular level of decomposition is being

performed; the evaluator verifies the correspondence as part of the second E

element. The understanding gained from these levels of decomposition form

the basis of the functional and penetration testing efforts.

Class ADV: Development

Page 80 of 232 Version 3.1 July 2009

201 The ADV_INT family is not represented in this figure, as it is related to the

internal structure of the TSF, and is only indirectly related to the process of

refinement of the TSF representations. Similarly, the ADV_ARC family is

not represented in the figure because it relates to the architectural soundness,

rather than representation, of the TSF. Both ADV_INT and ADV_ARC

relate to the analysis of the property that the TOE cannot be made to

circumvent or corrupt its security functionality.

202 The TOE security functionality (TSF) consists of all parts of the TOE that

have to be relied upon for enforcement of the SFRs. The TSF includes both

functionality that directly enforces the SFRs, as well as functionality that,

while not directly enforcing the SFRs, contributes to their enforcement in a

more indirect manner, including functionality with the capability to cause the

SFRs to be violated. This includes portions of the TOE that are invoked on

start-up that are responsible for putting the TSF into its initial secure state.

203 Several important concepts were used in the development of the components

of the ADV families. These concepts, while introduced briefly here, are

explained more fully in the application notes for the families.

204 One over-riding notion is that, as more information becomes available,

greater assurance can be obtained that the security functionality 1) is

correctly implemented; 2) cannot be corrupted; and 3) cannot be bypassed.

This is done through the verification that the documentation is correct and

consistent with other documentation, and by providing information that can

be used to ensure that the testing activities (both functional and penetration

testing) are comprehensive. This is reflected in the levelling of the

components of the families. In general, components are levelled based on the

amount of information that is to be provided (and subsequently analysed).

205 While not true for all TOEs, it is generally the case that the TSF is

sufficiently complex that there are portions of the TSF that deserve more

intense examination than other portions of the TSF. Determining those

portions is unfortunately somewhat subjective, thus terminology and

components have been defined such that as the level of assurance increases,

the responsibility for determining what portions of the TSF need to be

examined in detail shifts from the developer to the evaluator. To aid in

expressing this concept, the following terminology is introduced. It should be

noted that in the families of the class, this terminology is used when

expressing SFR-related portions of the TOE (that is, elements and work units

embodied in the Functional specification (ADV_FSP), TOE design

(ADV_TDS), and Implementation representation (ADV_IMP) families).

While the general concept (that some portions of the TOE are more

interesting than others) applies to other families, the criteria are expressed

differently in order to obtain the assurance required.

Class ADV: Development

July 2009 Version 3.1 Page 81 of 232

206 All portions of the TSF are security relevant, meaning that they must

preserve the security of the TOE as expressed by the SFRs and requirements

for domain separation and non-bypassability. One aspect of security

relevance is the degree to which a portion of the TSF enforces a security

requirement. Since different portions of the TOE play different roles (or no

apparent role at all) in enforcing security requirements, this creates a

continuum of SFR relevance: at one end of this continuum are portions of the

TOE that are termed SFR-enforcing. Such portions play a direct role in

implementing any SFR on the TOE. Such SFRs refer to any functionality

provided by one of the SFRs contained in the ST. It should be noted that the

definition of plays a role in for SFR-enforcing functionality is impossible to

express quantitatively. For example, in the implementation of a Discretionary

Access Control (DAC) mechanism, a very narrow view of SFR-enforcing

might be the several lines of code that actually perform the check of a

subject's attributes against the object's attributes. A broader view would

include the software entity (e.g., C function) that contained the several lines

of code. A broader view still would include callers of the C function, since

they would be responsible for enforcing the decision returned by the attribute

check. A still broader view would include any code in the call tree (or

programming equivalent for the implementation language used) for that C

function (e.g., a sort function that sorted access control list entries in a first-

match algorithm implementation). At some point, the component is not so

much enforcing the security policy but rather plays a supporting role; such

components are termed SFR supporting.

207 One of the characteristics of SFR-supporting functionality is that it is trusted

to preserve the correctness of the SFR implementation by operating without

error. Such functionality may be depended on by SFR-enforcing

functionality, but the dependence is generally at a functional level; for

example, memory management, buffer management, etc. Further down on

the security relevance continuum is functionality termed SFR non-

interfering. Such functionality has no role in implementing the SFRs, and is

likely part of the TSF because of its environment; for example, any code

running in a privileged hardware mode on an operating system. It needs to be

considered part of the TSF because, if compromised (or replaced by

malicious code), it could compromise the correct operation of an SFR by

virtue of its operating in the privileged hardware mode. An example of SFR

non-interfering functionality might be a set of mathematical floating point

operations implemented in kernel mode for speed considerations.

208 The architecture family (Security Architecture (ADV_ARC)) provides for

requirements and analysis of the TOE based on properties of domain

separation, self-protection, and non-bypassability. These properties relate to

the SFRs in that, if these properties are not present, it will likely lead to the

failure of mechanisms implementing SFRs. Functionality and design relating

to these properties is not considered a part of the continuum described above,

but instead is treated separately due to its fundamentally different nature and

analysis requirements.

Class ADV: Development

Page 82 of 232 Version 3.1 July 2009

209 The difference in analysis of the implementation of SFRs (SFR-enforcing

and SFR-supporting functionality) and the implementation of somewhat

fundamental security properties of the TOE, which include the initialisation,

self-protection, and non-bypassability concerns, is that the SFR-related

functionality is more or less directly visible and relatively easy to test, while

the above-mentioned properties require varying degrees of analysis on a

much broader set of functionality. Further, the depth of analysis for such

properties will vary depending on the design of the TOE. The ADV families

are constructed to address this by a separate family (Security Architecture

(ADV_ARC)) devoted to analysis of the initialisation, self-protection, and

non-bypassability requirements, while the other families are concerned with

analysis of the functionality supporting SFRs.

210 Even in cases where different descriptions are necessary for the multiple

levels of abstraction, it is not absolutely necessary for each and every TSF

representation to be in a separate document. Indeed, it may be the case that a

single document meets the documentation requirements for more than one

TSF representation, since it is the information about each of these TSF

representations that is required, rather than the resulting document structure.

In cases where multiple TSF representations are combined within a single

document, the developer should indicate which portions of the documents

meet which requirements.

211 Three types of specification style are mandated by this class: informal,

semiformal and formal. The functional specification and TOE design

documentation are always written in either informal or semiformal style. A

semiformal style reduces the ambiguity in these documents over an informal

presentation. A formal specification may also be required in addition to the

semi-formal presentation; the value is that a description of the TSF in more

than one way will add increased assurance that the TSF has been completely

and accurately specified.

212 An informal specification is written as prose in natural language. Natural

language is used here as meaning communication in any commonly spoken

tongue (e.g. Spanish, German, French, English, Dutch). An informal

specification is not subject to any notational or special restrictions other than

those required as ordinary conventions for that language (e.g. grammar and

syntax). While no notational restrictions apply, the informal specification is

also required to provide defined meanings for terms that are used in a context

other than that accepted by normal usage.

Class ADV: Development

July 2009 Version 3.1 Page 83 of 232

213 The difference between semiformal and informal documents is only a matter

of formatting or presentation: a semiformal notation includes such things as

an explicit glossary of terms, a standardised presentation format, etc. A

semiformal specification is written to a standard presentation template. The

presentation should use terms consistently if written in a natural language.

The presentation may also use more structured languages/diagrams (e.g.

data-flow diagrams, state transition diagrams, entity-relationship diagrams,

data structure diagrams, and process or program structure diagrams).

Whether based on diagrams or natural language, a set of conventions must be

used in the presentation. The glossary explicitly identifies the words that are

being used in a precise and constant manner; similarly, the standardised

format implies that extreme care has been taken in methodically preparing

the document in a manner that maximises clarity. It should be noted that

fundamentally different portions of the TSF may have different semiformal

notation conventions and presentation styles (as long as the number of

different “semiformal notations” is small); this still conforms to the concept

of a semiformal presentation.

214 A formal specification is written in a notation based upon well-established

mathematical concepts, and is typically accompanied by supporting

explanatory (informal) prose. These mathematical concepts are used to

define the syntax and semantics of the notation and the proof rules that

support logical reasoning. The syntactic and semantic rules supporting a

formal notation should define how to recognise constructs unambiguously

and determine their meaning. There needs to be evidence that it is impossible

to derive contradictions, and all rules supporting the notation need to be

defined or referenced.

215 Figure 11 shows the families within this class, and the hierarchy of

components within the families.

Figure 11 - ADV: Development class decomposition

Class ADV: Development

Page 84 of 232 Version 3.1 July 2009

12.1 Security Architecture (ADV_ARC)

Objectives

216 The objective of this family is for the developer to provide a description of

the security architecture of the TSF. This will allow analysis of the

information that, when coupled with the other evidence presented for the

TSF, will confirm the TSF achieves the desired properties. The security

architecture descriptions supports the implicit claim that security analysis of

the TOE can be achieved by examining the TSF; without a sound

architecture, the entire TOE functionality would have to be examined.

Component levelling

217 This family contains only one component.

Application notes

218 The properties of self-protection, domain separation, and non-bypassability

are distinct from security functionality expressed by Part 2 SFRs because

self-protection and non-bypassability largely have no directly observable

interface at the TSF. Rather, they are properties of the TSF that are achieved

through the design of the TOE and TSF, and enforced by the correct

implementation of that design.

219 The approach used in this family is for the developer to design and provide a

TSF that exhibits the above-mentioned properties, and to provide evidence

(in the form of documentation) that explains these properties of the TSF.

This explanation is provided at the same level of detail as the description of

the SFR-enforcing elements of the TOE in the TOE design document. The

evaluator has the responsibility for looking at the evidence and, coupled with

other evidence delivered for the TOE and TSF, determining that the

properties are achieved.

220 Specification of security functionality implementing the SFRs (in the

Functional specification (ADV_FSP) and TOE design (ADV_TDS)) will not

necessarily describe mechanisms employed in implementing self-protection

and non-bypassability (e.g. memory management mechanisms). Therefore,

the material needed to provide the assurance that these requirements are

being achieved is better suited to a presentation separate from the design

decomposition of the TSF as embodied in ADV_FSP and ADV_TDS. This is

not to imply that the security architecture description called for by this

component cannot reference or make use of the design decomposition

material; but it is likely that much of the detail present in the decomposition

documentation will not be relevant to the argument being provided for the

security architecture description document.

221 The description of architectural soundness can be thought of as a developer's

vulnerability analysis, in that it provides the justification for why the TSF is

sound and enforces all of its SFRs. Where the soundness is achieved through

specific security mechanisms, these will be tested as part of the Depth

(ATE_DPT) requirements; where the soundness is achieved solely through

the architecture, the behaviour will be tested as part of the AVA:

Vulnerability assessment requirements.

Class ADV: Development

July 2009 Version 3.1 Page 85 of 232

222 This family consists of requirements for a security architecture description

that describes the self-protection, domain separation, non-bypassability

principles, including a description of how these principles are supported by

the parts of the TOE that are used for TSF initialisation.

223 Additional information on the security architecture properties of self-

protection, domain separation, and non-bypassability can be found in Annex

A.1, ADV_ARC: Supplementary material on security architectures.

ADV_ARC.1 Security architecture description

Dependencies: ADV_FSP.1 Basic functional specification

 ADV_TDS.1 Basic design

Developer action elements:

ADV_ARC.1.1D The developer shall design and implement the TOE so that the security

features of the TSF cannot be bypassed.

ADV_ARC.1.2D The developer shall design and implement the TSF so that it is able to

protect itself from tampering by untrusted active entities.

ADV_ARC.1.3D The developer shall provide a security architecture description of the

TSF.

Content and presentation elements:

ADV_ARC.1.1C The security architecture description shall be at a level of detail

commensurate with the description of the SFR-enforcing abstractions

described in the TOE design document.

ADV_ARC.1.2C The security architecture description shall describe the security domains

maintained by the TSF consistently with the SFRs.

ADV_ARC.1.3C The security architecture description shall describe how the TSF

initialisation process is secure.

ADV_ARC.1.4C The security architecture description shall demonstrate that the TSF

protects itself from tampering.

ADV_ARC.1.5C The security architecture description shall demonstrate that the TSF

prevents bypass of the SFR-enforcing functionality.

Evaluator action elements:

ADV_ARC.1.1E The evaluator shall confirm that the information provided meets all

requirements for content and presentation of evidence.

Class ADV: Development

Page 86 of 232 Version 3.1 July 2009

12.2 Functional specification (ADV_FSP)

Objectives

224 This family levies requirements upon the functional specification, which

describes the TSF interfaces (TSFIs). The TSFI consists of all means by

which external entities (or subjects in the TOE but outside of the TSF)

supply data to the TSF, receive data from the TSF and invoke services from

the TSF. It does not describe how the TSF processes those service requests,

nor does it describe the communication when the TSF invokes services from

its operational environment; this information is addressed by the TOE design

(ADV_TDS) and Reliance of dependent component (ACO_REL) families,

respectively.

225 This family provides assurance directly by allowing the evaluator to

understand how the TSF meets the claimed SFRs. It also provides assurance

indirectly, as input to other assurance families and classes:

 ADV_ARC, where the description of the TSFIs may be used to gain

better understanding of how the TSF is protected against corruption

(i.e. subversion of self-protection or domain separation) and/or

bypass;

 ATE, where the description of the TSFIs is an important input for

both developer and evaluator testing;

 AVA, where the description of the TSFIs is used to search for

vulnerabilities.

Component levelling

226 The components in this family are levelled on the degree of detail required of

the description of the TSFIs, and the degree of formalism required of the

description of the TSFIs.

Application notes

227 Once the TSFIs are determined (see A.2.1, Determining the TSFI for

guidance and examples of determining TSFI), they are described. At lower-

level components, developers focus their documentation (and evaluators

focus their analysis) on the more security-relevant aspects of the TOE. Three

categories of TSFIs are defined, based upon the relevance the services

available through them have to the SFRs being claimed:

 If a service available through an interface can be traced to one of the

SFRs levied on the TSF, then that interface is termed SFR-enforcing.

Note that it is possible that an interface may have various services

and results, some of which may be SFR-enforcing and some of which

may not.

Class ADV: Development

July 2009 Version 3.1 Page 87 of 232

 interfaces to (or services available through an interface relating to)

services that SFR-enforcing functionality depends upon, but need

only to function correctly in order for the security policies of the TOE

to be preserved, are termed SFR-supporting.

 Interfaces to services on which SFR-enforcing functionality has no

dependence are termed SFR non-interfering.

228 It should be noted that in order for an interface to be SFR-supporting or SFR

non-interfering it must have no SFR-enforcing services or results. In

contrast, an SFR-enforcing interface may have SFR-supporting services (for

example, the ability to set the system clock may be an SFR-enforcing service

of an interface, but if that same interface is used to display the system date

that service may be only SFR-supporting). An example of a purely SFR-

supporting interface is a system call interface that is used both by users and

by a portion of the TSF that is running on behalf of users.

229 As more information about the TSFIs becomes available, the greater the

assurance that can be gained that the interfaces are correctly

categorised/analysed. The requirements are structured such that, at the lowest

level, the information required for SFR non-interfering interfaces is the

minimum necessary in order for the evaluator to make this determination in

an effective manner. At higher levels, more information becomes available

so that the evaluator has greater confidence in the designation.

230 The purpose in defining these labels (SFR-enforcing, SFR-supporting, and

SFR-non-interfering) and for levying different requirements upon each (at

the lower assurance components) is to provide a first approximation of where

to focus the analysis and the evidence upon which that analysis is performed.

If the developer's documentation of the TSF interfaces describes all of the

interfaces to the degree specified in the requirements for the SFR-enforcing

interfaces (that is, if the documentation exceeds the requirements), there is no

need for the developer to create new evidence to match the requirements.

Similarly, because the labels are merely a means of differentiating the

interface types within the requirements, there is no need for the developer to

update the evidence solely to label the interfaces as SFR-enforcing, SFR-

supporting, and SFR-non-interfering. The primary purpose of this labelling is

to allow developers with less mature development methodologies (and

associated artifacts, such as detailed interface and design documentation) to

provide only the necessary evidence without undue cost.

231 The last C element of each component within this family provides a direct

correspondence between the SFRs and the functional specification; that is, an

indication of which interfaces are used to invoke each of the claimed SFRs.

In the cases where the ST contains such functional requirements as Residual

information protection (FDP_RIP), whose functionality may not manifest

itself at the TSFIs, the functional specification and/or the tracing is expected

to identify these SFRs; including them in the functional specification helps to

ensure that they are not lost at lower levels of decomposition, where they

will be relevant.

Class ADV: Development

Page 88 of 232 Version 3.1 July 2009

12.2.1 Detail about the Interfaces

232 The requirements define collections of details about TSFI to be provided. For

the purposes of the requirements, interfaces are specified (in varying degrees

of detail) in terms of their purpose, method of use, parameters, parameter

descriptions, and error messages.

233 The purpose of an interface is a high-level description of the general goal of

the interface (e.g. process GUI commands, receive network packets, provide

printer output, etc.)

234 The interface's method of use describes how the interface is supposed to be

used. This description should be built around the various interactions

available at that interface. For instance, if the interface were a Unix

command shell, ls, mv and cp would be interactions for that interface. For

each interaction the method of use describes what the interaction does, both

for behaviour seen at the interface (e.g. the programmer calling the API, the

Windows users changing a setting in the registry, etc.) as well as behaviour

at other interfaces (e.g. generating an audit record).

235 Parameters are explicit inputs to and outputs from an interface that control

the behaviour of that interface. For example, parameters are the arguments

supplied to an API; the various fields in a packet for a given network

protocol; the individual key values in the Windows Registry; the signals

across a set of pins on a chip; the flags that can be set for the ls, etc. The

parameters are “identified” with a simple list of what they are.

236 A parameter description tells what the parameter is in some meaningful way.

For instance, an acceptable parameter description for interface foo(i) would

be “parameter i is an integer that indicates the number of users currently

logged in to the system”. A description such as “parameter i is an integer” is

not an acceptable.

237 The description of an interface's actions describes what the interface does.

This is more detailed than the purpose in that, while the “purpose” reveals

why one might want to use it, the “actions” reveals everything that it does.

These actions might be related to the SFRs or not. In cases where the

interface's action is not related to SFRs, its description is said to be

summarised, meaning the description merely makes clear that it is indeed not

SFR-related.

238 The error message description identifies the condition that generated it, what

the message is, and the meaning of any error codes. An error message is

generated by the TSF to signify that a problem or irregularity of some degree

has been encountered. The requirements in this family refer to different kinds

of error messages:

 a “direct” error message is a security-relevant response through a

specific TSFI invocation.

Class ADV: Development

July 2009 Version 3.1 Page 89 of 232

 an “indirect” error cannot be tied to a specific TSFI invocation

because it results from system-wide conditions (e.g. resource

exhaustion, connectivity interruptions, etc.). Error messages that are

not security-relevant are also considered “indirect”.

 “remaining” errors are any other errors, such as those that might be

referenced within the code. For example, the use of condition-

checking code that checks for conditions that would not logically

occur (e.g. a final “else” after a list of “case” statements), would

provide for generating a catch-all error message; in an operational

TOE, these error messages should never be seen.

239 An example functional specification is provided in A.2.3.

12.2.2 Components of this Family

240 Increasing assurance through increased completeness and accuracy in the

interface specification is reflected in the documentation required from the

developer as detailed in the various hierarchical components of this family.

241 At ADV_FSP.1 Basic functional specification, the only documentation

required is a characterisation of all TSFIs and a high level description of

SFR-enforcing and SFR-supporting TSFIs. To provide some assurance that

the “important” aspects of the TSF have been correctly characterised at the

TSFIs, the developer is required to provide the purpose and method of use,

parameters for the SFR-enforcing and SFR-supporting TSFIs.

242 At ADV_FSP.2 Security-enforcing functional specification, the developer is

required to provide the purpose, method of use, parameters, and parameter

descriptions for all TSFIs. Additionally, for the SFR-enforcing TSFIs the

developer has to describe the SFR-enforcing actions and direct error

messages.

243 At ADV_FSP.3 Functional specification with complete summary, the

developer must now, in addition to the information required at ADV_FSP.2,

provide enough information about the SFR-supporting and SFR-non-

interfering actions to show that they are not SFR-enforcing. Further, the

developer must now document all of the direct error messages resulting from

the invocation of SFR-enforcing TSFIs.

244 At ADV_FSP.4 Complete functional specification, all TSFIs - whether SFR-

enforcing, SFR-supporting, SFR-non-interfering - must be described to the

same degree, including all of the direct error messages.

245 At ADV_FSP.5 Complete semi-formal functional specification with

additional error information, the TSFIs descriptions also include error

messages that do not result from an invocation of a TSFI.

Class ADV: Development

Page 90 of 232 Version 3.1 July 2009

246 At ADV_FSP.6 Complete semi-formal functional specification with

additional formal specification, in addition to the information required by

ADV_FSP.5, all remaining error messages are included. The developer must

also provide a formal description of the TSFI. This provides an alternative

view of the TSFI that may expose inconsistencies or incomplete

specification.

ADV_FSP.1 Basic functional specification

Dependencies: No dependencies.

Developer action elements:

ADV_FSP.1.1D The developer shall provide a functional specification.

ADV_FSP.1.2D The developer shall provide a tracing from the functional specification

to the SFRs.

Content and presentation elements:

ADV_FSP.1.1C The functional specification shall describe the purpose and method of

use for each SFR-enforcing and SFR-supporting TSFI.

ADV_FSP.1.2C The functional specification shall identify all parameters associated with

each SFR-enforcing and SFR-supporting TSFI.

ADV_FSP.1.3C The functional specification shall provide rationale for the implicit

categorisation of interfaces as SFR-non-interfering.

ADV_FSP.1.4C The tracing shall demonstrate that the SFRs trace to TSFIs in the

functional specification.

Evaluator action elements:

ADV_FSP.1.1E The evaluator shall confirm that the information provided meets all

requirements for content and presentation of evidence.

ADV_FSP.1.2E The evaluator shall determine that the functional specification is an

accurate and complete instantiation of the SFRs.

ADV_FSP.2 Security-enforcing functional specification

Dependencies: ADV_TDS.1 Basic design

Developer action elements:

ADV_FSP.2.1D The developer shall provide a functional specification.

ADV_FSP.2.2D The developer shall provide a tracing from the functional specification to the

SFRs.

Class ADV: Development

July 2009 Version 3.1 Page 91 of 232

Content and presentation elements:

ADV_FSP.2.1C The functional specification shall completely represent the TSF.

ADV_FSP.2.2C The functional specification shall describe the purpose and method of use for

all TSFI.

ADV_FSP.2.3C The functional specification shall identify and describe all parameters

associated with each TSFI.

ADV_FSP.2.4C For each SFR-enforcing TSFI, the functional specification shall describe

the SFR-enforcing actions associated with the TSFI.

ADV_FSP.2.5C For each SFR-enforcing TSFI, the functional specification shall describe

direct error messages resulting from processing associated with the

SFR-enforcing actions.

ADV_FSP.2.6C The tracing shall demonstrate that the SFRs trace to TSFIs in the functional

specification.

Evaluator action elements:

ADV_FSP.2.1E The evaluator shall confirm that the information provided meets all

requirements for content and presentation of evidence.

ADV_FSP.2.2E The evaluator shall determine that the functional specification is an accurate

and complete instantiation of the SFRs.

ADV_FSP.3 Functional specification with complete summary

Dependencies: ADV_TDS.1 Basic design

Developer action elements:

ADV_FSP.3.1D The developer shall provide a functional specification.

ADV_FSP.3.2D The developer shall provide a tracing from the functional specification to the

SFRs.

Content and presentation elements:

ADV_FSP.3.1C The functional specification shall completely represent the TSF.

ADV_FSP.3.2C The functional specification shall describe the purpose and method of use for

all TSFI.

ADV_FSP.3.3C The functional specification shall identify and describe all parameters

associated with each TSFI.

ADV_FSP.3.4C For each SFR-enforcing TSFI, the functional specification shall describe the

SFR-enforcing actions associated with the TSFI.

Class ADV: Development

Page 92 of 232 Version 3.1 July 2009

ADV_FSP.3.5C For each SFR-enforcing TSFI, the functional specification shall describe

direct error messages resulting from SFR-enforcing actions and exceptions

associated with invocation of the TSFI.

ADV_FSP.3.6C The functional specification shall summarise the SFR-supporting and

SFR-non-interfering actions associated with each TSFI.

ADV_FSP.3.7C The tracing shall demonstrate that the SFRs trace to TSFIs in the functional

specification.

Evaluator action elements:

ADV_FSP.3.1E The evaluator shall confirm that the information provided meets all

requirements for content and presentation of evidence.

ADV_FSP.3.2E The evaluator shall determine that the functional specification is an accurate

and complete instantiation of the SFRs.

ADV_FSP.4 Complete functional specification

Dependencies: ADV_TDS.1 Basic design

Developer action elements:

ADV_FSP.4.1D The developer shall provide a functional specification.

ADV_FSP.4.2D The developer shall provide a tracing from the functional specification to the

SFRs.

Content and presentation elements:

ADV_FSP.4.1C The functional specification shall completely represent the TSF.

ADV_FSP.4.2C The functional specification shall describe the purpose and method of use for

all TSFI.

ADV_FSP.4.3C The functional specification shall identify and describe all parameters

associated with each TSFI.

ADV_FSP.4.4C The functional specification shall describe all actions associated with each

TSFI.

ADV_FSP.4.5C The functional specification shall describe all direct error messages that

may result from an invocation of each TSFI.

ADV_FSP.4.6C The tracing shall demonstrate that the SFRs trace to TSFIs in the functional

specification.

Evaluator action elements:

ADV_FSP.4.1E The evaluator shall confirm that the information provided meets all

requirements for content and presentation of evidence.

Class ADV: Development

July 2009 Version 3.1 Page 93 of 232

ADV_FSP.4.2E The evaluator shall determine that the functional specification is an accurate

and complete instantiation of the SFRs.

ADV_FSP.5 Complete semi-formal functional specification with additional
error information

Dependencies: ADV_TDS.1 Basic design

 ADV_IMP.1 Implementation representation of the

TSF

Developer action elements:

ADV_FSP.5.1D The developer shall provide a functional specification.

ADV_FSP.5.2D The developer shall provide a tracing from the functional specification to the

SFRs.

Content and presentation elements:

ADV_FSP.5.1C The functional specification shall completely represent the TSF.

ADV_FSP.5.2C The functional specification shall describe the TSFI using a semi-formal

style.

ADV_FSP.5.3C The functional specification shall describe the purpose and method of use for

all TSFI.

ADV_FSP.5.4C The functional specification shall identify and describe all parameters

associated with each TSFI.

ADV_FSP.5.5C The functional specification shall describe all actions associated with each

TSFI.

ADV_FSP.5.6C The functional specification shall describe all direct error messages that may

result from an invocation of each TSFI.

ADV_FSP.5.7C The functional specification shall describe all error messages that do not

result from an invocation of a TSFI.

ADV_FSP.5.8C The functional specification shall provide a rationale for each error

message contained in the TSF implementation yet does not result from

an invocation of a TSFI.

ADV_FSP.5.9C The tracing shall demonstrate that the SFRs trace to TSFIs in the functional

specification.

Evaluator action elements:

ADV_FSP.5.1E The evaluator shall confirm that the information provided meets all

requirements for content and presentation of evidence.

Class ADV: Development

Page 94 of 232 Version 3.1 July 2009

ADV_FSP.5.2E The evaluator shall determine that the functional specification is an accurate

and complete instantiation of the SFRs.

ADV_FSP.6 Complete semi-formal functional specification with additional
formal specification

Dependencies: ADV_TDS.1 Basic design

 ADV_IMP.1 Implementation representation of the

TSF

Developer action elements:

ADV_FSP.6.1D The developer shall provide a functional specification.

ADV_FSP.6.2D The developer shall provide a formal presentation of the functional

specification of the TSF.

ADV_FSP.6.3D The developer shall provide a tracing from the functional specification to the

SFRs.

Content and presentation elements:

ADV_FSP.6.1C The functional specification shall completely represent the TSF.

ADV_FSP.6.2C The functional specification shall describe the TSFI using a formal style.

ADV_FSP.6.3C The functional specification shall describe the purpose and method of use for

all TSFI.

ADV_FSP.6.4C The functional specification shall identify and describe all parameters

associated with each TSFI.

ADV_FSP.6.5C The functional specification shall describe all actions associated with each

TSFI.

ADV_FSP.6.6C The functional specification shall describe all direct error messages that may

result from an invocation of each TSFI.

ADV_FSP.6.7C The functional specification shall describe all error messages contained in

the TSF implementation representation.

ADV_FSP.6.8C The functional specification shall provide a rationale for each error message

contained in the TSF implementation that is not otherwise described in the

functional specification justifying why it is not associated with a TSFI.

ADV_FSP.6.9C The formal presentation of the functional specification of the TSF shall

describe the TSFI using a formal style, supported by informal,

explanatory text where appropriate.

ADV_FSP.6.10C The tracing shall demonstrate that the SFRs trace to TSFIs in the functional

specification.

Class ADV: Development

July 2009 Version 3.1 Page 95 of 232

Evaluator action elements:

ADV_FSP.6.1E The evaluator shall confirm that the information provided meets all

requirements for content and presentation of evidence.

ADV_FSP.6.2E The evaluator shall determine that the functional specification is an accurate

and complete instantiation of the SFRs.

Class ADV: Development

Page 96 of 232 Version 3.1 July 2009

12.3 Implementation representation (ADV_IMP)

Objectives

247 The function of the Implementation representation (ADV_IMP) family is for

the developer to make available the implementation representation (and, at

higher levels, the implementation itself) of the TOE in a form that can be

analysed by the evaluator. The implementation representation is used in

analysis activities for other families (analysing the TOE design, for instance)

to demonstrate that the TOE conforms its design and to provide a basis for

analysis in other areas of the evaluation (e.g., the search for vulnerabilities).

The implementation representation is expected to be in a form that captures

the detailed internal workings of the TSF. This may be software source code,

firmware source code, hardware diagrams and/or IC hardware design

language code or layout data.

Component levelling

248 The components in this family are levelled on the amount of implementation

that is mapped to the TOE design description.

Application notes

249 Source code or hardware diagrams and/or IC hardware design language code

or layout data that are used to build the actual hardware are examples of parts

of an implementation representation. It is important to note that while the

implementation representation must be made available to the evaluator, this

does not imply that the evaluator needs to possess that representation. For

instance, the developer may require that the evaluator review the

implementation representation at a site of the developer's choosing.

