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ABSTRACT. A key challenge in ubiquitous computing is how to manage ambient information about the
environment where a variety of devices appear. Traditional capability descriptions are inadequate for cap-
turing dynamically changing situations. We propose the Toibox DVMS system, a multi-embedded database
system for integrating a collection of database views – which each embedded database self-describes. The
integrated views are materialized; updates over the view provoke relevant operations over selected devices.
The materialized views are decentralized and incrementally maintained by data dissemination. This paper
will present the design of the Toibox system, based on our initial prototype implementations.

1 Introduction

The continuous evolution of micro-electronics tech-
nologies makes computers small, and places them every-
where in our daily environments. This way of computing
is called ubiquitous computing [17], or pervasive comput-
ing, which is characterized by smart applications; as an
example, we can consider a Bluetooth washing machine
that interact with low-cost Bluetooth chips embedded
in garments carrying laundry instructions such as sug-
gested water temperatures, detergent requirements, and
cycle settings [6]. In the traditional literature of ubiq-
uitous computing, the focus is mainly on the hardware
technologies such as Bluetooth and RFID [15], but data
management and its interoperability is essentially cru-
cial to achieve such smart applications in the real-world
context.

This paper presents our initial attempt to explor-
ing data management in ubiquitous computing environ-
ments. The Toibox Data View Management System
(DVMS) has been developed, based on a collection of
multiple embedded databases. Figure 1 illustrates the
Toibox system. The idea underlying our attempt is sim-
ple; first, we put a very small DVMS system to each de-
vice in ubiquitous computing environments. The DVMS
provides a database view that represents the specs, the
status and the functionality of the device, interacting
with sensors and actuators. (We use DVMS instead of
DBMS because the data view includes not only recorded
values but also sensed values.) Second, we aggregate
such device views into an integrated one as a collec-
tion of information sources that represents the environ-
ment. The integrated views are maintained as mate-
rialized views, where updates over a materialized view
provoke changes over the corresponding devices.

Materialized view is a well-known approach to efficient
querying for different data sources. In the relational
database world, several view maintenance techniques
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図 1: MaterializingUbiquitous Computing En-
vironments Through Device DVMS

has been intensively studied [8]. However, it is also
known that the refreshment is too costly in distributed
database environments. More recently, data warehouses
or database wrappers have been developed to integrate
database sources across the Internet, but the material-
ization is difficult [1]. Furthermore, in mobile and ubiq-
uitous computing environments, the sources dynami-
cally appear or disappear. But, the volume of source
data is supposed to be relative small. This motivated
us to develop a new view maintenance for embedded
DVMS, incorporating with data dissemination [2].

This paper presents the Toibox DVMS with our proto-
typed implementations. The rest of the paper proceeds
as follows. In the Section 2, we state the problem mo-
tivating us. In Section 3, we sketch the Toibox DVMS
architecture. In Section 4, we show our initial imple-
mentations. In Section 5, we study performance evalu-
ation using the cost model. In Section 6, we conclude
the paper.



2 Problem Statement

A smart application needs various kinds of informa-
tion about devices, persons, and other physical objects
in ubiquitous computing environments. The informa-
tion would be obtained from a variety of methods, such
as sensor networks, statistical analysis, and an inferenc-
ing system. Among them, we focus on the snapshot
data view that devices can capture. In this paper, we
introduce a scenario that states the problem that we
highlight in the Toibox DVMS system.

2.1 Scenario
A ubiquitous computing environment is characterized

by a variety of multitude physical-objects (e.g., digital
appliances and sensors) that have a (small) computer
with communication capability. The objects are func-
tionally irregular, and furthermore some of these objects
frequently appear or disappear in the environment. In
order for a client device in such an environment to in-
teract with other devices, it is of importance to know
ambient information, including what kinds of devices
exist and what are going on those devices. To start, we
consider the following scenario.

Scenario. The entertainment system was belting out
the Beatles’ ”We Can Work It Out” when the mobile
phone rang. When Pete answered, his phone turned the
sound down by sending a message to all the other local
devices that had a volume control.

The above scenario, originally described in the intro-
duction of the Semantic Web vision paper [3], brings us
a good discussion stage for ubiquitous computing. Ap-
parently, the phone needs to know ambient information
to control the ”right” devices in the given context.

