
i

3.0

Embedded System development
Coding Reference guide

[C Language Edition]

Written and edited by
Software Reliability Enhancement Center,

Technology Headquarters,
Information-technology Promotion Agency, Japan

Revised Edition

ii

This document is the English edition of ESCR (Embedded System development Coding
Reference) [C language edition] Version 3.0 published by IPA/SEC* in Japan. It is the revised
English edition of ESCR [C language edition] Version 2.0 made available in July 2014 in
pdf format. Aimed at improving the quality of the source code written in C language, ESCR
collects the important points to be noted as part of the know-how for coding and organizes
them as practices and rules.

The purpose of this document is to be used as a reference guide for establishing coding
conventions in organizations and groups developing embedded software using C language,
and for promoting the standardization of coding styles and uniformity of source code quality.

March 2018
Software Reliability Enhancement Center, Technology Headquarters,

Information-technology Promotion Agency, Japan

C opyrigh t © 20 1 8 , I P A / S E C
P erm ission to copy an d distrib ute th is docum en t is h ereb y gran ted prov ided th at th is n otice is retain ed on all copies, th at

copies are n ot altered, an d th at I P A / S E C is credited wh en th e m aterial is used to f orm oth er copyrigh t policies.

* S of tware R eliab ility E n h an cem en t C en ter, T ech n ology Headquarters, I n f orm ation - tech n ology P rom otion A gen cy, J apan

iiiPreface

P reface

O n p ublication of E SCR [C lang uag e edition] V er. 3 . 0

This document is the English edition of ESCR (Embedded System development Coding Reference) [C
language edition] Version 3.0, with the aim to improve the quality of the source code written in C language
by collecting the important points to be noted as a part of the know-how for coding and organizing them as
practices and rules.

ESCR was first released in June 2006. Exactly a year later (in June 2007), Version 1.1 was released with
minor changes to reflect the feedback from various users and reviewers who pointed out some areas that
lacked in accuracy or clarity. Then in March 2014, Version 2.0 was released mainly to comply with C99, the
most widely used C language standard at the time, as well as to align with the extensively revised version of
MISRA C (MISRA C:2012) issued in March 2013.

ESCR Version 3.0 is the immediate successor of Version 2.0. Along with supplementary explanatory texts,
additional compliant and non-compliant coding examples, and warnings specifically focused on reminding
the coders about the growing importance of taking security into consideration more carefully when they
write the code, Version 3.0 contains new rules and descriptions that mainly consist of the following:

・�R ules on C E R T C C odin g S tan dard th at h av e b een dev eloped b y th e S of tware E n gin eerin g I n stitute in
C arn egie M ellon U n iv ersity (C M U / S E I)
・�R ules proposed b y I P A I T S ecurity C en ter as im portan t poin ts to k eep in m in d to elim in ate v uln erab ilities

durin g dev elopm en t

Furthermore, the rules and descriptions revised in ESCR C++ Version 2.0 (the latest ESCR edition for
C++ language) that also apply to C language have been updated in this document.

To maintain the continuity from the previous release, ESCR Version 3.0 follows the same 3-part structure
as Version 2.0, including the same numbering system applied to practices and rules carried over from the
previous version.

The primary purpose of this document remains consistent from the initial release in 2006. It is intended
to be used as a reference guide for establishing coding conventions in organizations and groups developing
embedded software using C language, and for promoting the standardization of coding styles and uniformity
of source code quality. In addition to that, Version 3.0 has introduced a set of new rules and descriptions
that mainly address the growing need for more security-conscious implementation in embedded products
and solutions that could effectively help eliminate vulnerabilities in software at the coding level for safer
deployment and adoption of IoT that is becoming increasingly widespread.

We sincerely hope that the effective use of ESCR Version 3.0 will lead to the improvement of embedded
software productivity and contribute to the attainment of high-quality software development.

Spring of 2018

Yukihiro Mihara, Keisuke Toyama
Software Reliability Enhancement Center, Technology Headquarters

Information-technology Promotion Agency, Japan

Fusako Mitsuhashi
Coding Practice Guide Revision Working Group

iv T ab le of C on ten ts

P ref ace .. iii

Part 1 How to Read the Coding Practices Guide 1
1　O ve rvi ew . 2

1.1　W h at are C odin g P ractices? . 2

1.2　P urpose an d P osition of C odin g P ractices an d th e T arget U sers . 3

1.3　C h aracteristics of th e C odin g P ractices . 4

1.4　N otes on U sin g th is G uide . 6

2　U n derstan din g S ource C ode Q uality . 9

2.1　Q uality C h aracteristics . 9

2.2　Q uality C h aracteristics, C odin g P ractices an d R ules . 1 6

3　How to U se th is G uide . 1 8

3.1　S cen arios f or U sin g th is G uide . 1 8

3.2　C reatin g a N ew C odin g C on ve n tion . 1 9

3.3　E n h an cin g E xi stin g C odin g C on ve n tion s . 21

3.4　S ervi n g as a L earn in g M aterial f or P rogram m ers' T rain in g an d S elf - S tudy 22

Part 2 Coding Practices for Embedded Software: Practices Chart 23
How to R ead th e P ractices C h art .. 24

T erm in ology U sed in th e P ractices C h art ... 28

C odin g P ractices f or E m b edded S of tware .. 29

● R eliab ility .. 3 1

● M ain tain ab ility ... 7 1

● P ortab ility .. 1 3 1

● E f f icien cy .. 1 4 7

Table of Contents

vT ab le of C on ten ts

Part 3 Typical Coding Errors in Embedded Software 1 5 1
T ypical C odin g E rrors in E m b edded S of tware . 1 5 2

1　M ean in gless exp ression s an d statem en ts . 1 5 2

2　W ron g exp ression s an d statem en ts . 1 5 4

3　W ron g m em ory usage . 1 5 6

4　E rrors due to m isun derstan din gs in logical operation s . 1 5 8

5　M istake s due to typos . 1 5 9

6　W ron g description s th at do n ot cause errors in som e com pilers . 1 5 9

Appendices 1 6 1

A ppen dix A L ist of practices an d rules . 1 6 2

A ppen dix B R ule classif ication b ased on C lan guage gram m ar 1 7 6

A ppen dix C R egardin g th e im plem en tation - def in ed b eh avi ors . 1 8 9

C itation s an d R ef eren ces . 1 9 6

　

Part1
How to Read the

Coding Practices Guide

 1 O v erv iew
 1 . 1 W hat are Coding Practices?

 1 . 2 Purpose and Position of Coding Practices and the Target U sers

 1 . 3 Characteristics of the Coding Practices

 1 . 4 N otes on U sing this Guide

 2 U nderstanding Source Code Q uality
 2. 1 Q uality Characteristics

 2. 2 Q uality Characteristics, Coding Practices and Rules

 3 How to U se this Guide
 3 . 1 Scenarios for U sing this Guide

 3 . 2 Creating a N ew Coding Conv ention

 3 . 3 Enhancing Ex isting Coding Conv entions

 3 . 4 Serv ing as a L earning M aterial for Programmers’

 Training and Self- Study

2 P art1 How to R ead th e C odin g P ractices G uide

1 O v er v iew

1.1　 W hat are coding pract ices?

Creating source code (code implementation) is an inevitable task for developing embedded soft-
ware. Success or failure of this task greatly affects the quality of the resulting software. C language,
the most commonly used programming language for embedded software development, is said to
give the programmers a relatively extensive writing flexibility. The uality of programs written in
C thus tends to reflect uite clearly the difference in coding skill level between seasoned and less-
ex perienced programmers. It is undesirable to have source code varying largely in quality, depending
on the programmers individual coding skills and experience. To prevent this risk from leading into
serious quality issues, forward-thinking companies are working proactively toward standardization
of their source codes by establishing coding standards or conventions to be followed organization-
wide or group-wide.

 I ssues Regarding Coding Conv entions

Coding convention is generally regarded as the organized set of “ styles of (or rules in) writing
code that need to be followed to maintain quality.” However, it is becoming a common understand-
ing that various issues ex ist in the current usage of coding conventions, including those mentioned
below.

1) T h e n ecessity of rules is n ot un derstood. T h e appropriate m eth ods to deal with rule v iolation s are
also n ot widely sh ared.

2) T h ere are too m an y rules to learn . Y et, th e ex istin g rules are n ot com pr eh en siv e en ough to cov er
th e en tire scope of codin g.

3) S in ce h igh ly reliab le tools th at can th orough ly an d accurately ch eck wh eth er th e written code is
com plyin g with th e relev an t rules or n ot are un av ailab le, th e en gin eers h av e to rev iew th e code
m an ually th rough v isual ch eck , wh ich is a h eav y b urden f or th em .

D ue to such circumstances, there are, in fact, some coding conventions established at the organi-
ation or department level that have lost their significance and are no longer strictly observed.

N evertheless, organizations that have coding conventions, no matter what kind of format they

1.1 W hat are Coding Practices?

31 ●O ve rvi ew

prepare them in, are at least better than those without any. There are still uite a few that cannot
reach a consensus of the coding convention to be followed internally, and are relying largely on the
programmers’ individual j udgments to decide how the source code should be written.

 W hat are Coding Practices?

This guide aims at solving on-site issues related to coding conventions, by providing a collection
of practical coding techniques considered important from the standpoint of software quality that
conform to the basic way of thinking (concept) to be followed in various coding situations. They are
referred to as “ coding practices” in this guide, and are presented with detailed description and spe-
cific examples of related coding conventions (or rules) for reference.

This guide is intended to enable the users to solve the above-mentioned issues in coding conven-
tions by “ establishing a concrete and effective coding convention for their own organization” , using
the set of relevant information provided herein as their reference.

 Purpose and Position of Coding Practices

ESCR Ver. 3.0 is a guide on coding practices intended to help enable those who create and/or
operate the coding conventions to establish them in their companies or pro ects. This document is
characteristic for regarding coding conventions as “ ways of writing code that should be followed by
all the programmers in a given proj ect to maintain quality” and organizing the basic rule concepts
as practices. These practices are broken down into outline and details, based on the uality concept
that complies with “ ISO /IEC 25 010:2011 Systems and software engineering -- Systems and software

uality Re uirements and Evaluation (S uaRE) -- System and software uality models . They are
respectively ex plained with corresponding C programming rules and the rationale for using them.
Through these practices and rules, ESCR Ver. 2.0 aims at enabling the users to easily establish their
own “ coding convention” that meets their practical needs and also clearly ex plain why the included
practices and rules are significant and necessary.

1.2 Purpose and Position of Coding Practices and
Target U sers

4 P art1 How to R ead th e C odin g P ractices G uide

 Target U sers

This guide has been written on the assumption that it will be read by the following types of users

Creators of the Coding Conv entions
This document can be used as a reference guide to create a new coding convention or to review

and reorganize ex isting coding conventions.

Programmers and Program Rev iewers
Highly reliable and maintainable code can be produced with reasonable effort by learning and un-

derstanding the practices and rules provided in this guide.

 B enefits Gained

The benefits that the users can expect to gain directly from using this guide are as mentioned
above. oreover, as a result of these benefits, the users may also be able to expect the following
positive effects:
- Can remove the bottleneck in maintaining software quality caused by inconsistent performance of

implementation engineers;
- Can eliminate obvious errors in the source code at an early stage, such as, during the coding phase

or in subsequent reviews.

1.3　Character ist ics of the Coding Pract ice

The coding practices in this guide have the following characteristics.

Systematically O rganize d Practices and Rules
This guide considers that code uality can also be classified like software uality, according to

quality characteristics, such as, “ reliability” , “ maintainability” and “ portability” , and organizes the
coding practices and rules systematically based on “ ISO /IEC 25 010:2011 Systems and software en-
gineering -- Systems and software Q uality Requirements and Evaluation (SQ uaRE) -- System and

1.3 Characteristics of the Coding Practices

51 ●O ve rvi ew

software uality models . The coding practices described in this guide are customs and ideas on
implementation that have been developed to maintain source code uality, and they reflect the basic
concepts of individual coding rules. The coding rules included in this guide have been selected based
on the needs of the current conditions (actual situation with the language specifications and process-
ing systems) after closely ex amining the various coding conventions ex isting in the world, and are
presented in the form of established information that supports the corresponding practices. Classi-
fication of practices and rules according to uality characteristics makes it easy for the users of this
guide to understand their respective purpose of use in terms of which aspect of quality each of them
is primarily focused on maintaining.

The coding conventions referenced in this guide range from local conventions used in companies
to which the writers and reviewers of this guide belong, to sets of coding rules established and used
widely in different industries, including “ MISRA C” and “ Indian Hill C Style and Coding Stan-
dards” . For details, refer to “ Citations and References” at the end of this document.

Ready- to- use Reference Rules
This guide presents specific rules for C language as reference information for creating coding

conventions. These rules can be used directly as coding conventions. y referring to 3. ow to se
this Guide” , the users of this guide can easily create their own coding conventions for C language by
choosing the rules that meet their respective needs and adding any other rules that they feel are also
necessary to cover the areas that are not sufficiently addressed.

Presenting the N ecessity of Each Rule
The coding rules covered in this guide are respectively described with explanation of correspond-

ing practices and ex amples of how the code should be written (to be compliant with the given rule)
or should not be written (because that would be non-compliant), to enable the users of this guide
to understand clearly why each of them is necessary. Rules considered to be already well-known
among ex perienced programmers are so indicated in the “ Preference guide” to help the users of this
guide determine whether they need to include these rules in their conventions or not.

Correspondence with O ther Coding Conv entions
Where applicable, this guide indicates the relationship of each coding rule provided herein with

corresponding coding conventions used widely in the world to make it easy for the users of this
guide to check the inclusive relations, among others. Corresponding coding conventions referenced
in this guide include “ MISRA C” and “ Indian Hill C Style and Coding Standards” .

6 P art1 How to R ead th e C odin g P ractices G uide

1.4　N otes on using this guide

Keep the following points in mind when using this guide.

 Scope of the Rules

 In this guide, the rules related to any of the following are considered out of scope of C language
reference rules:

- L ib rary f un ction s
- M etrics (n um b ers of lin es in f un ction s/ com plex ity of f un ction s, etc.)

Although Errors in writing possibly classified as coding errors have been excluded from the ref-
erence rules, some frequently observed coding errors collected while preparing this guide are ex em-
plified in art 3 Typical Coding Errors in Embedded Software. This section (art 3) is especially
recommended to those who are still new to C language and prone to many of these errors. Moreover,
it should also be a useful reference to pro ect teams that find it meaningful to establish rules to pre-
vent coding errors from being caused by such common pitfalls in programming.

 Cited or Referenced Standards in this Guide

In this guide, the following standards have been cited or referenced.

C9 0
This is the C language standard defined in IS IEC 1 0 rogramming anguage C . It is

often called C 0, where 0 stands for the year IS IEC 1 0 was published. The C language
standard has been revised and is now C , making C 0 an older version.