250 The entire implementation representation is made available to ensure that

analysis activities are not curtailed due to lack of information. This does not,

however, imply that all of the representation is examined when the analysis

activities are being performed. This is likely impractical in almost all cases,

in addition to the fact that it most likely will not result in a higher-assurance

TOE vs. targeted sampling of the implementation representation. The

implementation representation is made available to allow analysis of other

TOE design decompositions (e.g., functional specification, TOE design), and

to gain confidence that the security functionality described at a higher level

in the design actually appear to be implemented in the TOE. Conventions in

some forms of the implementation representation may make it difficult or

impossible to determine from just the implementation representation itself

what the actual result of the compilation or run-time interpretation will be.

For example, compiler directives for C language compilers will cause the

compiler to exclude or include entire portions of the code. For this reason, it

is important that such “extra” information or related tools (scripts, compilers,

etc.) be provided so that the implementation representation can be accurately

determined.

Class ADV: Development

July 2009 Version 3.1 Page 97 of 232

251 The purpose of the mapping between the implementation representation and

the TOE design description is to aid the evaluator's analysis. The internal

workings of the TOE may be better understood when the TOE design is

analysed with corresponding portions of the implementation representation.

The mapping serves as an index into the implementation representation. At

the lower component, only a subset of the implementation representation is

mapped to the TOE design description. Because of the uncertainty of which

portions of the implementation representation will need such a mapping, the

developer may choose either to map the entire implementation representation

beforehand, or to wait to see which portions of the implementation

representation the evaluator requires to be mapped.

252 The implementation representation is manipulated by the developer in a form

that is suitable for transformation to the actual implementation. For instance,

the developer may work with files containing source code, which is

eventually compiled to become part of the TSF. The developer makes

available the implementation representation in the form used by the

developer, so that the evaluator may use automated techniques in the

analysis. This also increases the confidence that the implementation

representation examined is actually the one used in the production of the TSF

(as opposed to the case where it is supplied in an alternate presentation

format, such as a word processor document). It should be noted that other

forms of the implementation representation may also be used by the

developer; these forms are supplied as well. The overall goal is to supply the

evaluator with the information that will maximise the effectiveness of the

evaluator's analysis efforts.

253 Some forms of the implementation representation may require additional

information because they introduce significant barriers to understanding and

analysis. Examples include “shrouded” source code or source code that has

been obfuscated in other ways such that it prevents understanding and/or

analysis. These forms of implementation representation typically result from

the TOE developer taking a version of the implementation representation and

running a shrouding or obfuscation program on it. While the shrouded

representation is what is compiled and may be closer to the implementation

(in terms of structure) than the original, un-shrouded representation,

supplying such obfuscated code may cause significantly more time to be

spent in analysis tasks involving the representation. When such forms of

representation are created, the components require details on the shrouding

tools/algorithms used so that the un-shrouded representation can be supplied,

and the additional information can be used to gain confidence that the

shrouding process does not compromise any security functionality.

Class ADV: Development

Page 98 of 232 Version 3.1 July 2009

ADV_IMP.1 Implementation representation of the TSF

Dependencies: ADV_TDS.3 Basic modular design

 ALC_TAT.1 Well-defined development tools

Developer action elements:

ADV_IMP.1.1D The developer shall make available the implementation representation

for the entire TSF.

ADV_IMP.1.2D The developer shall provide a mapping between the TOE design

description and the sample of the implementation representation.

Content and presentation elements:

ADV_IMP.1.1C The implementation representation shall define the TSF to a level of

detail such that the TSF can be generated without further design

decisions.

ADV_IMP.1.2C The implementation representation shall be in the form used by the

development personnel.

ADV_IMP.1.3C The mapping between the TOE design description and the sample of the

implementation representation shall demonstrate their correspondence.

Evaluator action elements:

ADV_IMP.1.1E The evaluator shall confirm that, for the selected sample of the

implementation representation, the information provided meets all

requirements for content and presentation of evidence.

Class ADV: Development

July 2009 Version 3.1 Page 99 of 232

ADV_IMP.2 Complete mapping of the implementation representation of the
TSF

Dependencies: ADV_TDS.3 Basic modular design

 ALC_TAT.1 Well-defined development tools

 ALC_CMC.5 Advanced support

Developer action elements:

ADV_IMP.2.1D The developer shall make available the implementation representation for the

entire TSF.

ADV_IMP.2.2D The developer shall provide a mapping between the TOE design description

and the entire implementation representation.

Content and presentation elements:

ADV_IMP.2.1C The implementation representation shall define the TSF to a level of detail

such that the TSF can be generated without further design decisions.

ADV_IMP.2.2C The implementation representation shall be in the form used by the

development personnel.

ADV_IMP.2.3C The mapping between the TOE design description and the entire

implementation representation shall demonstrate their correspondence.

Evaluator action elements:

ADV_IMP.2.1E The evaluator shall confirm that the information provided meets all

requirements for content and presentation of evidence.

Class ADV: Development

Page 100 of 232 Version 3.1 July 2009

12.4 TSF internals (ADV_INT)

Objectives

254 This family addresses the assessment of the internal structure of the TSF. A

TSF whose internals are well-structured is easier to implement and less likely

to contain flaws that could lead to vulnerabilities; it is also easier to maintain

without the introduction of flaws.

Component levelling

255 The components in this family are levelled on the basis of the amount of

structure and minimisation of complexity required. ADV_INT.1 Well-

structured subset of TSF internals places requirements for well-structured

internals on only selected parts of the TSF. This component is not included

in an EAL because this component is viewed for use in special circumstances

(e.g., the sponsor has a specific concern regarding a cryptographic module,

which is isolated from the rest of the TSF) and would not be widely

applicable.

256 At the next level, the requirements for well-structured internals are placed on

the entire TSF. Finally, minimisation of complexity is introduced in the

highest component.

Application notes

257 These requirements, when applied to the internal structure of the TSF,

typically result in improvements that aid both the developer and the evaluator

in understanding the TSF, and also provide the basis for designing and

evaluating test suites. Further, improving understandability of the TSF

should assist the developer in simplifying its maintainability.

258 The requirements in this family are presented at a fairly abstract level. The

wide variety of TOEs makes it impossible to codify anything more specific

than “well-structured” or “minimum complexity”. Judgements on structure

and complexity are expected to be derived from the specific technologies

used in the TOE. For example, software is likely to be considered well-

structured if it exhibits the characteristics cited in the software engineering

disciplines. The components within this family call for identifying the

standards for measuring the characteristic of being well-structured and not

overly-complex.

Class ADV: Development

July 2009 Version 3.1 Page 101 of 232

ADV_INT.1 Well-structured subset of TSF internals

Dependencies: ADV_IMP.1 Implementation representation of the

TSF

 ADV_TDS.3 Basic modular design

 ALC_TAT.1 Well-defined development tools

Objectives

259 The objective of this component is to provide a means for requiring specific

portions of the TSF to be well-structured. The intent is that the entire TSF

has been designed and implemented using sound engineering principles, but

the analysis is performed upon only a specific subset.

Application notes

260 This component requires the PP or ST author to fill in an assignment with the

subset of the TSF. This subset may be identified in terms of the internals of

the TSF at any layer of abstraction. For example:

a) the structural elements of the TSF as identified in the TOE design

(e.g. “The developer shall design and implement the audit subsystem

such that it has well-structured internals.”)

b) the implementation (e.g. “The developer shall design and implement

the encrypt.c and decrypt.c files such that it has well-structured

internals.” or “The developer shall design and implement the 6227 IC

chip such that it has well-structured internals.”)

261 It is likely this would not be readily accomplished by referencing the claimed

SFRs (e.g. “The developer shall design and implement the portion of the TSF

that provide anonymity as defined in FPR_ANO.2 such that it has well-

structured internals.”) because this does not indicate where to focus the

analysis.

262 This component has limited value and would be suitable in cases where

potentially-malicious users/subjects have limited or strictly controlled access

to the TSFIs or where there is another means of protection (e.g., domain

separation) that ensures the chosen subset of the TSF cannot be adversely

affected by the rest of the TSF (e.g., the cryptographic functionality, which is

isolated from the rest of the TSF, is well-structured).

Developer action elements:

ADV_INT.1.1D The developer shall design and implement [assignment: subset of the

TSF] such that it has well-structured internals.

ADV_INT.1.2D The developer shall provide an internals description and justification.

Class ADV: Development

Page 102 of 232 Version 3.1 July 2009

Content and presentation elements:

ADV_INT.1.1C The justification shall explain the characteristics used to judge the

meaning of “well-structured”.

ADV_INT.1.2C The TSF internals description shall demonstrate that the assigned subset

of the TSF is well-structured.

Evaluator action elements:

ADV_INT.1.1E The evaluator shall confirm that the information provided meets all

requirements for content and presentation of evidence.

ADV_INT.1.2E The evaluator shall perform an internals analysis on the assigned subset

of the TSF.

ADV_INT.2 Well-structured internals

Dependencies: ADV_IMP.1 Implementation representation of the

TSF

 ADV_TDS.3 Basic modular design

 ALC_TAT.1 Well-defined development tools

Objectives

263 The objective of this component is to provide a means for requiring the TSF

to be well-structured. The intent is that the entire TSF has been designed and

implemented using sound engineering principles.

Application notes

264 Judgements on the adequacy of the structure are expected to be derived from

the specific technologies used in the TOE. This component calls for

identifying the standards for measuring the characteristic of being well-

structured.

Developer action elements:

ADV_INT.2.1D The developer shall design and implement the entire TSF such that it has

well-structured internals.

ADV_INT.2.2D The developer shall provide an internals description and justification.

Content and presentation elements:

ADV_INT.2.1C The justification shall describe the characteristics used to judge the meaning

of “well-structured”.

ADV_INT.2.2C The TSF internals description shall demonstrate that the entire TSF is well-

structured.

Class ADV: Development

July 2009 Version 3.1 Page 103 of 232

Evaluator action elements:

ADV_INT.2.1E The evaluator shall confirm that the information provided meets all

requirements for content and presentation of evidence.

ADV_INT.2.2E The evaluator shall perform an internals analysis on the TSF.

ADV_INT.3 Minimally complex internals

Dependencies: ADV_IMP.1 Implementation representation of the

TSF

 ADV_TDS.3 Basic modular design

 ALC_TAT.1 Well-defined development tools

Objectives

265 The objective of this component is to provide a means for requiring the TSF

to be well-structured and of minimal complexity. The intent is that the entire

TSF has been designed and implemented using sound engineering principles.

Application notes

266 Judgements on the adequacy of the structure and complexity are expected to

be derived from the specific technologies used in the TOE. This component

calls for identifying the standards for measuring the structure and

complexity.

Developer action elements:

ADV_INT.3.1D The developer shall design and implement the entire TSF such that it has

well-structured internals.

ADV_INT.3.2D The developer shall provide an internals description and justification.

Content and presentation elements:

ADV_INT.3.1C The justification shall describe the characteristics used to judge the meaning

of “well-structured” and “complex”.

ADV_INT.3.2C The TSF internals description shall demonstrate that the entire TSF is well-

structured and is not overly complex.

Evaluator action elements:

ADV_INT.3.1E The evaluator shall confirm that the information provided meets all

requirements for content and presentation of evidence.

ADV_INT.3.2E The evaluator shall perform an internals analysis on the entire TSF.

Class ADV: Development

Page 104 of 232 Version 3.1 July 2009

12.5 Security policy modelling (ADV_SPM)

Objectives

267 It is the objective of this family to provide additional assurance from the

development of a formal security policy model of the TSF, and establishing a

correspondence between the functional specification and this security policy

model. Preserving internal consistency the security policy model is expected

to formally establish the security principles from its characteristics by means

of a mathematical proof.

Component levelling

268 This family contains only one component.

Application notes

269 Inadequacies in a TOE can result either from a failure in understanding the

security requirements or from a flawed implementation of those security

requirements. Defining the security requirements adequately to ensure their

understanding may be problematic because the definition must be

sufficiently precise to prevent undesired results or subtle flaws during

implementation of the TOE. Throughout the design, implementation, and

review processes, the modelled security requirements may be used as precise

design and implementation guidance, thereby providing increased assurance

that the modelled security requirements are satisfied by the TOE. The

precision of the model and resulting guidance is significantly improved by

casting the model in a formal language and verifying the security

requirements by formal proof.

270 The creation of a formal security policy model helps to identify and

eliminate ambiguous, inconsistent, contradictory, or unenforceable security

policy elements. Once the TOE has been built, the formal model serves the

evaluation effort by contributing to the evaluator's judgement of how well

the developer has understood the security functionality being implemented

and whether there are inconsistencies between the security requirements and

the TOE design. The confidence in the model is accompanied by a proof that

it contains no inconsistencies.

271 A formal security model is a precise formal presentation of the important

aspects of security and their relationship to the behaviour of the TOE; it

identifies the set of rules and practises that regulates how the TSF manages,

protects, and otherwise controls the system resources. The model includes

the set of restrictions and properties that specify how information and

computing resources are prevented from being used to violate the SFRs,

accompanied by a persuasive set of engineering arguments showing that

these restrictions and properties play a key role in the enforcement of the

SFRs. It consists both of the formalisms that express the security

functionality, as well as ancillary text to explain the model and to provide it

with context. The security behaviour of the TSF is modelled both in terms of

external behaviour (i.e. how the TSF interacts with the rest of the TOE and

with its operational environment), as well as its internal behaviour.

Class ADV: Development

July 2009 Version 3.1 Page 105 of 232

272 The Security Policy Model of the TOE is informally abstracted from its

realisation by considering the proposed security requirements of the ST. The

informal abstraction is taken to be successful if the TOE's principles (also

termed “invariants”) turn out to be enforced by its characteristics. The

purpose of formal methods lies within the enhancement of the rigour of

enforcement. Informal arguments are always prone to fallacies; especially if

relationships among subjects, objects and operations get more and more

involved. In order to minimise the risk of insecure state arrivals the rules and

characteristics of the security policy model are mapped to respective

properties and features within some formal system, whose rigour and

strength can afterwards be used to obtain the security properties by means of

theorems and formal proof.

273 While the term “formal security policy model” is used in academic circles,

the CC's approach has no fixed definition of “security”; it would equate to

whatever SFRs are being claimed. Therefore, the formal security policy

model is merely a formal representation of the set of SFRs being claimed.

274 The term security policy has traditionally been associated with only access

control policies, whether label-based (mandatory access control) or user-

based (discretionary access control). However, a security policy is not

limited to access control; there are also audit policies, identification policies,

authentication policies, encryption policies, management policies, and any

other security policies that are enforced by the TOE, as described in the

PP/ST. ADV_SPM.1.1D contains an assignment for identifying these policies

that are formally modelled.

Class ADV: Development

Page 106 of 232 Version 3.1 July 2009

ADV_SPM.1 Formal TOE security policy model

Dependencies: ADV_FSP.4 Complete functional specification

Developer action elements:

ADV_SPM.1.1D The developer shall provide a formal security policy model for the

[assignment: list of policies that are formally modelled].

ADV_SPM.1.2D For each policy covered by the formal security policy model, the model

shall identify the relevant portions of the statement of SFRs that make

up that policy.

ADV_SPM.1.3D The developer shall provide a formal proof of correspondence between

the model and any formal functional specification.

ADV_SPM.1.4D The developer shall provide a demonstration of correspondence between

the model and the functional specification.

Content and presentation elements:

ADV_SPM.1.1C The model shall be in a formal style, supported by explanatory text as

required, and identify the security policies of the TSF that are modelled.

ADV_SPM.1.2C For all policies that are modelled, the model shall define security for the

TOE and provide a formal proof that the TOE cannot reach a state that

is not secure.

ADV_SPM.1.3C The correspondence between the model and the functional specification

shall be at the correct level of formality.

ADV_SPM.1.4C The correspondence shall show that the functional specification is

consistent and complete with respect to the model.

Evaluator action elements:

ADV_SPM.1.1E The evaluator shall confirm that the information provided meets all

requirements for content and presentation of evidence.

Class ADV: Development

July 2009 Version 3.1 Page 107 of 232

12.6 TOE design (ADV_TDS)

Objectives

275 The design description of a TOE provides both context for a description of

the TSF, and a thorough description of the TSF. As assurance needs increase,

the level of detail provided in the description also increases. As the size and

complexity of the TSF increase, multiple levels of decomposition are

appropriate. The design requirements are intended to provide information

(commensurate with the given assurance level) so that a determination can be

made that the security functional requirements are realised.

Component levelling

276 The components in this family are levelled on the basis of the amount of

information that is required to be presented with respect to the TSF, and on

the degree of formalism required of the design description.

Application notes

277 The goal of design documentation is to provide sufficient information to

determine the TSF boundary, and to describe how the TSF implements the

Security Functional Requirements. The amount and structure of the design

documentation will depend on the complexity of the TOE and the number of

SFRs; in general, a very complex TOE with a large number of SFRs will

require more design documentation than a very simple TOE implementing

only a few SFRs. Very complex TOEs will benefit (in terms of the assurance

provided) from the production of differing levels of decomposition in

describing the design, while very simple TOEs do not require both high-level

and low-level descriptions of its implementation.

278 This family uses two levels of decomposition: the subsystem and the module.

A module is the most specific description of functionality: it is a description

of the implementation. A developer should be able to implement the part of

the TOE described by the module with no further design decisions. A

subsystem is a description of the design of the TOE; it helps to provide a

high-level description of what a portion of the TOE is doing and how. As

such, a subsystem may be further divided into lower-level subsystems, or

into modules. Very complex TOEs might require several levels of

subsystems in order to adequately convey a useful description of how the

TOE works. Very simple TOEs, in contrast, might not require a subsystem

level of description; the module might clearly describe how the TOE works.

279 The general approach adopted for design documentation is that, as the level

of assurance increases, the emphasis of description shifts from the general

(subsystem level) to more (module level) detail. In cases where a module-

level of abstraction is appropriate because the TOE is simple enough to be

described at the module level, yet the level of assurance calls for a subsystem

level of description, the module-level description alone will suffice. For

complex TOEs, however, this is not the case: an enormous amount of

(module-level) detail would be incomprehensible without an accompanying

subsystem level of description.

Class ADV: Development

Page 108 of 232 Version 3.1 July 2009

280 This approach follows the general paradigm that providing additional detail

about the implementation of the TSF will result in greater assurance that the

SFRs are implemented correctly, and provide information that can be used to

demonstrate this in testing (ATE: Tests).

281 In the requirements for this family, the term interface is used as the means of

communication (between two subsystems or modules). It describes how the

communication is invoked; this is similar to the details of TSFI (see

Functional specification (ADV_FSP)). The term interaction is used to

identify the purpose for communication; it identifies why two subsystems or

modules are communicating.

12.6.1 Detail about the Subsystems and Modules

282 The requirements define collections of details about subsystems and modules

to be provided:

a) The subsystems and modules are identified with a simple list of what

they are.

b) Subsystems and modules may be categorised (either implicitly or

explicitly) as “SFR-enforcing”, “SFR-supporting”, or “SFR-non-

interfering”; these terms are used the same as they are used in

Functional specification (ADV_FSP).

c) A subsystem's behaviour is what it does. The behaviour may also be

categorised as SFR-enforcing, SFR-supporting, or SFR-non-

interfering. The behaviour of the subsystem is never categorised as

more SFR-relevant than the category of the subsystem itself. For

example, an SFR-enforcing subsystem can have SFR-enforcing

behaviour as well as SFR-supporting or SFR-non-interfering

behaviour.

d) A behaviour summary of a subsystem is an overview of the actions it

performs (e.g. “The TCP subsystem assembles IP datagrams into

reliable byte streams”).

e) A behaviour description of a subsystem is an explanation of

everything it does. This description should be at a level of detail that

one can readily determine whether the behaviour has any relevance to

the enforcement of the SFRs.

f) A description of interactions among or between subsystems or

modules identifies the reason that subsystems or modules

communicate, and characterises the information that is passed. It need

not define the information to the same level of detail as an interface

specification. For example, it would be sufficient to say “subsystem

X requests a block of memory from the memory manager, which

responds with the location of the allocated memory.

Class ADV: Development

July 2009 Version 3.1 Page 109 of 232

g) A description of interfaces provides the details of how the

interactions among modules are achieved. Rather than describing the

reason the modules are communicating or the purpose of their

communication (that is, the description of interactions), the

description of interfaces describes the details of how that

communication is accomplished, in terms of the structure and

contents of the messages, semaphores, internal process

communications, etc.

h) The purpose describes how a module provides their functionality. It

provides sufficient detail that no further design decisions are needed.

The correspondence between the implementation representation that

implements the module, and the purpose of the module should be

readily apparent.

i) A module is otherwise described in terms of whatever is identified in

the element.

Subsystems and modules, and “SFR-enforcing”, etc. are all further explained

in greater detail in A.4, ADV_TDS: Subsystems and Modules.

ADV_TDS.1 Basic design

Dependencies: ADV_FSP.2 Security-enforcing functional

specification

Developer action elements:

ADV_TDS.1.1D The developer shall provide the design of the TOE.

ADV_TDS.1.2D The developer shall provide a mapping from the TSFI of the functional

specification to the lowest level of decomposition available in the TOE

design.

Content and presentation elements:

ADV_TDS.1.1C The design shall describe the structure of the TOE in terms of

subsystems.

ADV_TDS.1.2C The design shall identify all subsystems of the TSF.

ADV_TDS.1.3C The design shall describe the behaviour of each SFR-supporting or SFR-

non-interfering TSF subsystem in sufficient detail to determine that it is

not SFR-enforcing.

ADV_TDS.1.4C The design shall summarise the SFR-enforcing behaviour of the SFR-

enforcing subsystems.

ADV_TDS.1.5C The design shall provide a description of the interactions among SFR-

enforcing subsystems of the TSF, and between the SFR-enforcing

subsystems of the TSF and other subsystems of the TSF.

Class ADV: Development

Page 110 of 232 Version 3.1 July 2009

ADV_TDS.1.6C The mapping shall demonstrate that all TSFIs trace to the behaviour

described in the TOE design that they invoke.

Evaluator action elements:

ADV_TDS.1.1E The evaluator shall confirm that the information provided meets all

requirements for content and presentation of evidence.

ADV_TDS.1.2E The evaluator shall determine that the design is an accurate and

complete instantiation of all security functional requirements.

ADV_TDS.2 Architectural design

Dependencies: ADV_FSP.3 Functional specification with complete

summary

Developer action elements:

ADV_TDS.2.1D The developer shall provide the design of the TOE.

ADV_TDS.2.2D The developer shall provide a mapping from the TSFI of the functional

specification to the lowest level of decomposition available in the TOE

design.

Content and presentation elements:

ADV_TDS.2.1C The design shall describe the structure of the TOE in terms of subsystems.

ADV_TDS.2.2C The design shall identify all subsystems of the TSF.

ADV_TDS.2.3C The design shall describe the behaviour of each SFR non-interfering

subsystem of the TSF in detail sufficient to determine that it is SFR non-

interfering.

ADV_TDS.2.4C The design shall describe the SFR-enforcing behaviour of the SFR-

enforcing subsystems.

ADV_TDS.2.5C The design shall summarise the SFR-supporting and SFR-non-interfering

behaviour of the SFR-enforcing subsystems.

ADV_TDS.2.6C The design shall summarise the behaviour of the SFR-supporting

subsystems.

ADV_TDS.2.7C The design shall provide a description of the interactions among all

subsystems of the TSF.

ADV_TDS.2.8C The mapping shall demonstrate that all TSFIs trace to the behaviour

described in the TOE design that they invoke.

Evaluator action elements:

ADV_TDS.2.1E The evaluator shall confirm that the information provided meets all

requirements for content and presentation of evidence.

Class ADV: Development

July 2009 Version 3.1 Page 111 of 232

ADV_TDS.2.2E The evaluator shall determine that the design is an accurate and complete

instantiation of all security functional requirements.

ADV_TDS.3 Basic modular design

Dependencies: ADV_FSP.4 Complete functional specification

Developer action elements:

ADV_TDS.3.1D The developer shall provide the design of the TOE.

ADV_TDS.3.2D The developer shall provide a mapping from the TSFI of the functional

specification to the lowest level of decomposition available in the TOE

design.

Content and presentation elements:

ADV_TDS.3.1C The design shall describe the structure of the TOE in terms of subsystems.

ADV_TDS.3.2C The design shall describe the TSF in terms of modules.

ADV_TDS.3.3C The design shall identify all subsystems of the TSF.

ADV_TDS.3.4C The design shall provide a description of each subsystem of the TSF.

ADV_TDS.3.5C The design shall provide a description of the interactions among all

subsystems of the TSF.

ADV_TDS.3.6C The design shall provide a mapping from the subsystems of the TSF to

the modules of the TSF.

ADV_TDS.3.7C The design shall describe each SFR-enforcing module in terms of its

purpose and relationship with other modules.

ADV_TDS.3.8C The design shall describe each SFR-enforcing module in terms of its

SFR-related interfaces, return values from those interfaces, interaction

with other modules and called SFR-related interfaces to other SFR-

enforcing modules.

ADV_TDS.3.9C The design shall describe each SFR-supporting or SFR-non-interfering

module in terms of its purpose and interaction with other modules.

ADV_TDS.3.10C The mapping shall demonstrate that all TSFIs trace to the behaviour

described in the TOE design that they invoke.

Evaluator action elements:

ADV_TDS.3.1E The evaluator shall confirm that the information provided meets all

requirements for content and presentation of evidence.

ADV_TDS.3.2E The evaluator shall determine that the design is an accurate and complete

instantiation of all security functional requirements.

Class ADV: Development

Page 112 of 232 Version 3.1 July 2009

ADV_TDS.4 Semiformal modular design

Dependencies: ADV_FSP.5 Complete semi-formal functional

specification with additional error information

Developer action elements:

ADV_TDS.4.1D The developer shall provide the design of the TOE.

ADV_TDS.4.2D The developer shall provide a mapping from the TSFI of the functional

specification to the lowest level of decomposition available in the TOE

design.

Content and presentation elements:

ADV_TDS.4.1C The design shall describe the structure of the TOE in terms of subsystems.

ADV_TDS.4.2C The design shall describe the TSF in terms of modules, designating each

module as SFR-enforcing, SFR-supporting, or SFR-non-interfering.

ADV_TDS.4.3C The design shall identify all subsystems of the TSF.

ADV_TDS.4.4C The design shall provide a semiformal description of each subsystem of the

TSF, supported by informal, explanatory text where appropriate.

ADV_TDS.4.5C The design shall provide a description of the interactions among all

subsystems of the TSF.

ADV_TDS.4.6C The design shall provide a mapping from the subsystems of the TSF to the

modules of the TSF.

ADV_TDS.4.7C The design shall describe each SFR-enforcing and SFR-supporting module

in terms of its purpose and relationship with other modules.

ADV_TDS.4.8C The design shall describe each SFR-enforcing and SFR-supporting module

in terms of its SFR-related interfaces, return values from those interfaces,

interaction with other modules and called SFR-related interfaces to other

SFR-enforcing or SFR-supporting modules.

ADV_TDS.4.9C The design shall describe each SFR-non-interfering module in terms of its

purpose and interaction with other modules.

ADV_TDS.4.10C The mapping shall demonstrate that all TSFIs trace to the behaviour

described in the TOE design that they invoke.

Evaluator action elements:

ADV_TDS.4.1E The evaluator shall confirm that the information provided meets all

requirements for content and presentation of evidence.

ADV_TDS.4.2E The evaluator shall determine that the design is an accurate and complete

instantiation of all security functional requirements.

Class ADV: Development

July 2009 Version 3.1 Page 113 of 232

ADV_TDS.5 Complete semiformal modular design

Dependencies: ADV_FSP.5 Complete semi-formal functional

specification with additional error information

Developer action elements:

ADV_TDS.5.1D The developer shall provide the design of the TOE.

ADV_TDS.5.2D The developer shall provide a mapping from the TSFI of the functional

specification to the lowest level of decomposition available in the TOE

design.

Content and presentation elements:

ADV_TDS.5.1C The design shall describe the structure of the TOE in terms of subsystems.

ADV_TDS.5.2C The design shall describe the TSF in terms of modules, designating each

module as SFR-enforcing, SFR-supporting, or SFR-non-interfering.

ADV_TDS.5.3C The design shall identify all subsystems of the TSF.

ADV_TDS.5.4C The design shall provide a semiformal description of each subsystem of the

TSF, supported by informal, explanatory text where appropriate.

ADV_TDS.5.5C The design shall provide a description of the interactions among all

subsystems of the TSF.

ADV_TDS.5.6C The design shall provide a mapping from the subsystems of the TSF to the

modules of the TSF.

ADV_TDS.5.7C The design shall provide a semiformal description of each module in terms

of its purpose, interaction, interfaces, return values from those interfaces,

and called interfaces to other modules, supported by informal, explanatory

text where appropriate.

ADV_TDS.5.8C The mapping shall demonstrate that all TSFIs trace to the behaviour

described in the TOE design that they invoke.

Evaluator action elements:

ADV_TDS.5.1E The evaluator shall confirm that the information provided meets all

requirements for content and presentation of evidence.

ADV_TDS.5.2E The evaluator shall determine that the design is an accurate and complete

instantiation of all security functional requirements.

Class ADV: Development

Page 114 of 232 Version 3.1 July 2009

ADV_TDS.6 Complete semiformal modular design with formal high-level
design presentation

Dependencies: ADV_FSP.6 Complete semi-formal functional

specification with additional formal specification

Developer action elements:

ADV_TDS.6.1D The developer shall provide the design of the TOE.

ADV_TDS.6.2D The developer shall provide a mapping from the TSFI of the functional

specification to the lowest level of decomposition available in the TOE

design.

ADV_TDS.6.3D The developer shall provide a formal specification of the TSF

subsystems.

ADV_TDS.6.4D The developer shall provide a proof of correspondence between the

formal specifications of the TSF subsystems and of the functional

specification.

Content and presentation elements:

ADV_TDS.6.1C The design shall describe the structure of the TOE in terms of subsystems.

ADV_TDS.6.2C The design shall describe the TSF in terms of modules, designating each

module as SFR-enforcing, SFR-supporting, or SFR-non-interfering.

ADV_TDS.6.3C The design shall identify all subsystems of the TSF.

ADV_TDS.6.4C The design shall provide a semiformal description of each subsystem of the

TSF, supported by informal, explanatory text where appropriate.

ADV_TDS.6.5C The design shall provide a description of the interactions among all

subsystems of the TSF.

ADV_TDS.6.6C The design shall provide a mapping from the subsystems of the TSF to the

modules of the TSF.

ADV_TDS.6.7C The design shall describe each module in semiformal style in terms of its

purpose, interaction, interfaces, return values from those interfaces, and

called interfaces to other modules, supported by informal, explanatory text

where appropriate.

ADV_TDS.6.8C The formal specification of the TSF subsystems shall describe the TSF

using a formal style, supported by informal, explanatory text where

appropriate.

ADV_TDS.6.9C The mapping shall demonstrate that all TSFIs trace to the behaviour

described in the TOE design that they invoke.

Class ADV: Development

July 2009 Version 3.1 Page 115 of 232

ADV_TDS.6.10C The proof of correspondence between the formal specifications of the

TSF subsystems and of the functional specification shall demonstrate

that all behaviour described in the TOE design is a correct and complete

refinement of the TSFI that invoked it.