2.2 Pervious Works
To manage ambient information for ubiquitous com-

puting, we consider three possible approaches: service
discovery, stream database, and embedded web server –
which are originally developed for different purposes. To
make the problem clear, we start by examining these ap-
proaches.

Service Discovery. A typical example of enabling
ubiquitous computing is Sun Microsystems’s Jini and
Microsoft Universal Plug and Play [11, 16]. These sys-
tems focus chiefly on the control of the devices, espe-
cially with automatic and ad hoc interactions. Each of
the local devices is described as a set of services (called
capability description). The descriptions are registered
in a lookup service and then published to service clients.
Thus, a service client (say, a mobile phone in the sce-
nario) can locate the demanded service (the volume con-
trol service) and then invocate the services (to turn the
sound down). To date, several significant improvements
for the service discovery have been studied in terms of
security, scalability, and multimedia [7,9,14]. It is how-
ever important to note that the services are mostly de-
scribed in XML. As a result, the discovery is static and
not reflected by dynamic situations. Suppose one who
listens to music with a headphone. It is unnecessary for
the phone to mute the music.

Stream Data Management. Stream database tech-
niques, chiefly discussed in contexts of sensor networks
[4, 12, 13], can be though of as another candidate to
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図 2: Architecture of Toibox

capture fresh information about changing environments.
The changed values are notified in real-time through
data streams. In the scenario, we can suppose a data
tuple (device, volume, speaker), carrying the amount
of the volume and whether or not the user uses a head-
phone. However, the stream database is by nature read-
only and we are not able to update data values to control
the environment with a certain intention. That is, it is
meaningless if the phone modifies the volume value in
the data stream.

Embedded Web Server. The WWW architecture has
been broadly accepted in the embedded systems for pro-
viding the end users with a means to set parameters
to the systems, as well as acquire the ”current” sta-
tus. As shown in the Cooltown project [5], the em-
bedded WWW architecture is a promising candidate
for information-rich ubiquitous computing. However,
the current WWW interfaces, such as HTML/CGI, are
strictly limited to a collaborative interoperation across
the servers. Although the phone user would be able to
manually turn off the music through an embedded web
browser, he or she has to send many times ”sound off”
messages from different pages that individual devices
provide.

To sum up, the service discovery mechanism lacks the
freshness of ambient information; the stream database
lacks the update (control) operation; the embedded web
server lacks the collaborative view among different de-
vices. The goal of the Toibox is to cover all these aspects
of ambient information.

3 Toibox DVMS Architecture

In this section, we present the architecture of the Toi-
box Data View Management System, a new framework
to manage ambient information in ubiquitous comput-
ing environments.

3.1 Overview
There are a variety of entities appearing in ubiqui-

tous computing environments. The Toibox architecture
broadly classifies them into two kinds of nodes. One is
a small and embedded DBMS, called Toi, providing an
information source about itself, and another is a Toibox
that aggregate the sources to create integrated views.
Figure 2 shows the overview of the Toibox architecture.

Basically, the Toi systems are embedded into elec-
tronic appliances or sensors. Each Toi has a unique
global identifier (TID, or Toibox ID) for the consis-
tent identification. The Toi supports only low level
input/output database interfaces that are designed to
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図 3: Data Representation of an Electronic Lamp

communicate the Toibox systems. (The interactions are
based on Toibox Data Model, which will be detailed
later.) This enables us to implement Tois in small foot-
print systems. Supposing the correspondence between
Auto-ID [15] and TID, we can incorporate information
about physical (non-electronic) objects, which relational
databases store remotely.

The Toibox system, on the other hand, supports a
fully-featured query processing over views that are ag-
gregated from distributed Toi sources. The Toibox
views are synchronized with individual source views;
changes on the one hand affect the corresponding values
on the other hand. (This refresh mechanism will be de-
tailed later.) We allow the Toibox system to play a role
in the source provider as a Toi. As a result, multiple
Toibox views are maintained in a decentralized manner.