1.4 N otes on U sing this Guide

71 ●O ve rvi ew

C9 9
This is the C language standard defined in IS IEC 1 rogramming anguage C . It is

the current standard widely used. Since IS IEC 1 was published in 1 , it is often called
C .

C11
This is the most recent C language standard defined in IS IEC 2011 rogramming an-

guage C and thereby is the current C language standard. Since IS IEC 2011 was published
in 2011, it is often called “ C11” .

C+ +
This is the C language standard defined in IS IEC 1 2 2003 rogramming language C .

M I SRA C
It refers collectively to the coding guidelines for C language defined by The otor Industry Soft-

ware Reliability Association (ISRA) in , which include ISRA C 1 , ISRA C 200 and
MISRA C:2012.

M I SRA C:19 9 8

The convention in Citations and References .

M I SRA C:20 0 4

The convention in Citations and References 6 . This is the revised version of ISRA C 1 .

M I SRA C:20 12

The convention in Citations and References 7 . This is the revised version of ISRA C 200 .

 N aming Conv entions for V ariables and F unctions

For the names of variables and functions used in code ex amples, this guide uses notations that are
as simple as possible to prevent the users from becoming confused or misunderstanding the rules un-
necessarily.

8 P art1 How to R ead th e C odin g P ractices G uide

 U sing static code analysis tools

The method of using static code analysis tools designed to detect bugs through the static analysis
of the source code is not included in the scope of this guide. ut this is an effective means to ensure
that coding rules are fully met while coding, and is therefore highly recommended as a reliable tool
to prevent coding errors. In ISRA C and CERT C, which are both referenced in this guide, there
are descriptions indicating the rules where the static code analysis tools can report the violations.

A compiler can be considered as the simplest form of static code analysis tool available. Many
compilers can detect problems in the source code if the warning levels are appropriately set. y uti-
lizing the warnings generated from the compiler, the programmers can often eliminate problems in
the source code at an early stage.

 D ifference from V er. 2.0

This document (Ver. 3.0) has been updated from the previous version (Ver. 2.0) primarily by add-
ing rules on secure coding. Along with supplementary ex planatory tex ts, additional compliant and
non-compliant coding examples, and warnings specifically focused on reminding the programmers
about the growing importance of taking security into consideration more carefully when they write
the code, Version 3.0 contains new rules and descriptions that mainly address the growing need for
more security-conscious implementation in embedded products and solutions that could effectively
help eliminate vulnerabilities in software at the coding level. Furthermore, the revisions made in
ESCR C Version 2.0 (the latest ESCR edition for C language) that are common to both C and
C are also updated in this document. There are also descriptions that deal with the same matters
ex plained in Ver. 2.0 but have been rewritten in this document with more clarity or in a way that
would be easier to understand.

The rules carried over from Ver. 2.0 without any changes in the description are numbered the
same in this document so that the ESCR users who are already familiar with the structure of the pre-
vious version can find this updated version easy to use.

The practices and rules that have been newly added to this document are R3.1. , R3.11, R3.11.1,
R3.11.2 and P1.5 .2.

92●How to grasp source codes quality

2 U nderstanding Source Code Q uality

2.1　 Q uality Characteristics

or many, speaking of software uality would remind them of bugs. owever, in the field of
software engineering, the uality of software as a product is grasped in a broader perspective. This
concept of software product quality is defined in detail and organized systematically in ISO /IEC
2 010 2011 1 .

 I SO / I EC 250 10 and Source Code Q uality

IS IEC 2 010 2011 defines the uality of software product by breaking it down into eight char-
acteristics (uality characteristics) reliability , maintainability , portability , efficiency , secu-
rity” , “ functionality” , “ usability” and “ compatibility”

Among them, “ functionality” , “ usability” and “ compatibility” are considered to be the three qual-
ity characteristics that should be addressed at an early stage, preferably before moving on to the
design phases in the upstream process. Whereas, “ reliability” , “ maintainability” , “ portability” , and
efficiency are considered to be the uality characteristics that have close relevance with the devel-

opment of high-quality source code and should therefore be ex amined in depth during the coding
phase. Security , which has been defined as the uality subcharacteristic of functionality in the
previous standard, IS IEC 126-1, is considered basically as a uality characteristic that is relevant
in the design phase, but coding such as for avoiding stack overflow can also affect security. or more
information on coding practices related to security, please refer to the outline of the column below
and CERT C Coding Standard 1 .

ased on the above broad categori ation, this guide has adopted the latter four uality charac-
teristics - “ reliability” , “ maintainability” , “ portability” , and “ efficiency” - as the main focus, and
gathered the coding practices that are primarily concerned with any of these four. Table 1 shows the
relationship between the uality characteristics defined in IS IEC 2 010 and the code uality
proposed in this guide, along with the “ quality subcharacteristics” .

2.1 Q uality Characteristics

10 P art1 How to R ead th e C odin g P ractices G uide

Software vulnerabilities, often associated with security concerns, may be generated by program-
ming fl aws, including buffer overfl ow, insuffi cient input validation and race condition. Careful valida-
tion is necessary when writing code for handling data that may not be trusted, such as, some R or
sensitive information like the password.

In this column, the points to keep in mind in secure coding are ex plained in the contex t of when the
programmers (1) use the string libraries, (2) handle sensitive information and (3) handle data that may
not be trusted.

In the following explanations, some paragraphs end with a number like (STR07-C) . They are rule
numbers that correspond with CERT C.

● Using string libraries
A program that allows some kind of input to be entered may receive an inappropriate data that

ex ceeds the region in the physical memory storage known as buffer and overwrites the data in other
region. This state is called the buffer overfl ow. If a region next to the buffer that stores the address of
an ex ecution code, such as, the return address of a function is overwritten with a start address of a dif-
ferent function due to buffer overfl ow, it may lead to the execution of an illegal code.

The input may often be a string. uffer overfl ow may occur when a string handling function is writ-
ten in a program, since string length check mechanism is not incorporated in many of these functions
used to handle the strings in conventional libraries. For ex ample, strcpy function writes the string of
the copy source as it is. There is a risk of buffer overfl ow being caused by this string when it is longer
than the size of the destination of strcpy. The programmers should avoid the use of standard string
handling functions in C language standards that are older than C11 and use bounds-checking interface
for string manipulation. (STR07-C)

C11 defi nes alternative functions that are designed to be safer to use than these old standard string
handling functions. For ex ample, strcpy_s() is introduced in C11 as a replacement for strcpy().
In CERT C, the use of anaged String ibrary is recommended as a library of strings that are safer to
use, as they are more likely to prevent buffer overfl ow from occurring. (STR0 -C)

● Handling sensitive information
Sensitive information must be handled carefully to prevent it from leaking or being falsifi ed. A rep-

resentative example of sensitive information handled by program code is password. ut depending on
what the program is intended to process, sensitive information can range widely, including confi den-
tial data of an organization and personal data of an individual.

It is important to keep the following points in mind when writing code to manipulate sensitive in-
formation.

 ・ D o not store sensitive information in plain tex t. (If you need to store sensitive information, en-
crypt it fi rst. (E 06-C)

 ・ Ensure that sensitive information that the program has fi nished using is not written out to disk.
(E 06-C)

Column: Points to k eep in mind in coding when
tak ing security into consideration

112●How to grasp source codes quality

 ・ Clear sensitive information stored in reusable resources (e.g. dynamic memory). (MEM03-C,
SC06-C)

Moreover, if a function to clear sensitive information is going to be prepared, it should be de-
clared as volatile, since there is a risk of its call being optimized out. (Refer to M1.11.2)

●Handling data that may not be trusted
When you need to receive and process input from an information source that is not under your man-

agement and therefore cannot be trusted, there is a risk of buffer overflow being caused, for example,
by an incoming value that ex ceeds the upper bound of an array index . When you acquire an integer
value from an ex ternal input source that cannot be trusted, you would need to take precautionary mea-
sures, such as, to determine the range if the incoming value is an integer or normalize the pathname if
the incoming value is a pathname. Keep the following points in mind when the input is:

 ・ I nteger v alue: All integer values originating from tainted sources should be evaluated to deter-
mine if they have identifiable upper and lower bounds. (I T0 -C)

 ・ F ormat string: When an ex ternally controllable format string is called as an argument like
printf function, it may be a cause of buffer overflow. or example, %n specifies the conversion
of a value for defining the number of bytes of the data to be written through output formatting
into an integer variable. This can be used to specify the address of a malicious code to a variable
that has the address of an exception handler. e careful not to process the input as it is and output
it as a format string. (FIO 30-C)

e sure also to check that all the format string functions are static strings that cannot be con-
trolled by the user, and that an argument of an appropriate value is always passed to these func-
tions. (I 7-C)
If possible, use a function that does not support %n in format strings. In C11, %n format has been
abolished.

 ・ F ilename or pathname: Specifying by relative path or access through a symbolic link may
lead to the access to an unintended file. To prevent it, there is a need to normali e the ac uired
pathname and use this pathname after verifying its validity. (FIO 12-C)

 ・ F ile identity There is no guarantee that a file opened as a read-only file is always the same as
the file opened as a file for writing. The sameness of the file can be determined with more cer-
tainty by saving the file attributes gained when the file is opened and comparing them with the
attributes of the file when it is opened again. (I 0 -C)

It is important not to mis udge whether the data is under your control or not. The cookies of a da-
tabase () or website that can be manipulated by other systems as well or data that has once being
placed outside your control may be overlooked by misunderstanding it to be still under your control.

12 P art1 How to R ead th e C odin g P ractices G uide

Table 1 Quality Characteristics of Software and Code Quality

Q uality Characteristics
(I SO / I EC 250 10)

Q uality Subcharacteristics
 (I SO / I EC 250 10)

Code Q uality

R
eliability

D egree to which a
system, product or
component performs
specified functions
under specified condi-
tions for a specified
period of time

Maturity D egree to which a system meets needs for reli-
ability under normal operation

ow oc-
currence of
bugs through
continued use

Availability D egree to which a system, product or component
is operational and accessible when required for
use

ault Toler-
ance

D egree to which a system, product or component
operates as intended despite the presence of hard-
ware or software faults

Tolerance for
bugs and inter-
face violations,
etc

Recoverability D egree to which, in the event of an interruption
or a failure, a product or system can recover the
data directly affected and re-establish the desired
state of the system

132●How to grasp source codes quality

Q uality Characteristics
(I SO / I EC 250 10)

Q uality Subcharacteristics
 (I SO / I EC 250 10)

Code Q uality

M
aintainability

D egree of effective-
ness and efficiency
with which a prod-
uct or system can
be modified by the
intended maintainers

Modularity D egree to which a system or computer program
is composed of discrete components such that a
change to one component has minimal impact on
other components

D egree to
which the
components
are composed
such that a
change to one
component of
the code has
minimal im-
pact on other
components.

Reusability D egree to which an asset can be used in more
than one system, or in building other assets

D egree to
which a code
can be used in
other pro-
grams

Analysability egree of effectiveness and efficiency with
which it is possible to assess the impact on a
product or system of an intended change to one
or more of its parts, or to diagnose a product for
deficiencies or causes of failures, or to identify
parts to be modified

Easiness of
understanding
the code

odifiability D egree to which a product or system can be
effectively and efficiently modified without
introducing defects or degrading ex isting product
quality

Easiness of
modifying
the code, and
lowness of
impact from
modifications

Testability egree of effectiveness and efficiency with
which test criteria can be established for a
system, product or component and tests can be
performed to determine whether those criteria
have been met

Easiness of
testing and
debugging the
modified code

14 P art1 How to R ead th e C odin g P ractices G uide

Q uality Characteristics
(I SO / I EC 250 10)

Q uality Subcharacteristics
 (I SO / I EC 250 10)

Code Q uality

Portability

D egree of
effectiveness and
efficiency with which
a system, product or
component can be
transferred from one
hardware, software or
other operational or
usage environment to
another

Adaptability D egree to which a product or system can effec-
tively and efficiently be adapted for different or
evolving hardware, software or other operational
or usage environments

Easiness of
adapting to
different
environments
*Including
conformance
to standards

Installability egree of effectiveness and efficiency with
which a product or system can be successfully
installed and or uninstalled in a specified envi-
ronment

Replaceability D egree to which a product can be replaced by
another specified software product for the same
purpose in the same environment

Perform
ance Efficiency

Performance relative
to the amount of
resources used under
stated conditions

Time ehav-
iour

D egree to which the response and process-
ing times and throughput rates of a product or
system, when performing its functions, meet
requirements

Efficiency
with regard
to processing
time

Resource tili-
zation

D egree to which the amounts and types of
resources used by a product or system when
performing its functions meet requirements

Efficiency
with regard to
resources

Capacity D egree to which the max imum limits of a prod-
uct or system parameter meet requirements

152●How to grasp source codes quality

Q uality Characteristics
(I SO / I EC 250 10)

Q uality Subcharacteristics
 (I SO / I EC 250 10)

Code Q uality

Security

D egree to which a
product or system
protects information
and data so that persons
or other products or
systems have the
degree of data access
appropriate to their
types and levels of
authorization

Confidentiality D egree to which a product or system ensures that
data are accessible only to those authorized to
have access

D egree of cer-
tainty that data
are accessible
only to those
authorized to
have access

Integrity D egree to which a system, product or component
prevents unauthori ed access to, or modification
of, computer programs or data

D egree of
prevention of
unauthorized
access to, or
modification
of, computer
programs or
data

N on-
repudiation

D egree to which actions or events can be proven
to have taken place, so that the events or actions
cannot be repudiated later

Accountability D egree to which the actions of an entity can be
traced uniquely to the entity

Authenticity D egree to which the identity of a subj ect or
resource can be proved to be the one claimed

16 P art1 How to R ead th e C odin g P ractices G uide

2.2　 How to t h i n k qua l i t y c h a rac te r i s t i c s , a n d code p rac t i ces a n d r u les

 O v erall Structure

In this guide, the basic matters to be followed when creating source code are organized as “ prac-
tices . or each practice , this guide introduces rules that are more specific reference information
to keep in mind at the time of coding.

These practices and rules provided in this guide are classified and arranged in order, accord-
ing to their association to any of the four uality characteristics described earlier in 2.1. The follow-
ing section defines what practice and rule actually mean in this guide (see also igure 1)

Practice
A “ practice” is a custom or a set of ideas on implementation to maintain source code quality. Each

practice reflects the basic concept of individual coding rule. These practices are broken down into
outline and details.

Rule
A rule is a specific agreement that must be followed and constitutes a part of coding convention.

This guide presents these rules as reference information. In this guide, a rule is also sometimes
used as a collective term that represents a group of relevant rules.

Correspondence of Practices and Rules
Most practices and rules are related to multiple quality characteristics, but in this guide, they are

respectively discussed in the section of the characteristic to which they are most strongly related.
Associating each practice with a particular quality characteristic makes it possible and easy for the
users of this guide to understand how each practice strongly affects which aspect of quality.

2.2 Q uality Characteristics, Coding Practices and
Rules

172●How to grasp source codes quality

Variables used only in one
function shall be declared
within the function.