Evaluator action elements:

ADV_TDS.6.1E The evaluator shall confirm that the information provided meets all

requirements for content and presentation of evidence.

ADV_TDS.6.2E The evaluator shall determine that the design is an accurate and complete

instantiation of all security functional requirements.

Class AGD: Guidance documents

Page 116 of 232 Version 3.1 July 2009

13 Class AGD: Guidance documents

283 The guidance documents class provides the requirements for guidance

documentation for all user roles. For the secure preparation and operation of

the TOE it is necessary to describe all relevant aspects for the secure

handling of the TOE. The class also addresses the possibility of unintended

incorrect configuration or handling of the TOE.

284 In many cases it may be appropriate that guidance is provided in separate

documents for preparation and operation of the TOE, or even separate for

different user roles as end-users, administrators, application programmers

using software or hardware interfaces, etc.

285 The guidance documents class is subdivided into two families which are

concerned with the preparative user guidance (what has to be done to

transform the delivered TOE into its evaluated configuration in the

operational environment as described in the ST) and with the operational

user guidance (what has to be done during the operation of the TOE in its

evaluated configuration).

286 Figure 12 shows the families within this class, and the hierarchy of

components within the families.

Figure 12 - AGD: Guidance documents class decomposition

Class AGD: Guidance documents

July 2009 Version 3.1 Page 117 of 232

13.1 Operational user guidance (AGD_OPE)

Objectives

287 Operational user guidance refers to written material that is intended to be

used by all types of users of the TOE in its evaluated configuration: end-

users, persons responsible for maintaining and administering the TOE in a

correct manner for maximum security, and by others (e.g. programmers)

using the TOE's external interfaces. Operational user guidance describes the

security functionality provided by the TSF, provides instructions and

guidelines (including warnings), helps to understand the TSF and includes

the security-critical information, and the security-critical actions required, for

its secure use. Misleading and unreasonable guidance should be absent from

the guidance documentation, and secure procedures for all modes of

operation should be addressed. Insecure states should be easy to detect.

288 The operational user guidance provides a measure of confidence that non-

malicious users, administrators, application providers and others exercising

the external interfaces of the TOE will understand the secure operation of the

TOE and will use it as intended. The evaluation of the user guidance includes

investigating whether the TOE can be used in a manner that is insecure but

that the user of the TOE would reasonably believe to be secure. The

objective is to minimise the risk of human or other errors in operation that

may deactivate, disable, or fail to activate security functionality, resulting in

an undetected insecure state.

Component levelling

289 This family contains only one component.

Application notes

290 There may be different user roles or groups that are recognised by the TOE

and that can interact with the TSF. These user roles and groups should be

taken into consideration by the operational user guidance. They may be

roughly grouped into administrators and non-administrative users, or more

specifically grouped into persons responsible for receiving, accepting,

installing and maintaining the TOE, application programmers, revisors,

auditors, daily-management, end-users. Each role can encompass an

extensive set of capabilities, or can be a single one.

291 The requirement AGD_OPE.1.1C encompasses the aspect that any warnings to

the users during operation of a TOE with regard to the security problem

definition and the security objectives for the operational environment

described in the PP/ST are appropriately covered in the user guidance.

292 The concept of secure values, as employed in AGD_OPE.1.3C, has relevance

where a user has control over security parameters. Guidance needs to be

provided on secure and insecure settings for such parameters.

Class AGD: Guidance documents

Page 118 of 232 Version 3.1 July 2009

293 AGD_OPE.1.4C requires that the user guidance describes the appropriate

reactions to all security-relevant events. Although many security-relevant

events are the result of performing functions, this need not always be the

case (e.g. the audit log fills up, an intrusion is detected). Furthermore, a

security-relevant event may happen as a result of a specific chain of

functions or, conversely, several security-relevant events may be triggered by

one function.

294 AGD_OPE.1.7C requires that the user guidance is clear and reasonable.

Misleading or unreasonable guidance may result in a user of the TOE

believing that the TOE is secure when it is not.

295 An example of misleading guidance would be the description of a single

guidance instruction that could be parsed in more than one way, one of

which may result in an insecure state.

296 An example of unreasonable guidance would be a recommendation to follow

a procedure that is so complicated that it cannot reasonably be expected that

users will follow this guidance.

Class AGD: Guidance documents

July 2009 Version 3.1 Page 119 of 232

AGD_OPE.1 Operational user guidance

Dependencies: ADV_FSP.1 Basic functional specification

Developer action elements:

AGD_OPE.1.1D The developer shall provide operational user guidance.

Content and presentation elements:

AGD_OPE.1.1C The operational user guidance shall describe, for each user role, the

user-accessible functions and privileges that should be controlled in a

secure processing environment, including appropriate warnings.

AGD_OPE.1.2C The operational user guidance shall describe, for each user role, how to

use the available interfaces provided by the TOE in a secure manner.

AGD_OPE.1.3C The operational user guidance shall describe, for each user role, the

available functions and interfaces, in particular all security parameters

under the control of the user, indicating secure values as appropriate.

AGD_OPE.1.4C The operational user guidance shall, for each user role, clearly present

each type of security-relevant event relative to the user-accessible

functions that need to be performed, including changing the security

characteristics of entities under the control of the TSF.

AGD_OPE.1.5C The operational user guidance shall identify all possible modes of

operation of the TOE (including operation following failure or

operational error), their consequences and implications for maintaining

secure operation.

AGD_OPE.1.6C The operational user guidance shall, for each user role, describe the

security measures to be followed in order to fulfil the security objectives

for the operational environment as described in the ST.

AGD_OPE.1.7C The operational user guidance shall be clear and reasonable.

Evaluator action elements:

AGD_OPE.1.1E The evaluator shall confirm that the information provided meets all

requirements for content and presentation of evidence.

Class AGD: Guidance documents

Page 120 of 232 Version 3.1 July 2009

13.2 Preparative procedures (AGD_PRE)

Objectives

297 Preparative procedures are useful for ensuring that the TOE has been

received and installed in a secure manner as intended by the developer. The

requirements for preparation call for a secure transition from the delivered

TOE to its initial operational environment. This includes investigating

whether the TOE can be configured or installed in a manner that is insecure

but that the user of the TOE would reasonably believe to be secure.

Component levelling

298 This family contains only one component.

Application notes

299 It is recognised that the application of these requirements will vary

depending on aspects such as whether the TOE is delivered in an operational

state, or whether it has to be installed at the TOE owner's site, etc.

300 The first process covered by the preparative procedures is the consumer's

secure acceptance of the received TOE in accordance with the developer's

delivery procedures. If the developer has not defined delivery procedures,

security of the acceptance has to be ensured otherwise.

301 Installation of the TOE includes transforming its operational environment

into a state that conforms to the security objectives for the operational

environment provided in the ST.

302 It might also be the case that no installation is necessary, for example a smart

card. In this case it may be inappropriate to require and analyse installation

procedures.

303 The requirements in this assurance family are presented separately from

those in the Operational user guidance (AGD_OPE) family, due to the

infrequent, possibly one-time use of the preparative procedures.

Class AGD: Guidance documents

July 2009 Version 3.1 Page 121 of 232

AGD_PRE.1 Preparative procedures

Dependencies: No dependencies.

Developer action elements:

AGD_PRE.1.1D The developer shall provide the TOE including its preparative

procedures.

Content and presentation elements:

AGD_PRE.1.1C The preparative procedures shall describe all the steps necessary for

secure acceptance of the delivered TOE in accordance with the

developer's delivery procedures.

AGD_PRE.1.2C The preparative procedures shall describe all the steps necessary for

secure installation of the TOE and for the secure preparation of the

operational environment in accordance with the security objectives for

the operational environment as described in the ST.

Evaluator action elements:

AGD_PRE.1.1E The evaluator shall confirm that the information provided meets all

requirements for content and presentation of evidence.

AGD_PRE.1.2E The evaluator shall apply the preparative procedures to confirm that the

TOE can be prepared securely for operation.

Class ALC: Life-cycle support

Page 122 of 232 Version 3.1 July 2009

14 Class ALC: Life-cycle support

304 Life-cycle support is an aspect of establishing discipline and control in the

processes of refinement of the TOE during its development and maintenance.

Confidence in the correspondence between the TOE security requirements

and the TOE is greater if security analysis and the production of the evidence

are done on a regular basis as an integral part of the development and

maintenance activities.

305 In the product life-cycle it is distinguished whether the TOE is under the

responsibility of the developer or the user rather than whether it is located in

the development or user environment. The point of transition is the moment

where the TOE is handed over to the user. This is also the point of transition

from the ALC to the AGD class.

306 The ALC class consists of seven families. Life-cycle definition (ALC_LCD)

is the high-level description of the TOE life-cycle; CM capabilities

(ALC_CMC) a more detailed description of the management of the

configuration items. CM scope (ALC_CMS) requires a minimum set of

configuration items to be managed in the defined way. Development security

(ALC_DVS) is concerned with the developer's physical, procedural,

personnel, and other security measures; Tools and techniques (ALC_TAT)

with the development tools and implementation standards used by the

developer; Flaw remediation (ALC_FLR) with the handling of security

flaws. Delivery (ALC_DEL) defines the procedures used for the delivery of

the TOE to the consumer. Delivery processes occurring during the

development of the TOE are denoted rather as transportations, and are

handled in the context of integration and acceptance procedures in other

families of this class.

307 Throughout this class, development and related terms (developer, develop)

are meant in the more general sense to comprise development and

production, whereas production specifically means the process of

transforming the implementation representation into the final TOE.

308 Figure 13 shows the families within this class, and the hierarchy of

components within the families.

Class ALC: Life-cycle support

July 2009 Version 3.1 Page 123 of 232

Figure 13 - ALC: Life-cycle support class decomposition

Class ALC: Life-cycle support

Page 124 of 232 Version 3.1 July 2009

14.1 CM capabilities (ALC_CMC)

Objectives

309 Configuration management (CM) is one means for increasing assurance that

the TOE meets the SFRs. CM establishes this by requiring discipline and

control in the processes of refinement and modification of the TOE and the

related information. CM systems are put in place to ensure the integrity of

the portions of the TOE that they control, by providing a method of tracking

any changes, and by ensuring that all changes are authorised.

310 The objective of this family is to require the developer's CM system to have

certain capabilities. These are meant to reduce the likelihood that accidental

or unauthorised modifications of the configuration items will occur. The CM

system should ensure the integrity of the TOE from the early design stages

through all subsequent maintenance efforts.

311 The objective of introducing automated CM tools is to increase the

effectiveness of the CM system. While both automated and manual CM

systems can be bypassed, ignored, or proven insufficient to prevent

unauthorised modification, automated systems are less susceptible to human

error or negligence.

312 The objectives of this family include the following:

a) ensuring that the TOE is correct and complete before it is sent to the

consumer;

b) ensuring that no configuration items are missed during evaluation;

c) preventing unauthorised modification, addition, or deletion of TOE

configuration items.

Component levelling

313 The components in this family are levelled on the basis of the CM system

capabilities, the scope of the CM documentation and the evidence provided

by the developer.

Application notes

314 While it is desired that CM be applied from the early design stages and

continue into the future, this family requires that CM be in place and in use

prior to the end of the evaluation.

315 In the case where the TOE is a subset of a product, the requirements of this

family apply only to the TOE configuration items, not to the product as a

whole.

316 For developers that have separate CM systems for different life-cycle phases

(for example development, production and/or the final product), it is required

to document all of them. For evaluation purposes, the separate CM systems

should be regarded as parts of an overall CM system which is addressed in

the criteria.

Class ALC: Life-cycle support

July 2009 Version 3.1 Page 125 of 232

317 Similarly, if parts of the TOE are produced by different developers or at

different sites, the CM systems being in use at the different places should be

regarded as parts of an overall CM system which is addressed in the criteria.

In this situation, integration aspects have also to be taken into account.

318 Several elements of this family refer to configuration items. These elements

identify CM requirements to be imposed on all items identified in the

configuration list, but leave the contents of the list to the discretion of the

developer. CM scope (ALC_CMS) can be used to narrow this discretion by

identifying specific items that must be included in the configuration list, and

hence covered by CM.

319 ALC_CMC.2.3C introduces a requirement that the CM system uniquely identify

all configuration items. This also requires that modifications to configuration

items result in a new, unique identifier being assigned to the configuration

item.

320 ALC_CMC.3.8C introduces the requirement that the evidence shall demonstrate

that the CM system operates in accordance with the CM plan. Examples of

such evidence might be documentation such as screen snapshots or audit trail

output from the CM system, or a detailed demonstration of the CM system

by the developer. The evaluator is responsible for determining that this

evidence is sufficient to show that the CM system operates in accordance

with the CM plan.

321 ALC_CMC.4.5C introduces a requirement that the CM system provide an

automated means to support the production of the TOE. This requires that the

CM system provide an automated means to assist in determining that the

correct configuration items are used in generating the TOE.

322 ALC_CMC.5.10C introduces a requirement that the CM system provide an

automated means to ascertain the changes between the TOE and its

preceding version. If no previous version of the TOE exists, the developer

still needs to provide an automated means to ascertain the changes between

the TOE and a future version of the TOE.

Class ALC: Life-cycle support

Page 126 of 232 Version 3.1 July 2009

ALC_CMC.1 Labelling of the TOE

Dependencies: ALC_CMS.1 TOE CM coverage

Objectives

323 A unique reference is required to ensure that there is no ambiguity in terms

of which instance of the TOE is being evaluated. Labelling the TOE with its

reference ensures that users of the TOE can be aware of which instance of

the TOE they are using.

Developer action elements:

ALC_CMC.1.1D The developer shall provide the TOE and a reference for the TOE.

Content and presentation elements:

ALC_CMC.1.1C The TOE shall be labelled with its unique reference.

Evaluator action elements:

ALC_CMC.1.1E The evaluator shall confirm that the information provided meets all

requirements for content and presentation of evidence.

ALC_CMC.2 Use of a CM system

Dependencies: ALC_CMS.1 TOE CM coverage

Objectives

324 A unique reference is required to ensure that there is no ambiguity in terms

of which instance of the TOE is being evaluated. Labelling the TOE with its

reference ensures that users of the TOE can be aware of which instance of

the TOE they are using.

325 Unique identification of the configuration items leads to a clearer

understanding of the composition of the TOE, which in turn helps to

determine those items which are subject to the evaluation requirements for

the TOE.

326 The use of a CM system increases assurance that the configuration items are

maintained in a controlled manner.

Developer action elements:

ALC_CMC.2.1D The developer shall provide the TOE and a reference for the TOE.

ALC_CMC.2.2D The developer shall provide the CM documentation.

ALC_CMC.2.3D The developer shall use a CM system.

Class ALC: Life-cycle support

July 2009 Version 3.1 Page 127 of 232

Content and presentation elements:

ALC_CMC.2.1C The TOE shall be labelled with its unique reference.

ALC_CMC.2.2C The CM documentation shall describe the method used to uniquely

identify the configuration items.

ALC_CMC.2.3C The CM system shall uniquely identify all configuration items.

Evaluator action elements:

ALC_CMC.2.1E The evaluator shall confirm that the information provided meets all

requirements for content and presentation of evidence.

ALC_CMC.3 Authorisation controls

Dependencies: ALC_CMS.1 TOE CM coverage

 ALC_DVS.1 Identification of security measures

 ALC_LCD.1 Developer defined life-cycle model

Objectives

327 A unique reference is required to ensure that there is no ambiguity in terms

of which instance of the TOE is being evaluated. Labelling the TOE with its

reference ensures that users of the TOE can be aware of which instance of

the TOE they are using.

328 Unique identification of the configuration items leads to a clearer

understanding of the composition of the TOE, which in turn helps to

determine those items which are subject to the evaluation requirements for

the TOE.

329 The use of a CM system increases assurance that the configuration items are

maintained in a controlled manner.

330 Providing controls to ensure that unauthorised modifications are not made to

the TOE (“CM access control”), and ensuring proper functionality and use of

the CM system, helps to maintain the integrity of the TOE.

Developer action elements:

ALC_CMC.3.1D The developer shall provide the TOE and a reference for the TOE.

ALC_CMC.3.2D The developer shall provide the CM documentation.

ALC_CMC.3.3D The developer shall use a CM system.

Content and presentation elements:

ALC_CMC.3.1C The TOE shall be labelled with its unique reference.

ALC_CMC.3.2C The CM documentation shall describe the method used to uniquely identify

the configuration items.

Class ALC: Life-cycle support

Page 128 of 232 Version 3.1 July 2009

ALC_CMC.3.3C The CM system shall uniquely identify all configuration items.

ALC_CMC.3.4C The CM system shall provide measures such that only authorised

changes are made to the configuration items.

ALC_CMC.3.5C The CM documentation shall include a CM plan.

ALC_CMC.3.6C The CM plan shall describe how the CM system is used for the

development of the TOE.

ALC_CMC.3.7C The evidence shall demonstrate that all configuration items are being

maintained under the CM system.

ALC_CMC.3.8C The evidence shall demonstrate that the CM system is being operated in

accordance with the CM plan.

Evaluator action elements:

ALC_CMC.3.1E The evaluator shall confirm that the information provided meets all

requirements for content and presentation of evidence.

ALC_CMC.4 Production support, acceptance procedures and automation

Dependencies: ALC_CMS.1 TOE CM coverage

 ALC_DVS.1 Identification of security measures

 ALC_LCD.1 Developer defined life-cycle model

Objectives

331 A unique reference is required to ensure that there is no ambiguity in terms

of which instance of the TOE is being evaluated. Labelling the TOE with its

reference ensures that users of the TOE can be aware of which instance of

the TOE they are using.

332 Unique identification of the configuration items leads to a clearer

understanding of the composition of the TOE, which in turn helps to

determine those items which are subject to the evaluation requirements for

the TOE.

333 The use of a CM system increases assurance that the configuration items are

maintained in a controlled manner.

334 Providing controls to ensure that unauthorised modifications are not made to

the TOE (“CM access control”), and ensuring proper functionality and use of

the CM system, helps to maintain the integrity of the TOE.

335 The purpose of the acceptance procedures is to ensure that the parts of the

TOE are of adequate quality and to confirm that any creation or modification

of configuration items is authorised. Acceptance procedures are an essential

element in integration processes and in the life-cycle management of the

TOE.

Class ALC: Life-cycle support

July 2009 Version 3.1 Page 129 of 232

336 In development environments where the configuration items are complex, it

is difficult to control changes without the support of automated tools. In

particular, these automated tools need to be able to support the numerous

changes that occur during development and ensure that those changes are

authorised. It is an objective of this component to ensure that the

configuration items are controlled through automated means. If the TOE is

developed by multiple developers, i.e. integration has to take place, the use

of automatic tools is adequate.

337 Production support procedures help to ensure that the generation of the TOE

from a managed set of configuration items is correctly performed in an

authorised manner, particularly in the case when different developers are

involved and integration processes have to be carried out.

Developer action elements:

ALC_CMC.4.1D The developer shall provide the TOE and a reference for the TOE.

ALC_CMC.4.2D The developer shall provide the CM documentation.

ALC_CMC.4.3D The developer shall use a CM system.

Content and presentation elements:

ALC_CMC.4.1C The TOE shall be labelled with its unique reference.

ALC_CMC.4.2C The CM documentation shall describe the method used to uniquely identify

the configuration items.

ALC_CMC.4.3C The CM system shall uniquely identify all configuration items.

ALC_CMC.4.4C The CM system shall provide automated measures such that only authorised

changes are made to the configuration items.

ALC_CMC.4.5C The CM system shall support the production of the TOE by automated

means.

ALC_CMC.4.6C The CM documentation shall include a CM plan.

ALC_CMC.4.7C The CM plan shall describe how the CM system is used for the development

of the TOE.

ALC_CMC.4.8C The CM plan shall describe the procedures used to accept modified or

newly created configuration items as part of the TOE.

ALC_CMC.4.9C The evidence shall demonstrate that all configuration items are being

maintained under the CM system.

ALC_CMC.4.10C The evidence shall demonstrate that the CM system is being operated in

accordance with the CM plan.

Class ALC: Life-cycle support

Page 130 of 232 Version 3.1 July 2009

Evaluator action elements:

ALC_CMC.4.1E The evaluator shall confirm that the information provided meets all

requirements for content and presentation of evidence.

ALC_CMC.5 Advanced support

Dependencies: ALC_CMS.1 TOE CM coverage

 ALC_DVS.2 Sufficiency of security measures

 ALC_LCD.1 Developer defined life-cycle model

Objectives

338 A unique reference is required to ensure that there is no ambiguity in terms

of which instance of the TOE is being evaluated. Labelling the TOE with its

reference ensures that users of the TOE can be aware of which instance of

the TOE they are using.

339 Unique identification of the configuration items leads to a clearer

understanding of the composition of the TOE, which in turn helps to

determine those items which are subject to the evaluation requirements for

the TOE.

340 The use of a CM system increases assurance that the configuration items are

maintained in a controlled manner.

341 Providing controls to ensure that unauthorised modifications are not made to

the TOE (“CM access control”), and ensuring proper functionality and use of

the CM system, helps to maintain the integrity of the TOE.

342 The purpose of the acceptance procedures is to ensure that the parts of the

TOE are of adequate quality and to confirm that any creation or modification

of configuration items is authorised. Acceptance procedures are an essential

element in integration processes and in the life-cycle management of the

TOE.

343 In development environments where the configuration items are complex, it

is difficult to control changes without the support of automated tools. In

particular, these automated tools need to be able to support the numerous

changes that occur during development and ensure that those changes are

authorised. It is an objective of this component to ensure that the

configuration items are controlled through automated means. If the TOE is

developed by multiple developers, i.e. integration has to take place, the use

of automatic tools is adequate.

344 Production support procedures help to ensure that the generation of the TOE

from a managed set of configuration items is correctly performed in an

authorised manner, particularly in the case when different developers are

involved and integration processes have to be carried out.

Class ALC: Life-cycle support

July 2009 Version 3.1 Page 131 of 232

345 Requiring that the CM system be able to identify the version of the

implementation representation from which the TOE is generated helps to

ensure that the integrity of this material is preserved by the appropriate

technical, physical and procedural safeguards.

346 Providing an automated means of ascertaining changes between versions of

the TOE and identifying which configuration items are affected by

modifications to other configuration items assists in determining the impact

of the changes between successive versions of the TOE. This in turn can

provide valuable information in determining whether changes to the TOE

result in all configuration items being consistent with one another.

Developer action elements:

ALC_CMC.5.1D The developer shall provide the TOE and a reference for the TOE.

ALC_CMC.5.2D The developer shall provide the CM documentation.

ALC_CMC.5.3D The developer shall use a CM system.

Content and presentation elements:

ALC_CMC.5.1C The TOE shall be labelled with its unique reference.

ALC_CMC.5.2C The CM documentation shall describe the method used to uniquely identify

the configuration items.

ALC_CMC.5.3C The CM documentation shall justify that the acceptance procedures

provide for an adequate and appropriate review of changes to all

configuration items.

ALC_CMC.5.4C The CM system shall uniquely identify all configuration items.

ALC_CMC.5.5C The CM system shall provide automated measures such that only authorised

changes are made to the configuration items.

ALC_CMC.5.6C The CM system shall support the production of the TOE by automated

means.

ALC_CMC.5.7C The CM system shall ensure that the person responsible for accepting a

configuration item into CM is not the person who developed it.

ALC_CMC.5.8C The CM system shall identify the configuration items that comprise the

TSF.

ALC_CMC.5.9C The CM system shall support the audit of all changes to the TOE by

automated means, including the originator, date, and time in the audit

trail.

ALC_CMC.5.10C The CM system shall provide an automated means to identify all other

configuration items that are affected by the change of a given

configuration item.

Class ALC: Life-cycle support

Page 132 of 232 Version 3.1 July 2009

ALC_CMC.5.11C The CM system shall be able to identify the version of the

implementation representation from which the TOE is generated.

ALC_CMC.5.12C The CM documentation shall include a CM plan.

ALC_CMC.5.13C The CM plan shall describe how the CM system is used for the development

of the TOE.

ALC_CMC.5.14C The CM plan shall describe the procedures used to accept modified or newly

created configuration items as part of the TOE.

ALC_CMC.5.15C The evidence shall demonstrate that all configuration items are being

maintained under the CM system.

ALC_CMC.5.16C The evidence shall demonstrate that the CM system is being operated in

accordance with the CM plan.

Evaluator action elements:

ALC_CMC.5.1E The evaluator shall confirm that the information provided meets all

requirements for content and presentation of evidence.

ALC_CMC.5.2E The evaluator shall determine that the application of the production

support procedures results in a TOE as provided by the developer for

testing activities.

Class ALC: Life-cycle support

July 2009 Version 3.1 Page 133 of 232

14.2 CM scope (ALC_CMS)

Objectives

347 The objective of this family is to identify items to be included as

configuration items and hence placed under the CM requirements of CM

capabilities (ALC_CMC). Applying configuration management to these

additional items provides additional assurance that the integrity of TOE is

maintained.

Component levelling

348 The components in this family are levelled on the basis of which of the

following are required to be included as configuration items: the TOE and

the evaluation evidence required by the SARs; the parts of the TOE; the

implementation representation; security flaws; and development tools and

related information.

Application notes

349 While CM scope (ALC_CMS) mandates a list of configuration items and

that each item on this list be under CM, CM capabilities (ALC_CMC) leaves

the contents of the configuration list to the discretion of the developer. CM

scope (ALC_CMS) narrows this discretion by identifying items that must be

included in the configuration list, and hence come under the CM

requirements of CM capabilities (ALC_CMC).

ALC_CMS.1 TOE CM coverage

Dependencies: No dependencies.

Objectives

350 A CM system can control changes only to those items that have been placed

under CM (i.e., the configuration items identified in the configuration list).

Placing the TOE itself and the evaluation evidence required by the other

SARs in the ST under CM provides assurance that they have been modified

in a controlled manner with proper authorisations.

Application notes

351 ALC_CMS.1.1C introduces the requirement that the TOE itself and the

evaluation evidence required by the other SARs in the ST be included in the

configuration list and hence be subject to the CM requirements of CM

capabilities (ALC_CMC).

Developer action elements:

ALC_CMS.1.1D The developer shall provide a configuration list for the TOE.

Class ALC: Life-cycle support

Page 134 of 232 Version 3.1 July 2009

Content and presentation elements:

ALC_CMS.1.1C The configuration list shall include the following: the TOE itself; and the

evaluation evidence required by the SARs.

ALC_CMS.1.2C The configuration list shall uniquely identify the configuration items.

Evaluator action elements:

ALC_CMS.1.1E The evaluator shall confirm that the information provided meets all

requirements for content and presentation of evidence.

ALC_CMS.2 Parts of the TOE CM coverage

Dependencies: No dependencies.

Objectives

352 A CM system can control changes only to those items that have been placed

under CM (i.e., the configuration items identified in the configuration list).

Placing the TOE itself, the parts that comprise the TOE, and the evaluation

evidence required by the other SARs under CM provides assurance that they

have been modified in a controlled manner with proper authorisations.

Application notes

353 ALC_CMS.2.1C introduces the requirement that the parts that comprise the TOE

(all parts that are delivered to the consumer, for example hardware parts or

executable files) be included in the configuration list and hence be subject to

the CM requirements of CM capabilities (ALC_CMC).

354 ALC_CMS.2.3C introduces the requirement that the configuration list indicate

the developer of each TSF relevant configuration item. “Developer” here

does not refer to a person, but to the organisation responsible for the

development of the item.

Developer action elements:

ALC_CMS.2.1D The developer shall provide a configuration list for the TOE.

Content and presentation elements:

ALC_CMS.2.1C The configuration list shall include the following: the TOE itself; the

evaluation evidence required by the SARs; and the parts that comprise the

TOE.

ALC_CMS.2.2C The configuration list shall uniquely identify the configuration items.

ALC_CMS.2.3C For each TSF relevant configuration item, the configuration list shall

indicate the developer of the item.

Class ALC: Life-cycle support

July 2009 Version 3.1 Page 135 of 232

Evaluator action elements:

ALC_CMS.2.1E The evaluator shall confirm that the information provided meets all

requirements for content and presentation of evidence.

ALC_CMS.3 Implementation representation CM coverage

Dependencies: No dependencies.

Objectives

355 A CM system can control changes only to those items that have been placed

under CM (i.e., the configuration items identified in the configuration list).

Placing the TOE itself, the parts that comprise the TOE, the TOE

implementation representation and the evaluation evidence required by the

other SARs under CM provides assurance that they have been modified in a

controlled manner with proper authorisations.

Application notes

356 ALC_CMS.3.1C introduces the requirement that the TOE implementation

representation be included in the list of configuration items and hence be

subject to the CM requirements of CM capabilities (ALC_CMC).

Developer action elements:

ALC_CMS.3.1D The developer shall provide a configuration list for the TOE.

Content and presentation elements:

ALC_CMS.3.1C The configuration list shall include the following: the TOE itself; the

evaluation evidence required by the SARs; the parts that comprise the TOE;

and the implementation representation.

ALC_CMS.3.2C The configuration list shall uniquely identify the configuration items.

ALC_CMS.3.3C For each TSF relevant configuration item, the configuration list shall indicate

the developer of the item.

Evaluator action elements:

ALC_CMS.3.1E The evaluator shall confirm that the information provided meets all

requirements for content and presentation of evidence.

Class ALC: Life-cycle support

Page 136 of 232 Version 3.1 July 2009

ALC_CMS.4 Problem tracking CM coverage

Dependencies: No dependencies.

Objectives

357 A CM system can control changes only to those items that have been placed

under CM (i.e., the configuration items identified in the configuration list).

Placing the TOE itself, the parts that comprise the TOE, the TOE

implementation representation and the evaluation evidence required by the

other SARs under CM provides assurance that they have been modified in a

controlled manner with proper authorisations.

358 Placing security flaws under CM ensures that security flaw reports are not

lost or forgotten, and allows a developer to track security flaws to their

resolution.

Application notes

359 ALC_CMS.4.1C introduces the requirement that security flaws be included in

the configuration list and hence be subject to the CM requirements of CM

capabilities (ALC_CMC). This requires that information regarding previous

security flaws and their resolution be maintained, as well as details regarding

current security flaws.

Developer action elements:

ALC_CMS.4.1D The developer shall provide a configuration list for the TOE.

Content and presentation elements:

ALC_CMS.4.1C The configuration list shall include the following: the TOE itself; the

evaluation evidence required by the SARs; the parts that comprise the TOE;

the implementation representation; and security flaw reports and

resolution status.

ALC_CMS.4.2C The configuration list shall uniquely identify the configuration items.

ALC_CMS.4.3C For each TSF relevant configuration item, the configuration list shall indicate

the developer of the item.

Evaluator action elements:

ALC_CMS.4.1E The evaluator shall confirm that the information provided meets all

requirements for content and presentation of evidence.