Currently, we do not introduce any access control sys-
tems to the inter-connection between the Toi systems
and the Toibox systems. We consider the unit of a ubiq-
uitous computing environment to be a room in the real-
world; that is, if ones are permitted to enter a room, they
also are permitted to access any devices with equipped
on the room. We begin to examine a bridge system that
interconnects with multiple ubiquitous computing en-
vironments. Although we suppose that the bridge will
help filter unauthorized queries, the access control and
privacy concerns largely remain as an open question.
3.2 Toibox Data Model

The design of database schema in the Toibox is fairly
difficult, because we cannot expect what kind of at-
tributes will come from a diversity of Toi sources. To
better deal with the diversity, we have chosen semi-
structured data model [1] for the Toi sources. Thus,
each device is represented by a labeled graph data. Fig-
ure 3 shows an example of the data view of an electronic
lamp; nodes are depicted by circles (non-terminal node)
and rectangle (literal nodes). Each node is assigned with
a local identifier, like &1, &2, ..&n. Since the root (&0)
is associated with TID, we can identify all nodes glob-
ally.

We assume a basic terminology to ensure the min-
imum interoperability between different types of de-
vices; all devices are described by data trees that are
directed by the edge labeled device from the root. The
device node has tree sub-edges, labeled specs, status,
and ctrl, respectively representing the specification of
the device (constant values), the current status (vari-

ables), and the functional capability (methods). In ad-
dition, we associate rich datatypes (@watt and @onoff)
to literal nodes – which carries database values. This
prevents the users from misunderstanding queries for
type-less representations. (For example, let us compare
a case temparature with temperature@Celsius and tem-
perature@Fahrenheit.)

As with the ordinary (semi-structured) database, the
user can update database values. (For simplicity, we ig-
nore restricting tree structures.) It is important to note
the difference between records in a disk and the real-
world status information; the ”real” status does not al-
ways follow update operations that the users demand.
To control the status with the consistency, we restrain
direct value manipulations for the status tree. Instead,
the Toibox system supports the remote method invoca-
tion mechanism by incorporating it into the data model.
The method interfaces are described under the cntl tree.

For example, suppose the user formulates the follow-
ing update query ($d is a variable bounded to devices):

update $d.ctrl.turn.light@onoff = ’on’.
comit $d.ctrl.turn

These operations are interpreted in the Toibox query
processor, as invocating the following method:

$d.turn(’on’);

Each Toi has to update database values on its view
in accordance with the results of the processed method.
The above method invocation for Figure 3 results in
status.light@onoff = ’on’.

3.3 Distributed Architecture
The way of coupling distributed databases in Toibox

differs from those in traditional multi-database systems.
The major differences lies in that the number of Toi
sources is dynamically changing whenever devices ap-
pear or disappear in the environment. To better deal
with such a dynamic environment, we adopt data dis-
semination techniques [2], developed in contexts of mo-
bile databases.

The Toibox system supports an incremental mainte-
nance of the materialized view. Here, we describe the
maintenance mechanisms in three cases: appearance, au-
tonomous updates, and updates by query.

Appearance. When a Toi newly appears in the envi-
ronment, the Toi broadcasts hello message to notify the
appearance. The Toibox receiving the message requests
the bulkcopy to the Toi. The bulk is packed by a col-
lection of all edges and literal nodes (such as edge(&0,
device, &1), edge(&1, spec, &2), node(&5, Lamp). The
copied sources are constructed as a tree data over the
Toibox view. (See Figure 4).

Autonomous Updates. Each Toi autonomously main-
tains database values by reflecting the real-world status
(e.g., sensed data). These changes are asynchronously
notified to all the Toibox views through a broadcast
channel. The notified message is predicated by sync.
For example, if somebody turn off the light depicted in
Figure 3, the Toi broadcast sync(TID, &8, ’off’). The
Toibox recieving the sync message has to update views
to keep the freshness of Toi’s value. Updates by Query.
The users control Tois by updating the Toibox views.
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foreach $o device 
where status.location@floor = 1 

or status.location@floor = 2
{

update ctrl.trun.light@onoff = ‘off’ ;
commit ctrl.turn ;

}
results (

status.localtion@floor, status.location@room, 
status.light@onoff

);

executing on
distributed Tois

図 5: An Example of the Toibox Query Language

The Toibox query language is based on the query lan-
guages for semi-structureddata [1]. To deal with update
operations, we design the FLWOR (foreach-let-where-
operation-result) syntax ∗1, instead of the traditional
SFW (select-from-where) syntax. Figure 5 shows an ex-
ample of a query for the database in Figure 3. The parts
FLWR in the query can be executable over the Toibox
view, while the part O has to be forwarded to the se-
lected Toi systems for the execution. The update op-
erations are compiled to update and commit commands
that are executable on the Toi system. For example, the
Toibox system sends to all Tois (bounded $d) commands
update (TID, &11, ’on’) and commit(TID, &10).