Functions called only from
the functions defined in the
identical file shall be static

The number of lines per file
shall be within 1000 lines.

A coding convention for each project

Added as
project-specific rule

Practices:
Specific way of
thinking
constantly
applied in
implementation to
improve quality.

Rules:
Reference
information of
specific coding
rules that take
language
dependency into
consideration.

Write in a style that can
prevent modification errors.

Write in a unified style.

Write in a style that takes
account of resource and time
efficiencies.

・・・

Clarify the grouping of
structured data and blocks.

Localize access ranges and
related data. ・・・

・・・・・・

The body of if, else if, else,
while, do, for, and switch
statements shall be enclosed into
blocks.

Variables used only in one
function shall be declared within
the function.

Functions that are called only by
functions defined in the same file
shall be static.

Reliability Portability EfficiencyMaintainability

Initialize areas and use them
by taking their sizes into
consideration.

Write in a style that is not
dependent on the compiler.

Use the rules as reference to establish...
Practices O

verview
Practices
in details

Quality Concepts

Language independent
(with the exception of som

e partially dependent)
Language dependent

F igure1. Relationship B etween Q uality Concepts, Practices, and Rules

18 P art1 How to R ead th e C odin g P ractices G uide

3 How to U se this Guide

 U sage Scenarios

This guide intends to support the creation of coding conventions, and assumes that it will be used
in the following three scenarios:

1) C reatin g a n ew codin g con v en tion ;
2) E n h an cin g ex istin g codin g con v en tion s;
3) S erv in g as a learn in g m aterial f or program m ers’ train in g an d self - study.

Creating a N ew Coding Conv ention
O rganizations or departments that have not been able to organize any coding conventions

to be followed internally can use this guide for reference to establish their own coding con-
vention that suits their respective needs.

Enhancing Ex isting Coding Conv entions
Even in organizations and departments that have already established their coding conventions,

it is effective to maintain them regularly. sing this guide as a reference will help them review the
contents of their existing coding conventions more efficiently.

Serv ing as a L earning M aterial for Programmers’ Training and Self- Study
There are many books published on C language. nlike those existing ones, this guide focuses on

implementation quality, and provides an organized set of information on how to create source code
that can maintain and improve its quality. In this sense, this guide can also be an ex cellent material
for the users to learn about source code quality from a more practical point of view.

3.1 Scenarios for U sing this Guide

193 ●How to use th is guide

This section presents the procedure for creating a new coding convention by using this guide. It is
intended for proj ects that do not have any coding conventions of their own.

 W hen to Create

Create the coding convention before proceeding to the program design stage. While a coding
convention is a group of rules that are referred to during coding, some rules, such as, the naming
convention applied to function names are associated with program design, and therefore need to be
decided before starting the program design.

 How to Create

Proj ects creating a new coding convention of their own are recommended to follow the procedure
described below, step by step:

 S tep- 1 D ecide on th e policy f or creatin g a codin g con v en tion .
 S tep- 2 C h oose th e rules b ased on th e creation policy th at h as b een decided.
 S tep- 3
 S tep- 4 D eterm in e th e procedure f or settin g ex ception s to th e rules if n ecessary.

After following these steps in order, add any other rules as needed.

Step- 1 D ecide on the policy for creating a coding conv ention
In creating a coding convention, the first thing to do is to decide on its policy. A creation policy

defines how the code should be written for the pro ect, based on, such as, the characteristics of the
software developed in the proj ect and the members of the proj ect. For ex ample, should the prior-
ity be placed on safety and write code that avoids using features that are not safe, even if they are
convenient to use? O r, should the code be written in a way that makes careful use of such unsafe but
convenient features These are some of the uestions that need to be addressed in the creation poli-
cy. When deciding on the creation policy, each proj ect should consider which quality characteristics
are particularly important for its software development, and ex amine what kind of coding practices
it should adopt from the following perspectives:

- C odin g th at tak es accoun t of f ail- saf e;
- C odin g th at im prov es th e program readab ility;
- C odin g th at m ak es deb uggin g easy, etc.

3.2 Creating a N ew Coding Conv ention

20 P art1 How to R ead th e C odin g P ractices G uide

Also consider using the static code analysis tool for preventing rule violations. Static code analy-
sis tools are effective means to ensure that the code is written according to coding rules. It would
be beneficial to think at this point about which static code analysis tool would be most effective and
helpful to prevent writing any code against the set rules.

Step- 2 Choose the rules based on the creation policy that has been decided
The next step is to choose the suitable rules from the ractices Chart in art 2, based on the cre-

ation policy decided in Step-1. If the proj ect decides on the policy that prioritizes on portability, for
ex ample, efforts should be made to include many rules that address the portability issues in its cod-
ing convention.

In “ Part 2 - Coding Practices for Embedded Software” of this guide, some rules are marked with
either or as a guide to facilitate the selection process. A rule marked with indicates that
it is regarded so important for the particular quality characteristic it addresses, that if this rule is not
adopted as a part of the coding convention, that quality aspect may be seriously impaired. Whereas,

 indicates that it is a rule that is already so well-known among those who are very knowledgeable
about C language specifications that it may not necessarily be included in the coding convention.
The simplest way of creating a coding convention would therefore be to choose only the rules indi-
cated with , which would result in a set of widely applied rules.

Step-3 Define the project-dependent parts of the rules
In this guide, the rules are treated as one of the following three types:

1) R ules th at can b e used as a part of th e codin g con v en tion with out m ak in g an y ch an ges (I n th e

-

The rules treated either as type 2) or type 3) cannot be included in the coding convention as they
are. For rules treated as type 2) to be adopted as a part of the newly created coding convention, they
must be first chosen from the multiple alternatives presented in this guide. To adopt the rules treated
as type 3) as a part of the coding convention, they must be more fine-tuned so that they can address
the specific needs of each pro ect. In doing so, the supplementary explanation provided to each prac-
tice described in this guide should serve as a useful reference on rule definition.

213 ●How to use th is guide

Step- 4 D etermine the procedure for setting ex ceptions to the rules
The uality characteristics that should be focused at the time of coding may differ, depending on

the feature the proj ect is intending to realize through implementation. (For ex ample, “ In this proj ect,
efficiency should be prioriti ed over maintainability...). There may be cases when writing code that
is fully compliant with a certain rule included in the coding convention causes difficulty in achieving
the pro ect-specific ob ective. To deal with such cases, it is necessary to have a procedure to allow
partial ex ceptions to this rule

The important points to be covered in this procedure are as follows

- D escrib e wh at prob lem s m ay occur b y writin g code th at is com plian t with th e rule;
- Hav e ex perts rev iew th e prob lem s an d possib le solution s;
- R ecord th e rev iew result.

e sure not to allow exceptions too easily. The substance of the rule will be lost when there
are too many ex ceptions.

The following is an example of the procedure for allowing exceptions.

[Ex ample procedure]
(1) P repare a f orm describ in g th e reason f or th e ex ception .

 (T h is f orm sh ould, f or ex am ple, con tain th e f ollowin g item s.) - R ule n um b er;

 - P rob lem (s) caused b y com plyin g with th e rule;
 - I m pact of dev iation f rom th e rule.

 f orm .

3.3　Enhancing e x ist ing coding con v ent ions

For proj ects where coding conventions already ex ist, this guide can be a useful reference to re-
view and enhance the contents of their coding conventions.

 Prev enting O v ersights and O missions

y sorting the rules in existing coding conventions based on the concept of practices described in

3.3 Enhancing Ex isting Coding Conv entions

22 P art1 How to R ead th e C odin g P ractices G uide

3.4　 L earning material for trand for self - s tudy

This guide is a good learning material for programmers who have studied C language but are still
not used to or have little ex perience in practical coding.

 Target U sers

This guide is targeted at the following group of programmers

- P rogram m ers wh o h av e studied an d acquired th e b asic sk ills in C lan guage
- P rogram m ers wh o h av e ex perien ce in oth er program m in g lan guages b ut are b egin n ers in C

lan guage

 W hat The U sers Can L earn

y reading this guide, which is organi ed from the standpoint of uality characteristics like reli-
ability, maintainability and portability, the users can learn:

- How to write code th at can im prov e reliab ility;
- How to write code th at can prev en t b ugs f rom b ein g produced;
- How to write code th at can f acilitate deb uggin g an d testin g;
- How to write code th at is easy to read, an d th e reason s wh y good readab ility is n ecessary.

3.4 Serv ing as a L earning M aterial for Program-
mers’ Training and Self- Study

this guide, the proj ect members will be able to identify and supplement the elements that have been
overlooked or omitted, and see in a fresh light which tasks they have been placing importance on in
their proj ect.

 Clarifying the N ecessity for Rules

For those who have been feeling compelled to follow some rules without knowing why, this guide
will serve as a useful tool to understand clearly why they are necessary by referring to the practices
and compliant ex amples showing how they should be used.

Part 2
Coding Practices

for Embedded Software:
Practices Chart

 - How to Read the Practices Chart

 - Terminology Used in the Practices Chart

 - Coding Practices for Embedded Software

	 	 ● Reliability
	 	 ● Maintainability
	 	 ● Portability
	 	 ● Efficiency

24 P art2 C odin g P ractices f or E m b edded S of tware: P ractices C h art

How to Read the Pract ices Char t

 O rganiz ational Structure of the Practices

Coding practices shown in art 2 are classified according to four software uality characteristics
(reliability, maintainability, portability, efficiency).

Practices in O utline
ractices closely related to each characteristic are largely divided into practices in outline .

or example, the practices closely related to maintainability are largely divided into five practices
in outline from aintainability 1 eep in mind that others will read the program to

aintainability rite in a style that makes testing easy .

Practices in D etail
Each practice in outline is broken down into more specific subsets called practices in detail . or

example, the practice in outline aintainability 3 rite programs simply has four practices in
detail, which are

　 M aintainability 3.1 	 D o structured programming.

　 M aintainability 3.2 	 L imit the number of side effects per statement to one.

　 M aintainability 3.3 	 W rite ex pressions that differ in purpose separately.

　 M aintainability 3.4 	 D o not use complicated pointer operation.

 L ayout of the Practices Chart

 or each practice, reference information on rules to be noted during actual coding is provided in
a chart form. The following diagram shows the layout of a sample chart, which is followed by the
description of each field composing the chart

 How to Read the Practices Chart

25

3332 R eliab ility1 ● R 1 n itializ e areas an d use th em in con sid eration of th eir siz es.P art2 C odin g P ractices f or E m b edded S of tware: P ractices C h art

	
	

1

R
eliability

	
	

1

R
eliability

I nitiali z e areas and use them by
tak ing their siz es into consideration.

Reliability

1

Various variables are used in programs written in C language. Without considering the
areas to be reserved in the computer and ensuring that these areas are already initialized by
the time these variables are used, unex pected malfunctions may occur.

Moreover, the pointers in C language need to be used carefully by being conscious of the
areas they point to. Since the misuse of pointers may cause serious problems to the entire
system, particular caution is necessary when using them.

“ Reliability 1” consists of the following three practices.

Reliability 1.1 U se areas after initializ ing them.

Reliability 1.2 Describe initiali ations ithout e cess or deficiency

Reliability 1.3 Pay attention to the range of the area pointed by
 a pointer.

　

Automatic v ariables shall be initializ ed at the time
of declaration, or the initial v alues shall be assigned
j ust before using them.

R1.1.1

void func() {
 int var1 = 0; // Initialize at the time of
 // declaration
 int i; // Do not initialize at the
 // time of declaration
...
 var1++;
 // Assign the initial value just before
 // using it
 for (i = 0; i < 10; i++) {
 …
 }
}

void func() {
 int var1;
 var1++;
 …
}

const v ariables shall be initializ ed at the time of
declaration.

R1.1.2

const int N = 10; const int N;

const variables must be initialized at the time of declaration as values cannot be assigned to them sub-
se uently. If not initiali ed, 0 will be assigned for external variables and the values are undefined for au-
tomatic variables, which may cause unex pected behavior. N ote that missing initialization at declaration
does not cause a compile error.

Note With C++, uninitialized const is a compile error.

［Related rules］ M1.11.1， M1.11.3

Compliant ex ample N on- compliant ex ample

N on- compliant ex ampleCompliant ex ample

R 1 . 1 U se areas after initializ ing them.

P ref eren ce
 guide ●

R ule

P ref eren ce
 guide ●

R ule

If automatic variables are not initiali ed, their values become undefined and the operation results may
differ depending on the environment. The initialization must be either at the time of declaration or j ust
before using the variable.

3332 R eliab ility1 ● R 1 n itializ e areas an d use th em in con sid eration of th eir siz es.P art2 C odin g P ractices f or E m b edded S of tware: P ractices C h art

	
	

1

R
eliability

	
	

1

R
eliability

I nitiali z e areas and use them by
tak ing their siz es into consideration.

Reliability

1

Various variables are used in programs written in C language. Without considering the
areas to be reserved in the computer and ensuring that these areas are already initialized by
the time these variables are used, unex pected malfunctions may occur.

Moreover, the pointers in C language need to be used carefully by being conscious of the
areas they point to. Since the misuse of pointers may cause serious problems to the entire
system, particular caution is necessary when using them.

“ Reliability 1” consists of the following three practices.

Reliability 1.1 U se areas after initializ ing them.

Reliability 1.2 Describe initiali ations ithout e cess or deficiency

Reliability 1.3 Pay attention to the range of the area pointed by
 a pointer.

　

Automatic v ariables shall be initializ ed at the time
of declaration, or the initial v alues shall be assigned
j ust before using them.

R1.1.1

void func() {
 int var1 = 0; // Initialize at the time of
 // declaration
 int i; // Do not initialize at the
 // time of declaration
...
 var1++;
 // Assign the initial value just before
 // using it
 for (i = 0; i < 10; i++) {
 …
 }
}

void func() {
 int var1;
 var1++;
 …
}

const v ariables shall be initializ ed at the time of
declaration.

R1.1.2

const int N = 10; const int N;

const variables must be initialized at the time of declaration as values cannot be assigned to them sub-
se uently. If not initiali ed, 0 will be assigned for external variables and the values are undefined for au-
tomatic variables, which may cause unex pected behavior. N ote that missing initialization at declaration
does not cause a compile error.

Note With C++, uninitialized const is a compile error.

［Related rules］ M1.11.1， M1.11.3

Compliant ex ample N on- compliant ex ample

N on- compliant ex ampleCompliant ex ample

R 1 . 1 U se areas after initializ ing them.

P ref eren ce
 guide ●

R ule

P ref eren ce
 guide ●

R ule

If automatic variables are not initiali ed, their values become undefined and the operation results may
differ depending on the environment. The initialization must be either at the time of declaration or j ust
before using the variable.

3332 R eliab ility1 ● R 1 n itializ e areas an d use th em in con sid eration of th eir siz es.P art2 C odin g P ractices f or E m b edded S of tware: P ractices C h art

	
	

1

R
eliability

	
	

1

R
eliability

I nitiali z e areas and use them by
tak ing their siz es into consideration.