Class ALC: Life-cycle support

July 2009 Version 3.1 Page 137 of 232

ALC_CMS.5 Development tools CM coverage

Dependencies: No dependencies.

Objectives

360 A CM system can control changes only to those items that have been placed

under CM (i.e., the configuration items identified in the configuration list).

Placing the TOE itself, the parts that comprise the TOE, the TOE

implementation representation and the evaluation evidence required by the

other SARs under CM provides assurance that they have been modified in a

controlled manner with proper authorisations.

361 Placing security flaws under CM ensures that security flaw reports are not

lost or forgotten, and allows a developer to track security flaws to their

resolution.

362 Development tools play an important role in ensuring the production of a

quality version of the TOE. Therefore, it is important to control

modifications to these tools.

Application notes

363 ALC_CMS.5.1C introduces the requirement that development tools and other

related information be included in the list of configuration items and hence

be subject to the CM requirements of CM capabilities (ALC_CMC).

Examples of development tools are programming languages and compilers.

Information pertaining to TOE generation items (such as compiler options,

generation options, and build options) is an example of information relating

to development tools.

Developer action elements:

ALC_CMS.5.1D The developer shall provide a configuration list for the TOE.

Content and presentation elements:

ALC_CMS.5.1C The configuration list shall include the following: the TOE itself; the

evaluation evidence required by the SARs; the parts that comprise the TOE;

the implementation representation; security flaw reports and resolution

status; and development tools and related information.

ALC_CMS.5.2C The configuration list shall uniquely identify the configuration items.

ALC_CMS.5.3C For each TSF relevant configuration item, the configuration list shall indicate

the developer of the item.

Evaluator action elements:

ALC_CMS.5.1E The evaluator shall confirm that the information provided meets all

requirements for content and presentation of evidence.

Class ALC: Life-cycle support

Page 138 of 232 Version 3.1 July 2009

14.3 Delivery (ALC_DEL)

Objectives

364 The concern of this family is the secure transfer of the finished TOE from the

development environment into the responsibility of the user.

365 The requirements for delivery call for system control and distribution

facilities and procedures that detail the measures necessary to provide

assurance that the security of the TOE is maintained during distribution of

the TOE to the user. For a valid distribution of the TOE, the procedures used

for the distribution of the TOE address the objectives identified in the PP/ST

relating to the security of the TOE during delivery.

Component levelling

366 This family contains only one component. An increasing level of protection

is established by requiring commensurability of the delivery procedures with

the assumed attack potential in the family Vulnerability analysis

(AVA_VAN).

Application notes

367 Transportations from subcontractors to the developer or between different

development sites are not considered here, but in the family Development

security (ALC_DVS).

368 The end of the delivery phase is marked by the transfer of the TOE into the

responsibility of the user. This does not necessarily coincide with the arrival

of the TOE at the user's location.

369 The delivery procedures should consider, if applicable, issues such as:

a) ensuring that the TOE received by the consumer corresponds

precisely to the evaluated version of the TOE;

b) avoiding or detecting any tampering with the actual version of the

TOE;

c) preventing submission of a false version of the TOE;

d) avoiding unwanted knowledge of distribution of the TOE to the

consumer: there might be cases where potential attackers should not

know when and how it is delivered;

e) avoiding or detecting the TOE being intercepted during delivery; and

f) avoiding the TOE being delayed or stopped during distribution.

370 The delivery procedures should include the recipient's actions implied by

these issues. The consistent description of these implied actions is examined

in the Preparative procedures (AGD_PRE) family, if present.

Class ALC: Life-cycle support

July 2009 Version 3.1 Page 139 of 232

ALC_DEL.1 Delivery procedures

Dependencies: No dependencies.

Developer action elements:

ALC_DEL.1.1D The developer shall document and provide procedures for delivery of

the TOE or parts of it to the consumer.

ALC_DEL.1.2D The developer shall use the delivery procedures.

Content and presentation elements:

ALC_DEL.1.1C The delivery documentation shall describe all procedures that are

necessary to maintain security when distributing versions of the TOE to

the consumer.

Evaluator action elements:

ALC_DEL.1.1E The evaluator shall confirm that the information provided meets all

requirements for content and presentation of evidence.

Class ALC: Life-cycle support

Page 140 of 232 Version 3.1 July 2009

14.4 Development security (ALC_DVS)

Objectives

371 Development security is concerned with physical, procedural, personnel, and

other security measures that may be used in the development environment to

protect the TOE and its parts. It includes the physical security of the

development location and any procedures used to select development staff.

Component levelling

372 The components in this family are levelled on the basis of whether

justification of the sufficiency of the security measures is required.

Application notes

373 This family deals with measures to remove or reduce threats existing at the

developer's site.

374 The evaluator should visit the site(s) in order to assess evidence for

development security. This may include sites of subcontractors involved in

the TOE development and production. Any decision not to visit shall be

agreed with the evaluation authority.

375 Although development security deals with the maintenance of the TOE and

hence with aspects becoming relevant after the completion of the evaluation,

the Development security (ALC_DVS) requirements specify only that the

development security measures be in place at the time of evaluation.

Furthermore, Development security (ALC_DVS) does not contain any

requirements related to the sponsor's intention to apply the development

security measures in the future, after completion of the evaluation.

376 It is recognised that confidentiality may not always be an issue for the

protection of the TOE in its development environment. The use of the word

“necessary” allows for the selection of appropriate safeguards.

ALC_DVS.1 Identification of security measures

Dependencies: No dependencies.

Developer action elements:

ALC_DVS.1.1D The developer shall produce and provide development security

documentation.

Content and presentation elements:

ALC_DVS.1.1C The development security documentation shall describe all the physical,

procedural, personnel, and other security measures that are necessary to

protect the confidentiality and integrity of the TOE design and

implementation in its development environment.

Class ALC: Life-cycle support

July 2009 Version 3.1 Page 141 of 232

Evaluator action elements:

ALC_DVS.1.1E The evaluator shall confirm that the information provided meets all

requirements for content and presentation of evidence.

ALC_DVS.1.2E The evaluator shall confirm that the security measures are being

applied.

ALC_DVS.2 Sufficiency of security measures

Dependencies: No dependencies.

Developer action elements:

ALC_DVS.2.1D The developer shall produce and provide development security

documentation.

Content and presentation elements:

ALC_DVS.2.1C The development security documentation shall describe all the physical,

procedural, personnel, and other security measures that are necessary to

protect the confidentiality and integrity of the TOE design and

implementation in its development environment.

ALC_DVS.2.2C The development security documentation shall justify that the security

measures provide the necessary level of protection to maintain the

confidentiality and integrity of the TOE.

Evaluator action elements:

ALC_DVS.2.1E The evaluator shall confirm that the information provided meets all

requirements for content and presentation of evidence.

ALC_DVS.2.2E The evaluator shall confirm that the security measures are being applied.

Class ALC: Life-cycle support

Page 142 of 232 Version 3.1 July 2009

14.5 Flaw remediation (ALC_FLR)

Objectives

377 Flaw remediation requires that discovered security flaws be tracked and

corrected by the developer. Although future compliance with flaw

remediation procedures cannot be determined at the time of the TOE

evaluation, it is possible to evaluate the policies and procedures that a

developer has in place to track and correct flaws, and to distribute the flaw

information and corrections.

Component levelling

378 The components in this family are levelled on the basis of the increasing

extent in scope of the flaw remediation procedures and the rigour of the flaw

remediation policies.

Application notes

379 This family provides assurance that the TOE will be maintained and

supported in the future, requiring the TOE developer to track and correct

flaws in the TOE. Additionally, requirements are included for the

distribution of flaw corrections. However, this family does not impose

evaluation requirements beyond the current evaluation.

380 The TOE user is considered to be the focal point in the user organisation that

is responsible for receiving and implementing fixes to security flaws. This is

not necessarily an individual user, but may be an organisational

representative who is responsible for the handling of security flaws. The use

of the term TOE user recognises that different organisations have different

procedures for handling flaw reporting, which may be done either by an

individual user, or by a central administrative body.

381 The flaw remediation procedures should describe the methods for dealing

with all types of flaws encountered. These flaws may be reported by the

developer, by users of the TOE, or by other parties with familiarity with the

TOE. Some flaws may not be reparable immediately. There may be some

occasions where a flaw cannot be fixed and other (e.g. procedural) measures

must be taken. The documentation provided should cover the procedures for

providing the operational sites with fixes, and providing information on

flaws where fixes are delayed (and what to do in the interim) or when fixes

are not possible.

382 Changes applied to a TOE after its release render it unevaluated; although

some information from the original evaluation may still apply. The phrase

“release of the TOE” used in this family therefore refers to a version of a

product that is a release of a certified TOE, to which changes have been

applied.

Class ALC: Life-cycle support

July 2009 Version 3.1 Page 143 of 232

ALC_FLR.1 Basic flaw remediation

Dependencies: No dependencies.

Developer action elements:

ALC_FLR.1.1D The developer shall document and provide flaw remediation procedures

addressed to TOE developers.

Content and presentation elements:

ALC_FLR.1.1C The flaw remediation procedures documentation shall describe the

procedures used to track all reported security flaws in each release of

the TOE.

ALC_FLR.1.2C The flaw remediation procedures shall require that a description of the

nature and effect of each security flaw be provided, as well as the status

of finding a correction to that flaw.

ALC_FLR.1.3C The flaw remediation procedures shall require that corrective actions be

identified for each of the security flaws.

ALC_FLR.1.4C The flaw remediation procedures documentation shall describe the

methods used to provide flaw information, corrections and guidance on

corrective actions to TOE users.

Evaluator action elements:

ALC_FLR.1.1E The evaluator shall confirm that the information provided meets all

requirements for content and presentation of evidence.

ALC_FLR.2 Flaw reporting procedures

Dependencies: No dependencies.

Objectives

383 In order for the developer to be able to act appropriately upon security flaw

reports from TOE users, and to know to whom to send corrective fixes, TOE

users need to understand how to submit security flaw reports to the

developer. Flaw remediation guidance from the developer to the TOE user

ensures that TOE users are aware of this important information.

Developer action elements:

ALC_FLR.2.1D The developer shall document and provide flaw remediation procedures

addressed to TOE developers.

ALC_FLR.2.2D The developer shall establish a procedure for accepting and acting upon

all reports of security flaws and requests for corrections to those flaws.

Class ALC: Life-cycle support

Page 144 of 232 Version 3.1 July 2009

ALC_FLR.2.3D The developer shall provide flaw remediation guidance addressed to

TOE users.

Content and presentation elements:

ALC_FLR.2.1C The flaw remediation procedures documentation shall describe the

procedures used to track all reported security flaws in each release of the

TOE.

ALC_FLR.2.2C The flaw remediation procedures shall require that a description of the nature

and effect of each security flaw be provided, as well as the status of finding a

correction to that flaw.

ALC_FLR.2.3C The flaw remediation procedures shall require that corrective actions be

identified for each of the security flaws.

ALC_FLR.2.4C The flaw remediation procedures documentation shall describe the methods

used to provide flaw information, corrections and guidance on corrective

actions to TOE users.

ALC_FLR.2.5C The flaw remediation procedures shall describe a means by which the

developer receives from TOE users reports and enquiries of suspected

security flaws in the TOE.

ALC_FLR.2.6C The procedures for processing reported security flaws shall ensure that

any reported flaws are remediated and the remediation procedures

issued to TOE users.

ALC_FLR.2.7C The procedures for processing reported security flaws shall provide

safeguards that any corrections to these security flaws do not introduce

any new flaws.

ALC_FLR.2.8C The flaw remediation guidance shall describe a means by which TOE

users report to the developer any suspected security flaws in the TOE.

Evaluator action elements:

ALC_FLR.2.1E The evaluator shall confirm that the information provided meets all

requirements for content and presentation of evidence.

Class ALC: Life-cycle support

July 2009 Version 3.1 Page 145 of 232

ALC_FLR.3 Systematic flaw remediation

Dependencies: No dependencies.

Objectives

384 In order for the developer to be able to act appropriately upon security flaw

reports from TOE users, and to know to whom to send corrective fixes, TOE

users need to understand how to submit security flaw reports to the

developer, and how to register themselves with the developer so that they

may receive these corrective fixes. Flaw remediation guidance from the

developer to the TOE user ensures that TOE users are aware of this

important information.

Developer action elements:

ALC_FLR.3.1D The developer shall document and provide flaw remediation procedures

addressed to TOE developers.

ALC_FLR.3.2D The developer shall establish a procedure for accepting and acting upon all

reports of security flaws and requests for corrections to those flaws.

ALC_FLR.3.3D The developer shall provide flaw remediation guidance addressed to TOE

users.

Content and presentation elements:

ALC_FLR.3.1C The flaw remediation procedures documentation shall describe the

procedures used to track all reported security flaws in each release of the

TOE.

ALC_FLR.3.2C The flaw remediation procedures shall require that a description of the nature

and effect of each security flaw be provided, as well as the status of finding a

correction to that flaw.

ALC_FLR.3.3C The flaw remediation procedures shall require that corrective actions be

identified for each of the security flaws.

ALC_FLR.3.4C The flaw remediation procedures documentation shall describe the methods

used to provide flaw information, corrections and guidance on corrective

actions to TOE users.

ALC_FLR.3.5C The flaw remediation procedures shall describe a means by which the

developer receives from TOE users reports and enquiries of suspected

security flaws in the TOE.

ALC_FLR.3.6C The flaw remediation procedures shall include a procedure requiring

timely response and the automatic distribution of security flaw reports

and the associated corrections to registered users who might be affected

by the security flaw.

Class ALC: Life-cycle support

Page 146 of 232 Version 3.1 July 2009

ALC_FLR.3.7C The procedures for processing reported security flaws shall ensure that any

reported flaws are remediated and the remediation procedures issued to TOE

users.

ALC_FLR.3.8C The procedures for processing reported security flaws shall provide

safeguards that any corrections to these security flaws do not introduce any

new flaws.

ALC_FLR.3.9C The flaw remediation guidance shall describe a means by which TOE users

report to the developer any suspected security flaws in the TOE.

ALC_FLR.3.10C The flaw remediation guidance shall describe a means by which TOE

users may register with the developer, to be eligible to receive security

flaw reports and corrections.

ALC_FLR.3.11C The flaw remediation guidance shall identify the specific points of

contact for all reports and enquiries about security issues involving the

TOE.

Evaluator action elements:

ALC_FLR.3.1E The evaluator shall confirm that the information provided meets all

requirements for content and presentation of evidence.

Class ALC: Life-cycle support

July 2009 Version 3.1 Page 147 of 232

14.6 Life-cycle definition (ALC_LCD)

Objectives

385 Poorly controlled development and maintenance of the TOE can result in a

TOE that does not meet all of its SFRs. Therefore, it is important that a

model for the development and maintenance of a TOE be established as early

as possible in the TOE's life-cycle.

386 Using a model for the development and maintenance of a TOE does not

guarantee that the TOE meets all of its SFRs. It is possible that the model

chosen will be insufficient or inadequate and therefore no benefits in the

quality of the TOE can be observed. Using a life-cycle model that has been

approved by a group of experts (e.g. academic experts, standards bodies)

improves the chances that the development and maintenance models will

contribute to the TOE meeting its SFRs. The use of a life-cycle model

including some quantitative valuation adds further assurance in the overall

quality of the TOE development process.

Component levelling

387 The components in this family are levelled on the basis of increasing

requirements for measurability of the life-cycle model, and for compliance

with that model.

Application notes

388 A life-cycle model encompasses the procedures, tools and techniques used to

develop and maintain the TOE. Aspects of the process that may be covered

by such a model include design methods, review procedures, project

management controls, change control procedures, test methods and

acceptance procedures. An effective life-cycle model will address these

aspects of the development and maintenance process within an overall

management structure that assigns responsibilities and monitors progress.

389 There are different types of acceptance situations that are dealt with at

different locations in the criteria: acceptance of parts delivered by

subcontractors (“integration”) should be treated in this family Life-cycle

definition (ALC_LCD), acceptance subsequent to internal transportations in

Development security (ALC_DVS), acceptance of parts into the CM system

in CM capabilities (ALC_CMC), and acceptance of the delivered TOE by

the consumer in Delivery (ALC_DEL). The first three types may overlap.

390 Although life-cycle definition deals with the maintenance of the TOE and

hence with aspects becoming relevant after the completion of the evaluation,

its evaluation adds assurance through an analysis of the life-cycle

information for the TOE provided at the time of the evaluation.

391 A life-cycle model provides for the necessary control over the development

and maintenance of the TOE, if the model enables sufficient minimisation of

the danger that the TOE will not meet its security requirement.

Class ALC: Life-cycle support

Page 148 of 232 Version 3.1 July 2009

392 A measurable life-cycle model is a model using some quantitative valuation

(arithmetic parameters and/or metrics) of the managed product in order to

measure development properties of the product. Typical metrics are source

code complexity metrics, defect density (errors per size of code) or mean

time to failure. For the security evaluation all those metrics are of relevance,

which are used to increase quality by decreasing the probability of faults and

thereby in turn increasing assurance in the security of the TOE.

393 One should take into account that there exist standardised life cycle models

on the one hand (like the waterfall model) and standardised metrics on the

other hand (like error density), which may be combined. The CC does not

require the life cycle to follow exactly one standard defining both aspects.

ALC_LCD.1 Developer defined life-cycle model

Dependencies: No dependencies.

Developer action elements:

ALC_LCD.1.1D The developer shall establish a life-cycle model to be used in the

development and maintenance of the TOE.

ALC_LCD.1.2D The developer shall provide life-cycle definition documentation.

Content and presentation elements:

ALC_LCD.1.1C The life-cycle definition documentation shall describe the model used to

develop and maintain the TOE.

ALC_LCD.1.2C The life-cycle model shall provide for the necessary control over the

development and maintenance of the TOE.

Evaluator action elements:

ALC_LCD.1.1E The evaluator shall confirm that the information provided meets all

requirements for content and presentation of evidence.

ALC_LCD.2 Measurable life-cycle model

Dependencies: No dependencies.

Developer action elements:

ALC_LCD.2.1D The developer shall establish a life-cycle model to be used in the

development and maintenance of the TOE, that is based on a measurable

life-cycle model.

ALC_LCD.2.2D The developer shall provide life-cycle definition documentation.

ALC_LCD.2.3D The developer shall measure the TOE development using the

measurable life-cycle model.

Class ALC: Life-cycle support

July 2009 Version 3.1 Page 149 of 232

ALC_LCD.2.4D The developer shall provide life-cycle output documentation.

Content and presentation elements:

ALC_LCD.2.1C The life-cycle definition documentation shall describe the model used to

develop and maintain the TOE, including the details of its arithmetic

parameters and/or metrics used to measure the quality of the TOE

and/or its development.

ALC_LCD.2.2C The life-cycle model shall provide for the necessary control over the

development and maintenance of the TOE.

ALC_LCD.2.3C The life-cycle output documentation shall provide the results of the

measurements of the TOE development using the measurable life-cycle

model.

Evaluator action elements:

ALC_LCD.2.1E The evaluator shall confirm that the information provided meets all

requirements for content and presentation of evidence.

Class ALC: Life-cycle support

Page 150 of 232 Version 3.1 July 2009

14.7 Tools and techniques (ALC_TAT)

Objectives

394 Tools and techniques is an aspect of selecting tools that are used to develop,

analyse and implement the TOE. It includes requirements to prevent ill-

defined, inconsistent or incorrect development tools from being used to

develop the TOE. This includes, but is not limited to, programming

languages, documentation, implementation standards, and other parts of the

TOE such as supporting runtime libraries.

Component levelling

395 The components in this family are levelled on the basis of increasing

requirements on the description and scope of the implementation standards

and the documentation of implementation-dependent options.

Application notes

396 There is a requirement for well-defined development tools. These are tools

that are clearly and completely described. For example, programming

languages and computer aided design (CAD) systems that are based on a

standard published by standards bodies are considered to be well-defined.

Self-made tools would need further investigation to clarify whether they are

well-defined.

397 The requirement in ALC_TAT.1.2C is especially applicable to programming

languages so as to ensure that all statements in the source code have an

unambiguous meaning.

398 In ALC_TAT.2 and ALC_TAT.3, implementation guidelines may be

accepted as an implementation standard if they have been approved by some

group of experts (e.g. academic experts, standards bodies). Implementation

standards are normally public, well accepted and common practise in a

specific industry, but developer-specific implementation guidelines may also

be accepted as a standard; the emphasis is on the expertise.

399 Tools and techniques distinguishes between the implementation standards

applied by the developer (ALC_TAT.2.3D) and the implementation standards

for “all parts of the TOE” (ALC_TAT.3.3D) which include third party software,

hardware, or firmware. The configuration list introduced in CM scope

(ALC_CMS) requires that for each TSF relevant configuration item to

indicate if it has been generated by the TOE developer or by third party

developers.

Class ALC: Life-cycle support

July 2009 Version 3.1 Page 151 of 232

ALC_TAT.1 Well-defined development tools

Dependencies: ADV_IMP.1 Implementation representation of the

TSF

Developer action elements:

ALC_TAT.1.1D The developer shall provide the documentation identifying each

development tool being used for the TOE.

ALC_TAT.1.2D The developer shall document and provide the selected implementation-

dependent options of each development tool.

Content and presentation elements:

ALC_TAT.1.1C Each development tool used for implementation shall be well-defined.

ALC_TAT.1.2C The documentation of each development tool shall unambiguously

define the meaning of all statements as well as all conventions and

directives used in the implementation.

ALC_TAT.1.3C The documentation of each development tool shall unambiguously

define the meaning of all implementation-dependent options.

Evaluator action elements:

ALC_TAT.1.1E The evaluator shall confirm that the information provided meets all

requirements for content and presentation of evidence.

ALC_TAT.2 Compliance with implementation standards

Dependencies: ADV_IMP.1 Implementation representation of the

TSF

Developer action elements:

ALC_TAT.2.1D The developer shall provide the documentation identifying each development

tool being used for the TOE.

ALC_TAT.2.2D The developer shall document and provide the selected implementation-

dependent options of each development tool.

ALC_TAT.2.3D The developer shall describe and provide the implementation standards

that are being applied by the developer.

Content and presentation elements:

ALC_TAT.2.1C Each development tool used for implementation shall be well-defined.

ALC_TAT.2.2C The documentation of each development tool shall unambiguously define the

meaning of all statements as well as all conventions and directives used in

the implementation.

Class ALC: Life-cycle support

Page 152 of 232 Version 3.1 July 2009

ALC_TAT.2.3C The documentation of each development tool shall unambiguously define the

meaning of all implementation-dependent options.

Evaluator action elements:

ALC_TAT.2.1E The evaluator shall confirm that the information provided meets all

requirements for content and presentation of evidence.

ALC_TAT.2.2E The evaluator shall confirm that the implementation standards have

been applied.

ALC_TAT.3 Compliance with implementation standards - all parts

Dependencies: ADV_IMP.1 Implementation representation of the

TSF

Developer action elements:

ALC_TAT.3.1D The developer shall provide the documentation identifying each development

tool being used for the TOE.

ALC_TAT.3.2D The developer shall document and provide the selected implementation-

dependent options of each development tool.

ALC_TAT.3.3D The developer shall describe and provide the implementation standards that

are being applied by the developer and by any third-party providers for

all parts of the TOE.

Content and presentation elements:

ALC_TAT.3.1C Each development tool used for implementation shall be well-defined.

ALC_TAT.3.2C The documentation of each development tool shall unambiguously define the

meaning of all statements as well as all conventions and directives used in

the implementation.

ALC_TAT.3.3C The documentation of each development tool shall unambiguously define the

meaning of all implementation-dependent options.

Evaluator action elements:

ALC_TAT.3.1E The evaluator shall confirm that the information provided meets all

requirements for content and presentation of evidence.

ALC_TAT.3.2E The evaluator shall confirm that the implementation standards have been

applied.

Class ATE: Tests

July 2009 Version 3.1 Page 153 of 232

15 Class ATE: Tests

400 The class “Tests” encompasses four families: Coverage (ATE_COV), Depth

(ATE_DPT), Independent testing (ATE_IND) (i.e. functional testing

performed by evaluators), and Functional tests (ATE_FUN). Testing

provides assurance that the TSF behaves as described (in the functional

specification, TOE design, and implementation representation).

401 The emphasis in this class is on confirmation that the TSF operates according

to its design descriptions. This class does not address penetration testing,

which is based upon an analysis of the TSF that specifically seeks to identify

vulnerabilities in the design and implementation of the TSF. Penetration

testing is addressed separately as an aspect of vulnerability assessment in the

AVA: Vulnerability assessment class.

402 The ATE: Tests class separates testing into developer testing and evaluator

testing. The Coverage (ATE_COV) and Depth (ATE_DPT) families address

the completeness of developer testing. Coverage (ATE_COV) addresses the

rigour with which the functional specification is tested; Depth (ATE_DPT)

addresses whether testing against other design descriptions (security

architecture, TOE design, implementation representation) is required.

403 Functional tests (ATE_FUN) addresses the performing of the tests by the

developer and how this testing should be documented. Finally, Independent

testing (ATE_IND) then addresses evaluator testing: whether the evaluator

should repeat part or all of the developer testing and how much independent

testing the evaluator should do.

404 Figure 14 shows the families within this class, and the hierarchy of

components within the families.

Figure 14 - ATE: Tests class decomposition

Class ATE: Tests

Page 154 of 232 Version 3.1 July 2009

15.1 Coverage (ATE_COV)

Objectives

405 This family establishes that the TSF has been tested against its functional

specification. This is achieved through an examination of developer evidence

of correspondence.

Component levelling

406 The components in this family are levelled on the basis of specification.

Application notes

ATE_COV.1 Evidence of coverage

Dependencies: ADV_FSP.2 Security-enforcing functional

specification

 ATE_FUN.1 Functional testing

Objectives

407 The objective of this component is to establish that some of the TSFIs have

been tested.

Application notes

408 In this component the developer shows how tests in the test documentation

correspond to TSFIs in the functional specification. This can be achieved by

a statement of correspondence, perhaps using a table.

Developer action elements:

ATE_COV.1.1D The developer shall provide evidence of the test coverage.

Content and presentation elements:

ATE_COV.1.1C The evidence of the test coverage shall show the correspondence between

the tests in the test documentation and the TSFIs in the functional

specification.

Evaluator action elements:

ATE_COV.1.1E The evaluator shall confirm that the information provided meets all

requirements for content and presentation of evidence.

Class ATE: Tests

July 2009 Version 3.1 Page 155 of 232

ATE_COV.2 Analysis of coverage

Dependencies: ADV_FSP.2 Security-enforcing functional

specification

 ATE_FUN.1 Functional testing

Objectives

409 The objective of this component is to confirm that all of the TSFIs have been

tested.

Application notes

410 In this component the developer confirms that tests in the test documentation

correspond to all of the TSFIs in the functional specification. This can be

achieved by a statement of correspondence, perhaps using a table, but the

developer also provides an analysis of the test coverage.

Developer action elements:

ATE_COV.2.1D The developer shall provide an analysis of the test coverage.

Content and presentation elements:

ATE_COV.2.1C The analysis of the test coverage shall demonstrate the correspondence

between the tests in the test documentation and the TSFIs in the functional

specification.

ATE_COV.2.2C The analysis of the test coverage shall demonstrate that all TSFIs in the

functional specification have been tested.

Evaluator action elements:

ATE_COV.2.1E The evaluator shall confirm that the information provided meets all

requirements for content and presentation of evidence.

Class ATE: Tests

Page 156 of 232 Version 3.1 July 2009

ATE_COV.3 Rigorous analysis of coverage

Dependencies: ADV_FSP.2 Security-enforcing functional

specification

 ATE_FUN.1 Functional testing

Objectives

411 In this component, the objective is to confirm that the developer performed

exhaustive tests of all interfaces in the functional specification.

412 The objective of this component is to confirm that all parameters of all of the

TSFIs have been tested.

Application notes

413 In this component the developer is required to show how tests in the test

documentation correspond to all of the TSFIs in the functional specification.

This can be achieved by a statement of correspondence, perhaps using a

table, but in addition the developer is required to demonstrate that the tests

exercise all of the parameters of all TSFIs. This additional requirement

includes bounds testing (i.e. verifying that errors are generated when stated

limits are exceeded) and negative testing (e.g. when access is given to User

A, verifying not only that User A now has access, but also that User B did

not suddenly gain access). This kind of testing is not, strictly speaking,

exhaustive because not every possible value of the parameters is expected to

be checked.

Developer action elements:

ATE_COV.3.1D The developer shall provide an analysis of the test coverage.

Content and presentation elements:

ATE_COV.3.1C The analysis of the test coverage shall demonstrate the correspondence

between the tests in the test documentation and the TSFIs in the functional

specification.

ATE_COV.3.2C The analysis of the test coverage shall demonstrate that all TSFIs in the

functional specification have been completely tested.

Evaluator action elements:

ATE_COV.3.1E The evaluator shall confirm that the information provided meets all

requirements for content and presentation of evidence.

Class ATE: Tests

July 2009 Version 3.1 Page 157 of 232

15.2 Depth (ATE_DPT)

Objectives

414 The components in this family deal with the level of detail to which the TSF

is tested by the developer. Testing of the TSF is based upon increasing depth

of information derived from additional design representations and

descriptions (TOE design, implementation representation, and security

architecture description).

415 The objective is to counter the risk of missing an error in the development of

the TOE. Testing that exercises specific internal interfaces can provide

assurance not only that the TSF exhibits the desired external security

behaviour, but also that this behaviour stems from correctly operating

internal functionality.

Component levelling

416 The components in this family are levelled on the basis of increasing detail

provided in the TSF representations, from the TOE design to the

implementation representation. This levelling reflects the TSF

representations presented in the ADV class.

Application notes

417 The TOE design describes the internal components (e.g. subsystems) and,

perhaps, modules of the TSF, together with a description of the interfaces

among these components and modules. Evidence of testing of this TOE

design must show that the internal interfaces have been exercised and seen to

behave as described. This may be achieved through testing via the external

interfaces of the TSF, or by testing of the TOE subsystem or module

interfaces in isolation, perhaps employing a test harness. In cases where

some aspects of an internal interface cannot be tested via the external

interfaces, there should either be justification that these aspects need not be

tested, or the internal interface needs to be tested directly. In the latter case

the TOE design needs to be sufficiently detailed in order to facilitate direct

testing.

418 In cases where the description of the TSF's architectural soundness (in

Security Architecture (ADV_ARC)) cites specific mechanisms, the tests

performed by the developer must show that the mechanisms have been

exercised and seen to behave as described.

419 At the highest component of this family, the testing is performed not only

against the TOE design, but also against the implementation representation.

Class ATE: Tests

Page 158 of 232 Version 3.1 July 2009

ATE_DPT.1 Testing: basic design

Dependencies: ADV_ARC.1 Security architecture description

 ADV_TDS.2 Architectural design

 ATE_FUN.1 Functional testing

Objectives

420 The subsystem descriptions of the TSF provide a high-level description of

the internal workings of the TSF. Testing at the level of the TOE subsystems

provides assurance that the TSF subsystems behave and interact as described

in the TOE design and the security architecture description.