Figure 6 summarizes distributed query processing in
the Toibox architecture. (1) Queries without any up-
dates can be executed only over the Toibox view. In
the presence case of update queries, the query processor
first selects Tois that are going to be manipulated, and
then (2) forwards only update operations through a uni-
cast session to each Toi system. (Note that the Toibox
doesn’t refresh the view at this stage.) The Toi receiving
the update executes the operation to (3) control its sta-
tus, and then (4) synchronizes updated status through
sync to all Toibox views in the environment. (5) The
Toibox when receiving the sync refresh their views.

4 Prototyped Implementation

We have implemented several pilot systems along with
an unexplored software development program conducted
by IPA (Information technologies Promotion Agency,
Japan). In the section, we describe the pilot implemen-
tations for querying and updating ubiquitous computing
environments.

∗1 FLWR is originated in XQuery. We add update capability.
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4.1 Toi systems
We developed three kinds of Toi systems, which are in-

tended to respectively evaluate a small footprint imple-
mentation, the descriptive power of Toibox data model,
and the inter-connections in ubiquitous computing en-
vironments.

Small Footprint Toi can be implemented as a simple
wrapper for the existing embedded system, when
the status and the capability of the embedded sys-
tem are statically mapped to the Toibox data. We
have been developed several small Tois on embed-
ded computing devices, such as an electronic lamp
and a temperature sensor. In our estimation, we
can developed the core of Toi with at most 3000
lines in C.

Descriptive Power The Toibox data model is based on
semi-structureddata in order to better represent the
diversity of information structure that each device
has differently. To show the descriptive power of the
Toibox data model, we materialize the functional-
ity of the latest DVD/HDD Recorder (Toshiba RD-
XS40). We can query over the Toibox view for set-
ting timer-controlled recording, as well as for play-
ing the movies on the HDD.

Inter-Connection We have developed an experimental
environment of ubiquitous computing, based on
a collection of multiple Embedded Linux PDAs
(SHARP/Zaurus SL-B500) (Figure 7. These
PDAs are connected together through wireless LAN
(IEEE801.b), and play roles in digital appliances.
(The appliances emulated are running on Personal
Java.) The Toi systems build on top of these emula-
tors can provide information sources for the Toibox
views.

4.2 Toibox System
ToiboxExplorer (Figure 8) is a gui-based tool that al-

lows the user to manually manipulate the ubiquitous
computing environments by querying over the Toibox
view. A query entered in the upper text field is exe-
cuted over the view that the ToiboxExplorer maintain.
The result of the query is displayed on the bottom table
with a relational formatting. As we described in Sec-
tion 3.3, all selection and formatting can be executed
only over the Toibox view.

Using the ToiboxExplorer, we can query (or update)
all our implemented Toi systems. More interestingly,
queries executed in the Toibox view behave as a sort
of continuous queries for a stream database, since the



図 7: An Emulator for Ubiquitous Computing
Environments built over Mobile Linux PDAs

図 8: ToiboxExplorer

view maintenance is viewed as the data streams of sync
messages sent from Toi systems. Thus, we can display
changing situations in the table according to the refresh-
ment of the Toibox views.

5 Discussion

In this section, we discuss the pros and cons of the
performance issues in the Toibox architecture.

5.1 Traffic Cost Model
A ubiquitous computing environment usually swarms

with a variety of computing devices. For simplicity in
the cost model environment, we only distinguish two
kinds of devices: Ns Toi sources and Nc clients (with
Toibox views). The variety of the source is characterized
by α, the source selectivity coefficient (0 ≤ α ≤ 1).

Appearance. We start by the cost of the view malig-
nance when a device newly appears in the environment.
First, the messages hello are exchanged among the
devices through a broadcast channel. The size can
be estimated by (Ns + Nc) × Mhello, where Mhello is
the size of the message hello. Then, the source is
incorporated into the Toibox views. Let Mlview be the
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図 9: A Centralized View vs. Decentralized Views (Toibox)

average size of the source. In the case of Toi appearance
(M1), the source is copied to each Toibox, while in
the case of Toibox appearance (M2), the Toibox has
to create the materialized view from all Toi systems
in the environment. (For simplicity, we assume this
process is done by bulkcopies from the exisiting Toibox.)