Reliability

1

Various variables are used in programs written in C language. Without considering the
areas to be reserved in the computer and ensuring that these areas are already initialized by
the time these variables are used, unex pected malfunctions may occur.

Moreover, the pointers in C language need to be used carefully by being conscious of the
areas they point to. Since the misuse of pointers may cause serious problems to the entire
system, particular caution is necessary when using them.

“ Reliability 1” consists of the following three practices.

Reliability 1.1 U se areas after initializ ing them.

Reliability 1.2 Describe initiali ations ithout e cess or deficiency

Reliability 1.3 Pay attention to the range of the area pointed by
 a pointer.

　

Automatic v ariables shall be initializ ed at the time
of declaration, or the initial v alues shall be assigned
j ust before using them.

R1.1.1

void func() {
 int var1 = 0; // Initialize at the time of
 // declaration
 int i; // Do not initialize at the
 // time of declaration
...
 var1++;
 // Assign the initial value just before
 // using it
 for (i = 0; i < 10; i++) {
 …
 }
}

void func() {
 int var1;
 var1++;
 …
}

const v ariables shall be initializ ed at the time of
declaration.

R1.1.2

const int N = 10; const int N;

const variables must be initialized at the time of declaration as values cannot be assigned to them sub-
se uently. If not initiali ed, 0 will be assigned for external variables and the values are undefined for au-
tomatic variables, which may cause unex pected behavior. N ote that missing initialization at declaration
does not cause a compile error.

Note With C++, uninitialized const is a compile error.

［Related rules］ M1.11.1， M1.11.3

Compliant ex ample N on- compliant ex ample

N on- compliant ex ampleCompliant ex ample

R 1 . 1 U se areas after initializ ing them.

P ref eren ce
 guide ●

R ule

P ref eren ce
 guide ●

R ule

If automatic variables are not initiali ed, their values become undefined and the operation results may
differ depending on the environment. The initialization must be either at the time of declaration or j ust
before using the variable.

3332 R eliab ility1 ● R 1 n itializ e areas an d use th em in con sid eration of th eir siz es.P art2 C odin g P ractices f or E m b edded S of tware: P ractices C h art

	
	

1

R
eliability

	
	

1

R
eliability

I nitiali z e areas and use them by
tak ing their siz es into consideration.

Reliability

1

Various variables are used in programs written in C language. Without considering the
areas to be reserved in the computer and ensuring that these areas are already initialized by
the time these variables are used, unex pected malfunctions may occur.

Moreover, the pointers in C language need to be used carefully by being conscious of the
areas they point to. Since the misuse of pointers may cause serious problems to the entire
system, particular caution is necessary when using them.

“ Reliability 1” consists of the following three practices.

Reliability 1.1 U se areas after initializ ing them.

Reliability 1.2 Describe initiali ations ithout e cess or deficiency

Reliability 1.3 Pay attention to the range of the area pointed by
 a pointer.

　

Automatic v ariables shall be initializ ed at the time
of declaration, or the initial v alues shall be assigned
j ust before using them.

R1.1.1

void func() {
 int var1 = 0; // Initialize at the time of
 // declaration
 int i; // Do not initialize at the
 // time of declaration
...
 var1++;
 // Assign the initial value just before
 // using it
 for (i = 0; i < 10; i++) {
 …
 }
}

void func() {
 int var1;
 var1++;
 …
}

const v ariables shall be initializ ed at the time of
declaration.

R1.1.2

const int N = 10; const int N;

const variables must be initialized at the time of declaration as values cannot be assigned to them sub-
se uently. If not initiali ed, 0 will be assigned for external variables and the values are undefined for au-
tomatic variables, which may cause unex pected behavior. N ote that missing initialization at declaration
does not cause a compile error.

Note With C++, uninitialized const is a compile error.

［Related rules］ M1.11.1， M1.11.3

Compliant ex ample N on- compliant ex ample

N on- compliant ex ampleCompliant ex ample

R 1 . 1 U se areas after initializ ing them.

P ref eren ce
 guide ●

R ule

P ref eren ce
 guide ●

R ule

If automatic variables are not initiali ed, their values become undefined and the operation results may
differ depending on the environment. The initialization must be either at the time of declaration or j ust
before using the variable.

① Q uality concept
uality concepts are related to the main uality characteristics of IS IEC 2 010 . This guide

uses the following four uality concepts

　 Reliability 　 M aintainability 　 Portability 　 Efficiency

② Practice
　 escribes the practice to be followed by programmers during coding

- I n outline

- I n detail

③ Rule number
　Identification number of each rule

① Q uality concept
② Practice in outline

⑤ Preference guide

⑦ Compliant ex ample

⑧ N on- compliant

⑨ Remark s

⑥ ule specification

② Practice in detail
③ Rule number ④ Rule

ex ample

26 P art2 C odin g P ractices f or E m b edded S of tware: P ractices C h art

④ Rules
Specific reference rule or rules for C language corresponding to the practice that must be

followed. The rules cited from ISRA C are written in the following format.

[M I SRA C:20 0 4 1.3] , [M I SRA C:20 12 R8 .14]

⑤ Preference guide

 rovides supportive information (marks) to indicate whether the corresponding rule described
under eachpractice should be chosen as a part of the newly created coding convention or not.

 N o mark :

 ●

　 ○

⑥ ule specification
 rovides supportive information (verbal indicators) to indicate which rule need to be defined

more specifically in detail or not, depending on the pro ect policy, or should be prescribed in
a document, such as, when it is recommended to record the behavior and usage of compiler-
dependent language specification as a document (the latter is referred to as the documentation
rule which can be used as it is, but is strongly recommended to be documented in more detail for
various reasons).

N o mark

Choose

Define
《 》

D ocument
《 》

27

⑦ Compliant ex ample
Example of source code written in compliance with the rule.

⑧ N on- compliant ex ample
Example of source code violating the rule.

⑨ Remark s
rovides notes pertaining to C language specification, and explanation on why the particular rule

is necessary and what kind of problem(s) may be caused by violation of that rule, among others.

28 P art2 C odin g P ractices f or E m b edded S of tware: P ractices C h art

The meaning of the terms used in the chart is as respectively explained in the table below

Term M eaning

Access

ype specifier
char int

ype ualifier const restric
volatile

Storage class specifier auto
register static extern.

B oundary alignment
int

Trigraph seq uence ??= ??/ ??(

??= ??/ ??(# \ [

L ifetime

M ultibyte character

N ull pointer

N ull character \0

Scope

Side effect

B lock { }

Enumeration type

Enumerator enum

 Terminology U sed in the Practices Chart

29

This part presents coding practices for embedded software. As explained carlier, The coding
practices are categori ed according to the perspective of four characteristics (uality concepts)
reliability , maintainability , portability and efficiency , which have been adopted from

the software uality characteristics defined in IS IEC 2 010. lease note, however, that these
practices have been categori ed in this way basically for the sake of convenience of the users of this
guide, and that there are actually some useful practices and corresponding rules that can be applied
to improve more than one characteristic (e.g. both reliability and maintainability).

oreover, the coding practices respectively related to these uality characteristics and the
reference rules that support the correct ways of executing these practices are also described in this
part of the guide.

Reliability R

M aintainability M

Portability P

Efficiency E

 Coding Practices for Embedded Software

　　

Reliability
A large number of embedded software is incorporated into prod-
ucts and used to support our daily liv es in v arious situations. Con-
seq uently, the lev el of reliability demanded to q uite a number of
embedded software is ex tremely high. Software reliability req uires
the software to be capable of not behav ing wrongly (not causing
failure) , not affecting the functionality of the entire software and
system in case of malfunction, and promptly restoring its normal
behav ior after a malfunction occurs.
At the source code lev el, the point to be noted in regard to soft-
ware reliability is the need of contriv ing methods to av oid coding
that may cause such malfunctions as much as possible.

●Reliability 1: I nitializ e areas and use them by tak ing
their siz es into consideration.

● Reliability 2: U se data by tak ing their ranges, siz es
 and internal representations into
 consideration.

●Reliability 3: W rite in a way that ensures intended be-
hav ior.

32 P art2 C odin g P ractices f or E m b edded S of tware: P ractices C h art

	
	

1

R
eliability

I nitiali z e areas and use them by
tak ing their siz es into consideration.

Reliability

1

Various variables are used in programs written in C language. ithout considering the
areas to be reserved in the computer and ensuring that these areas are already initiali ed by
the time these variables are used, unexpected malfunctions may occur.

oreover, the pointers in C language need to be used carefully by being conscious of the
areas they point to. Since the misuse of pointers may cause serious problems to the entire
system, particular caution is necessary when using them.

Reliability 1 consists of the following three practices.

Reliability 1.1 U se areas after initializi ng them.

Reliability 1.2 Describe initiali ations ithout e cess or deficiency

Reliability 1.3 Pay attention to the range of the area pointed by
 a pointer.

33R eliab ility1 ● R 1 n itialize areas an d use th em in con sid eration of th eir size s.

	
	

1

R
eliability

　

Automatic v ariables shall be initializ ed at the time
of declaration, or the initial v alues shall be assigned
j ust before using them.

R1.1.1

void func() {
 int var1 = 0; // Initialize at the time of
 // declaration
 int i; // Do not initialize at the
 // time of declaration
...
 var1++;
 // Assign the initial value just before
 // using it
 for (i = 0; i < 10; i++) {
 …
 }
}

void func() {
 int var1;
 var1++;
 …
}

const v ariables shall be initializ ed at the time of
declaration.

R1.1.2

const int N = 10; const int N;

const variables must be initiali ed at the time of declaration as values cannot be assigned to them sub-
se uently. If not initiali ed, 0 will be assigned for external variables and the values are undefined for au-
tomatic variables, which may cause unexpected behavior. ote that missing initiali ation at declaration
does not cause a compile error.

Note ith C , uninitiali ed const is a compile error.

［Related rules］ M1.11.1， M1.11.3

Compliant ex ample N on- compliant ex ample

N on- compliant ex ampleCompliant ex ample

U se areas after initializ ing them.

●

●

If automatic variables are not initiali ed, their values become undefined and the operation results may
differ depending on the environment. The initiali ation must be either at the time of declaration or ust
before using the variable.

34 P art2 C odin g P ractices f or E m b edded S of tware: P ractices C h art

	
	

1

R
eliability

 Describe initializations expressed without ex

rrays ith specified number of elements shall be
initializ ed with v alues that match the number of the
elements.

R1.2.1

char var[] = "abc";
 - or -
char var[4] = "abc";

char var[3] = "abc";

Initiali ing an array with a string will not cause an error at declaration even if a space for a null charac-
ter is not ensured in the array si e. This is not a problem if described intentionally. owever, when the
array is used as an argument for a string handling function etc., the absence of a null character indicating
the end of the string is more likely to cause unexpected behavior. hen initiali ing a string, it is neces-
sary to ensure a space for the null character at the end. It would be also helpful to refer to STR31-C in
CERT C regarding the points to keep in mind when using the null character.

［Related rule］ M2.1.1

I nitializ ation of enumeration type (enum type) mem-
bers shall be by either: not specifying any con-
stants; specifying all the constants; or specifying
only the first member

R1.2.2

// A different value is assigned respectively
// from E1 to E4
enum etag { E1=9, E2, E3, E4 };
enum etag var1;
var1 = E3;
// E3 and E4 in var1 will never be equal
if (var1 == E4)

// Both E3 and E4 become 11 unintentionally
enum etag { E1, E2=10, E3, E4=11 };
enum etag var1;
var1 = E3;
// It will be true despite the intention
// because E3 and E4 are equal
if (var1 == E4)

If an initial value is not specified to a member of an enumeration type, the value of the immediately
preceding member plus 1 (the value of the first member is 0) will be specified to this member. If some
initial values are specified while others are not, the same value may unintentionally be assigned to dif-
ferent members and may become the cause of unexpected behavior. To prevent the same value from
being assigned to different members, initiali ation of the members must be by either not specifying any
constants, specifying all the constants, or specifying only the first member, depending on the usage.

N on- compliant ex ample

Compliant ex ample

Compliant ex ample

D escribe initializ ations without ex cess or deficiency.

●

N on- compliant ex ample

35R eliab ility1 ● R 1 n itialize areas an d use th em in con sid eration of th eir size s.

	
	

1

R
eliability

信頼性

1.3 ポインタの指す範囲に気を付ける。

R1.3.1

#define N 10
char buf[N];
char *p = buf;
int i = 1;

Compliant example of (1) and (2)
buf[i] = 'a'; // Compliant
buf[i+3] = 'c'; // Compliant

Compliant example of (2), non-compliant to (1)
for (; p < buf+N && *p != '\0'; p++) {
 *p = 'z'; // Compliant
 ...
}

#define N 10
char buf[N];
char *p = buf;

Non-compliant example of (1)
*(p + 1) = 'a'; // Non-compliant
p += 2; // Non-compliant

Non-compliant example of (2)
*(p + 20) = 'z'; // Non-compliant

erforming operations on pointers can blur the destinations pointed by the pointers. It raises the pos-
sibility of implanting bugs that is likely to refer or write to unsecured areas. Rather, using an array name
that points to the beginning of the area and to access elements of the array with indices will make the
program safer. A dynamic memory area obtained by malloc should be treated as an array, and a pointer
to the starting address of the area should be handled as the array name.

or multi-dimensional array, this rule applies to each partial array.
Regarding rule (2), it is permissible to point to the area directly after the last element of the array as long
as the array element is not accessed. In other words, in the case where int data[N] and p=data, p+N
complies with the rule as long as it is not used for accessing the array elements, whereas, using, such as,
*(p+N) that accesses an array element is non-compliant.

Compliant ex ample N on- compliant ex ample

Pay attention to the range of the area pointed by a pointer.

●

Choose

(1) I nteger addition to or subtraction from (includ-
ing ++ and --) pointers shall not be made; Array
format with [] shall be used for references and
assignments to the allocated area.

(2) I nteger addition to or subtraction from (including ++ and --) point-
ers shall be made only when the pointer points to the array and the
result must be pointing within the range of the array.

36 P art2 C odin g P ractices f or E m b edded S of tware: P ractices C h art

	
	

1

R
eliability

Subtraction between pointers shall only be applied
to pointers that address elements of the same array.

【M I SRA C:20 12 R18 .2】

R1.3.2

#define N 10
ptrdiff_t off; // ptrdiff_t is a type of result of
 // subtraction between pointers
 // defined in <stddef.h>
int var1[N];
int *p1 = &var1[0];
int *p2 = &var1[N-1];

// Process that includes the change in where p1, p2
// point at (within the range of var1[N])
...
off = p2 - p1;

#define N 10
ptrdiff_t off; // ptrdiff_t is a type of result of
 // subtraction between pointers
 // defined in <stddef.h>
int var1[N];
int var2[N];
int *p1 = &var1[0];
int *p2 = &var2[N-1];

// Process that includes the change in where p1, p2
// point at (within the range of var1[N], var2[N]
// respectively)
...
off = p2 - p1;

In C language, subtraction between pointers expresses how many elements exist between the two ele-
ments pointed by each pointer. In this case, if each pointer points to a different array, the way the vari-
ables are laid out between them is implementation-dependent and the execution result is not guaranteed.
This implies that subtraction between pointers is meaningful only when both pointers are pointing to
elements in the same array. Therefore, before subtracting one pointer from another pointer, the program-
mer must ensure that both pointers are addressing elements of the same array.