Developer action elements:

ATE_DPT.1.1D The developer shall provide the analysis of the depth of testing.

Content and presentation elements:

ATE_DPT.1.1C The analysis of the depth of testing shall demonstrate the

correspondence between the tests in the test documentation and the TSF

subsystems in the TOE design.

ATE_DPT.1.2C The analysis of the depth of testing shall demonstrate that all TSF

subsystems in the TOE design have been tested.

Evaluator action elements:

ATE_DPT.1.1E The evaluator shall confirm that the information provided meets all

requirements for content and presentation of evidence.

ATE_DPT.2 Testing: security enforcing modules

Dependencies: ADV_ARC.1 Security architecture description

 ADV_TDS.3 Basic modular design

 ATE_FUN.1 Functional testing

Objectives

421 The subsystem and module descriptions of the TSF provide a high-level

description of the internal workings, and a description of the interfaces of the

SFR-enforcing modules, of the TSF. Testing at this level of TOE description

provides assurance that the TSF subsystems and SFR-enforcing modules

behave and interact as described in the TOE design and the security

architecture description.

Developer action elements:

ATE_DPT.2.1D The developer shall provide the analysis of the depth of testing.

Class ATE: Tests

July 2009 Version 3.1 Page 159 of 232

Content and presentation elements:

ATE_DPT.2.1C The analysis of the depth of testing shall demonstrate the correspondence

between the tests in the test documentation and the TSF subsystems and

SFR-enforcing modules in the TOE design.

ATE_DPT.2.2C The analysis of the depth of testing shall demonstrate that all TSF

subsystems in the TOE design have been tested.

ATE_DPT.2.3C The analysis of the depth of testing shall demonstrate that the SFR-

enforcing modules in the TOE design have been tested.

Evaluator action elements:

ATE_DPT.2.1E The evaluator shall confirm that the information provided meets all

requirements for content and presentation of evidence.

ATE_DPT.3 Testing: modular design

Dependencies: ADV_ARC.1 Security architecture description

 ADV_TDS.4 Semiformal modular design

 ATE_FUN.1 Functional testing

Objectives

422 The subsystem and module descriptions of the TSF provide a high-level

description of the internal workings, and a description of the interfaces of the

modules, of the TSF. Testing at this level of TOE description provides

assurance that the TSF subsystems and modules behave and interact as

described in the TOE design and the security architecture description.

Developer action elements:

ATE_DPT.3.1D The developer shall provide the analysis of the depth of testing.

Content and presentation elements:

ATE_DPT.3.1C The analysis of the depth of testing shall demonstrate the correspondence

between the tests in the test documentation and the TSF subsystems and

modules in the TOE design.

ATE_DPT.3.2C The analysis of the depth of testing shall demonstrate that all TSF

subsystems in the TOE design have been tested.

ATE_DPT.3.3C The analysis of the depth of testing shall demonstrate that all TSF modules

in the TOE design have been tested.

Evaluator action elements:

ATE_DPT.3.1E The evaluator shall confirm that the information provided meets all

requirements for content and presentation of evidence.

Class ATE: Tests

Page 160 of 232 Version 3.1 July 2009

ATE_DPT.4 Testing: implementation representation

Dependencies: ADV_ARC.1 Security architecture description

 ADV_TDS.4 Semiformal modular design

 ADV_IMP.1 Implementation representation of the

TSF

 ATE_FUN.1 Functional testing

Objectives

423 The subsystem and module descriptions of the TSF provide a high-level

description of the internal workings, and a description of the interfaces of the

modules, of the TSF. Testing at this level of TOE description provides

assurance that the TSF subsystems and modules behave and interact as

described in the TOE design and the security architecture description, and in

accordance with the implementation representation.

Developer action elements:

ATE_DPT.4.1D The developer shall provide the analysis of the depth of testing.

Content and presentation elements:

ATE_DPT.4.1C The analysis of the depth of testing shall demonstrate the correspondence

between the tests in the test documentation and the TSF subsystems and

modules in the TOE design.

ATE_DPT.4.2C The analysis of the depth of testing shall demonstrate that all TSF

subsystems in the TOE design have been tested.

ATE_DPT.4.3C The analysis of the depth of testing shall demonstrate that all modules in the

TOE design have been tested.

ATE_DPT.4.4C The analysis of the depth of testing shall demonstrate that the TSF

operates in accordance with its implementation representation.

Evaluator action elements:

ATE_DPT.4.1E The evaluator shall confirm that the information provided meets all

requirements for content and presentation of evidence.

Class ATE: Tests

July 2009 Version 3.1 Page 161 of 232

15.3 Functional tests (ATE_FUN)

Objectives

424 Functional testing performed by the developer provides assurance that the

tests in the test documentation are performed and documented correctly. The

correspondence of these tests to the design descriptions of the TSF is

achieved through the Coverage (ATE_COV) and Depth (ATE_DPT)

families.

425 This family contributes to providing assurance that the likelihood of

undiscovered flaws is relatively small.

426 The families Coverage (ATE_COV), Depth (ATE_DPT) and Functional tests

(ATE_FUN) are used in combination to define the evidence of testing to be

supplied by a developer. Independent functional testing by the evaluator is

specified by Independent testing (ATE_IND).

Component levelling

427 This family contains two components, the higher requiring that ordering

dependencies are analysed.

Application notes

428 Procedures for performing tests are expected to provide instructions for using

test programs and test suites, including the test environment, test conditions,

test data parameters and values. The test procedures should also show how

the test results are derived from the test inputs.

429 Ordering dependencies are relevant when the successful execution of a

particular test depends upon the existence of a particular state. For example,

this might require that test A be executed immediately before test B, since

the state resulting from the successful execution of test A is a prerequisite for

the successful execution of test B. Thus, failure of test B could be related to a

problem with the ordering dependencies. In the above example, test B could

fail because test C (rather than test A) was executed immediately before it, or

the failure of test B could be related to a failure of test A.

Class ATE: Tests

Page 162 of 232 Version 3.1 July 2009

ATE_FUN.1 Functional testing

Dependencies: ATE_COV.1 Evidence of coverage

Objectives

430 The objective is for the developer to demonstrate that the tests in the test

documentation are performed and documented correctly.

Developer action elements:

ATE_FUN.1.1D The developer shall test the TSF and document the results.

ATE_FUN.1.2D The developer shall provide test documentation.

Content and presentation elements:

ATE_FUN.1.1C The test documentation shall consist of test plans, expected test results

and actual test results.

ATE_FUN.1.2C The test plans shall identify the tests to be performed and describe the

scenarios for performing each test. These scenarios shall include any

ordering dependencies on the results of other tests.

ATE_FUN.1.3C The expected test results shall show the anticipated outputs from a

successful execution of the tests.

ATE_FUN.1.4C The actual test results shall be consistent with the expected test results.

Evaluator action elements:

ATE_FUN.1.1E The evaluator shall confirm that the information provided meets all

requirements for content and presentation of evidence.

Class ATE: Tests

July 2009 Version 3.1 Page 163 of 232

ATE_FUN.2 Ordered functional testing

Dependencies: ATE_COV.1 Evidence of coverage

Objectives

431 The objectives are for the developer to demonstrate that the tests in the test

documentation are performed and documented correctly, and to ensure that

testing is structured such as to avoid circular arguments about the correctness

of the interfaces being tested.

Application notes

432 Although the test procedures may state pre-requisite initial test conditions in

terms of ordering of tests, they may not provide a rationale for the ordering.

An analysis of test ordering is an important factor in determining the

adequacy of testing, as there is a possibility of faults being concealed by the

ordering of tests.

Developer action elements:

ATE_FUN.2.1D The developer shall test the TSF and document the results.

ATE_FUN.2.2D The developer shall provide test documentation.

Content and presentation elements:

ATE_FUN.2.1C The test documentation shall consist of test plans, expected test results and

actual test results.

ATE_FUN.2.2C The test plans shall identify the tests to be performed and describe the

scenarios for performing each test. These scenarios shall include any

ordering dependencies on the results of other tests.

ATE_FUN.2.3C The expected test results shall show the anticipated outputs from a successful

execution of the tests.

ATE_FUN.2.4C The actual test results shall be consistent with the expected test results.

ATE_FUN.2.5C The test documentation shall include an analysis of the test procedure

ordering dependencies.

Evaluator action elements:

ATE_FUN.2.1E The evaluator shall confirm that the information provided meets all

requirements for content and presentation of evidence.

Class ATE: Tests

Page 164 of 232 Version 3.1 July 2009

15.4 Independent testing (ATE_IND)

Objectives

433 The objectives of this family are built upon the assurances achieved in the

ATE_FUN, ATE_COV, and ATE_DPT families by verifying the developer

testing and performing additional tests by the evaluator.

Component levelling

434 Levelling is based upon the amount of developer test documentation and test

support and the amount of evaluator testing.

Application notes

435 This family deals with the degree to which there is independent functional

testing of the TSF. Independent functional testing may take the form of

repeating the developer's functional tests (in whole or in part) or of extending

the scope or the depth of the developer's tests. These activities are

complementary, and an appropriate mix must be planned for each TOE,

which takes into account the availability and coverage of test results, and the

functional complexity of the TSF.

436 Sampling of developer tests is intended to provide confirmation that the

developer has carried out his planned test programme on the TSF, and has

correctly recorded the results. The size of sample selected will be influenced

by the detail and quality of the developer's functional test results. The

evaluator will also need to consider the scope for devising additional tests,

and the relative benefit that may be gained from effort in these two areas. It

is recognised that repetition of all developer tests may be feasible and

desirable in some cases, but may be very arduous and less productive in

others. The highest component in this family should therefore be used with

caution. Sampling will address the whole range of test results available,

including those supplied to meet the requirements of both Coverage

(ATE_COV) and Depth (ATE_DPT).

437 There is also a need to consider the different configurations of the TOE that

are included within the evaluation. The evaluator will need to assess the

applicability of the results provided, and to plan his own testing accordingly.

438 The suitability of the TOE for testing is based on the access to the TOE, and

the supporting documentation and information required (including any test

software or tools) to run tests. The need for such support is addressed by the

dependencies to other assurance families.

439 Additionally, suitability of the TOE for testing may be based on other

considerations. For example, the version of the TOE submitted by the

developer may not be the final version.

Class ATE: Tests

July 2009 Version 3.1 Page 165 of 232

440 The term interfaces refers to interfaces described in the functional

specification and TOE design, and parameters passed through invocations

identified in the implementation representation. The exact set of interfaces to

be used is selected through Coverage (ATE_COV) and the Depth

(ATE_DPT) components.

441 References to a subset of the interfaces are intended to allow the evaluator to

design an appropriate set of tests which is consistent with the objectives of

the evaluation being conducted.

ATE_IND.1 Independent testing - conformance

Dependencies: ADV_FSP.1 Basic functional specification

 AGD_OPE.1 Operational user guidance

 AGD_PRE.1 Preparative procedures

Objectives

442 In this component, the objective is to demonstrate that the TOE operates in

accordance with its design representations and guidance documents.

Application notes

443 This component does not address the use of developer test results. It is

applicable where such results are not available, and also in cases where the

developer's testing is accepted without validation. The evaluator is required

to devise and conduct tests with the objective of confirming that the TOE

operates in accordance with its design representations, including but not

limited to the functional specification. The approach is to gain confidence in

correct operation through representative testing, rather than to conduct every

possible test. The extent of testing to be planned for this purpose is a

methodology issue, and needs to be considered in the context of a particular

TOE and the balance of other evaluation activities.

Developer action elements:

ATE_IND.1.1D The developer shall provide the TOE for testing.

Content and presentation elements:

ATE_IND.1.1C The TOE shall be suitable for testing.

Evaluator action elements:

ATE_IND.1.1E The evaluator shall confirm that the information provided meets all

requirements for content and presentation of evidence.

ATE_IND.1.2E The evaluator shall test a subset of the TSF to confirm that the TSF

operates as specified.

Class ATE: Tests

Page 166 of 232 Version 3.1 July 2009

ATE_IND.2 Independent testing - sample

Dependencies: ADV_FSP.2 Security-enforcing functional

specification

 AGD_OPE.1 Operational user guidance

 AGD_PRE.1 Preparative procedures

 ATE_COV.1 Evidence of coverage

 ATE_FUN.1 Functional testing

Objectives

444 In this component, the objective is to demonstrate that the TOE operates in

accordance with its design representations and guidance documents.

Evaluator testing confirms that the developer performed some tests of some

interfaces in the functional specification.

Application notes

445 The intent is that the developer should provide the evaluator with materials

necessary for the efficient reproduction of developer tests. This may include

such things as machine-readable test documentation, test programs, etc.

446 This component contains a requirement that the evaluator has available test

results from the developer to supplement the programme of testing. The

evaluator will repeat a sample of the developer's tests to gain confidence in

the results obtained. Having established such confidence the evaluator will

build upon the developer's testing by conducting additional tests that exercise

the TOE in a different manner. By using a platform of validated developer

test results the evaluator is able to gain confidence that the TOE operates

correctly in a wider range of conditions than would be possible purely using

the developer's own efforts, given a fixed level of resource. Having gained

confidence that the developer has tested the TOE, the evaluator will also

have more freedom, where appropriate, to concentrate testing in areas where

examination of documentation or specialist knowledge has raised particular

concerns.

Developer action elements:

ATE_IND.2.1D The developer shall provide the TOE for testing.

Content and presentation elements:

ATE_IND.2.1C The TOE shall be suitable for testing.

ATE_IND.2.2C The developer shall provide an equivalent set of resources to those that

were used in the developer's functional testing of the TSF.

Evaluator action elements:

ATE_IND.2.1E The evaluator shall confirm that the information provided meets all

requirements for content and presentation of evidence.

ATE_IND.2.2E The evaluator shall execute a sample of tests in the test documentation to

verify the developer test results.

ATE_IND.2.3E The evaluator shall test a subset of the TSF to confirm that the TSF operates

as specified.

Class ATE: Tests

July 2009 Version 3.1 Page 167 of 232

ATE_IND.3 Independent testing - complete

Dependencies: ADV_FSP.4 Complete functional specification

 AGD_OPE.1 Operational user guidance

 AGD_PRE.1 Preparative procedures

 ATE_COV.1 Evidence of coverage

 ATE_FUN.1 Functional testing

Objectives

447 In this component, the objective is to demonstrate that the TOE operates in

accordance with its design representations and guidance documents.

Evaluator testing includes repeating all of the developer tests.

Application notes

448 The intent is that the developer should provide the evaluator with materials

necessary for the efficient reproduction of developer tests. This may include

such things as machine-readable test documentation, test programs, etc.

449 In this component the evaluator must repeat all of the developer's tests as

part of the programme of testing. As in the previous component the evaluator

will also conduct tests that aim to exercise the TSF in a different manner

from that achieved by the developer. In cases where developer testing has

been exhaustive, there may remain little scope for this.

Developer action elements:

ATE_IND.3.1D The developer shall provide the TOE for testing.

Content and presentation elements:

ATE_IND.3.1C The TOE shall be suitable for testing.

ATE_IND.3.2C The developer shall provide an equivalent set of resources to those that were

used in the developer's functional testing of the TSF.

Evaluator action elements:

ATE_IND.3.1E The evaluator shall confirm that the information provided meets all

requirements for content and presentation of evidence.

ATE_IND.3.2E The evaluator shall execute all tests in the test documentation to verify the

developer test results.

ATE_IND.3.3E The evaluator shall test the TSF to confirm that the entire TSF operates as

specified.

Class AVA: Vulnerability assessment

Page 168 of 232 Version 3.1 July 2009

16 Class AVA: Vulnerability assessment

450 The AVA: Vulnerability assessment class addresses the possibility of

exploitable vulnerabilities introduced in the development or the operation of

the TOE.

451 Figure 15 shows the families within this class, and the hierarchy of

components within the families.

Figure 15 - AVA: Vulnerability assessment class decomposition

Application notes

452 Generally, the vulnerability assessment activity covers various vulnerabilities

in the development and operation of the TOE. Development vulnerabilities

take advantage of some property of the TOE which was introduced during its

development, e.g. defeating the TSF self protection through tampering, direct

attack or monitoring of the TSF, defeating the TSF domain separation

through monitoring or direct attack the TSF, or defeating non-bypassability

through circumventing (bypassing) the TSF. Operational vulnerabilities take

advantage of weaknesses in non-technical countermeasures to violate the

TOE SFRs, e.g. misuse or incorrect configuration. Misuse investigates

whether the TOE can be configured or used in a manner that is insecure, but

that an administrator or user of the TOE would reasonably believe to be

secure.

453 Assessment of development vulnerabilities is covered by the assurance

family AVA_VAN. Basically, all development vulnerabilities can be

considered in the context of AVA_VAN due to the fact, that this family

allows application of a wide range of assessment methodologies being

unspecific to the kind of an attack scenario. These unspecific assessment

methodologies comprise, among other, also the specific methodologies for

those TSF where covert channels are to be considered (a channel capacity

estimation can be done using informal engineering measurements, as well as

actual test measurements) or can be overcome by the use of sufficient

resources in the form of a direct attack (underlying technical concept of those

TSF is based on probabilistic or permutational mechanisms; a qualification

of their security behaviour and the effort required to overcome them can be

made using a quantitative or statistical analysis).

454 If there are security objectives specified in the ST to either to prevent one

user of the TOE from observing activity associated with another user of the

TOE, or to ensure that information flows cannot be used to achieve enforced

illicit data signals, covert channel analysis should be considered during the

conduct of the vulnerability analysis. This is often reflected by the inclusion

of Unobservability (FPR_UNO) and multilevel access control policies

specified through Access control policy (FDP_ACC) and/or Information

flow control policy (FDP_IFC) requirements in the ST.

Class AVA: Vulnerability assessment

July 2009 Version 3.1 Page 169 of 232

16.1 Vulnerability analysis (AVA_VAN)

Objectives

455 Vulnerability analysis is an assessment to determine whether potential

vulnerabilities identified, during the evaluation of the development and

anticipated operation of the TOE or by other methods (e.g. by flaw

hypotheses or quantitative or statistical analysis of the security behaviour of

the underlying security mechanisms), could allow attackers to violate the

SFRs.

456 Vulnerability analysis deals with the threats that an attacker will be able to

discover flaws that will allow unauthorised access to data and functionality,

allow the ability to interfere with or alter the TSF, or interfere with the

authorised capabilities of other users.

Component levelling

457 Levelling is based on an increasing rigour of vulnerability analysis by the

evaluator and increased levels of attack potential required by an attacker to

identify and exploit the potential vulnerabilities.

AVA_VAN.1 Vulnerability survey

Dependencies: ADV_FSP.1 Basic functional specification

 AGD_OPE.1 Operational user guidance

 AGD_PRE.1 Preparative procedures

Objectives

458 A vulnerability survey of information available in the public domain is

performed by the evaluator to ascertain potential vulnerabilities that may be

easily found by an attacker.

459 The evaluator performs penetration testing, to confirm that the potential

vulnerabilities cannot be exploited in the operational environment for the

TOE. Penetration testing is performed by the evaluator assuming an attack

potential of Basic.

Developer action elements:

AVA_VAN.1.1D The developer shall provide the TOE for testing.

Content and presentation elements:

AVA_VAN.1.1C The TOE shall be suitable for testing.

Evaluator action elements:

AVA_VAN.1.1E The evaluator shall confirm that the information provided meets all

requirements for content and presentation of evidence.

Class AVA: Vulnerability assessment

Page 170 of 232 Version 3.1 July 2009

AVA_VAN.1.2E The evaluator shall perform a search of public domain sources to

identify potential vulnerabilities in the TOE.

AVA_VAN.1.3E The evaluator shall conduct penetration testing, based on the identified

potential vulnerabilities, to determine that the TOE is resistant to

attacks performed by an attacker possessing Basic attack potential.

AVA_VAN.2 Vulnerability analysis

Dependencies: ADV_ARC.1 Security architecture description

 ADV_FSP.2 Security-enforcing functional

specification

 ADV_TDS.1 Basic design

 AGD_OPE.1 Operational user guidance

 AGD_PRE.1 Preparative procedures

Objectives

460 A vulnerability analysis is performed by the evaluator to ascertain the

presence of potential vulnerabilities.

461 The evaluator performs penetration testing, to confirm that the potential

vulnerabilities cannot be exploited in the operational environment for the

TOE. Penetration testing is performed by the evaluator assuming an attack

potential of Basic.

Developer action elements:

AVA_VAN.2.1D The developer shall provide the TOE for testing.

Content and presentation elements:

AVA_VAN.2.1C The TOE shall be suitable for testing.

Evaluator action elements:

AVA_VAN.2.1E The evaluator shall confirm that the information provided meets all

requirements for content and presentation of evidence.

AVA_VAN.2.2E The evaluator shall perform a search of public domain sources to identify

potential vulnerabilities in the TOE.

AVA_VAN.2.3E The evaluator shall perform an independent vulnerability analysis of the

TOE using the guidance documentation, functional specification, TOE

design and security architecture description to identify potential

vulnerabilities in the TOE.

AVA_VAN.2.4E The evaluator shall conduct penetration testing, based on the identified

potential vulnerabilities, to determine that the TOE is resistant to attacks

performed by an attacker possessing Basic attack potential.

Class AVA: Vulnerability assessment

July 2009 Version 3.1 Page 171 of 232

AVA_VAN.3 Focused vulnerability analysis

Dependencies: ADV_ARC.1 Security architecture description

 ADV_FSP.4 Complete functional specification

 ADV_TDS.3 Basic modular design

 ADV_IMP.1 Implementation representation of the

TSF

 AGD_OPE.1 Operational user guidance

 AGD_PRE.1 Preparative procedures

 ATE_DPT.1 Testing: basic design

Objectives

462 A vulnerability analysis is performed by the evaluator to ascertain the

presence of potential vulnerabilities.

463 The evaluator performs penetration testing, to confirm that the potential

vulnerabilities cannot be exploited in the operational environment for the

TOE. Penetration testing is performed by the evaluator assuming an attack

potential of Enhanced-Basic.

Developer action elements:

AVA_VAN.3.1D The developer shall provide the TOE for testing.

Content and presentation elements:

AVA_VAN.3.1C The TOE shall be suitable for testing.

Evaluator action elements:

AVA_VAN.3.1E The evaluator shall confirm that the information provided meets all

requirements for content and presentation of evidence.

AVA_VAN.3.2E The evaluator shall perform a search of public domain sources to identify

potential vulnerabilities in the TOE.

AVA_VAN.3.3E The evaluator shall perform an independent, focused vulnerability analysis

of the TOE using the guidance documentation, functional specification, TOE

design, security architecture description and implementation

representation to identify potential vulnerabilities in the TOE.

AVA_VAN.3.4E The evaluator shall conduct penetration testing, based on the identified

potential vulnerabilities, to determine that the TOE is resistant to attacks

performed by an attacker possessing Enhanced-Basic attack potential.

Class AVA: Vulnerability assessment

Page 172 of 232 Version 3.1 July 2009

AVA_VAN.4 Methodical vulnerability analysis

Dependencies: ADV_ARC.1 Security architecture description

 ADV_FSP.4 Complete functional specification

 ADV_TDS.3 Basic modular design

 ADV_IMP.1 Implementation representation of the

TSF

 AGD_OPE.1 Operational user guidance

 AGD_PRE.1 Preparative procedures

 ATE_DPT.1 Testing: basic design

Objectives

464 A methodical vulnerability analysis is performed by the evaluator to

ascertain the presence of potential vulnerabilities.

465 The evaluator performs penetration testing, to confirm that the potential

vulnerabilities cannot be exploited in the operational environment for the

TOE. Penetration testing is performed by the evaluator assuming an attack

potential of Moderate.

Developer action elements:

AVA_VAN.4.1D The developer shall provide the TOE for testing.

Content and presentation elements:

AVA_VAN.4.1C The TOE shall be suitable for testing.

Evaluator action elements:

AVA_VAN.4.1E The evaluator shall confirm that the information provided meets all

requirements for content and presentation of evidence.

AVA_VAN.4.2E The evaluator shall perform a search of public domain sources to identify

potential vulnerabilities in the TOE.

AVA_VAN.4.3E The evaluator shall perform an independent, methodical vulnerability

analysis of the TOE using the guidance documentation, functional

specification, TOE design, security architecture description and

implementation representation to identify potential vulnerabilities in the

TOE.

AVA_VAN.4.4E The evaluator shall conduct penetration testing based on the identified

potential vulnerabilities to determine that the TOE is resistant to attacks

performed by an attacker possessing Moderate attack potential.

Class AVA: Vulnerability assessment

July 2009 Version 3.1 Page 173 of 232

AVA_VAN.5 Advanced methodical vulnerability analysis

Dependencies: ADV_ARC.1 Security architecture description

 ADV_FSP.4 Complete functional specification

 ADV_TDS.3 Basic modular design

 ADV_IMP.1 Implementation representation of the

TSF

 AGD_OPE.1 Operational user guidance

 AGD_PRE.1 Preparative procedures

 ATE_DPT.1 Testing: basic design

Objectives

466 A methodical vulnerability analysis is performed by the evaluator to

ascertain the presence of potential vulnerabilities.

467 The evaluator performs penetration testing, to confirm that the potential

vulnerabilities cannot be exploited in the operational environment for the

TOE. Penetration testing is performed by the evaluator assuming an attack

potential of High.

Developer action elements:

AVA_VAN.5.1D The developer shall provide the TOE for testing.

Content and presentation elements:

AVA_VAN.5.1C The TOE shall be suitable for testing.

Evaluator action elements:

AVA_VAN.5.1E The evaluator shall confirm that the information provided meets all

requirements for content and presentation of evidence.

AVA_VAN.5.2E The evaluator shall perform a search of public domain sources to identify

potential vulnerabilities in the TOE.

AVA_VAN.5.3E The evaluator shall perform an independent, methodical vulnerability

analysis of the TOE using the guidance documentation, functional

specification, TOE design, security architecture description and

implementation representation to identify potential vulnerabilities in the

TOE.

AVA_VAN.5.4E The evaluator shall conduct penetration testing based on the identified

potential vulnerabilities to determine that the TOE is resistant to attacks

performed by an attacker possessing High attack potential.

Class ACO: Composition

Page 174 of 232 Version 3.1 July 2009

17 Class ACO: Composition

468 The class ACO: Composition encompasses five families. These families

specify assurance requirements that are designed to provide confidence that a

composed TOE will operate securely when relying upon security

functionality provided by previously evaluated software, firmware or

hardware components.

469 Composition involves taking two or more IT entities successfully evaluated

against CC security assurance requirements packages (base components and

dependent components, see Annex B) and combining them for use, with no

further development of either IT entity. The development of additional IT

entities is not included (entities that have not previously been the subject of a

component evaluation). The composed TOE forms a new product that can be

installed and integrated into any specific environment instance that meets the

objectives for the environment.

470 This approach does not provide an alternative approach for the evaluation of

components. Composition under ACO provides a composed TOE integrator

a method, which can be used as an alternative to other assurance levels

specified in the CC, to gain confidence in a TOE that is the combination of

two or more successfully evaluated components without having to re-

evaluate the composite TSF. (The composed TOE integrator is referred to as

“developer” throughout the ACO class, with any references to the developer

of the base or dependent components clarified as such.)

471 Composed Assurance Packages, as defined in Chapters 9 and 7.3, is an

assurance scale for composed TOEs. This assurance scale is required in

addition to EALs because to combine components evaluated against EALs

and gain a resulting EAL assurance, all SARs in the EAL have to be applied

to the composed TOE. Although reuse can be made of the component TOE

evaluation results, there are often additional aspects of the components that

have to be considered in the composed TOE, as described in Annex B.3. Due

to the different parties involved in a composed TOE evaluation activity it is

generally not possible to gain all necessary evidence about these additional

aspects of the components to apply the appropriate EAL. Hence, CAPs have

been defined to address the issue of combining evaluated components and

gaining a meaningful result. This is discussed further in Annex B.

Class ACO: Composition

July 2009 Version 3.1 Page 175 of 232

Figure 16 - Relationship between ACO families and interactions between

components

472 In a composed TOE it is generally the case that one component relies on the

services provided by another component. The component requiring services

is termed the dependent component and the component providing the

services is termed the base component. This interaction and distinct is

discussed further in Annex B. It is assumed to be the case that the developer

of the dependent component is supporting the composed TOE evaluation in

some manner (as developer, sponsor, or just cooperating and providing the

necessary evaluation evidence from the dependent component evaluation)

The ACO components included in the CAP assurance packages should not

be used as augmentations for component TOE evaluations, as this would

provide no meaningful assurance for the component.

473 The families within the ACO class interact in a similar manner to the ADV,

ATE and AVA classes in a component TOE evaluation and hence leverage

from the specification of requirements from those classes where applicable.

There are however a few items specific to composed TOE evaluations. To

determine how the components interact and identify any deviations from the

evaluations of the components, the dependencies that the dependent

component has upon the underlying base component are identified

(ACO_REL). This reliance on the base component is specified in terms of

the interfaces through which the dependent component makes calls for

services in support of the dependent component SFRs. The interfaces, and at

higher levels the supporting behaviour, provided by the base component in

response to those service requests are analysed in ACO_DEV. The

ACO_DEV family is based on the ADV_TDS family, as at the simplest level

the TSF of each component can be viewed as a subsystem of the composed

TOE, with additional portions of each component seen as additional

subsystems. Therefore, the interfaces between the components are seen as

interactions between subsystems in a component TOE evaluation.

Class ACO: Composition

Page 176 of 232 Version 3.1 July 2009

474 It is possible that the interfaces and supporting behaviour descriptions

provided for ACO_DEV are incomplete. This is determined during the

conduct of ACO_COR. The ACO_COR family takes the outputs of

ACO_REL and ACO_DEV and determines whether the components are

being used in their evaluated configuration and identifies where any

specifications are incomplete, which are then identified as inputs into testing

(ACO_CTT) and vulnerability analysis (ACO_VUL) activities of the

composed TOE.

475 Testing of the composed TOE is performed to determine that the composed

TOE exhibits the expected behaviour as determined by the composed TOE

SFRs, and at higher levels demonstrates the compatibility of the interfaces

between the components of the composed TOE.

476 The vulnerability analysis of the composed TOE leverages from the outputs

of the vulnerability analysis of the component evaluations. The composed

TOE vulnerability analysis considers any residual vulnerabilities from the

component evaluations to determine that the residual vulnerabilities are not

applicable to the composed TOE. A search of publicly available information

relating to the components is also performed to identify any issues reported

in the components since the completion of the respective evaluations.

477 The interaction between the ACO families is depicted in Figure 17 below.

This shows by solid arrowed lines where the evidence and understanding

gained in one family feeds into the next activity and the dashed arrows

identify where an activity explicitly traces back to the composed TOE SFRs,

as described above.