M1 = (Ns + Nc) × Mhello + Nc × Mlview

M2 = (Ns + Nc) × Mhello + Ns ×Mlview

Refreshment. Next, we turn to a case in which the
source views in a group of Tois are changed at the same
time. The sync messages are disseminated through a
broadcast channel. Let Ru be updates/second, and
Msync be the average size of updated values for the
synchronization. The traffic can be estimated:

M3 = Ru × Ns × Msync

Updates by Queries. Finally, we focus on the traffic
in query processing. If the query includes no update
operations, the processing can be executed only within
the Toibox view. On the other hand, in the presence of
update queries it is necessary to send update messages
Mupdate to the selected sources, which cause updates in
each Toi. The traffic in the update query is:

M4 = αNs × (Mupdate + Msync)

5.2 Comparative Study
The Toibox DVMS architecture is unique in that (1)

the integrated views are materialized in a decentralized
manner and (2) the views are refreshed in the data dis-
semination manner. Here we discuss the merits of the
uniqueness.

In the Toibox architecture, we assume each client
maintains the Toibox view in a decentralized manner,
although the traditional service discovery mechanisms
are largely employed in a centralized view. (Figure 9
sketch the difference).

Using the same cost model, we can estimate the
traffic in a centralized case by the following formulas
(M ′

i):

M ′
1 = Ns × Mhello + Mlview (M1 > M ′

1)
M ′

2 = 0 (M2 > M ′
2)

M ′
3 = Ru × Ns × Msync (M3 = M ′

3)
M ′

4 = Ns × (Mquery + Msync)
(M4 < M ′

4, Mupdate < Mquery)
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Apparently, the Toibox system is inefficient in the
view maintenance of device appearance. On the other
hand, the Toibox system is said to be rather efficient in
distributed query processing. The broadcast sync mes-
sages reduce the traffic as much as the unicast message.

We will turn to the effectiveness of distributed query
processing. Although the Toibox system is based on
data warehouse architecture (by incorporating data dis-
semination), the mediator (or the wrapper) architecture
is broadly employed, especially in global information
systems. (Figure 10 sketch the difference).

To compare the traffic cost, we introduce Rq,
queries/second in each client. Thus, the overall query
traffic (updates and refreshments) can be estimated:

MT = Nc × Rq × (αNs × Mupdate)
+ Ns × (αRq + Ru) × Msync.

In the mediator architecture, the source selectivity
is regarded as α = 1. Then, the total traffic can be
estimated:

MW = Nc ×Rq × (Ns × (Mquery + Mresult)).

For simplicity, we assume Mupdate = Mquery and
Msync = Mresult. The average sizes of these mes-
sages obtained from our prototype implementation are:
Mupdate = 64 bytes and Msync = 16 bytes.

Now, we can say the Toibox is efficient if MT/MW <
1.

MT

MW
=

αMupdate + αRq+Ru

Rq

Ns

Nc
Msync

Mupdate + Msync
(1)

It is fairly difficult to evaluate the effectiveness of the
above formula in the generic ubiquitous computing en-
vironment, but throughout our experience the Toibox
system is said to be efficient if α < 0.2. Note that α = 0
means no devices are updated by the query.

6 Conclusion and Future Works

A key challenge in ubiquitous computing is how to
manage ambient information about the environment
where a variety of devices appear. Traditional capability
descriptions are inadequate for capturing dynamically
changing situations. We propose the Toibox DVMS sys-
tem, a multi-embedded database system for integrating
a collection of database views – which each embedded
database self-describes. The integrated views are ma-

terialized; updates over the view provoke relevant op-
erations over selected devices. The originality is that
the materialized views are decentralized and incremen-
tally maintained with data dissemination techniques.
We showed good performance results by an analysis of
our initial prototype experience.

The Toibox DVMS in this work provides a snapshot
of ambient information. Future directions we will inten-
sively investigate focused on more sophisticated man-
agements, including the abstraction (or the reasoning)
of the snapshot information and the management of pri-
vacy concerns. We hope that we will work the Toibox
DVMS together with the electronic appliances industry
for further refinements in practices.
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