［Related rule］ 1.3.3

N on- compliant ex ampleCompliant ex ample

●

37R eliab ility1 ● R 1 n itialize areas an d use th em in con sid eration of th eir size s.

	
	

1

R
eliability

The restrict type ualifier shall not be used
 【M I SRA C:20 12 R8 .14】

R1.3.4

void f(int n, int * restrict p,
int * restrict q) {
 while (n-- > 0) {
 *p++ = *q++;
 }
}

void g(void) {
 extern int d[100];

 f(50, d+1, d); // Undefined behavior

N on- compliant ex ampleCompliant ex ample

y using restrict type ualifier, efficient code can be generated by a compiler and the accuracy of
static analysis by using such as the code checker will improve. owever, the use of restrict type

ualifier will re uire the programmer to guarantee that the targeted areas will not overlap, and there is a
risk involved because the compiler will not output an error.

Comparison between pointers shall be used only
when the two pointers are both pointing at either the
elements in the same array or the members of the
same structure.

R1.3.3

#define N 10
char var1[N];
char* p = var1;

 ... // Operations performed on p

if (p < var1+N) { ... } // Compliant

#define N 10
char var1[N];
char var2[N];
char* p = var1;

 ... // Operations performed on p

if (p < var2+N) { ... } // Non-compliant

Comparing addresses of different variables does not cause a compile error, but is meaningless because
the address of the variable is implementation-dependent. In addition, the behavior of such a comparison
is not defined (undefined behavior).

［Related rules］ 1.3. ， . .3

N on- compliant ex ampleCompliant ex ample

●

38 P art2 C odin g P ractices f or E m b edded S of tware: P ractices C h art

	
	

1

R
eliability
	

	
R

eliability

U se data by tak ing their ranges, siz es
and internal representat ions into
consideration.

Reliability

2

The data used in programs vary in how they are represented internally and in the range they
can be operated, depending on their types. hen using these different types of data for opera-
tion, they must be written carefully by paying attention to various aspects, including precision
and si e. therwise, unexpected malfunctions may occur when they are processed in, such
as, arithmetic operations. Therefore, there is a need to handle data with care, by taking their
ranges, si es and internal representations, among others, into consideration.

Reliability 2.1 M ak e comparisons that do not depend on internal
 representations.

Reliability 2.2

hen values such as logical values are defined as a
 range do not ma e a judgment by finding hether or not
 a v alue is eq uiv alent to any v alue (representativ e v alue
 that is implemented) within this range

Reliability 2.3 U se the same data type to perform operations or
 comparisons.

Reliability 2.4 D escribe code by tak ing operation precision into
 consideration.

Reliability 2.5 D o not use operations that hav e the risk of information
 loss.

Reliability 2.6 U se types that can represent the target data.

Reliability 2.7 Pay attention to pointer types.

Reliability 2.8
W rite in a way that will enable the compiler to check

 that there are no con icting declarations usages and
 definitions

39

	
	

1

R
eliability

Reliability2● R 2 U se data in con sideration of ran ges, size s an d in tern al represen tation s.

	
	

eliability

信頼性

2.1 Make comparisons that do not depend on internal representations.

F loating- point ex pressions shall not be used to per-
form eq uality or ineq uality comparisons.

R2.1.1

#define LIMIT 1.0e-4
void func(double d1, double d2) {
 double diff = d1 - d2;
 if (-LIMIT <= diff && diff <= LIMIT) {
 …

void func(double d1, double d2) {
 if (d1 == d2) {
 …

In case of a floating-point type, values written in the source code do not exactly match with those actu-
ally implemented. Therefore, the comparison results must be udged by taking account of tolerance.

【Reference materials for those wanting to know more in detail about this rule】
・ CERT C　 00-C

［Related rule］ R2.1.2

F loating- point v ariable shall not be used as a loop
counter.

R2.1.2

void func() {
 int i;
 for (i = 0; i < 10; i++) {
 …

void func() {
 double d;
 for (d = 0.0; d < 1.0; d += 0.1) {
 …

If operations are repeatedly performed to a floating-point variable used as a loop counter, the
intended result may not be achieved due to accumulated calculation errors. Therefore, inte-
ger type (int type) should be used for loop counters.

【Reference materials for those wanting to know more in detail about this rule】
・ CERT C　 00-C

［Related rule］ R2.1.1

N on- compliant ex ample

N on- compliant ex ample

Compliant ex ample

Compliant ex ample

M ak e comparisons that do not depend on internal
representations.

●

●

40 P art2 C odin g P ractices f or E m b edded S of tware: P ractices C h art

	
	

1

R
eliability
	

	
R

eliability

memcmp shall not be used to compare structures
and unions.

R2.1.3

struct TAG {
 char c;
 long w;
};
struct TAG var1, var2;
void func() {
 if (var1.c == var2.c && var1.w == var2.w) {
 …

struct TAG {
 char c;
 long w;
};
struct TAG var1, var2;
void func() {
 if (memcmp(&var1, &var2, sizeof(var1)) == 0) {
 …

emories for structures and unions may contain unused areas. Since the values in the areas are un-
known, memcmp should not be used. hen making comparisons of structures or unions, they should be
made between the corresponding members.

［Related rule］ M1.6.2

 Do not examine whether a value is equivalent to true value

Comparison with a v alue defined as true shall not
be made in ex pressions that ex amine true or false.

R2.2.1

#define FALSE 0
// func1 may return a value other than 0 and 1
void func2() {
 if (func1() != FALSE) {
 - or -
 if (func1()) {

#define TRUE 1
// func1 may return a value other than 0 and 1
void func2() {
 if (func1() == TRUE) {

In C language, true is represented by any non- ero value, not necessarily 1.

［Related rule］ M1.5.2

N on- compliant ex ample

N on- compliant ex ampleCompliant ex ample

Compliant ex ample

●

W hen v alues such as logical v alues are defined as a
range, do not mak e a j udgment by finding whether or
not a v alue is eq uiv alent to any particular v alue (rep-
resentativ e v alue) within this range

41

	
	

1

R
eliability

Reliability2● R 2 U se data in con sideration of ran ges, size s an d in tern al represen tation s.

	
	

eliability

信頼性

2.3 Use the same data type to carry out operations or make

Unsigned integer constant ex pressions shall be
described within the range that can be represented
with the result type.

R2.3.1

#define MAX 0xffffUL // Specify long type
unsigned int i = MAX;
if (i < MAX + 1)
// If long is 32 bits, there is no problem even
// when the number of bits of int is not 32.

#define MAX 0xffffU
unsigned int i = MAX;
if (i < MAX + 1)
// The result varies depending on whether the int is
// 16bits or 32bits. If int is 16bits, the operation
// result will wrap around and the comparison result
// will be false. If int is 32bits, the operation
// result will be within the range of int and the
// comparison result will be true

nsigned integer operations in C language wrap around without overflow (the result will be the re-
mainder of the maximum representable value). ecause the overflow is not flagged, there is a risk of
not noticing when the operation result differs from the intended result. or example, when there are two
environments that differ in the number of bits of int, the same constant expression produces different
operation results, depending on whether they exceed the representable value range or not.

W hen using conditional operator (?: operator) , the
logical ex pression shall be enclosed in parentheses
() and both return v alues shall be the same type.

R2.3.2

void func(int i1, int i2, long w1) {
 i1 = (i1 > 10) ? i2 : (int)w1;

void func(int i1, int i2, long w1) {
 i1 = (i1 > 10) ? i2 : w1;

hen writing code using different types, perform a cast to specify which type is expected as
the result.

［Related rule］ M1.4.1

N on- compliant ex ample

N on- compliant ex ample

Compliant ex ample

Compliant ex ample

U se the same data type to perform operations or
comparisons.

42 P art2 C odin g P ractices f or E m b edded S of tware: P ractices C h art

1

R
eliability

R
eliability

L oop counters and v ariables used for comparison
of loop iteration conditions shall be the same type.

R2.3.3

void func(int arg) {
 int i;
 for (i = 0; i < arg; i++) {

void func(int arg) {
 unsigned char i;
 for (i = 0; i < arg; i++) {

sing comparison between variables with different ranges of representable values as a loop iteration
condition may produce unintended results and end up in an infinite loop.

信頼性

2.4 Describe code in consideration of operation

W hen the type of an operation and the type of the
destination to which the operation result is assigned
(assignment destination) are different, the operation
shall be performed after casting them to the type of
ex pected operation precision.

R2.4.1

int i1, i2;
long w;
double d;
void func() {
 d = (double)i1 / (double)i2; // floating-point

// division
w = ((long)i1) << i2; // Shift using long

int i1, i2;
long w;
double d;
void func() {
 d = i1 / i2; // integer division
w = i1 << i2; // Shift using int

The type used in operation is determined by the type of the expression (operand) used for the operation,
and the type of the assignment destination is not taken into consideration at compile time. Therefore, do
not expect the operation to output its result in the type of the assignment destination if the operating type
differs from the destination type. hen there is a need to execute an operation in the type that differs
from the operand type, perform a cast to convert the type of operand to the intended type before opera-
tion.

［Related rule］ R2.5.1

N on- compliant ex ample

N on- compliant ex ample

Compliant ex ample

Compliant ex ample

D escribe code by tak ing operation precision into con-
sideration.

●

●

43

	
	

1

R
eliability

Reliability2● R 2 U se data in con sideration of ran ges, size s an d in tern al represen tation s.

	
	

eliability

W hen performing arithmetic operations or com-
parisons of ex pressions mix ed with signed and
unsigned, an ex plicit cast to the ex pected type shall
be performed.

R2.4.2

int i;
unsigned int ui;
void func() {
 i = i / (int) ui;
 if (i < (int) ui) {
 ...

int i;
unsigned int ui;
void func() {
 i = i / ui;
 if (i < ui) {
 ...

Some operations, such as, si e comparison, multiplication and division output different results, depend-
ing on whether they are performed with signed or unsigned. If an operation is written for a mixture
of signedness, unsigned operation is not always executed because it is the compiler that determines
which type to execute the operation in (whether with signed or unsigned) by taking account of the
respective data si es. Therefore, when performing an arithmetic operation of mixed signedness, there is
a need to check whether the intended operation is with signed or unsigned, and perform an explicit
cast to change the operating type to the desired type before operation so that the intended operation re-
sult can be expected.

N ote: If there are data types that may have to be changed for use in intended operation, it is often
　　　better to change them rather than performing a cast mechanically. Therefore, in such a situation,
　　　first consider changing the data type.

N on- compliant ex ampleCompliant ex ample

44 P art2 C odin g P ractices f or E m b edded S of tware: P ractices C h art

	
	

1

R
eliability
	

	
R

eliability

信頼性

2.5 Do not use operations that have a risk of information loss.

R2.5.1

// Assignment examples
short s; // 16 bits
long w; // 32 bits
void func() {
 s = (short)l;
 s = (short)(s + 1);
}
// Operation examples
unsigned int var1, var2; // int size is 16
 // bits
 var1 = 0x8000;
 var2 = 0x8000;
 if ((long)var1 + var2 > 0xffff) { // The result
 // is true

// Assignment examples
short s; // 16 bits
long w; // 32 bits
void func() {
 s = w;
 s = s + 1;
}
// Operation examples
unsigned int var1, var2; // int size is 16
 // bits
var1 = 0x8000;
var2 = 0x8000;
if (var1 + var2 > 0xffff) { // The result is
 // false

hen a value is assigned to a variable that differs in type, the value may change (i.e. information may
be lost). The assignment destination, therefore, should be the same type whenever possible. hen a
value is assigned to a different type intentionally in cases, such as, where there is no risk of information
loss or no impact even if information is lost, perform a cast to explicitly state the intention.

hen performing an operation that outputs a result that exceeds the representable value range of the
type used, the result may become an unintended value. Therefore, for safety, carry out the operation
after verifying that the operation result is within the representable value range of the type used, or after
converting it to the type that could ade uately accommodate larger values.

N ote: In many cases, it is better to change data types used rather than casting mechanically.
 Changing data types should be considered first.

［Related rule］ R2.4.1

Compliant ex ample N on- compliant ex ample

D o not use operations that hav e the risk of informa-
tion loss.

W hen performing assignments (=operation, actual
arguments passing of function calls, function re-
turn) or operations to data types that may cause
information loss they shall be first confirmed that
there are no problems, and a cast shall be described to ex plicitly
state that they are problem- free.

45

	
	

1

R
eliability

Reliability2● R 2 U se data in con sideration of ran ges, size s an d in tern al represen tation s.

	
	

eliability

U nary operator ' -' shall not be used in unsigned
ex pressions.

R2.5.2

int i;
void func() {
 i = -i;

unsigned int ui;
void func() {
 ui = -ui;

If a unary operator - is used in unsigned expression and the operation result falls out of represent-
able value range of the original unsigned type, unintended behavior may occur.

or example, writing if (- ui < 0) in the non-compliant example will not make this if
true.

W hen one’ s complement (~) or left shift (<<) is ap-
plied to unsigned char or unsigned short type
data, an ex plicit cast to the type of the operation
result shall be performed.

R2.5.3

uc = 0x0f;
if((unsigned char)(~uc) >= 0x0f)

uc = 0x0f;
if((~uc) >= 0x0f) // It is not true

The result of operation using unsigned char or unsigned short type will be signed int type.
hen the sign bit turns on due to operation, the intended result may not be achieved. This is why cast-

ing to the type of the intended operation is necessary. The above non-compliant example shows that ~uc
always becomes false as it produces a negative value.

［Related rule］ R2.5.4

N on- compliant ex ample

N on- compliant ex ample

Compliant ex ample

Compliant ex ample

●

46 P art2 C odin g P ractices f or E m b edded S of tware: P ractices C h art

	
	

1

R
eliability
	

	
R

eliability

The right- hand side of a shift operator shall be z ero
or more, and less than the bit width of the left- hand
side.

R2.5.4

unsigned char a; // 8 bits
unsigned short b; // 16 bits
b = (unsigned short)a << 12; // Clearly
 // indicated that the operation is 16 bits

unsigned char a; // 8 bits
unsigned short b; // 16 bits
b = a << 12; // There may be an error in the
 // shift count

The behavior of a shift operator whose right-hand side (shift count) specifies a negative value or a value
e ual to or larger than the bit width at the left-hand side (value to be shifted) is not defined in C lan-
guage standard and will vary depending on the compiler used. (This bit width will be that of int type
if the si e is smaller than int .)
The intention of specifying a value up to the bit width of int type as the shift count will be unclear if
the left-hand side (value to be shifted) is of a type that is smaller in si e, even though its behavior is de-
fined in the language standard.