Figure 17 - Relationship between ACO families

Class ACO: Composition

July 2009 Version 3.1 Page 177 of 232

478 Further discussion of the definition and interactions within composed TOEs

is provided in Annex B.

479 Figure 18 shows the families within this class, and the hierarchy of

components within the families.

Figure 18 - ACO: Composition class decomposition

Class ACO: Composition

Page 178 of 232 Version 3.1 July 2009

17.1 Composition rationale (ACO_COR)

Objectives

480 This family addresses the requirement to demonstrate that the base

component can provide an appropriate level of assurance for use in

composition.

Component levelling

481 There is only a single component in this family.

ACO_COR.1 Composition rationale

Dependencies: ACO_DEV.1 Functional Description

 ALC_CMC.1 Labelling of the TOE

 ACO_REL.1 Basic reliance information

Developer action elements:

ACO_COR.1.1D The developer shall provide composition rationale for the base

component.

Content and presentation elements:

ACO_COR.1.1C The composition rationale shall demonstrate that a level of assurance at

least as high as that of the dependent component has been obtained for

the support functionality of the base component, when the base

component is configured as required to support the TSF of the

dependent component.

Evaluator action elements:

ACO_COR.1.1E The evaluator shall confirm that the information meets all requirements

for content and presentation of evidence.

Class ACO: Composition

July 2009 Version 3.1 Page 179 of 232

17.2 Development evidence (ACO_DEV)

Objectives

482 This family sets out requirements for a specification of the base component

in increasing levels of detail. Such information is required to gain confidence

that the appropriate security functionality is provided to support the

requirements of the dependent component (as identified in the reliance

information).

Component levelling

483 The components are levelled on the basis of increasing amounts of detail

about the interfaces provided, and how they are implemented.

Application notes

484 The TSF of the base component is often defined without knowledge of the

dependencies of the possible applications with which it may by composed.

The TSF of this base component is defined to include all parts of the base

component that have to be relied upon for enforcement of the base

component SFRs. This will include all parts of the base component required

to implement the base component SFRs.

485 The functional specification of the base component will describe the TSFI in

terms of the interfaces the base component provides to allow an external

entity to invoke operations of the TSF. This includes interfaces to the human

user to permit interaction with the operation of the TSF invoking SFRs and

also interfaces allowing an external IT entity to make calls into the TSF.

486 The functional specification only provides a description of what the TSF

provides at its interface and the means by which that TSF functionality are

invoked. Therefore, the functional specification does not necessarily provide

a complete interface specification of all possible interfaces available between

an external entity and the base component. It does not include what the TSF

expects/requires from the operational environment. The description of what a

dependent component TSF relies upon of a base component is considered in

Reliance of dependent component (ACO_REL) and the development

information evidence provides a response to the interfaces specified.

487 The development information evidence includes a specification of the base

component. This may be the evidence used during evaluation of the base

component to satisfy the ADV requirements, or may be another form of

evidence produced by either the base component developer or the composed

TOE developer. This specification of the base component is used during

Development evidence (ACO_DEV) to gain confidence that the appropriate

security functionality is provided to support the requirements of the

dependent component. The level of detail required of this evidence increases

to reflect the level of required assurance in the composed TOE. This is

expected to broadly reflect the increasing confidence gained from the

application of the assurance packages to the components. The evaluator

determines that this description of the base component is consistent with the

reliance information provided for the dependent component.

Class ACO: Composition

Page 180 of 232 Version 3.1 July 2009

ACO_DEV.1 Functional Description

Dependencies: ACO_REL.1 Basic reliance information

Objectives

488 A description of the interfaces in the base component, on which the

dependent component relies, is required. This is examined to determine

whether or not it is consistent with the description of interfaces on which the

dependent component relies, as provided in the reliance information.

Developer action elements:

ACO_DEV.1.1D The developer shall provide development information for the base

component.

Content and presentation elements:

ACO_DEV.1.1C The development information shall describe the purpose of each

interface of the base component used in the composed TOE.

ACO_DEV.1.2C The development information shall show correspondence between the

interfaces, used in the composed TOE, of the base component and the

dependent component to support the TSF of the dependent component.

Evaluator action elements:

ACO_DEV.1.1E The evaluator shall confirm that the information meets all requirements

for content and presentation of evidence.

ACO_DEV.1.2E The evaluator shall determine that the interface description provided is

consistent with the reliance information provided for the dependent

component.

Class ACO: Composition

July 2009 Version 3.1 Page 181 of 232

ACO_DEV.2 Basic evidence of design

Dependencies: ACO_REL.1 Basic reliance information

Objectives

489 A description of the interfaces in the base component, on which the

dependent component relies, is required. This is examined to determine

whether or not it is consistent with the description of interfaces on which the

dependent component relies, as provided in the reliance information.

490 In addition, the security behaviour of the base component that supports the

dependent component TSF is described.

Developer action elements:

ACO_DEV.2.1D The developer shall provide development information for the base

component.

Content and presentation elements:

ACO_DEV.2.1C The development information shall describe the purpose and method of use

of each interface of the base component used in the composed TOE.

ACO_DEV.2.2C The development information shall provide a high-level description of

the behaviour of the base component, which supports the enforcement of

the dependent component SFRs.

ACO_DEV.2.3C The development information shall show correspondence between the

interfaces, used in the composed TOE, of the base component and the

dependent component to support the TSF of the dependent component.

Evaluator action elements:

ACO_DEV.2.1E The evaluator shall confirm that the information meets all requirements for

content and presentation of evidence.

ACO_DEV.2.2E The evaluator shall determine that the interface description provided is

consistent with the reliance information provided for the dependent

component.

Class ACO: Composition

Page 182 of 232 Version 3.1 July 2009

ACO_DEV.3 Detailed evidence of design

Dependencies: ACO_REL.2 Reliance information

Objectives

491 A description of the interfaces in the base component, on which the

dependent component relies, is required. This is examined to determine

whether or not it is consistent with the description of interfaces on which the

dependent component relies, as provided in the reliance information.

492 The interface description of the architecture of the base component is

provided to enable the evaluator to determine whether or not that interface

formed part of the TSF of the base component.

Developer action elements:

ACO_DEV.3.1D The developer shall provide development information for the base

component.

Content and presentation elements:

ACO_DEV.3.1C The development information shall describe the purpose and method of use

of each interface of the base component used in the composed TOE.

ACO_DEV.3.2C The development information shall identify the subsystems of the base

component that provide interfaces of the base component used in the

composed TOE.

ACO_DEV.3.3C The development information shall provide a high-level description of the

behaviour of the base component subsystems, which support the

enforcement of the dependent component SFRs.

ACO_DEV.3.4C The development information shall provide a mapping from the

interfaces to the subsystems of the base component.

ACO_DEV.3.5C The development information shall show correspondence between the

interfaces, used in the composed TOE, of the base component and the

dependent component to support the TSF of the dependent component.

Evaluator action elements:

ACO_DEV.3.1E The evaluator shall confirm that the information meets all requirements for

content and presentation of evidence.

ACO_DEV.3.2E The evaluator shall determine that the interface description provided is

consistent with the reliance information provided for the dependent

component.

Class ACO: Composition

July 2009 Version 3.1 Page 183 of 232

17.3 Reliance of dependent component (ACO_REL)

Objectives

493 The purpose of this family is to provide evidence that describes the reliance

that a dependent component has upon the base component. This information

is useful to persons responsible for integrating the component with other

evaluated IT components to form the composed TOE, and for providing

insight into the security properties of the resulting composition.

494 This provides a description of the interface between the dependent and base

components of the composed TOE that may not have been analysed during

evaluation of the individual components, as the interfaces were not TSFIs of

the individual component TOEs.

Component levelling

495 The components in this family are levelled according to the amount of detail

provided in the description of the reliance by the dependent component upon

the base component.

Application notes

496 The Reliance of dependent component (ACO_REL) family considers the

interactions between the components where the dependent component relies

upon a service from the base component to support the operation of security

functionality of the dependent component. The interfaces into these services

of the base component may not have been considered during evaluation of

the base component because the service in the base component was not

considered security-relevant in the component evaluation, either because of

the inherent purpose of the service (e.g., adjust type font) or because

associated CC SFRs are not being claimed in the base component's ST (e.g.

the login interface when no FIA: Identification and authentication SFRs are

claimed). These interfaces into the base component are often viewed as

functional interfaces in the evaluation of the base component, and are in

addition to the security interfaces (TSFI) considered in the functional

specification.

497 In summary, the TSFIs described in the functional specification only include

the calls made into a TSF by external entities and responses to those calls.

Calls made by a TSF, which were not explicitly considered during evaluation

of the components, are described by the reliance information provided to

satisfy Reliance of dependent component (ACO_REL).

Class ACO: Composition

Page 184 of 232 Version 3.1 July 2009

ACO_REL.1 Basic reliance information

Dependencies: No dependencies.

Developer action elements:

ACO_REL.1.1D The developer shall provide reliance information of the dependent

component.

Content and presentation elements:

ACO_REL.1.1C The reliance information shall describe the functionality of the base

component hardware, firmware and/or software that is relied upon by

the dependent component TSF.

ACO_REL.1.2C The reliance information shall describe all interactions through which

the dependent component TSF requests services from the base

component.

ACO_REL.1.3C The reliance information shall describe how the dependent TSF protects

itself from interference and tampering by the base component.

Evaluator action elements:

ACO_REL.1.1E The evaluator shall confirm that the information provided meets all

requirements for content and presentation of evidence.

ACO_REL.2 Reliance information

Dependencies: No dependencies.

Developer action elements:

ACO_REL.2.1D The developer shall provide reliance information of the dependent

component.

Content and presentation elements:

ACO_REL.2.1C The reliance information shall describe the functionality of the base

component hardware, firmware and/or software that is relied upon by the

dependent component TSF.

ACO_REL.2.2C The reliance information shall describe all interactions through which the

dependent component TSF requests services from the base component.

ACO_REL.2.3C The reliance information shall describe each interaction in terms of the

interface used and the return values from those interfaces.

ACO_REL.2.4C The reliance information shall describe how the dependent TSF protects

itself from interference and tampering by the base component.

Evaluator action elements:

ACO_REL.2.1E The evaluator shall confirm that the information provided meets all

requirements for content and presentation of evidence.

Class ACO: Composition

July 2009 Version 3.1 Page 185 of 232

17.4 Composed TOE testing (ACO_CTT)

Objectives

498 This family requires that testing of composed TOE and testing of the base

component, as used in the composed TOE, is performed.

Component levelling

499 The components in this family are levelled on the basis of increasing rigour

of interface testing and increasing rigour of the analysis of the sufficiency of

the tests to demonstrate that the composed TSF operates in accordance with

the reliance information and the composed TOE SFRs.

Application notes

500 There are two distinct aspects of testing associated with this family:

a) testing of the interfaces between the base component and the

dependent component, which the dependent component rely upon for

enforcement of security functionality, to demonstrate their

compatibility;

b) testing of the composed TOE to demonstrate that the TOE behaves in

accordance with the SFRs for the composed TOE.

501 If the test configurations used during evaluation of the dependent component

included use of the base component as a “platform” and the test analysis

sufficiently demonstrates that the TSF behaves in accordance with the SFRs,

the developer need perform no further testing of the composed TOE

functionality. However, if the base component was not used in the testing of

the dependent component, or the configuration of either component varied,

then the developer is to perform testing of the composed TOE. This may take

the form of repeating the dependent component developer testing of the

dependent component, provided this adequately demonstrates the composed

TOE TSF behaves in accordance with the SFRs.

502 The developer is to provide evidence of testing the base component

interfaces used in the composition. The operation of base component TSFIs

would have been tested as part of the ATE: Tests activities during evaluation

of the base component. Therefore, provided the appropriate interfaces were

included within the test sample of the base component evaluation and it was

determined in Composition rationale (ACO_COR) that the base component

is operating in accordance with the base component evaluated configuration,

with all security functionality required by the dependent component included

in the TSF, the evaluator action ACO_CTT.1.1E may be met through reuse of

the base component ATE: Tests verdicts.

503 If this is not the case, the base component interfaces used relevant to the

composition that are affected by any variations to the evaluated configuration

and any additional security functionally will be tested to ensure they

demonstrate the expected behaviour. The expected behaviour to be tested is

that described in the reliance information (Reliance of dependent component

(ACO_REL) evidence).

Class ACO: Composition

Page 186 of 232 Version 3.1 July 2009

ACO_CTT.1 Interface testing

Dependencies: ACO_REL.1 Basic reliance information

 ACO_DEV.1 Functional Description

Objectives

504 The objective of this component is to ensure that each interface of the base

component, on which the dependent component relies, is tested.

Developer action elements:

ACO_CTT.1.1D The developer shall provide composed TOE test documentation.

ACO_CTT.1.2D The developer shall provide base component interface test

documentation.

ACO_CTT.1.3D The developer shall provide the composed TOE for testing.

ACO_CTT.1.4D The developer shall provide an equivalent set of resources to those that

were used in the base component developer's functional testing of the

base component.

Content and presentation elements:

ACO_CTT.1.1C The composed TOE and base component interface test documentation

shall consist of test plans, expected test results and actual test results.

ACO_CTT.1.2C The test documentation from the developer execution of the composed

TOE tests shall demonstrate that the TSF behaves as specified.

ACO_CTT.1.3C The test documentation from the developer execution of the base

component interface tests shall demonstrate that the base component

interface relied upon by the dependent component behaves as specified.

ACO_CTT.1.4C The base component shall be suitable for testing.

Evaluator action elements:

ACO_CTT.1.1E The evaluator shall confirm that the information provided meets all

requirements for content and presentation of evidence.

ACO_CTT.1.2E The evaluator shall execute a sample of test in the test documentation to

verify the developer test results.

ACO_CTT.1.3E The evaluator shall test a subset of the TSF interfaces of the composed

TOE to confirm that the composed TSF operates as specified.

Class ACO: Composition

July 2009 Version 3.1 Page 187 of 232

ACO_CTT.2 Rigorous interface testing

Dependencies: ACO_REL.2 Reliance information

 ACO_DEV.2 Basic evidence of design

Objectives

505 The objective of this component is to ensure that each interface of the base

component, on which the dependent component relies, is tested.

Developer action elements:

ACO_CTT.2.1D The developer shall provide composed TOE test documentation.

ACO_CTT.2.2D The developer shall provide base component interface test documentation.

ACO_CTT.2.3D The developer shall provide the composed TOE for testing.

ACO_CTT.2.4D The developer shall provide an equivalent set of resources to those that were

used in the base component developer's functional testing of the base

component.

Content and presentation elements:

ACO_CTT.2.1C The composed TOE and base component interface test documentation shall

consist of test plans, expected test results and actual test results.

ACO_CTT.2.2C The test documentation from the developer execution of the composed TOE

tests shall demonstrate that the TSF behaves as specified and is complete.

ACO_CTT.2.3C The test documentation from the developer execution of the base component

interface tests shall demonstrate that the base component interface relied

upon by the dependent component behaves as specified and is complete.

ACO_CTT.2.4C The base component shall be suitable for testing.

Evaluator action elements:

ACO_CTT.2.1E The evaluator shall confirm that the information provided meets all

requirements for content and presentation of evidence.

ACO_CTT.2.2E The evaluator shall execute a sample of test in the test documentation to

verify the developer test results.

ACO_CTT.2.3E The evaluator shall test a subset of the TSF interfaces of the composed TOE

to confirm that the composed TSF operates as specified.

Class ACO: Composition

Page 188 of 232 Version 3.1 July 2009

17.5 Composition vulnerability analysis (ACO_VUL)

Objectives

506 This family calls for an analysis of vulnerability information available in the

public domain and of vulnerabilities that may be introduced as a result of the

composition.

Component levelling

507 The components in this family are levelled on the basis of increasing scrutiny

of vulnerability information from the public domain and independent

vulnerability analysis.

Application notes

508 The developer will provide details of any residual vulnerabilities reported

during evaluation of the components. These may be gained from the

component developers or evaluation reports for the components. These will

be used as inputs into the evaluator's vulnerability analysis of the composed

TOE in the operational environment.

509 The operational environment of the composed TOE is examined to ensure

that the assumptions and objectives for the component operational

environment (specified in each component ST) are satisfied in the composed

TOE. An initial analysis of the consistency of assumptions and objectives

between the components and the composed TOE STs will have been

performed during the conduct of the ASE activities for the composed TOE.

However, this analysis is revisited with the knowledge acquired during the

ACO_REL, ACO_DEV and the ACO_COR activities to ensure that, for

example, assumptions of the dependent component that were addressed by

the environment in the dependent component ST are not reintroduced as a

result of composition (i.e. that the base component adequately addresses the

assumptions of the dependent component ST in the composed TOE).

510 A search by the evaluator for issues in each component will identify potential

vulnerabilities reported in the public domain since completion of the

evaluation of the components. Any potential vulnerabilities will then be

subject to testing.

511 If the base component used in the composed TOE has been the subject of

assurance continuity activities since certification, the evaluator will consider

during the composed TOE vulnerability analysis activities the changes made

in base component.

Class ACO: Composition

July 2009 Version 3.1 Page 189 of 232

ACO_VUL.1 Composition vulnerability review

Dependencies: ACO_DEV.1 Functional Description

Developer action elements:

ACO_VUL.1.1D The developer shall provide the composed TOE for testing.

Content and presentation elements:

ACO_VUL.1.1C The composed TOE shall be suitable for testing.

Evaluator action elements:

ACO_VUL.1.1E The evaluator shall confirm that the information provided meets all

requirements for content and presentation of evidence.

ACO_VUL.1.2E The evaluator shall perform an analysis to determine that any residual

vulnerabilities identified for the base and dependent components are not

exploitable in the composed TOE in its operational environment.

ACO_VUL.1.3E The evaluator shall perform a search of public domain sources to

identify possible vulnerabilities arising from use of the base and

dependent components in the composed TOE operational environment.

ACO_VUL.1.4E The evaluator shall conduct penetration testing, based on the identified

vulnerabilities, to demonstrate that the composed TOE is resistant to

attacks by an attacker with basic attack potential.

ACO_VUL.2 Composition vulnerability analysis

Dependencies: ACO_DEV.2 Basic evidence of design

Developer action elements:

ACO_VUL.2.1D The developer shall provide the composed TOE for testing.

Content and presentation elements:

ACO_VUL.2.1C The composed TOE shall be suitable for testing.

Evaluator action elements:

ACO_VUL.2.1E The evaluator shall confirm that the information provided meets all

requirements for content and presentation of evidence.

ACO_VUL.2.2E The evaluator shall perform an analysis to determine that any residual

vulnerabilities identified for the base and dependent components are not

exploitable in the composed TOE in its operational environment.

ACO_VUL.2.3E The evaluator shall perform a search of public domain sources to identify

possible vulnerabilities arising from use of the base and dependent

components in the composed TOE operational environment.

Class ACO: Composition

Page 190 of 232 Version 3.1 July 2009

ACO_VUL.2.4E The evaluator shall perform an independent vulnerability analysis of the

composed TOE, using the guidance documentation, reliance information

and composition rationale to identify potential vulnerabilities in the

composed TOE.

ACO_VUL.2.5E The evaluator shall conduct penetration testing, based on the identified

vulnerabilities, to demonstrate that the composed TOE is resistant to attacks

by an attacker with basic attack potential.

ACO_VUL.3 Enhanced-Basic Composition vulnerability analysis

Dependencies: ACO_DEV.3 Detailed evidence of design

Developer action elements:

ACO_VUL.3.1D The developer shall provide the composed TOE for testing.

Content and presentation elements:

ACO_VUL.3.1C The composed TOE shall be suitable for testing.

Evaluator action elements:

ACO_VUL.3.1E The evaluator shall confirm that the information provided meets all

requirements for content and presentation of evidence.

ACO_VUL.3.2E The evaluator shall perform an analysis to determine that any residual

vulnerabilities identified for the base and dependent components are not

exploitable in the composed TOE in its operational environment.

ACO_VUL.3.3E The evaluator shall perform a search of public domain sources to identify

possible vulnerabilities arising from use of the base and dependent

components in the composed TOE operational environment.

ACO_VUL.3.4E The evaluator shall perform an independent vulnerability analysis of the

composed TOE, using the guidance documentation, reliance information and

composition rationale to identify potential vulnerabilities in the composed

TOE.

ACO_VUL.3.5E The evaluator shall conduct penetration testing, based on the identified

vulnerabilities, to demonstrate that the composed TOE is resistant to attacks

by an attacker with Enhanced-Basic attack potential.

Development (ADV)

July 2009 Version 3.1 Page 191 of 232

A Development (ADV)

(informative)

512 This annex contains ancillary material to further explain and provide

additional examples for the topics brought up in families of the ADV:

Development class.

A.1 ADV_ARC: Supplementary material on security
architectures

513 A security architecture is a set of properties that the TSF exhibits; these

properties include self-protection, domain separation, and non-bypassability.

Having these properties provides a basis of confidence that the TSF is

providing its security services. This annex provides additional material on

these properties, as well as discussion on contents of a security architecture

description.

514 The remainder of this section first explains these properties, then discusses

the kinds of information that are needed to describe how the TSF exhibits

those properties.

A.1.1 Security architecture properties

515 Self-protection refers to the ability of the TSF to protect itself from

manipulation from external entities that may result in changes to the TSF.

Without these properties, the TSF might be disabled from performing its

security services.

516 It is oftentimes the case that a TOE uses services or resources supplied by

other IT entities in order to perform its functions (e.g. an application that

relies upon its underlying operating system). In these cases, the TSF does not

protect itself entirely on its own, because it depends on the other IT entities

to protect the services it uses.

517 Domain separation is a property whereby the TSF creates separate security

domains for each untrusted active entity to operate on its resources, and then

keeps those domains separated from one another so that no entity can run in

the domain of any other. For example, an operating system TOE supplies a

domain (address space, per-process environment variables) for each process

associated with untrusted entities.

518 For some TOEs such domains do not exist because all of the actions of the

untrusted entities are brokered by the TSF. A packet-filter firewall is an

example of such a TOE, where there are no untrusted entity domains; there

are only data structures maintained by the TSF. The existence of domains,

then, is dependant upon 1) the type of TOE and 2) the SFRs levied on the

TOE. In the cases where the TOE does provide domains for untrusted

entities, this family requires that those domains are isolated from one another

such that untrusted entities in one domain are prevented from tampering

(affecting without brokering by the TSF) from another untrusted entity's

domain.

Development (ADV)

Page 192 of 232 Version 3.1 July 2009

519 Non-bypassability is a property that the security functionality of the TSF (as

specified by the SFRs) is always invoked and cannot be circumvented when

appropriate for that specific mechanism. For example, if access control to

files is specified as a capability of the TSF via an SFR, there must be no

interfaces through which files can be accessed without invoking the TSF's

access control mechanism (an interface through which a raw disk access

takes place might be an example of such an interface).

520 As is the case with self-protection, the very nature of some TOEs might

depend upon their environments to play a role in non-bypassability of the

TSF. For example, a security application TOE requires that it be invoked by

the underlying operating system. Similarly, a firewall depends upon the fact

that there are no direct connections between the internal and external

networks and that all traffic between them must go through the firewall.

A.1.2 Security architecture descriptions

521 The security architecture description explains how the properties described

above are exhibited by the TSF. It describes how domains are defined and

how the TSF keeps them separate. It describes what prevents untrusted

processes from getting to the TSF and modifying it. It describes what ensures

that all resources under the TSF's control are adequately protected and that

all actions related to the SFRs are mediated by the TSF. It explains any role

the environment plays in any of these (e.g. presuming it gets correctly

invoked by its underlying environment, how are its security functions

invoked?).

522 The security architecture description presents the TSF's properties of self-

protection, domain separation, and non-bypassability in terms of the

decomposition descriptions. The level of this description is commensurate

with the TSF description required by the ADV_FSP, ADV_TDS and

ADV_IMP requirements that are being claimed. For example, if ADV_FSP

is the only TSF description available, it would be difficult to provide any

meaningful security architecture description because none of the details of

any internal workings of the TSF would be available.

523 However, if the TOE design were also available, even at the most basic level

(ADV_TDS.1), there would be some information available concerning the

subsystems that make up the TSF, and there would be a description of how

they work to implement self-protection, domain separation, and non-

bypassability. For example, perhaps all user interaction with the TOE is

constrained through a process that acts on that user's behalf, adopting all of

the user's security attributes; the security architecture description would

describe how such a process comes into being, how the process's behaviour

is constrained by the TSF (so it cannot corrupt the TSF), how all actions of

that process are mediated by the TSF (thereby explaining why the TSF

cannot be bypassed), etc.

Development (ADV)

July 2009 Version 3.1 Page 193 of 232

524 If the available TOE design is more detailed (e.g. at the modular level), or

the implementation representation is also available, then the security

architecture description would be correspondingly more detailed, explaining

how the user's process communicate with the TSF processes, how different

requests are processed by the TSF, what parameters are passed, what

programmatic protections (buffer overflow prevention, parameter bounds

checking, time of check/time of use checking, etc.) are in place. Similarly, a

TOE whose ST claimed the ADV_IMP component would go into

implementation-specific detail.

525 The explanations provided in the security architecture description are

expected to be of sufficient detail that one would be able to test their

accuracy. That is, simple assertions (e.g. "The TSF keeps domains separate”)

provide no useful information to convince the reader that the TSF does

indeed create and separate domains.

A.1.2.1 Domain Separation

526 In cases where the TOE exhibits domain separation entirely on its own, there

would be a straightforward description of how this is attained. The security

architecture description would explain the different kinds of domains that are

defined by the TSF, how they are defined (i.e. what resources are allocated to

each domain), how no resources are left unprotected, and how the domains

are kept separated so that active entities in one domain cannot tamper with

resources in another domain.

527 For cases where the TOE depends upon other IT entities to play a role in

domain separation, that sharing of roles must be made clear. For example, a

TOE that is solely application software relies upon the underlying operating

system to correctly instantiate the domains that the TOE defines; if the TOE

defines separate processing space, memory space, etc, for each domain, it

depends upon the underlying operating system to operate correctly and

benignly (e.g. allow the process to execute only in the execution space that is

requested by the TOE software).

528 For example, mechanisms that implement domain separation (e.g., memory

management, protected processing modes provided by the hardware, etc.)

would be identified and described. Or, the TSF might implement software

protection constructs or coding conventions that contribute to implementing

separation of software domains, perhaps by delineating user address space

from system address space.

529 The vulnerability analysis and testing (see AVA_VAN) activities will likely

include attempts to defeat the described TSF domain separation through the

use of monitoring or direct attack the TSF.

Development (ADV)

Page 194 of 232 Version 3.1 July 2009

A.1.2.2 TSF Self-protection

530 In cases where the TOE exhibits self-protection entirely on its own, there

would be a straightforward description of how this self-protection is attained.

Mechanisms that provide domain separation to define a TSF domain that is

protected from other (user) domains would be identified and described.

531 For cases where the TOE depends upon other IT entities to play a role in

protecting itself, that sharing of roles must be made clear. For example, a

TOE that is solely application software relies upon the underlying operating

system to operate correctly and benignly; the application cannot protect itself

against a malicious operating system that subverts it (for example, by

overwriting its executable code or TSF data).

532 The security architecture description also covers how user input is handled

by the TSF in such a way that the TSF does not subject itself to being

corrupted by that user input. For example, the TSF might implement the

notion of privilege and protect itself by using privileged-mode routines to

handle user data. The TSF might make use of processor-based separation

mechanisms (e.g. privilege levels or rings) to separate TSF code and data

from user code and data. The TSF might implement software protection

constructs or coding conventions that contribute to implementing separation

of software, perhaps by delineating user address space from system address

space.

533 For TOEs that start up in a low-function mode (for example, a single-user

mode accessible only to installers or administrators) and then transition to the

evaluated secure configuration (a mode whereby untrusted users are able to

login and use the services and resources of the TOE), the security

architecture description also includes an explanation of how the TSF is

protected against this initialisation code that does not run in the evaluated

configuration. For such TOEs, the security architecture description would

explain what prevents those services that should be available only during

initialisation (e.g. direct access to resources) from being accessible in the

evaluated configuration. It would also explain what prevents initialisation

code from running while the TOE is in the evaluated configuration.

534 There must also be an explanation of how the trusted initialisation code will

maintain the integrity of the TSF (and of its initialisation process) such that

the initialisation process is able to detect any modification that would result

in the TSF being spoofed into believe it was in an initial secure state.

535 The vulnerability analysis and testing (see AVA_VAN) activities will likely

include attempts to defeat the described TSF self protection through the use

of tampering, direct attack, or monitoring of the TSF.

Development (ADV)

July 2009 Version 3.1 Page 195 of 232

A.1.2.3 TSF Non-Bypassability

536 The property of non-bypassability is concerned with interfaces that permit

the bypass of the enforcement mechanisms. In most cases this is a

consequence of the implementation, where if a programmer is writing an

interface that accesses or manipulates an object, it is that programmer's

responsibility to use interfaces that are part of the SFR enforcement

mechanism for the object and not to try to circumvent those interfaces. For

the description pertaining to non-bypassability, then, there are two broad

areas that have to be covered.

537 The first consists of those interfaces to the SFR-enforcement. The property

for these interfaces is that they contain no operations or modes that allow

them to be used to bypass the TSF. It is likely that the evidence for

ADV_FSP and ADV_TDS can be used in large part to make this

determination. Because non-bypassability is the concern, if only certain

operations available through these TSFIs are documented (because they are

SFR-enforcing) and others are not, the developer should consider whether

additional information (to that presented in ADV_FSP and ADV_TDS) is

necessary to make a determination that the SFR-supporting and SFR-non-

interfering operations of the TSFI do not afford an untrusted entity the ability

to bypass the policy being enforced. If such information is necessary, it is

included in the security architecture description.

538 The second area of non-bypassability is concerned with those interfaces

whose interactions are not associated with SFR-enforcement. Depending on

the ADV_FSP and ADV_TDS components claimed, some information about

these interfaces may or may not exist in the functional specification and TOE

design documentation. The information presented for such interfaces (or

groups of interfaces) should be sufficient so that a reader can make a

determination (at the level of detail commensurate with the rest of the

evidence supplied in the ADV: Development class) that the enforcement

mechanisms cannot be bypassed.

539 The property that the security functionality cannot be bypassed applies to all

security functionality equally. That is, the design description should cover

objects that are protected under the SFRs (e.g. FDP_* components) and

functionality (e.g., audit) that is provided by the TSF. The description should

also identify the interfaces that are associated with security functionality; this

might make use of the information in the functional specification. This

description should also describe any design constructs, such as object

managers, and their method of use. For instance, if routines are to use a

standard macro to produce an audit record, this convention is a part of the

design that contributes to the non-bypassability of the audit mechanism. It is

important to note that non-bypassability in this context is not an attempt to

answer the question “could a part of the TSF implementation, if malicious,

bypass the security functionality”, but rather to document how the

implementation does not bypass the security functionality.