［Related rule］ . .3

N on- compliant ex ampleCompliant ex ample

●

 Use types with which the target data can be reprenseted.

 he types used for bit field shall only be signed
int or unsigned int f a bit field of bit idth is
req uired, unsigned int type shall be used, and
not the unsigned int type.

R2.6.1

U se types that can represent the target data.

 he types used for bit field shall be signed int, unsigned int or
_Bool f a bit field of bit idth is re uired unsigned int type or
_Bool type shall be used.

3 he types used for bit field shall be signed int, unsigned int, _
Bool, or those allowed by the compiler that are either enum or the
type that specifies signed or unsigned f a bit field of bit idth
is re uired the type that specifies unsigned or _Bool type shall
be used.

47

	
	

1

R
eliability

Reliability2● R 2 U se data in con sideration of ran ges, size s an d in tern al represen tation s.

	
	

eliabilityCompliant example of (1)
struct S {
 signed int m1:2;
 unsigned int m2:1;
 unsigned int m3:4;
};

Compliant example of (2)
struct S {
 _Bool m1:1;
};

Compliant example of (3)
struct S {
 unsigned char m1:2; // If char is defined by the

// compiler as allowable:
// conpliant

 enum E m2:2; // If enum is defined by the
// compiler as allowable:
// conpliant

};

Non-compliant example of (1)
struct S {

int m1:2; // Non-compliant: (1)(2)(3)
 // Without sign specification
signed int m2:1; // Non-compliant: (1)(2)(3)
 // Use of signed int type of
 // 1-bit width
unsigned char m3:4; // Non-compliant:(1)(2)
 // Use of char type.
 // Compliant in (3) if char type
 // is allowed by the compiler
enum E m4:2; // Non-compliant:(1)(2)
 // Use of enum type.
 // Compliant in (3) if enum type
 // is allowed by the compiler
_Bool m5:1; // Non-compliant: Use of _Bool

 // type. Compliant in (2),(3)
};

Non-compliant example of (2)
struct S {

int m1:2; // Non-compliant: (1)(2)(3)
 // Without sign specification
signed int m2:1; // Non-compliant: (1)(2)(3)
 // Use of signed int type of
 // 1-bit width
unsigned char m3:4; // Non-compliant:(1)(2)
 // Use of char type.
 // Compliant in (3) if char type
 // is allowed by the compiler
enum E m4:2; // Non-compliant:(1)(2)
 // Use of enum type.
 // Compliant in (3) if enum type
 // is allowed by the compiler

};

Non-compliant example of (3)
struct S {

int m1:2; // Non-compliant: (1)(2)(3)
 // Without sign specification
signed int m2:1; // Non-compliant: (1)(2)(3)
 // Use of signed int type of
 // 1-bit width

};

N on- compliant ex ampleCompliant ex ample

48 P art2 C odin g P ractices f or E m b edded S of tware: P ractices C h art

	
	

1

R
eliability
	

	
R

eliability

(1) To be compatible with C 0, use only the int type defined in C 0, which is the int type that has
specified the signedness to either signed or unsigned . o not use the signedness-unspecified int
type that may become signed or unsigned, depending on the compiler used.

(2) se only the int type that specifies the signedness as signed or unsigned defined in C , or the
_Bool type, and do not use the int type that does not specify the signedness because the interpreta-
tion of signedness or unsignedness may vary depending on the compiler used.

(3) In addition to the types defined in C language specification, the types defined in processing systems
can also be used. owever, do not the integer type that does not specify the signedness, because the
interpretation of signedness and unsignedness may vary depending on the compiler. oreover, for
the bitfield of 1-bit integer type, specify unsigned because the values that can be expressed by 1-bit
signed integer type are only -1 and 0.

［Related rules］ 3.11. 1.3.3

D ata used as bit seq uences shall be defined with
unsigned type, and not with the signed type.

R2.6.2

unsigned int flags;
void set_x_on() {
 flags |= 0x01;

signed int flags;
void set_x_on() {
 flags |= 0x01;

The result of bitwise operation (~, << , >> , & , ^ , | to signed type may vary, depending on the compiler used.

N on- compliant ex ampleCompliant ex ample

49

	
	

1

R
eliability

Reliability2● R 2 U se data in con sideration of ran ges, size s an d in tern al represen tation s.

	
	

eliability

Pay attention to pointer types.

(1) Pointer type shall not be conv erted to other
pointer type or integer type, and v ice v ersa, with
the ex ception of mutual conv ersion between
“ pointer to data” type and “ pointer to void * ”
type.

R2.7.1

int *ip;
int (*fp)(void) ;
char *cp;
int i;
void *vp;

Compliant example of (1)
ip = (int*)vp;

Compliant example of (2)
i = (int)ip;

Compliant example of (3)
i = (int)fp;
cp = (char*)ip;

int *ip;
int (*fp)(void) ;
char c;
char *cp;

Non-compliant example of (1)
ip = (int*)cp;

Non-compliant example of (2)
c =(char) ip;

Non-compliant example of (2)
ip =(int*) fp;

N on- compliant ex ampleCompliant ex ample

(2) Pointer type shall not be conv erted to other pointer type or integer
type with less data width than that of the pointer type, with the ex -
ception of mutual conv ersion between “ pointer to data” type and
“ pointer to void* ” type.

(3) Pointer type shall not be conv erted to other pointer type or integer
type with less data width than that of the pointer type, with the ex -
ception of mutual conv ersion between “ pointer to data” type and
“ pointer to other data” type, and between “ pointer to data” type
and “ pointer to void* ” type.

50 P art2 C odin g P ractices f or E m b edded S of tware: P ractices C h art

	
	

1

R
eliability
	

	
R

eliability

As explained in the rule under R.2.7.1, it is a risk to convert (assign) pointer type variable to other pointer
type more than is necessary, because the intended result may not gained. The rules on pointer conversion
have been organi ed in the form of a table, as shown below.

In the following table, the origin to convert from are listed in the rows, and the destination to convert to
are listed in the columns. indicates that the conversion can be made, and indicates that the conversion
should not be performed.

If a pointer type variable is casted or assigned to another pointer type, it is difficult to identify what
kind of data is contained in the area the pointer points to. ith some s, runtime errors occur if the
destination of a pointer that is not at word boundaries is accessed as int type thus changing pointer
types may cause a risk of unexpected bugs. It is safer not to cast or assign pointer type variables to
other pointer types. Converting pointer types to integral types is also risky, involving the same problem
stated above. Such conversions, therefore, should be reviewed with experts, whenever deemed neces-
sary. oreover, attention must also be given to the value ranges of int type and pointer type. e sure
to check the specifications of the compiler beforehand, because there may be cases where the si e of the
pointer type is 6 bits even though the si e of int type is 32 bits.
<stdint.h> defines intptr_t and uintptr_t, which respectively represents signed and unsigned
integral types with data width capable of holding a value converted from a pointer type and be converted
back to that type with a value that e uals to the original pointer. These types should be used when con-
verting between pointer type and integrer type.

 Pointer conv ersion rules

51

	
	

1

R
eliability

Reliability2● R 2 U se data in con sideration of ran ges, size s an d in tern al represen tation s.

	
	

eliability

etails (1)

Conerted	to
Po in t e r 	 to	
data	type

Poin te r 	 to	
function	type

Po i n t e r 	 t o	
void	type

Other	type

C o n
v e r t e d	
from

Pointer	to	data	type × × ○ ×

Pointer	to	function	type × × × ×

Pointer	to	void	type ○ × － ×

Other	type × × ×

etails (2)

Conerted	to

Pointer	 to	
data	type

Pointer	 to	
f unc t ion	
type

Po i n t e r	
t o 	 v o i d	
type

Integrer	type
With	 less	 data	
width	than	that	of	
the	pointer	type

With	more	 data	
width	that	than	of	
the	pointer	type

C o n
verted	
from

Pointer	to	data	type × × ○ × ○

Pointer	to	function	type × × × × ○

Pointer	to	void	type ○ × － × ○

Integrer	
type

Wi t h 	 l e s s 	 da t a	
width	 than	 that	of	
the	pointer	type

× × ×

With	 more	 data	
width	 that	 than	of	
the	pointer	type

○ ○ ○

etails (3)

Con	verted	to
Pointer	 to	
data	type

Pointer	 to	
f unc t ion	
type

Po i n t e r	
t o 	 v o i d	
type

With	 less	 data	
width	than	that	of	
the	pointer	type

With	more	 data	
width	that	than	of	
the	pointer	type

C o n
verted	
from

Pointer	to	data	type ○ × ○ × ○

Pointer	to	function	type × × × × ○

Pointer	to	void	type ○ × － × ○

Integrer	
type

Wi th 	 l ess 	 da ta	
width	 than	 that	of	
the	pointer	type

× × ×

With	 more	 data	
width	 that	 than	of	
the	pointer	type

○ ○ ○

52 P art2 C odin g P ractices f or E m b edded S of tware: P ractices C h art

	
	

1

R
eliability
	

	
R

eliability

A cast shall not be performed that remov es any
const or volatile q ualification from the type ad-
dressed by a pointer.【M I SRA C:20 12 R11.8 】

R2.7.2

void func(const char *);
const char *str;
void x() {
 func(str);
 …
}

void func(char *);
const char *str;
void x() {
 func((char*)str);
 …
}

e careful when accessing the areas ualified by const or volatile, because they are only for refer-
ence and must not be optimi ed. If a cast that removes any const or volatile ualification from the
type addressed by a pointer is performed, the compiler will not be able to check and detect error descrip-
tions in the program even if there are any, or may perform an unintended optimi ation.

Comparison of whether a pointer is larger or small-
er than 0 shall not be performed.

R2.7.3

— int * func1() {
 …
 return -1;
}
int func2() {
 …

 if (func1() < 0) { // Comparison intended to
// check whether negative or
// not

 …
 }
 return 0;
}

It is meaningless to compare whether a pointer is larger or smaller than 0.
hen the sub ect of comparison is a pointer, the compiler will convert 0 into a null pointer. Therefore,

even when the comparison of pointer against 0 is intended, the comparison will actually be between two
pointers, and the intended behavior may not be achieved.
As shown in the non-compliant example, error check should not be performed by comparing whether
the pointer is negative or not when a function that returns a pointer returns a negative value other than a
null pointer as an error.

［Related rule］ 1.3.3

N on- compliant ex ample

N on- compliant ex ample

Compliant ex ample

Compliant ex ample

●

53

	
	

1

R
eliability

Reliability2● R 2 U se data in con sideration of ran ges, size s an d in tern al represen tation s.

	
	

eliability

W rite in a way that will enable the compiler to check that
there are no conflicting declarations, usages and defini-
tions.

F unctions with no parameters shall be declared
with a void type parameter.

R2.8.1

int func(void) ; int func();

The declaration int func() does not mean that a function has no parameters. It is an old-styled (R
style) declaration that means that a function has unknown number and types of parameter. Therefore,
when declaring functions with no parameters, write void explicitly.

［Related rule］ . .3

(1) F unctions shall not be defined with a v ariable
number of arguments. 【M I SRA C:20 0 4 16.1】

(2) W hen using functions with a v ariable number of
arguments, 《they shall be used after document-
ing the intended behav iors based on the com-
piler used.》

R2.8.2

Compliant example of (1)
int func(int a, char b);

Non-compliant example of (1)
int func(int a, char b, ...);

ithout understanding the behavior of functions with a variable number of arguments in the processing
system, their use may cause stack overflow or other unexpected results.
In addition, when the number of arguments is variable, the number and the types of the arguments are
not explicitly specified, and it will lower readability of the code.

ISRA C 2012 prohibits the use of functions defined in <stdarg.h>.
hen defining a variadic function that uses va_list type variable to reference an argument, there is a

need to be careful not to make the va_list type variable an indeterminate value. If you want to learn
more about this warning, SC3 -C in CERT C should serve as a good source of reference.

［Related rule］ . .3

N on- compliant ex ampleCompliant ex ample

Compliant ex ample N on- compliant ex ample

54 P art2 C odin g P ractices f or E m b edded S of tware: P ractices C h art

	
	

1

R
eliability
	

	
R

eliability

O ne prototype declaration shall be made at one
place from where it can be referenced by both the
function calls and function definition

R2.8.3

-- file1.h --
void f(int i);

-- file1.c --
#include "file1.h"
void f(int i) { … }

-- file2.c --
#include "file1.h"
void g(void) { f(10); }

-- file1.c --
void f(int i); // Declared in each file
void f(int i) { … }

-- file2.c --
void f(int i); // Declared in each file
void g(void) { f(10); }

This rule is for preventing the prototype declaration and function definition from becoming inconsistent.

［Related rules］ . .1， . .

Compliant ex ample N on- compliant ex ample

55

	
	

1

R
eliability

R eliab ility3 ● R 3 W rite in a way to en sure b eh av ior.

	
	

R
eliability

W rite in a way that ensures intended
behav ior.

Reliability

3

It is essential to be consistent with the description on how to handle all the potential errors,
by also taking account of unexpected events that may occur in cases that are even conceived
as highly unlikely from the standpoint of program specifications. oreover, writing code in
ways that do not rely on language specifications, such as, explicit indication of operator prece-
dence can also improve safety. To achieve high reliability, it is desirable to make every effort
to avoid coding that leads to malfunction and write in a way that ensures intended behavior
and safety as much as possible.

Reliability 3.1 W rite in a way that is conscious of area size .

Reliability 3.2
Prev ent operations that may cause runtime error

 from falling into error cases.

Reliability 3.3
Check the interface restrictions when a function is

 called.

Reliability 3.4 D o not perform recursiv e calls.

Reliability 3.5
Pay attention to branch conditions and describe

 ho to handle cases that do not follo the predefined
 conditions when they occur.

Reliability 3.6 Pay attention to the order of ev aluation.

B e careful with how to access the shared data in

 programs that use threads or signals.

※R3.7 ～ R3.10 described in ESCR C edition are deleted from C language edition as they are not applicable as C language rules.

Reliability 3.11

56 P art2 C odin g P ractices f or E m b edded S of tware: P ractices C h art

	
	

1

R
eliability
	

	
R

eliability

信頼性

3.1 Write code in consideration of sizes of areas

R3.1.1

Compliant example of (1)
extern char *mes[3];
…
char *mes[] = {"abc", "def", NULL};

Compliant example of (2)
extern char *mes[];
…
char *mes[] = {"abc", "def", NULL};

Compliant example of (1) and (2)
extern int var1[MAX];
…
int var1[MAX];

Non-compliant example of (1)
extern char *mes[];
…
char *mes[] = {"abc", "def", NULL};

Non-compliant example of (1) and (2)
extern int var1[];
…
int var1[MAX];

aking an extern declaration without specifying the si e of an array will not cause an error. owever, if
the si e is not specified, it may cause problems in checking outside the array range. Therefore, it is bet-
ter to explicitly specify the array si e in its declaration. owever, there are cases where it is better not to
specify the array si e in the declaration, such as, when the si e of the array is determined by the number
of initial values and is not fixed in the declaration.

［Related rule］ 3.1.

W rite in a way that is conscious of area siz e.

(1) I n an ex tern declaration of an array, the number
of elements shall al ays be specified

(2) I n an ex tern declaration of an array, the number
of elements shall al ays be specified e cept for
ex tern declarations of arrays that correspond to
the array definition that includes initiali ation and has omitted the
number of elements.

Compliant ex ample N on- compliant ex ample

57

1

R
eliability

R eliab ility3 ● R 3 W rite in a way to en sure b eh av ior.

R
eliability

I teration conditions for a loop to seq uentially ac-
cess array elements shall include the decision to
whether the access is within the range of the array
or not.

R3.1.2

char var1[MAX];
for (i = 0; i < MAX && var1[i] != 0; i++) {

 // Even if 0s are not set in the var1 array,
 // there is no risk of accessing outside the

 // array range
 …

char var1[MAX];
for (i = 0; var1[i] != 0; i++) {
 // If 0s are not set

 // in the var1 array, there is a risk
 // of accessing outside the array range

 …

This rule is to prevent accessing outside the range.

［Related rule］ 3.1.1

The siz e of the array initializ ed with a designated
initializ er shall be clearly indicated.

R3.1.3

int a[5] = { [0] = 1 }; int b[] = { [0] = 1 };

nless the si e of the array is clearly indicated when defining the array, the largest index among the ele-
ments that will be initiali ed will be determined as the si e. hen a designated initiali er is used, there
are times when it is not clear which index is the largest and should be initiali ed.

［Related rule］ 3.1.1

Compliant ex ample N on- compliant ex ample

N on- compliant ex ampleCompliant ex ample

58 P art2 C odin g P ractices f or E m b edded S of tware: P ractices C h art

1

R
eliability

R
eliability

V ariable length array type shall not be used.
【M I SRA C:20 12 R18 .8 】

(1) sizeof operator shall not be applied to pointer-
type v ariable.

(2) sizeof operator shall not be applied to array- type
argument.

●

Choose

R3.1.4

R3.1.5

#define MAX 1024
void func(void) {
 int a[MAX]; // Compliant Secured an array of

// largest length

void func(int n) {
 int a[n]; // Non-compliant Variable

// length array

N on- compliant ex ampleCompliant ex ample

Compliant examples of (1) and (2)
void func1(char *cp) {

size_t x;
x = sizeof(*cp); // Compliant: *cp is not

// pointer-type variable
size_t y;
y = sizeof(int *); // Compliant: int* is not

// pointer-type variable

void func2(int arg[MAX], size_t n) {
size_t argsize;
argsize = sizeof(arg[0]) * n; // Compliant:

// arg[0] is not array-type argument

Non-compliant example of (1)
void func1(char *cp) {

size_t x;
x = sizeof(cp); // Non-compliant: cp is

// pointer-type variable
// (argument)

Non-compliant examples of (1) and (2)
void func2(int arg[MAX], size_t n) {

size_t argsize;
argsize = sizeof(arg); // Non-compliant:

// arg is array-type argument

N on- compliant ex ampleCompliant ex ample

The use of variable length array type has the following problems
・ Risk of stack overflow

Variable length array can be assigned to a stack area. Therefore, if the variable length array si e is big,
there is a risk of stack overflow.
・ ehavior that is not defined in C language standard

The behavior when the variable length array si e is not a positive value is not defined in C language
standard.
・ isconceived array si e

int y = 10;
typedef int INTARRAY[y];
y = 20;
INTARRAY z; // Array size of z is 10, and not 20.

CERT C also provides a warning regarding the need to be careful when using the variable length array
type. If you find it inevitable to use the variable length array type, the warning described in ARR32-C
should serve as a good source of reference.

59

1

R
eliability

R eliab ility3 ● R 3 W rite in a way to en sure b eh av ior.

R
eliability

The first rule (1) is for preventing the misconception that sizeof(pointer-type variable) yields the si e
of the space the pointer points to.
Since sizeof(array-type variable) yields the si e of the array, it is sometimes misconceived as
sizeof(pointer-type variable) also yields the si e of the space the pointer points to. ut actually, it
yields the si e of a pointer. The use of this rule will also be helpful, for example, to prevent the program-
mers from writing sizeof(p) by mistake, by misconceiving p in p[0] = 0 to be a type of array
without checking the variable declaration.
The second rule (2) is for preventing the misconception that sizeof(array-type argument) yields the
si e of an array.
Since the array-type argument is treated as pointer type, sizeof(array-type argument) yields the si e
of a pointer.

【Reference materials for those wanting to know more in detail about this rule】
・ CERT ARR01-C
・ C E- 67
・ ISRA C 2012 Amendment 12.

［Related rules］ 3. .3 1. .

Prev ent operations that may cause runtime error
from falling into error cases.

perations shall be performed after confirming that
the right- hand side ex pression of div ision or remain-
der operation is not 0 .

R3.2.1

ans = x/y;

N on- compliant ex ampleCompliant ex ample

Apart from when the value is obviously not 0, the operations should be performed after checking that
the right-hand side expression of division or remainder is not 0. therwise, division by ero error may
occur at runtime.

［Related rules］ 3. . ， 3.3.1

if (y != 0)
 ans = x/y;

{

}

60 P art2 C odin g P ractices f or E m b edded S of tware: P ractices C h art

1

R
eliability

R
eliability

p = malloc(BUFFERSIZE);
*p = '\0';

I f a function returns error information, then that er-
ror information shall be tested. 【M I SRA C:20 12 D 4.7 】

R3.3.1

N on- compliant ex ample

Check the interface restrictions when a function is
called.

hen a function returns a value, the code that does not use that return value may cause an error. If it is
not necessary to reference the return value, consider setting a pro ect-specific rule to clearly indicate the
unnecessity of referencing, such as, by casting to void.
Regarding the rules on standard library errors, CERT C ERR30-C and ERR32-C explain about how to
use errno and ERR33-C provides a list of return values in the library and explains how to handle them
properly. These rules should serve as a good source of reference.

［Related rules］ 3. .1 3. . 3. .1 3. .

M emory pointed by a pointer shall be referenced to
after check ing that the pointer is not the null pointer.

R3.2.2

*p = 1;

ardware trap or memory corruption will occur when the memory is accessed via a null pointer or a
pointer that points to an invalid memory. They can be prevented, such as, by
(1) Assigning a null pointer to a pointer that has already been used. y making it a rule to find out

where the pointer will point to before it is referenced, you can prevent the memory from being used
after it is freed or from being double freed.

(2)　In recent years, some embedded operating systems, such as, A T SAR S, provide a system ser-
vice that checks whether the value of the pointer is valid or not. If such type of S is used, be sure
to always use this system service. y confirming that the value of the pointer is valid before the
memory is accessed through the pointer, you can prevent the memory from being accessed un ustly.

［Related rules］ 3. .1 3.3.1

N on- compliant ex ample

*p = 1;

Compliant ex ample

if (p != NULL) {

}

*p = '\0';

Compliant ex ample

p = malloc(BUFFERSIZE);
if (p == NULL)
 // Error handling

else

{

}
{

}

61

1

R
eliability

R eliab ility3 ● R 3 W rite in a way to en sure b eh av ior.

R
eliability

The function shall check if there are constraints
on parameters before starting to process.

R3.3.2

int func(int para) {
 if (!((MIN <= para) && (para <= MAX)))
 return range_error;
 // Normal processing
 ...
}

int func(int para) {
 // Normal processing

 ...
}

N on- compliant ex ampleCompliant ex ample

hether the constraints on parameters are checked by the function that calls or the function that is called
depends on how the interface is designed. owever, in order to prevent checking from being over-
looked, the same check should be performed in one place. Therefore, the check should be performed by
the function that is called. As another guideline, CERT C also recommends checking at the side that is
called. (See CERT C A I00-C.)
In case the function that is called cannot be changed, such as, when it is in a library, create a wrapper
function.

int func_with_check(int arg) {
 // If arg is violating the parameter constraints, return range_error
 // If not, call func and return the result
}
// Use a wrapper function to make the function call
if (func_with_check(para) == range_error) {
 // Error processing

}

C allows the specification of the lower limit of array si e by using a static ualifier in an array decla-
ration of a formal parameter. or example, in the following function declaration, the lower limit of ele-
ments of an argument of array a is specified as 3.

void func(int a[static 3]);

y specifying such constraints on parameters, tools like the compiler would uite likely check the re-
strictions applied to arguments.

62 P art2 C odin g P ractices f or E m b edded S of tware: P ractices C h art

	
	

1

R
eliability
	

	
R

eliability

D o not perform recursiv e calls.

F unctions shall not call themselv es, either directly
or indirectly. 【M I SRA C:20 12 R17 .2】

R3.4.1

— unsigned int calc(unsigned int n)
{
 if (n <= 1) {
 return 1;
 }
 return n * calc(n-1);
}

N on- compliant ex ampleCompliant ex ample

Since the stack si e used at runtime for recursive calls cannot be predicted, there is a risk of stack over-
flow.

63

	
	

1

R
eliability

R eliab ility3 ● R 3 W rite in a way to en sure b eh av ior.

	
	

R
eliability

Pay attention to branch conditions and describe how
to handle cases that do not follow the predefined
conditions when they occur.

The else clause shall be written at the end of an
if-else if statement. I f it is k nown that the else
condition does not normally occur, the description
of the else caluse shall be either one of the follow-
ing:

R3.5.1

《 (i) An ex ception handling process shall be written in the else clause.
 ii comment specified by the project shall be ritten in the else

clause.》

// else clause of an if-else if statement where
// the else condition does not normally occur
if (var1 == 0) {
 …
} else if (0 < var1) {
 …
} else {
 // Write an exception handling process
 …
}
…
if (var1 == 0) {
 …
} else if (0 < var1) {
 …
} else {
 // NOT REACHED
}

// if-else if statement without the else clause
if (var1 == 0) {
 …
} else if (0 < var1) {
 …
}

If there is no else clause in an if-else if statement, it is not clear whether the programmer has for-
gotten to write the else clause or deliberately left out the else clause be cause the else condition dose
not occur. Even if it is known that the else condition does not normally occur, the behavior of the pro-
gram when an unexpected condition occurs can be specified by writing the else clause as follows
(i) rite the behavior under unexpected conditions in the else condition (ow program behaves

in case of occurrence of the else condition should be determined.)
r, the program is much easier to understand by ust writing a comment that the else condition does

not occur.
(ii) rite a comment specified by the pro ect such as // NOT REACHED clearly indicating that the

 else condition does not occur to express that the else clause has not been forgotten.

［Related rules］ 3.3.1， 3. .

N on- compliant ex ampleCompliant ex ample

64 P art2 C odin g P ractices f or E m b edded S of tware: P ractices C h art

	
	

1

R
eliability
	

	
R

eliability

《The default clause shall be written at the end of
a switch statement. I f it is k nown that the default
condition does not normally occur, the description

R3.5.2

of the default clause shall be either one of the following:
《 (i) An ex ception handling process shall be written in the default

clause.
ii comment specified by the project shall be ritten in the default

clause. 》

// Default clause in a switch statement where
// the default condition does not normally occur
switch(var1) {
case 0:
 …
 break;
case 1:
 …
 break;
default:
 /* Write an exception handling process */
 …
 break;
}
…
switch(var1) {
case 0:
 …
 break;
case 1:
 …
 break;
default:
 // NOT REACHED
 break;
}

// Switch statement without the default clause
switch(var1) {
case 0:
 …
 break;
case 1:
 …
 break;
}

N on- compliant ex ampleCompliant ex ample

65

	
	

1

R
eliability

R eliab ility3 ● R 3 W rite in a way to en sure b eh av ior.

	
	

R
eliability

Eq uality operators (== , ! =) shall not be used for
comparisons of loop counters.

R3.5.3

void func() {
 int i;
 for (i = 0; i < 9; i += 2) {
 …

void func() {
 int i;
 for (i = 0; i != 9; i += 2) {
 …

N on- compliant ex ampleCompliant ex ample

If the amount of change for the loop counter is not 1, an infinite loop may occur. Therefore, for compari-
son to determine the number of loop iterations, do not use the e uality operators (==, !=). (Instead use
<=, >=, < , > .)

If there is no default clause in a switch statement, it is not clear whether the programmer has for-
gotten to write the default clause or deliberately left out the default clause because the default
condition does not occur. Even if it is known that the default condition does not normally occur, the
behavior of the program when an unexpected condition occurs can be specified by writing the default
clause as follows
(i) rite the behavior under unexpected conditions in the default condition (redefine the behavior of

theprogram if by any chance the default condition occurs).
r, the program is much easier to understand by ust writing a comment that the default condition

does not occur.
(ii) rite a comment like // NOT REACHED that clearly indicates that the default condition does not

occur to express that the default clause was not written because it was forgotten. Such comment
will improve the readability of the program.

［Related rules］ 3.3.1， 3. .1， M3.1.

66 P art2 C odin g P ractices f or E m b edded S of tware: P ractices C h art

	
	

1

R
eliability
	

	
R

eliability

Pay attention to the order of ev aluation

V ariables whose v alues are changed in an ex pres-
sion shall not be referred to or modified in the
same ex pression.

R3.6.1 ●

f (x, x);
x++;
- or -
f (x + 1, x);
x++;

 f (x, x++);

N on- compliant ex ampleCompliant ex ample

Compilers do not guarantee the execution (evaluation) order of each actual argument in functions with
multiple parameters. The arguments may be executed from the right or from the left. In addition, com-
pilers do not guarantee the execution order of the left-hand and the right-hand side of binary operations
such as operation. Therefore, if the same ob ect is updated and referenced in a se uence of arguments
or binary operation expressions, the execution result is not guaranteed. Such a problem, where the ex-
ecution result is not guaranteed, is called a side effect problem. o not write code that causes such side
effect problems.
This rule, however, does not prohibit descriptions, such as, those shown below which do not cause the
side effect problem.
x = x + 1;
x = f(x);

［Related rules］ 3. . ， M1. .1

67

	
	

1

R
eliability

R eliab ility3 ● R 3 W rite in a way to en sure b eh av ior.

	
	

R
eliability

F unction calls with side effects and volatile v ari-
ables shall not be described more than once in a
seq uence of actual arguments or binary operation
ex pressions.

R3.6.2

1.
extern int G_a;
x = func1();
x += func2();
…
int func1(void) {
 G_a += 10;
 …
}
int func2(void) {
 G_a -= 10;
 …
}

2.
volatile int v;
y = v;
f(y, v);

1.
extern int G_a;
x = func1() + func2(); // With side effect

// problem
…
int func1(void) {
 G_a += 10;
 …
}
int func2(void) {
 G_a -= 10;
 …
}

2.
volatile int v;
f(v, v);

N on- compliant ex ampleCompliant ex ample

Compilers do not guarantee the execution (evaluation) order of each actual argument for functions with
multiple parameters. The arguments may be executed from the right or flom the left. In addition, com-
pilers do not guarantee the execution order of the left-hand and the right-hand side of binary operations
such as operation. Therefore, the execution results of two or more function calls with side effects and
volatile variables in a se uence of arguments or binary operation expressions may not be guaranteed.
Such unsafe descriptions must be avoided.