Development (ADV)

Page 196 of 232 Version 3.1 July 2009

540 The vulnerability analysis and testing (see AVA_VAN) activities will likely

include attempts to defeat the described non-bypassability by circumventing

the TSF.

A.2 ADV_FSP: Supplementary material on TSFIs

541 The purpose in specifying the TSFIs is to provide the necessary information

to conduct testing; without knowing the possible means interact with the

TSF, one cannot adequately test the behaviour of the TSF.

542 There are two parts to specifying the TSFIs: identifying them and describing

them. Because of the diversity of possible TOEs, and of different TSFs

therein, there is no standard set of interfaces that constitute “TSFIs”. This

annex provides guidance on the factors that determine which interfaces are

TSFIs.

A.2.1 Determining the TSFI

543 In order to identify the interfaces to the TSF, the parts of the TOE that make

up the TSF must first be identified. This identification is actually a part of

the TOE design (ADV_TDS) analysis, but is also performed implicitly

(through identification and description of the TSFI) by the developer in cases

where TOE design (ADV_TDS) is not included in the assurance package. In

this analysis, a portion of the TOE must be considered to be in the TSF if it

contributes to the satisfaction of an SFR in the ST (in whole or in part). This

includes, for example, everything in the TOE that contributes to TSF run-

time initialisation, such as software that runs prior to the TSF being able to

protect itself because enforcement of the SFRs has not yet begun (e.g., while

booting up). Also included in the TSF are all parts of the TOE that contribute

to the architectural principles of TSF self-protection, domain separation, and

non-bypassability (see Security Architecture (ADV_ARC)).

544 Once the TSF has been defined, the TSFI are identified. The TSFI consists of

all means by which external entities (or subjects in the TOE but outside of

the TSF) supply data to the TSF, receive data from the TSF and invoke

services from the TSF. These service invocations and responses are the

means of crossing the TSF boundary. While many of these are readily

apparent, others might not be as obvious. The question that should be asked

when determining the TSFIs is: “How can a potential attacker interact with

the TSF in an attempt to subvert the SFRs?” The following discussions

illustrate the application of the TSFI definition in different contexts.

A.2.1.1 Electrical interfaces

545 In TOEs such as smart cards, where the adversary has not only logical access

to the TOE, but also complete physical access to the TOE, the TSF boundary

is the physical boundary. Therefore, the exposed electrical interfaces are

considered TSFI because their manipulation could affect the behaviour of the

TSF. As such, all these interfaces (electrical contacts) need to be described:

various voltages that might be applied, etc.

Development (ADV)

July 2009 Version 3.1 Page 197 of 232

A.2.1.2 Network protocol stack

546 The TSFIs of a TOE that performs protocol processing would be those

protocol layers to which a potential attacker has direct access. This need not

be the entire protocol stack, but it might be.

547 For example, if the TOE were some sort of a network appliance that allowed

potential attackers to affect every level of the protocol stack (i.e. to send

arbitrary signals, arbitrary voltages, arbitrary packets, arbitrary datagrams,

etc.), then the TSF boundary exists at each layer of the stack. Therefore, the

functional specification would have to address every protocol at every layer

of the stack.

548 If, however, the TOE were a firewall that protects an internal network from

the Internet, a potential attacker would have no means of directly

manipulating the voltages that enter the TOE; any extreme voltages would

simply not be passed though the Internet. That is, the attacker would have

access only to those protocols at the Internet layer or above. The TSF

boundary exists at each layer of the stack. Therefore, the functional

specification would have to address only those protocols at or above the

Internet layer: it would describe each of the different communication layers

at which the firewall is exposed in terms of what constitutes well-formed

input for what might appear on the line, and the result of both well-formed

and malformed inputs. For example, the description of the Internet protocol

layer would describe what constitutes a well-formed IP packet and what

happens when both correctly-formed and malformed packets are received.

Likewise, the description of the TCP layer would describe a successful TCP

connection and what happens both when successful connections are

established and when connections cannot be established or are inadvertently

dropped. Presuming the firewall's purpose is to filter application-level

commands (like FTP or telnet), the description of the application layer would

describe the application-level commands that are recognised and filtered by

the firewall, as well as the results of encountering unknown commands.

549 The descriptions of these layers would likely reference published

communication standards (telnet, FTP, TCP, etc.) that are used, noting which

user-defined options are chosen.

Development (ADV)

Page 198 of 232 Version 3.1 July 2009

A.2.1.3 Wrappers

Figure 19 - Wrappers

550 “Wrappers” translate complex series of interactions into simplified common

services, such as when Operating Systems create APIs for use by

applications (as shown in Figure 19). Whether the TSFIs would be the

system calls or the APIs depends upon what is available to the application: if

the application can use the system calls directly, then the system calls are the

TSFIs. If, however, there were something that prohibits their direct use and

requires all communication through the APIs, then the APIs would be the

TSFIs.

551 A Graphical User interface is similar: it translates between machine-

understandable commands and user-friendly graphics. Similarly, the TSFIs

would be the commands if users have access to them, or the graphics (pull-

down menus, check-boxes, text fields) if the users are constrained to using

them.

552 It is worth noting that, in both of these examples, if the user is prohibited

from using the more primitive interfaces (i.e. the system calls or the

commands), the description of this restriction and of its enforcement would

be included in the Security Architecture Description (see A.1). Also, the

wrapper would be part of the TSF.

Development (ADV)

July 2009 Version 3.1 Page 199 of 232

A.2.1.4 Inaccessible interfaces

553 For a given TOE, not all of the interfaces may be accessible. That is, the

security objectives for the operational environment (in the Security Target)

may prevent access to these interfaces or limit access in such a way that they

are practically inaccessible. Such interfaces would not be considered TSFIs.

Some examples:

a) If the security objectives for the operational environment for the

stand-alone firewall state that “the firewall will be operational in a

server room environment to which only trusted and trained personnel

will have access, and which will be equipped with an interruptible

power supply (against power failure)”, physical and power interfaces

will not be accessible, since trusted and trained personnel will not

attempt to dismantle the firewall and/or disable its power supply.

b) If the security objectives for the operational environment for the

software firewall (application) state that “the OS and the hardware

will provide a security domain for the application free from

tampering by other programs”, the interfaces through which the

firewall can be accessed by other applications on the OS (e.g.

deleting or modifying the firewall executable, direct reading or

writing to the memory space of the firewall) will not be accessible,

since the OS/hardware part of the operational environment makes this

interface inaccessible.

c) If the security objectives for the operational environment for the

software firewall additionally state that the OS and hardware will

faithfully execute the commands of the TOE, and will not tamper

with the TOE in any manner, interfaces through which the firewall

obtains primitive functionality from the OS and hardware (executing

machine code instructions, OS APIs, such as creating, reading,

writing or deleting files, graphical APIs etc.) will not be accessible,

since the OS/hardware are the only entities that can access that

interface, and they are completely trusted.

For all of these examples, these inaccessible interfaces would not be TSFIs.

A.2.2 Example: A complex DBMS

554 Figure 20 illustrates a complex TOE: a database management system that

relies on hardware and software that is outside the TOE boundary (referred

to as the IT environment in the rest of this discussion). To simplify this

example, the TOE is identical to the TSF. The shaded boxes represent the

TSF, while the unshaded boxes represent IT entities in the environment. The

TSF comprises the database engine and management GUIs (represented by

the box labelled DB) and a kernel module that runs as part of the OS that

performs some security function (represented by the box labelled PLG). The

TSF kernel module has entry points defined by the OS specification that the

OS will call to invoke some function (this could be a device driver, or an

authentication module, etc.). The key is that this pluggable kernel module is

providing security services specified by functional requirements in the ST.

Development (ADV)

Page 200 of 232 Version 3.1 July 2009

Figure 20 - Interfaces in a DBMS system

555 The IT environment consists of the operating system itself (represented by

the box labelled OS), as well as an external server (labelled SRV). This

external server, like the OS, provides a service that the TSF depends on, and

thus needs to be in the IT environment. Interfaces in the figure are labelled

Ax for TSFI, and Bx for other interfaces that would be documented in ACO:

Composition. Each of these groups of interfaces is now discussed.

556 Interface group A1 represents the most obvious set of TSFI. These are

interfaces used by users to directly access the database and its security

functionality and resources.

557 Interface group A2 represent the TSFI that the OS invokes to obtain the

functionality provided by the pluggable module. These are contrasted with

interface group B3, which represent calls that the pluggable module makes to

obtain services from the IT environment.

558 Interface group A3 represent TSFI that pass through the IT environment. In

this case, the DBMS communicates over the network using a proprietary

application-level protocol. While the IT environment is responsible for

providing various supporting protocols (e.g., Ethernet, IP, TCP), the

application layer protocol that is used to obtain services from the DBMS is a

TSFI and must be documented as such. The dotted line indicates return

values/services from the TSF over the network connection.

559 The interfaces labelled Bx represent interfaces to functionality in the IT

Environment. These interfaces are not TSFI and need only be discussed and

analysed when the TOE is being used in a composite evaluation as part of the

activities associated with the ACO class.

Development (ADV)

July 2009 Version 3.1 Page 201 of 232

A.2.3 Example Functional Specification

560 The Example firewall is used between an internal network and an external

network. It verifies the source address of data received (to ensure that

external data is not attempting to masquerade as originating from the internal

data); if it detects any such attempts, it saves the offending attempt to the

audit log. The administrator connects to the firewall by establishing a telnet

connection to the firewall from the internal network. Administrator actions

consist of authenticating, changing passwords, reviewing the audit log, and

setting or changing the addresses of the internal and external networks.

561 The Example firewall presents the following interfaces to the internal

network:

a) IP datagrams

b) Administrator Commands

and the following interfaces to the external network:

a) IP datagrams

562 Interfaces Descriptions: IP Datagrams

563 The datagrams are in the format specified by RFC 791.

 Purpose - to transmit blocks of data (“datagrams”) from source hosts

to destination hosts identified by fixed length addresses; also

provides for fragmentation and reassembly of long datagrams, if

necessary, for transmission through small-packet networks.

 Method of Use - they arrive from the lower-level (e.g. data link)

protocol.

 Parameters - the following fields of the IP datagram header: source

address, destination address, don't-fragment flag.

 Parameter description - [As defined by RFC 791, section 3.1

(“Internet Header Format”)]

 Actions - Transmits datagrams that are not masquerading; fragments

large datagrams if necessary; reassembles fragments into datagrams.

 Error messages - (none). No reliability guaranteed (reliability to be

provided by upper-level protocols) Undeliverable datagrams (e.g.

must be fragmented for transmission, but don't-fragment flag is set)

dropped.

Development (ADV)

Page 202 of 232 Version 3.1 July 2009

564 Interfaces Descriptions: Administrator Commands

565 The administrator commands provide a means for the administrator to

interact with the firewall. These commands and responses ride atop a telnet

(RFC 854) connection established from any host on the internal network.

Available commands are:

 Passwd

 Purpose - sets administrator password

 Method of Use - Passwd <password>

 Parameters - password

 Parameter description - value of new password

 Actions - changes password to new value supplied. There are

no restrictions.

 Error messages - none.

 Readaudit

 Purpose - presents the audit log to the administrator

 Method of Use - Readaudit

 Parameters - none

 Parameter description - none

 Actions - provides the text of the audit log

 Error messages - none.

 Setintaddr

 Purpose - sets the address of the internal address.

 Method of Use - Setintaddr <address>

 Parameters - address

 Parameter description - first three fields of an IP address (as

defined in RFC 791). For example: 123.123.123.

 Actions - changes the internal value of the variable defining

the internal network, the value of which is used to judge

attempted masquerades.

Development (ADV)

July 2009 Version 3.1 Page 203 of 232

 Error messages - “address in use”: indicates the identified

internal network is the same as the external network.

 Setextaddr

 Purpose - sets the address of the external address

 Method of Use - Setextaddr <address>

 Parameters - address

 Parameter description - first three fields of an IP address (as

defined in RFC 791). For example: 123.123.123.

 Actions - changes the internal value of the variable defining

the external network.

 Error messages - “address in use”: indicates the identified

external network is the same as the internal network.

A.3 ADV_INT: Supplementary material on TSF internals

566 The wide variety of TOEs makes it impossible to codify anything more

specific than “well-structured” or “minimum complexity”. Judgements on

structure and complexity are expected to be derived from the specific

technologies used in the TOE. For example, software is likely to be

considered well-structured if it exhibits the characteristics cited in the

software engineering disciplines.

567 This annex provides supplementary material on assessing the structure and

complexity of procedure-based software portions of the TSF. This material is

based on information readily available in software engineering literature. For

other kinds of internals (e.g. hardware, non-procedural software such as

object-oriented code, etc.), corresponding literature on good practises should

be consulted.

A.3.1 Structure of procedural software

568 The structure of procedural software is traditionally assessed according to its

modularity. Software written with a modular design aids in achieving

understandability by clarifying what dependencies a module has on other

modules (coupling) and by including in a module only tasks that are strongly

related to each other (cohesion). The use of modular design reduces the

interdependence between elements of the TSF and thus reduces the risk that

a change or error in one module will have effects throughout the TOE. Its use

enhances clarity of design and provides for increased assurance that

unexpected effects do not occur. Additional desirable properties of modular

decomposition are a reduction in the amount of redundant or unneeded code.

569 Minimising the amount of functionality in the TSF allows the evaluator as

well as the developer to focus only on that functionality which is necessary

for SFR enforcement, contributing further to understandability and further

lowering the likelihood of design or implementation errors.

Development (ADV)

Page 204 of 232 Version 3.1 July 2009

570 The incorporation of modular decomposition, layering and minimisation into

the design and implementation process must be accompanied by sound

software engineering considerations. A practical, useful software system will

usually entail some undesirable coupling among modules, some modules that

include loosely-related functions, and some subtlety or complexity in a

module's design. These deviations from the ideals of modular decomposition

are often deemed necessary to achieve some goal or constraint, be it related

to performance, compatibility, future planned functionality, or some other

factors, and may be acceptable, based on the developer's justification for

them. In applying the requirements of this class, due consideration must be

given to sound software engineering principles; however, the overall

objective of achieving understandability must be achieved.

A.3.1.1 Cohesion

571 Cohesion is the manner and degree to which the tasks performed by a single

software module are related to one another; types of cohesion include

coincidental, communicational, functional, logical, sequential, and temporal.

These types of cohesion are characterised below, listed in the order of

decreasing desirability.

a) functional cohesion - a module with functional cohesion performs

activities related to a single purpose. A functionally cohesive module

transforms a single type of input into a single type of output, such as

a stack manager or a queue manager.

b) sequential cohesion - a module with sequential cohesion contains

functions each of whose output is input for the following function in

the module. An example of a sequentially cohesive module is one

that contains the functions to write audit records and to maintain a

running count of the accumulated number of audit violations of a

specified type.

c) communicational cohesion - a module with communicational

cohesion contains functions that produce output for, or use output

from, other functions within the module. An example of a

communicationally cohesive module is an access check module that

includes mandatory, discretionary, and capability checks.

d) temporal cohesion - a module with temporal cohesion contains

functions that need to be executed at about the same time. Examples

of temporally cohesive modules include initialisation, recovery, and

shutdown modules.

e) logical (or procedural) cohesion - a module with logical cohesion

performs similar activities on different data structures. A module

exhibits logical cohesion if its functions perform related, but

different, operations on different inputs.

f) coincidental cohesion - a module with coincidental cohesion

performs unrelated, or loosely related, activities.

Development (ADV)

July 2009 Version 3.1 Page 205 of 232

A.3.1.2 Coupling

572 Coupling is the manner and degree of interdependence between software

modules; types of coupling include call, common and content coupling.

These types of coupling are characterised below, listed in the order of

decreasing desirability:

a) call: two modules are call coupled if they communicate strictly

through the use of their documented function calls; examples of call

coupling are data, stamp, and control, which are defined below.

1. data: two modules are data coupled if they communicate

strictly through the use of call parameters that represent single

data items.

2. stamp: two modules are stamp coupled if they communicate

through the use of call parameters that comprise multiple

fields or that have meaningful internal structures.

3. control: two modules are control coupled if one passes

information that is intended to influence the internal logic of

the other.

b) common: two modules are common coupled if they share a common

data area or a common system resource. Global variables indicate that

modules using those global variables are common coupled. Common

coupling through global variables is generally allowed, but only to a

limited degree. For example, variables that are placed into a global

area, but are used by only a single module, are inappropriately

placed, and should be removed. Other factors that need to be

considered in assessing the suitability of global variables are:

1. The number of modules that modify a global variable: In

general, only a single module should be allocated the

responsibility for controlling the contents of a global variable,

but there may be situations in which a second module may

share that responsibility; in such a case, sufficient justification

must be provided. It is unacceptable for this responsibility to

be shared by more than two modules. (In making this

assessment, care should be given to determining the module

actually responsible for the contents of the variable; for

example, if a single routine is used to modify the variable, but

that routine simply performs the modification requested by its

caller, it is the calling module that is responsible, and there

may be more than one such module). Further, as part of the

complexity determination, if two modules are responsible for

the contents of a global variable, there should be clear

indications of how the modifications are coordinated between

them.

Development (ADV)

Page 206 of 232 Version 3.1 July 2009

2. The number of modules that reference a global variable:

Although there is generally no limit on the number of

modules that reference a global variable, cases in which many

modules make such a reference should be examined for

validity and necessity.

c) content: two modules are content coupled if one can make direct

reference to the internals of the other (e.g. modifying code of, or

referencing labels internal to, the other module). The result is that

some or all of the content of one module are effectively included in

the other. Content coupling can be thought of as using unadvertised

module interfaces; this is in contrast to call coupling, which uses only

advertised module interfaces.

A.3.2 Complexity of procedural software

573 Complexity is the measure of the decision points and logical paths of

execution that code takes. Software engineering literature cites complexity as

a negative characteristic of software because it impedes understanding of the

logic and flow of the code. Another impediment to the understanding of code

is the presence of code that is unnecessary, in that it is unused or redundant.

574 The use of layering to separate levels of abstraction and minimise circular

dependencies further enables a better understanding of the TSF, providing

more assurance that the TOE security functional requirements are accurately

and completely instantiated in the implementation.

575 Reducing complexity also includes reducing or eliminating mutual

dependencies, which pertains both to modules in a single layer and to those

in separate layers. Modules that are mutually dependent may rely on one

another to formulate a single result, which could result in a deadlock

condition, or worse yet, a race condition (e.g., time of check vs. time of use

concern), where the ultimate conclusion could be indeterminate and subject

to the computing environment at the given instant in time.

576 Design complexity minimisation is a key characteristic of a reference

validation mechanism, the purpose of which is to arrive at a TSF that is

easily understood so that it can be completely analysed. (There are other

important characteristics of a reference validation mechanism, such as TSF

self-protection and non-bypassability; these other characteristics are covered

by requirements in the ADV_ARC family.)

A.4 ADV_TDS: Subsystems and Modules

577 This Section provides additional guidance on the TDS family, and its use of

the terms “subsystem” and “module”. This is followed by a discussion of

how, as more-detailed becomes available, the requirement for the less-

detailed is reduced.

Development (ADV)

July 2009 Version 3.1 Page 207 of 232

A.4.1 Subsystems

578 Figure 21 shows that, depending on the complexity of the TSF, the design

may be described in terms of subsystems and modules (where subsystems

are at a higher level of abstraction than modules); or it may just be described

in terms of one level of abstraction (e.g., subsystems at lower assurance

levels, modules at higher levels). In cases where a lower level of abstraction

(modules) is presented, requirements levied on higher-level abstractions

(subsystems) are essentially met by default. This concept is further

elaborated in the discussion on subsystems and modules below.

Figure 21 - Subsystems and Modules

579 The developer is expected to describe the design of the TOE in terms of

subsystems. The term “subsystem” was chosen to be specifically vague so

that it could refer to units appropriate to the TOE (e.g., subsystems,

modules). subsystems can even be uneven in scope, as long as the

requirements for description of subsystems are met.

580 The first use of subsystems is to distinguish the TSF boundary; that is, the

portions of the TOE that comprise the TSF. In general, a subsystem is part of

the TSF if it has the capability (whether by design or implementation) to

affect the correct operation of any of the SFRs. For example, for software

that depends on different hardware execution modes to provide domain

separation (see A.1) where SFR-enforcing code is executed in one domain,

then all subsystems that execute in that domain would be considered part of

the TSF. Likewise, if a server outside that domain implemented an SFR (e.g.

enforced an access control policy over objects it managed), then it too would

be considered part of the TSF.

581 The second use of subsystems is to provide a structure for describing the

TSF at a level of description that, while describing how the TSF works, does

not necessarily contain low-level implementation detail found in module

descriptions (discussed later). subsystems are described at either a high level

(lacking an abundance of implementation detail) or a detailed level

(providing more insight into the implementation). The level of description

provided for a subsystem is determined by the degree to which that

subsystem is responsible for implementing an SFR.

Development (ADV)

Page 208 of 232 Version 3.1 July 2009

582 An SFR-enforcing subsystem is a subsystem that provides mechanisms for

enforcing an element of any SFR, or directly supports a subsystem that is

responsible for enforcing an SFR. If a subsystem provides (implements) an

SFR-enforcing TSFI, then the subsystem is SFR-enforcing.

583 Subsystems can also be identified as SFR-supporting and SFR-non-

interfering. An SFR-supporting subsystem is one that is depended on by an

SFR-enforcing subsystem in order to implement an SFR, but does not play as

direct a role as an SFR-enforcing subsystem. An SFR-non-interfering

subsystem is one that is not depended upon, in either a supporting or

enforcing role, to implement an SFR.

A.4.2 Modules

584 A module is generally a relatively small architectural unit that can be

characterised in terms of the properties discussed in TSF internals

(ADV_INT). When both ADV_TDS.3 Basic modular design (or above)

requirements and TSF internals (ADV_INT) requirements are present in a PP

or ST, a “module” in terms of the TOE design (ADV_TDS) requirements

refers to the same entity as a “module” for the TSF internals (ADV_INT)

requirements. Unlike subsystems, modules describe the implementation in a

level of detail that can serve as a guide to reviewing the implementation

representation.

585 It is important to note that, depending on the TOE, modules and subsystems

may refer to the same abstraction. For ADV_TDS.1 Basic design and

ADV_TDS.2 Architectural design (which do not require description at the

module level) the subsystem description provides the lowest level detail

available about the TSF. For ADV_TDS.3 Basic modular design (which

require module descriptions) these descriptions provide the lowest level of

detail, while the subsystem descriptions (if they exist as separate entities)

merely serve to put to the module descriptions in context. That is, it is not

necessary to provide detailed subsystem descriptions if module descriptions

exist. In TOEs that are sufficiently simple, a separate “subsystem

description” is not necessary; the requirements can be met through

documentation provided by modules. For complex TOEs, the purpose of the

subsystem description (with respect to the TSF) is to provide the reader

context so they can focus their analysis appropriately. This difference is

illustrated in Figure 21.

586 An SFR-enforcing module is a module that completely or partially

implements a security functional requirement (SFR) in the ST. Such modules

may implement an SFR-enforcing TSFI, but some functionality expressed in

an SFR (for example, audit and object re-use functionality) may not be

directly tied to a single TSFI. As was the case with subsystems, SFR-

supporting modules are those modules that are depended upon by an SFR-

enforcing module, but are not responsible for directly implementing an SFR.

SFR-non-interfering modules are those modules that do not deal, directly or

indirectly, with the enforcement of SFRs.

Development (ADV)

July 2009 Version 3.1 Page 209 of 232

587 It is important to note that the determination of what “directly implements”

means is somewhat subjective. In the narrowest sense of the term, it could be

interpreted to mean the one or two lines of code that actually perform a

comparison, zeroing operation, etc. that implements a requirement. A

broader interpretation might be that it includes the module that is invoked in

response to a SFR-enforcing TSFI, and all modules that may be invoked in

turn by that module (and so on until the completion of the call). Neither of

these interpretations is particularly satisfying, since the narrowness of the

first interpretation may lead to important modules being incorrectly

categorised as SFR supporting, while the second leads to modules that are

actually not SFR-enforcing being classified as such.

588 A description of a module should be such that one could create an

implementation of the module from the description, and the resulting

implementation would be 1) identical to the actual TSF implementation in

terms of the interfaces presented, 2) identical in the use of interfaces that are

mentioned in the design, and 3) functionally equivalent to the description of

the purpose of the TSF module. For instance, RFC 793 provides a high-level

description of the TCP protocol. It is necessarily implementation

independent. While it provides a wealth of detail, it is not a suitable design

description because it is not specific to an implementation. An actual

implementation can add to the protocol specified in the RFC, and

implementation choices (for example, the use of global data vs. local data in

various parts of the implementation) may have an impact on the analysis that

is performed. The design description of the TCP module would list the

interfaces presented by the implementation (rather than just those defined in

RFC 793), as well as an algorithm description of the processing associated

with the modules implementing TCP (assuming they were part of the TSF).

589 In the design, modules are described in detail in terms of the function they

provide (the purpose); the interfaces they present (when required by the

criteria); the return values from such interfaces; the interfaces (presented by

other modules) they use (provided those interfaces are required to be also

described); and a description of how they provide their functionality using a

technique appropriate to the method used to implement the module.

590 The purpose of a module should be described indicating what function the

module is providing. It should be sufficient so that the reader could get a

general idea of what the module's function is in the architecture.

Development (ADV)

Page 210 of 232 Version 3.1 July 2009

591 The interfaces presented by a module are those interfaces used by other

modules to invoke the functionality provided. Interfaces include both explicit

interfaces (e.g., a calling sequence invoked by other modules) as well as

implicit interfaces (e.g., global data manipulated by the module). Interfaces

are described in terms of how they are invoked, and any values that are

returned. This description would include a list of parameters, and

descriptions of these parameters. If a parameter were expected to take on a

set of values (e.g., a “flag” parameter), the complete set of values the

parameter could take on that would have an effect on module processing

would be specified. Likewise, parameters representing data structures are

described such that each field of the data structure is identified and

described. Global data should be described to the extent required to

understand their purpose. The level of description required for a global data

structure needs to be identical to the one for module interfaces, where the

input parameter and return values correspond to the individual fields and

their possible values in the data structure. Global data structures may be

described separate from the modules that manipulate or read them as long as

the design of the modules contain sufficient information about the global

data structures updated or the information extracted from global data

structures.

592 Note that different programming languages may have additional “interfaces”

that would be non-obvious; an example would be operator/function

overloading in C++. This “implicit interface” in the class description would

also be described as part of the module design. Note that although a module

could present only one interface, it is more common that a module presents a

small set of related interfaces.

593 When it is required to describe the interfaces used by a module, it must be

clear from either the design description of the module or the purpose of the

module called, what service is expected from the module called. For example

if Module A is being described, and it uses Module B's bubble sort routine,

the description of the interaction between modules must allow to identify

why Module B's bubble sort routine is called and what this call contributes to

the implementation of the SFRs. The interface and purpose of Module B's

bubble sort routine must be described as part of the interfaces of Module B

(provided the level of ADV_TDS and the classification of Module B require

a description its interfaces) and so Module A just needs to identify what data

it needs to have sorted using this routine. An adequate description would be:

"Module A invokes Module B's interface double_bubble() to sort the

usernames in alphabetical order".

594 Note that if this sorting of the user names is not important for the

enforcement of any SFR (e. g. it is just done to speed up things and an

algorithmically identical implementation of Module A could also avoid to

have the usernames sorted), the use of Module B's bubble sort routine is not

SFR-enforcing and it is suffcient to explain in the description of Module A

that the usernames are sorted in alphabetical order to enhance performance.

Module B may be classified as "SFR-supporting" only and the level of

ADV_TDS chosen indicates if the interfaces of SFR-supporting modules

need to be described or if its is sufficient to just describe the purpose of

Module B.

Development (ADV)

July 2009 Version 3.1 Page 211 of 232

595 As discussed previously, the algorithmic description of the module should

describe in an algorithmic fashion the implementation of the module. This

can be done in pseudo-code, through flow charts, or (at ADV_TDS.3 Basic

modular design) informal text. It discusses how the module inputs and called

functions are used to accomplish the module's function. It notes changes to

global data, system state, and return values produced by the module. It is at

the level of detail that an implementation could be derived that would be

very similar to the actual implementation of the TOE.

596 It should be noted that source code does not meet the module documentation

requirements. Although the module design describes the implementation, it

is not the implementation. The comments surrounding the source code might

be sufficient documentation if they provide an explanation of the intent of

the source code. In-line comments that merely state what each line of code is

doing are useless because they provide no explanation of what the module is

meant to accomplish.

597 In the elements below, the labels (SFR-enforcing, SFR-supporting, and SFR-

non-interfering) discussed for subsystems and modules are used to describe

the amount and type of information that needs to be made available by the

developer. The elements have been structured so that there is no expectation

that the developer provide only the information specified. That is, if the

developer's documentation of the TSF provides the information in the

requirements below, there is no expectation that the developer update their

documentation and label subsystems and modules as SFR-enforcing, SFR-

supporting, and SFR-non-interfering. The primary purpose of this labelling is

to allow developers with less mature development methodologies (and

associated artifacts, such as detailed interface and design documentation) to

provide the necessary evidence without undue cost.

A.4.3 Levelling Approach

598 Because there is subjectivity in determining what is SFR-enforcing vs. SFR-

supporting (and in some cases, even determining what is SFR-non-

interfering) the following paradigm has been adopted in this family. In early

components of the family, the developer makes a determination about the

classification of the subsystems into SFR-enforcing, etc., supplying the

appropriate information, and there is little additional evidence for the

evaluator to examine to support this claim. As the level of desired assurance

increases, while the developer still makes a classification determination, the

evaluator obtains more and more evidence that is used to confirm the

developer's classification.

599 In order to focus the evaluator's analysis on the SFR-related portions of the

TOE, especially at lower levels of assurance, the components of the family

are levelled such that initially detailed information is required only for SFR-

enforcing architectural entities. As the level of assurance increases, more

information is required for SFR-supporting and (eventually) SFR-non-

interfering entities. It should be noted that even when complete information

is required, it is not required that all of this information be analysed in the

same level of detail. The focus should be in all cases on whether the

necessary information has been provided and analysed.

Development (ADV)

Page 212 of 232 Version 3.1 July 2009

600 Table 14 summarises the information required at each of the family

components for the architectural entities to be described.

TSF subsystem TSF Module

SFR Enforce
SFR

Support
SFR NI

SFR

Enforce

SFR

Support
SFR NI

ADV_TDS.1

Basic design

(informal

presentation)

structure,

summary of

SFR-Enf.

behaviour,

interactions

designation

support
(1)

designation

support

ADV_TDS.2

Architectural

design (informal

presentation)

structure,

detailed

description of

SFR-Enf.

behaviour,

summary of

other

behaviour,

interactions

structure,

summary of

other

behaviour,

interactions

designation

support,

interactions

ADV_TDS.3

Basic modular

design (informal

presentation)

description,

interactions

description,

interactions

description,

interactions

purpose,

SFR

interfaces
(2)

interaction,

purpose

interaction,

purpose

ADV_TDS.4

Semiformal

modular design

(semiformal

presentation)

description,

interactions

description,

interactions

description,

interactions

purpose,

SFR

interfaces

purpose,

SFR

interfaces

interaction,

purpose

ADV_TDS.5

Complete

semiformal

modular design

(semiformal

presentation)

description,

interactions

description,

interactions

description,

interactions

purpose, all

interfaces
(3)

purpose, all

interfaces

purpose,

all

interfaces

ADV_TDS.6

Complete

semiformal

modular design

with formal

high-level

design

presentation

(semiformal

presentation;

additional formal

presentation)

description,

interactions

description,

interactions

description,

interactions

purpose, all

interfaces

purpose, all

interfaces

purpose,

all

interfaces

(1)
 designation support means that only documentation sufficient to support the classification of the

subsystem / module is needed.
(2)

 SFR interfaces means that the module description contains, for each SFR-related interface, the

returned values and the called interfaces to other modules.
(3)

 All interfaces means that the module description contains, for each interface, the returned values

and the called interfaces to other modules.

Development (ADV)

July 2009 Version 3.1 Page 213 of 232

Table 14 Description Detail Levelling

A.5 Supplementary material on formal methods

601 Formal methods provide a mathematical representation of the TSF and its

behaviour and are required by the ADV_FSP.6 Complete semi-formal

functional specification with additional formal specification, ADV_SPM.1

Formal TOE security policy model, and ADV_TDS.6 Complete semiformal

modular design with formal high-level design presentation components.

There are two aspects of formal methods: the specification language that is

used for formal expression, and the theorem prover that mathematically

proves the completeness and correctness of the formal specification.

602 A formal specification is expressed within a formal system based upon well-

established mathematical concepts. These mathematical concepts are used to

define well-defined semantics, syntax and rules of inference. A formal

system is an abstract system of identities and relations that can be described

by specifying a formal alphabet, a formal language over that alphabet which

is based on a formal syntax, and a set of formal rules of inference for

constructing derivations of sentences in the formal language.

603 The evaluator should examine the identified formal systems to make sure

that:

 The semantics, syntax and inference rules of the formal system are

defined or a definition is referenced.

 Each formal system is accompanied by explanatory text that provides

defined semantics so that:

1. the explanatory text provides defined meanings of terms,

abbreviations and acronyms that are used in a context other

than that accepted by normal usage,

2. the use of a formal system and semiformal notation use is

accompanied by supporting explanatory text in informal style

appropriate for unambiguous meaning,

3. the formal system is able to express rules and characteristics

of applicable SFPs, security functionality and interfaces

(providing details of effects, exceptions and error messages)

of TSF, their subsystems or modules to be specified for the

assurance family for which the notations are used.

4. the notation provides rules to determine the meaning of

syntactical valid constructs.

 Each formal system uses a formal syntax that provides rules to

unambiguously recognise constructs.

Development (ADV)

Page 214 of 232 Version 3.1 July 2009

 Each formal system provides proof rules which

1. support logical reasoning of well-established mathematical

concepts,

2. help to prevent derivation of contradictions

604 If the developer uses a formal system which is already accepted by the

evaluation authority the evaluator can rely on the level of formality and

strength of the system and focus on the instantiation of the formal system to

the TOE specifications and correspondence proofs.

605 The formal style supports mathematical proofs of the security properties

based on the security features, the consistency of refinements and the

correspondence of the representations. Formal tool support seems adequate

whenever manual derivations would otherwise become long winded and

incomprehensible. Formal tools are also apt to reduce the error probability

inherent in manual derivations.

606 Examples of formal systems:

 The Z specification language is highly expressive, and supports

many different methods or styles of formal specification. The use of

Z has been predominantly for model-oriented specification, using

schemas to formally specify operations. See http://vl.zuser.org/ for

more information.

 ACL2 is an open-source formal system comprising a LISP-based

specification language and a theorem prover. See

http://www.cs.utexas.edu/users/moore/acl2/ for further information.

 Isabelle is a popular generic theorem proving environment that

allows mathematical formulae to be expressed in a formal language

and provides tools for proving those formulae within a logical

calculus (see e.g. http://www.cl.cam.ac.uk/Research/HVG/Isabelle/

for additional information)

 The B method is a formal system based on the propositional

calculus, the first order predicate calculus with inference rules and set

theory (see e.g. http://vl.fmnet.info/b/ for further information).

http://vl.zuser.org/
http://www.cs.utexas.edu/users/moore/acl2/
http://www.cl.cam.ac.uk/Research/HVG/Isabelle/
http://vl.fmnet.info/b/

Composition (ACO)

July 2009 Version 3.1 Page 215 of 232

B Composition (ACO)

(informative)

607 The goal of this annex is to explain the concepts behind composition

evaluations and the ACO criteria. This annex does not define the ASE

criteria; this definition can be found in chapter 11.

B.1 Necessity for composed TOE evaluations

608 The IT market is, on the whole, made up of vendors offering a particular type

of product/technology. Although there is some overlap, where a PC hardware

vendor may also offer application software and/or operating systems or a

chip manufacturer may also develop a dedicated operating system for their

own chipset, it is often the case that an IT solution is implemented by a

variety of vendors.

609 There is sometimes a need for assurance in the combination (composition) of

components in addition to the assurance of the individual components.

Although there is cooperation between these vendors, in the dissemination of

certain material required for the technical integration of the components, the

agreements rarely stretch to the extent of providing detailed design

information and development process/procedure evidence. This lack of

information from the developer of a component on which another component

relies means that the dependent component developer does not have access to

the type of information necessary to perform an evaluation of both the

dependent and base components at EAL2 or above. Therefore, while an

evaluation of the dependent component can still be performed at any

assurance level, to compose components with assurance at EAL2 or above it

is necessary to reuse the evaluation evidence and results of evaluations

performed for the component developer.

610 It is intended that the ACO criteria are applicable in the situation where one

IT entity is dependent on another for the provision of security services. The

entity providing the services is termed the “base component”, and that

receiving the services is termed the “dependent component”. This

relationship may exist in a number of contexts. For example, an application

(dependent component) may use services provided by an operating system

(base component). Alternatively, the relationship may be peer-to-peer, in the

sense of two linked applications, either running in a common operating

system environment, or on separate hardware platforms. If there is a

dominant peer providing the services to the minor peer, the dominant peer is

considered to be the base component and the minor peer the dependent

component. If the peers provide services to each other in a mutual manner,

each peer will be considered to be the base component for the services

offered and dependent component for the services required. This will require

iterations of the ACO components applying all requirements to each type of

component peer.

Composition (ACO)

Page 216 of 232 Version 3.1 July 2009

611 The criteria are also intended to be more broadly applicable, stepwise (where

a composed TOE comprised of a dependent component and a base

component itself becomes the base component of another composed TOE),

in more complex relationships, but this may require further interpretation.

612 It is still required for composed TOE evaluations that the individual

components are evaluated independently, as the composition evaluation

builds on the results of the individual component evaluations. The evaluation

of the dependent component may still be in progress when the composed

TOE evaluation commences. However, the dependent component evaluation

must complete before the composed TOE evaluation completes.

613 The composed evaluation activities may take place at the same time as the

dependent component evaluation. This is due to two factors:

a) Economic/business drivers - the dependent component developer will

either be sponsoring the composition evaluation activities or

supporting these activities as the evaluation deliverables from the

dependent component evaluation are required for composed

evaluation activities.

b) Technical drivers - the components consider whether the requisite

assurance is provided by the base component (e.g. considering the

changes to the base component since completion of the component

evaluation) with the understanding that the dependent component has

recently undergone (is undergoing) component evaluation and all

evaluation deliverables associated with the evaluation are available.

Therefore, there are no activities during composition requesting the

dependent component evaluation activities to be re-verified. Also, it

is verified that the base component forms (one of) the test

configurations for the testing of the dependent component during the

dependent component evaluation, leaving ACO_CTT to consider the

base component in this configuration.

614 The evaluation evidence from the evaluation of the dependent component is

required input into the composed TOE evaluation activities. The only

evaluation material from the evaluation of the base component that is

required as input into the composed TOE evaluation activities:

a) Residual vulnerabilities in the base component, as reported during the

base component evaluation. This is required for the ACO_VUL

activities.

615 No other evaluation evidence from the base component activities should be

required for the composed TOE evaluation, as the evaluation results from the

component evaluation of the base component should be reused. Additional

information about the base component may be required if the composed TOE

TSF includes more of the base component than was considered to be TSF

during component evaluation of the base component.

Composition (ACO)

July 2009 Version 3.1 Page 217 of 232

616 The component evaluation of the base and dependent components are

assumed to be complete by the time final verdicts are assigned for the ACO

components.

617 The ACO_VUL components only consider resistance against an attacker

with an attack potential up to Enhanced-Basic. This is due to the level of

design information that can be provided of how the base component provides

the services on which the dependent component relies through application of

the ACO_DEV activities. Therefore, the confidence arising from composed

TOE evaluations using CAPs is limited to a level similar to that obtained

from EAL4 component TOE evaluations. Although assurance in the

components that comprise the composed TOE may be higher than EAL4.

B.2 Performing Security Target evaluation for a composed
TOE

618 An ST will be submitted by the developer for the evaluation of the composed

(base component + dependent component) TOE. This ST will identify the

assurance package to be applied to the composed TOE, providing assurance

in the composed entity by drawing upon the assurance gained in the

component evaluations.

619 The purpose of considering the composition of components within an ST is

to validate the compatibility of the components from the point of view of

both the environment and the requirements, and also to assess that the

composed TOE ST is consistent with the component STs and the security

policies expressed within them. This includes determining that the

component STs and the security policies expressed within them are

compatible.

620 The composed TOE ST may refer out to the content of the component STs,

or the ST author may chose to reiterate the material of the component STs

within the composed TOE ST providing a rationale of how the component

STs are represented in the composed TOE ST.

621 During the conduct of the ASE_CCL evaluation activities for a composed

TOE ST the evaluator determines that the component STs are accurately

represented in the composed TOE ST. This is achieved through determining

that the composed TOE ST demonstrably conforms to the component TOE

STs. Also, the evaluator will need to determine that the dependencies of the

dependent component on the operational environment are adequately

fulfilled in the composed TOE.

622 The composed TOE description will describe the composed solution. The

logical and physical scope and boundary of the composed solution will be

described, and the logical boundary(ies) between the components will also be

identified. The description will identify the security functionality to be

provided by each component.

Composition (ACO)

Page 218 of 232 Version 3.1 July 2009

623 The statement of SFRs for the composed TOE will identify which

component is to satisfy an SFR. If an SFR is met by both components, then

the statement will identify which component meets the different aspects of

the SFR. Similarly the composed TOE Summary Specification will identify

which component provides the security functionality described.

624 The package of ASE: Security Target evaluation requirements applied to the

composed TOE ST should be consistent with the package of ASE: Security

Target evaluation requirements used in the component evaluations.

625 Reuse of evaluation results from the evaluation of component STs can be

made in the instances that the composed TOE ST directly refers to the

component STs. e.g. if the composed TOE ST refers to a component ST for

part of its statement of SFRs, the evaluator can understand that the

requirement for the completion of all assignment and selection operations (as

stated in ASE_REQ.*.3C has been satisfied in the component evaluations.

B.3 Interactions between composed IT entities

626 The TSF of the base component is often defined without knowledge of the

dependencies of the possible applications with which it may by composed.

The TSF of this base component is defined to include all parts of the base

component that have to be relied upon for enforcement of the base

component SFRs. This will include all parts of the base component required

to implement the base component SFRs.

627 The TSFI of this base component represents the interfaces provided by the

TSF to the external entities defined in the statement of SFRs to invoke a

service of the TSF. This includes interfaces to the human user and also

interfaces to external IT entities. However, the TSFI only includes those

interfaces to the TSF, and therefore is not necessarily an exhaustive interface

specification of all possible interfaces available between an external entity

and the base component. The base component may present interfaces to

services that were not considered security-relevant, either because of the

inherent purpose of the service (e.g., adjust type font) or because associated

CC SFRs are not being claimed in the base component's ST (e.g. the login

interface when no FIA: Identification and authentication SFRs are claimed).

628 The functional interfaces provided by the base component are in addition to

the security interfaces (TSFIs), and are not required to be considered during

the base component evaluation. These often include interfaces that are used

by a dependent component to invoke a service provided by the base

component.

629 The base component may include some indirect interfaces through which

TSFIs may be called, e.g. APIs that can be used to invoke a service of the

TSF, which were not considered during the evaluation of the base

component.

Composition (ACO)

July 2009 Version 3.1 Page 219 of 232

Figure 22 - Base component abstraction

630 The dependent component, which relies on the base component, is similarly

defined: interfaces to external entities defined in the SFRs of the component

ST are categorised as TSFI and are examined in ADV_FSP.

631 Any call out from the dependent TSF to the environment in support of an

SFR will indicate that the dependent TSF requires some service from the

environment in order to satisfy the enforcement of the stated dependent

component SFRs. Such a service is outside the dependent component

boundary and the base component is unlikely to be defined in the dependent

ST as an external entity. Hence, the calls for services made out by the

dependent TSF to its underlying platform (the base component) will not be

analysed as part of the Functional specification (ADV_FSP) activities. These

dependencies on the base component are expressed in the dependent

component ST as security objectives for the environment.

632 This abstraction of the dependent component and the interfaces is shown in

Figure 23 below.

Composition (ACO)

Page 220 of 232 Version 3.1 July 2009

Figure 23 - Dependent component abstraction

633 When considering the composition of the base component and the dependent

component, if the dependent component's TSF requires services from the

base component to support the implementation of the SFR, the interface to

the service will need to be defined. If that service is provided by the base

component's TSF, then that interface should be a TSFI of the base

component and will therefore already be defined within the functional

specification of the base component.

634 If, however, the service called by the dependent component's TSF is not

provided by the TSF of the base component (i.e., it is implemented in the

non-TSF portion of the base component or possibly even in the non-TOE

portion of the base component (not illustrated in Figure 24), there is unlikely

to be a TSFI of the base component relating to the service, unless the service

is mediated by the TSF of the base component. The interfaces to these

services from the dependent component to the operational environment are

considered in the family Reliance of dependent component (ACO_REL).

635 The non-TSF portion of the base component is drawn into the TSF of the

composed TOE due to the dependencies the dependent component has on the

base component to support the SFRs of the dependent component. Therefore,

in such cases, the TSF of the composed TOE would be larger than simply the

sum of the components' TSFs.

Composition (ACO)

July 2009 Version 3.1 Page 221 of 232

Figure 24 - Composed TOE abstraction

636 It may be the case that the base component TSFI is being called in a manner

that was unforeseen in the base component evaluation. Hence there would be

a requirement for further testing of the base component TSFI.

637 The possible interfaces are further described in the following diagram

(Figure 25) and supporting text.

Figure 25 - Composed component interfaces

a) Arrows going into 'dependent component-a' (A and B) = where the

component expects the environment to respond to a service request

(responding to calls out from dependent component to the

environment);

Composition (ACO)

Page 222 of 232 Version 3.1 July 2009

b) Arrows coming out of 'base component-b' (C and D) = interfaces of

services provided by the base component to the environment;

c) Broken lines between components = types of communication

between pairs of interfaces;

d) The other (grey) arrows = interfaces that are described by the given

criteria.

638 The following is a simplification, but explains the considerations that need to

be made.

639 There are components a ('dependent component-a') and b ('base component-

b'): the arrows coming out of TSF-a are services provided by TSF-a and are

therefore TSFIs(a); likewise, the arrows coming out of TSF-b (“C”) are

TSFIs(b). These are each detailed in their respective functional specs.

component-a is such that it requires services from its environment: those

needed by the TSF(a) are labelled “A”; the other (not related to TSF-a)

services are labelled “B”.

640 When component-a and component-b are combined, there are four possible

combinations of {services needed by component-a} and {services provided

by component-b}, shown as broken lines (types of communication between

pairs of interfaces). Any set of these might exist for a particular composition:

a) TSF-a needs those services that are provided by TSF-b ("A" is

connected to "C"): this is straightforward: the details about "C" are in

the FSP for component-b. In this instance the interfaces should all be

defined in the functional specifications for the component-b.

b) Non-TSF-a needs those services that are provided by TSF-b (“B” is

connected to “C”): this is straightforward (again, the details about

“C” are in the FSP for component-b), but unimportant: security-wise.

c) Non-TSF-a needs those services that are provided by non-TSF-b (“B”

is connected to “D”): we have no details about D, but there are no

security implications about the use of these interfaces, so they do not

need to be considered in the evaluation, although they are likely to be

an integration issue for the developer.

d) TSF-a needs those services that are provided by non-TSF-b (“A” is

connected to “D”): this would arise when component-a and

component-b have different senses of what a “security service” is.

Perhaps component-b is making no claims about I&A (has no FIA

SFRs in its ST), but component-a needs authentication provided by

its environment. There are no details about the “D” interfaces

available (they are not TSFI (b), so they are not in component-b's

FSP).

Composition (ACO)

July 2009 Version 3.1 Page 223 of 232

641 Note: if the kind of interaction described in case d above exists, then the TSF

of the composed TOE would be TSF-a + TSF-b + Non-TSF-b. Otherwise,

the TSF of the composed TOE would be TSF-a + TSF-b.

642 Interfaces types 2 and 4 of Figure 25 are not directly relevant to the

evaluation of the composed TOE. Interfaces 1 and 3 will be considered

during the application of different families:

a) Functional specification (ADV_FSP) (for component-b) will describe

the C interfaces.

b) Reliance of dependent component (ACO_REL) will describe the A

interfaces.

c) Development evidence (ACO_DEV) will describe the C interfaces

for connection type 1 and the D interfaces for connection type 3.

643 A typical example where composition may be applied is a database

management system (DBMS) that relies upon its underlying operating

system (OS). During the evaluation of the DBMS component, there will be

an assessment made of the security properties of that DBMS (to whatever

degree of rigour is dictated by the assurance components used in the

evaluation): its TSF boundary will be identified, its functional specification

will be assessed to determine whether it describes the interfaces to the

security services provided by the TSF, perhaps additional information about

the TSF (its design, architecture, internal structure) will be provided, the TSF

will be tested, aspects of its life-cycle and its guidance documentation will be

assessed, etc.

644 However, the DBMS evaluation will not call for any evidence concerning the

dependency the DBMS has on the OS. The ST of the DBMS will most likely

state assumptions about the OS in its Assumptions section and state security

objectives for the OS in its Environment section. The DBMS ST may even

instantiate those objectives for the environment in terms of SFRs for the OS.

However, there will be no specification for the OS that mirrors the detail in

the functional specification, architecture description, or other ADV evidence

as for the DBMS. Reliance of dependent component (ACO_REL) will fulfil

that need.

645 Reliance of dependent component (ACO_REL) describes the interfaces of

the dependent TOE that make the calls to the base component for the

provision of services. These are the interfaces to which the base component

is to respond. The interface descriptions are provided from the dependent

component's viewpoint.

Composition (ACO)

Page 224 of 232 Version 3.1 July 2009

646 Development evidence (ACO_DEV) describes the interfaces provided by the

base component, which respond to the dependent component service

requests. These interfaces are mapped to the relevant dependent component

interfaces that are identified in the reliance information. (The completeness

of this mapping, whether the base component interfaces described represent

all dependent component interfaces, is not verified here, but in Composition

rationale (ACO_COR)). At the higher levels of ACO_DEV the subsystems

providing the interfaces are described.

647 Any interfaces required by the dependent component that have not been

described for the base component are reported in the rationale for

Composition rationale (ACO_COR). The rationale also reports whether the

interfaces of the base component on which the dependent component relies

were considered within the base component evaluation. For any interfaces

that were not considered in the base component evaluation, a rationale is

provided of the impact of using the interface on the base component TSF.

Cross reference of assurance component dependencies

July 2009 Version 3.1 Page 225 of 232

C Cross reference of assurance component
dependencies

(informative)

648 The dependencies documented in the components of Chapters 10 and 11-17

are the direct dependencies between the assurance components.

649 The following dependency tables for assurance components show their

direct, indirect and optional dependencies. Each of the components that is a

dependency of some assurance component is allocated a column. Each

assurance component is allocated a row. The value in the table cell indicate

whether the column label component is directly required (indicated by a

cross “X”) or indirectly required (indicated by a dash “-”), by the row label

component. If no character is presented, the component is not dependent

upon another component.

 A
C

O
_

D
E

V
.1

A
C

O
_

D
E

V
.2

A
C

O
_

D
E

V
.3

A
C

O
_

R
E

L
.1

A
C

O
_

R
E

L
.2

A
L

C
_

C
M

C
.1

A
L

C
_

C
M

S
.1

ACO_COR.1 X X X -
ACO_CTT.1 X X
ACO_CTT.2 X - X
ACO_DEV.1 X
ACO_DEV.2 X
ACO_DEV.3 X
ACO_REL.1
ACO_REL.2
ACO_VUL.1 X -
ACO_VUL.2 X -
ACO_VUL.3 X -

Table 15 Dependency table for Class ACO: Composition

Cross reference of assurance component dependencies

Page 226 of 232 Version 3.1 July 2009

 A
D

V
_

F
S

P
.1

A
D

V
_

F
S

P
.2

A
D

V
_

F
S

P
.3

A
D

V
_

F
S

P
.4

A
D

V
_

F
S

P
.5

A
D

V
_

F
S

P
.6

A
D

V
_

IM
P

.1

A
D

V
_

T
D

S
.1

A
D

V
_

T
D

S
.3

A
L

C
_

C
M

C
.5

A
L

C
_

C
M

S
.1

A
L

C
_

D
V

S
.2

A
L

C
_

L
C

D
.1

A
L

C
_

T
A

T
.1

ADV_ARC.1 X - X
ADV_FSP.1
ADV_FSP.2 - X
ADV_FSP.3 - X
ADV_FSP.4 - X
ADV_FSP.5 - - X X - -
ADV_FSP.6 - - X X - -
ADV_IMP.1 - - - - X X
ADV_IMP.2 - - - - X X - - - X
ADV_INT.1 - - X - X X
ADV_INT.2 - - X - X X
ADV_INT.3 - - X - X X
ADV_SPM.1 - X -
ADV_TDS.1 X -
ADV_TDS.2 - X -
ADV_TDS.3 - X -
ADV_TDS.4 - - X - - - -
ADV_TDS.5 - - X - - - -
ADV_TDS.6 - - X - - - -

Table 16 Dependency table for Class ADV: Development

 A
D

V
_

F
S

P
.1

AGD_OPE.1 X
AGD_PRE.1

Table 17 Dependency table for Class AGD: Guidance documents

Cross reference of assurance component dependencies

July 2009 Version 3.1 Page 227 of 232

 A
D

V
_

F
S

P
.2

A
D

V
_

F
S

P
.4

A
D

V
_

IM
P

.1

A
D

V
_

T
D

S
.1

A
D

V
_

T
D

S
.3

A
L

C
_

C
M

S
.1

A
L

C
_

D
V

S
.1

A
L

C
_

D
V

S
.2

A
L

C
_

L
C

D
.1

A
L

C
_

T
A

T
.1

ALC_CMC.1 X
ALC_CMC.2 X
ALC_CMC.3 X X X
ALC_CMC.4 X X X
ALC_CMC.5 X X X
ALC_CMS.1
ALC_CMS.2
ALC_CMS.3
ALC_CMS.4
ALC_CMS.5
ALC_DEL.1
ALC_DVS.1
ALC_DVS.2
ALC_FLR.1
ALC_FLR.2
ALC_FLR.3
ALC_LCD.1
ALC_LCD.2
ALC_TAT.1 - - X - - -
ALC_TAT.2 - - X - - -
ALC_TAT.3 - - X - - -

Table 18 Dependency table for Class ALC: Life-cycle support

 A
P

E
_

E
C

D
.1

A
P

E
_

IN
T

.1

A
P

E
_

O
B

J.2

A
P

E
_

R
E

Q
.1

A
P

E
_

S
P

D
.1

APE_CCL.1 X X X
APE_ECD.1
APE_INT.1
APE_OBJ.1
APE_OBJ.2 X
APE_REQ.1 X
APE_REQ.2 X X -
APE_SPD.1

Table 19 Dependency table for Class APE: Protection Profile evaluation

Cross reference of assurance component dependencies

Page 228 of 232 Version 3.1 July 2009

 A
D

V
_

A
R

C
.1

A
D

V
_

F
S

P
.1

A
D

V
_

F
S

P
.2

A
D

V
_

T
D

S
.1

A
S

E
_

E
C

D
.1

A
S

E
_

IN
T

.1

A
S

E
_

O
B

J.2

A
S

E
_

R
E

Q
.1

A
S

E
_

S
P

D
.1

ASE_CCL.1 X X X
ASE_ECD.1
ASE_INT.1
ASE_OBJ.1
ASE_OBJ.2 X
ASE_REQ.1 X
ASE_REQ.2 X X -
ASE_SPD.1
ASE_TSS.1 X - X X
ASE_TSS.2 X - - - - X X

Table 20 Dependency table for Class ASE: Security Target evaluation

 A
D

V
_

A
R

C
.1

A
D

V
_

F
S

P
.1

A
D

V
_

F
S

P
.2

A
D

V
_

F
S

P
.3

A
D

V
_

F
S

P
.4

A
D

V
_

F
S

P
.5

A
D

V
_

IM
P

.1

A
D

V
_

T
D

S
.1

A
D

V
_

T
D

S
.2

A
D

V
_

T
D

S
.3

A
D

V
_

T
D

S
.4

A
G

D
_

O
P

E
.1

A
G

D
_

P
R

E
.1

A
L

C
_

T
A

T
.1

A
T

E
_

C
O

V
.1

A
T

E
_

F
U

N
.1

ATE_COV.1 X - - X
ATE_COV.2 X - - X
ATE_COV.3 X - - X
ATE_DPT.1 X - - - - X - X
ATE_DPT.2 X - - - - X - X
ATE_DPT.3 X - - - - - - - X - - X
ATE_DPT.4 X - - - - X - - X - - X
ATE_FUN.1 - - X -
ATE_FUN.2 - - X -
ATE_IND.1 X X X
ATE_IND.2 - X - X X X X
ATE_IND.3 - - X - X X X X

Table 21 Dependency table for Class ATE: Tests

Cross reference of assurance component dependencies

July 2009 Version 3.1 Page 229 of 232

 A
D

V
_

A
R

C
.1

A
D

V
_

F
S

P
.1

A
D

V
_

F
S

P
.2

A
D

V
_

F
S

P
.3

A
D

V
_

F
S

P
.4

A
D

V
_

IM
P

.1

A
D

V
_

T
D

S
.1

A
D

V
_

T
D

S
.2

A
D

V
_

T
D

S
.3

A
G

D
_

O
P

E
.1

A
G

D
_

P
R

E
.1

A
L

C
_

T
A

T
.1

A
T

E
_

C
O

V
.1

A
T

E
_

D
P

T
.1

A
T

E
_

F
U

N
.1

AVA_VAN.1 X X X
AVA_VAN.2 X - X X X X
AVA_VAN.3 X - - - X X - - X X X - - X -
AVA_VAN.4 X - - - X X - - X X X - - X -
AVA_VAN.5 X - - - X X - - X X X - - X -

Table 22 Dependency table for Class AVA: Vulnerability assessment

Cross reference of PPs and assurance components

Page 230 of 232 Version 3.1 July 2009

D Cross reference of PPs and assurance
components

(informative)

650 Table 23 describes the relationship between PPs and the families and

components of the APE class.

Assurance class
Assurance

family

Assurance component

Low Assurance

PP
PP

Protection Profile

evaluation

APE_CCL 1 1

APE_ECD 1 1

APE_INT 1 1

APE_OBJ 1 2

APE_REQ 1 2

APE_SPD

1

Table 23 PP assurance level summary

Cross reference of EALs and assurance components

July 2009 Version 3.1 Page 231 of 232

E Cross reference of EALs and assurance
components

(informative)

651 Table 24 describes the relationship between the evaluation assurance levels

and the assurance classes, families and components.

Assurance

class

Assurance

Family

Assurance Components by Evaluation

Assurance Level

EAL1 EAL2 EAL3 EAL4 EAL5 EAL6 EAL7

Development

ADV_ARC 1
1 1 1 1 1

ADV_FSP 1 2 3 4 5
5 6

ADV_IMP 1
1 2

2

ADV_INT 2 3
3

ADV_SPM 1
1

ADV_TDS 1 2 3 4 5 6

Guidance

documents

AGD_OPE 1
1 1 1 1 1 1

AGD_PRE 1
1 1 1 1 1 1

Life-cycle

support

ALC_CMC 1 2 3 4
4 5

5

ALC_CMS 1 2 3 4 5
5 5

ALC_DEL 1
1 1 1 1 1

ALC_DVS 1
1 1 2

2

ALC_FLR

ALC_LCD 1
1 1 1 2

ALC_TAT 1 2 3
3

Security

Target

evaluation

ASE_CCL 1
1 1 1 1 1 1

ASE_ECD 1
1 1 1 1 1 1

ASE_INT 1
1 1 1 1 1 1

ASE_OBJ 1 2
2 2 2 2 2

ASE_REQ 1 2
2 2 2 2 2

ASE_SPD 1
1 1 1 1 1

ASE_TSS 1
1 1 1 1 1 1

Tests

ATE_COV 1 2
2 2 3

3

ATE_DPT 1
1 3

3 4

ATE_FUN 1
1 1 1 2

2

ATE_IND 1 2
2 2 2 2 3

Vulnerability

assessment
AVA_VAN 1 2

2 3 4 5
5

Table 24 Evaluation assurance level summary

Cross reference of CAPs and assurance components

Page 232 of 232 Version 3.1 July 2009

F Cross reference of CAPs and assurance
components

(informative)

652 Table 25 describes the relationship between the composition assurance levels

and the assurance classes, families and components.

Assurance class
Assurance

Family

Assurance Components by

Composition Assurance

Package

CAP-A CAP-B CAP-C

Composition

ACO_COR 1
1 1

ACO_CTT 1 2
2

ACO_DEV 1 2 3

ACO_REL 1
1 2

ACO_VUL 1 2 3

Guidance

documents

AGD_OPE 1
1 1

AGD_PRE 1
1 1

Life-cycle

support

ALC_CMC 1
1 1

ALC_CMS 2
2 2

ALC_DEL

ALC_DVS

ALC_FLR

ALC_LCD

ALC_TAT

Security Target

evaluation

ASE_CCL 1
1 1

ASE_ECD 1
1 1

ASE_INT 1
1 1

ASE_OBJ 1 2
2

ASE_REQ 1 2
2

ASE_SPD 1
1

ASE_TSS 1
1 1

Table 25 Composition assurance level summary