［Related rules］ 3. .1， M1. .1

68 P art2 C odin g P ractices f or E m b edded S of tware: P ractices C h art

	
	

1

R
eliability
	

	
R

eliability

sizeof operator shall not be used in ex pressions
that hav e side effect.

R3.6.3

x = sizeof(i);
i++;
y = sizeof(int[i]);
i++;

x = sizeof(i++);
y = sizeof(int[i++]);

ntil C 0, the expression in parenthesis of sizeof operator was used only for finding the si e of the
expression type, and was not executed.
Therefore, even when ++ operator like sizeof(i++) was described, i was not incremented. owever,
in C , if the type is a variable length array, there are cases when the expression is evaluated. In those
cases, i in sizeof(int[i++) will be incremented by ++ operator. Such description should not be used
because it can easily be misunderstood.

［Related rules］ 3.1. 1. .

●

N on- compliant ex ampleCompliant ex ample

In case of C11
#include <threads.h>

int v = 0;
mtx_t flag; // mutex is used for exclusive
 // control
...
mtx_lock(&flag);
v++; // In the critical section.
 // Processed indivisibly
mtx_unlock(&flag);
...

volatile int v = 0; // Non-compliant
...
v++; // Not processed indivisibly.
...

N on- compliant ex ampleCompliant ex ample

B e careful with how to access the shared data in
programs that use threads or signals.

F or concurrent processing, volatile shall not be
used as synchroniz ation primitiv e.

R3.11.1

69

	
	

1

R
eliability

R eliab ility3 ● R 3 W rite in a way to en sure b eh av ior.

	
	

R
eliability

In case of C11
#include <threads.h>

struct {
 unsigned int flag1 : 1;
 unsigned int flag2 : 1;
} s;

mtx_t lock; // mutex is used for exclusive
control

void func1() {
 mtx_lock(&lock); // Compliant: Exclusively
 // controlled properly
 s.flag1 = 1;
 mtx_unlock(&lock);
}

void func2() {
 mtx_lock(&lock); // Compliant: Exclusively
 // controlled properly
 s.flag2 = 1;
 mtx_unlock(&lock);
}

// func1 and func2 are executed by different
// threads

struct {
 unsigned int flag1 : 1;
 unsigned int flag2 : 1;
} s;

// Non-compliant: Not exclusively controlled
// properly
void func1() {
 s.flag1 = 1;
}

void func2() {
 s.flag2 = 1;
}

// func1 and func2 are executed by different
// threads

or concurrent processing or asynchronous signal processing, there is a need to properly reflect the result
of updated data to other threads. sing volatile to guarantee the indivisibility and visibility of data
refreshed by other threads is a mistake. volatile is used for preventing the compiler from optimi ing
the data and does not guarantee indivisibility, etc., in concurrent processing. To guarantee the indivisibil-
ity of a single data, use mutex, etc., as the synchroni ation primitive.
It is preferable to ac uire and release synchroni ation primitives at the same level of abstraction in the
same translation unit.

If multiple threads access bit fields allocated in the same memory space, the result of data referenced or
refreshed in the ad acent bit fields may become incorrect. To avoid this problem, allocate the data sepa-
rately in different memory spaces or perform the exclusive control or mutual exclusion properly.

【Reference materials for those wanting to know more in detail about this rule】
・ CERT C　C 32-C

［Related rules］ . .1 1.3.3

N on- compliant ex ampleCompliant ex ample

The bit fields that may be allocated in the same
memory space shall not be accessed by multiple
threads or shall be ex clusiv ely controlled properly.

R3.11.2

Many embedded software developments require mainte-
nance tasks, including the modification of the software that
has already been developed.
There are various reasons for maintenance. For example,
maintenance becomes necessary:

・When a bug is found in one part of the released software
and must be modified;

・When a new function is added to existing software in re-
When any kind of additional work is carried out on the
already developed software as in the above examples, it
is important to perform such work as accurately and effi-
ciently as possible to maintain the quality of the software.

This is called “maintainability” in the field of system devel-
opment.

This section clarifies the practices to keep and improve the
maintainability of embedded software source code.

●Maintainability 1: Keep in mind that others will read the
program.

●Maintainability 2: Write in a style that can prevent
modification errors.

●Maintainability 3: Write programs simply.
●Maintainability 4: Write in a unified style.
●Maintainability 5: Write in a style that makes testing

easy.

Maintainability

72 P art2 C odin g P ractices f or E m b edded S of tware: P ractices C h art

	
	

1

M
aintainability

K eep in mind that others will read
the program.

It is easily conceivable that source code is reused and maintained by engineers who are not
the original creators. Therefore, it is necessary to write source code that is easy to understand
by taking account of others who will read it later.

M aintaiability 1.1 D o not leav e unused descriptions.

M aintaiability 1.2 D o not writing confusingly.

M aintaiability 1.3 D o not write in an unconv entional style.

M aintaiability 1.4 rite in a style that clearly specifies the operator pre-
cedence.

M aintaiability 1.5 Ex plicitly describe the operations that are lik ely to
cause misunderstanding when they are omitted.

M aintaiability 1.6 U se one area for one purpose.

M aintaiability 1.7 D o not reuse names.

M aintaiability 1.8 Do not use language specifications that are li ely to
cause misunderstanding.

M aintaiability 1.9
 W hen writing in an unconv entional style, ex plicitly

state its intention.

M aintaiability 1.10 D o not embed magic numbers.

M aintaiability 1.11 Ex plicitly state the area attributes.

M aintaiability 1.12 Correctly describe the statements ev en if they are not
 compiled.

M aintainability

1

73M ain tain ab ility1 ● M 1 C on sider th at oth ers will read th e program .

1

M
aintainability

U nused functions, v ariables, parameters, typedefs,
tags, labels or macros shall not be declared (de-
fined

M1.1.1

void func(void) {
 ...
}
When necessary in case of callback function
int cbfunc2(int arg1, int);
 // In case the callback function types are fixed
 // to be int(*)(int,int), the second argument
 // is necessary even when it is not used

void func(int arg) {
// arg is unused

...
}

eclarations (definitions) of unused functions, variables, parameters labels, etc. impairs maintainability
because it makes it difficult to determine whether the programmer has forgotten to delete them or has
made a description error.

owever, when writing a call back function, make it explicit that parameter is not used, by not describ-
ing the name of the parameter to keep the function types consistent.

［Related rules］ M1. .1， M . .

 Sections of code should not be “ commented
out” . 【M I SRA C:20 12 D 4.4】
 or commenting out sections of code 《the coding
rule shall be specified 》

M1.1.2

ormally, invalidated sections of the code should not be left in the code as it may impair the code read-
ability.
However, if there is a need to invalidate certain sections of the code by commenting them out, set a rule,
for example, to use only comment for commenting out. Any section of the code can also be invali-
dated without using comment out by specifying that section in between #if 0 and endif#.

［Related rules］ M1.1 .1， M . .

Compliant ex ample N on- compliant ex ample

P ref eren ce
 guide

R ule

P ref eren ce
 guide

R ule

M 1 . 1 D o not leav e unused descriptions.

 ...
// i = i * i;
 j = j * ;
 ...

 Compliant ex ample

Compliant example of (2)（

 n ）

 j = j * ;
...

N on- compliant ex ample

Non-compliant example of ()

...
// i = i * i;

74 P art2 C odin g P ractices f or E m b edded S of tware: P ractices C h art

	
	

1

M
aintainability

1.2 紛らわしい書き方をしない。

M1.2.1

Compliant example of (1)
int i;
int j;

Compliant example of (2)
int i, j;
int k = 0;

int *p;
int i;

Non-compliant example of (1)
int i, j;

Non-compliant example of (2)
int i, j, k = 0;
　// Non-compliant: A variable with initialization
　// and variables without initialization are mixed

int *p, i;
　// Non-compliant: Variables of different types
　// are mixed

If the declaration is int *p;, the type of p is int*. However, if the declaration is int *p, q;, the type
of q becomes int instead of int*.

［Related rule］ M1.6.1

M 1 . 2 D o not writing confusingly.

Compliant ex ample N on- compliant ex ample

 the similar purposes may be declared in one declaration
　　statement, but v ariables with initializ ation and v ariables
　　without initializ ation shall not be mix ed.

（1） O nly one v ariable shall be declared in one
 declaration statement (av oid multiple declara-
 tions

（2）Automatic v ariables of the same type used for

P ref eren ce
 guide

R ule

75Ma int a ina b ilit y1 ●M1 C o nsi der t h a t o t h ers w ill rea d t h e p ro gra m .

1

M
aintainability

Suffixes shall be added to constant descriptions that
can use them to indicate appropriate types. Only an
uppercase letter “L” shall be used for a suffix indi-
cating a long type integer constant.

M1.2.2

void func(long int);
…
float f;
long int w;
unsigned int ui;

f = f + 1.0F; // Explicitly state that it is a
// float operation

func(1L); // Description of L should be an
 // uppercase letter

if (ui < 0x8000U) { // Explicitly state that it
// is an unsigned comparison

 …

void func(long int);
…
float f;
long int w;
unsigned int ui;

f = f + 1.0;
func(1l); // 1l (numeral 1 and letter l) can get
 // confused with 11 (number 11)
if (ui < 0x8000) {

Basically, when there is no suffix, an integer constant will be an int type and a floating constant will be
a double type. However, when an integer constant value that cannot be expressed with an int type is
described, its type will be the one that can express that value. Therefore, 0x8000 will be unsigned int
if int is 16 bits, and signed int if int is 32 bits. If you would like to use it as unsigned, it is neces-
sary to explicitly describe “U” as the suffix. In addition, in case of a target system where the operation
speed differs between floating point number of float type and that of double type, when performing
operations between a float type variable and a floating constant without a suffix “F,” constant, it should
be noted that the operation will be a double type.
For floating constants, writing at least one digit on both sides of the decimal point will make them easily
recognizable as floating constants.

［Related rule］ M1.8.5

When expressing a long string literal, successive
string literals shall be concatenated without using
newlines within the string literal.

M1.2.3

 char abc[] = "aaaaaaaa¥n"
 "bbbbbbbb¥n"

"ccccccc¥n";

 char abc[] = "aaaaaaaa¥n¥
bbbbbbbb¥n¥
ccccccc¥n";

Long strings that extend to multiple lines will become easier to read by describing them as concatena-
tion of multiple string literals.

Compliant example Non-compliant example

Compliant example Non-compliant example

Preference
 guide

Rule
specification

Preference
 guide

Rule
specification

 …

76 P art2 C odin g P ractices f or E m b edded S of tware: P ractices C h art

1

M
aintainability

保守性

1.3
 特殊な書き方はしない。

Ex pressions ev aluating to true or false shall not be
described in switch (ex pression).

M1.3.1

M 1 . 3 D o not write in an unconv entional style.

P ref eren ce
 guide ●

R ule

【Reference materials for those wanting to know more in detail about this rule】
・ ISRA C 2012 R16.2
・CERT C SC20-C

switch (x) {
case 1:
 {
 …
 }
 …
 break;
case 2:
 …
 break;
default:
 …
 break;
}

switch (x) { // Compound statement of the
// switch statement body

case 1:
 { // Nested compound statement
case 2: // Do not describe case label in

// nested compound statement
…

 }
 …
 break;
default:
 …
 break;
}

The case labels and default label in a switch state-
ment shall be described only in the compound state-
ment e cluding nested compound statements ith-
in the body of the switch statement.

M1.3.2

hen an expression evaluating to true or false is used in a switch statement, the number of branch
directions will be two, and the necessity of using the switch statement as a multiway branch command
becomes low. Compared to if statements, switch statements have a higher possibility of errors, such as,
writing the default clause wrongly or missing break statements. Therefore, it is recommended to use
if statements unless the number of branch directions is three or more. When there will be two branch
directions like in case of the non-compliant example, write the if statement in the way shown below.

if (i_var1 == 0) {
i_var2 = 0;

} else {
i_var2 = 1;

}

[Related rule］ 1.1.

switch (i_var1 == 0) {
case 0:
 i_var2 = 1;

 break;
default:
 i_var2 = 0;
 break;

}

Compliant ex ample N on- compliant ex ample

P ref eren ce
 guide

R ule

Compliant ex ample N on- compliant ex ample

77M ain tain ab ility1 ● M 1 C on sider th at oth ers will read th e program .

1

M
aintainability

he types shall be e plicitly described for definitions
and declarations of functions and v ariables.

M1.3.3

extern int global;

int func(void) {
 …
}

extern global;

func(void) {
 …
}

If data types are not described in definitions and declarations of functions or variables, they are inter-
preted as int type. Explicitly specifying data types improves readability. In C language standard,
these descriptions that do not explicitly specify the data types are prohibited and will be detected as error
by the compiler.

[Related rule］ M . .1

保守性

1.4 演算の優先順位がわかりやすいように記述する。

Ex pressions described at the right hand and left
hand of && and || operations shall be either simple
v ariables or ex pressions enclosed with (). How-
ev er, if only && operations or only || operations are
successiv ely combined, it is not necessary to en-
close each && and || ex pression with ().

M1.4.1

if ((x > 0) && (x < 10))
if ((x != 1) && (x != 4) && (x != 10))
if (flag_tb[i] && status)
if (!x || y)

if (x > 0 && x < 10)
if (x != 1 && x != 4 && x != 10)

The ob ective of this rule is to write an expression that prevents confusion in understanding the order of
precedence of each operand in && or ||. Its aim is to highlight the operation of each operand in && or ||
to improve the readability by enclosing the expression that contains an operator other than unary, postfix
and cast operators with () . Another rule that may be considered is to enclose ! operation with () be-
cause the order of precedence may be confusing to beginners.

[Related rules］ .3. M1. .

M 1 . 4 W rite in a style that clearly specifies the operator
precedence.

Compliant ex ample N on- compliant ex ample

Compliant ex ample N on- compliant ex ample

P ref eren ce
 guide

R ule

P ref eren ce
 guide

R ule

78 P art2 C odin g P ractices f or E m b edded S of tware: P ractices C h art

	
	

1

M
aintainability

《U sage of parentheses to ex plicitly indicate operator
precedence shall be defined 》

M1.4.2

a = (b << 1) + c;
 - or -
a = b << (1 + c);

a = b << 1 + c; // There is a possibility that
 // the operator precedence is
 // misunderstood

perator precedence in C language is difficult to capture. Therefore, set a rule as exemplified below to
improve its readability. If an expression contains multiple binary operators that differs in the order of
operation priority, parentheses () shall be used to explicitly indicate the operator precedence, provided
that the parentheses () may be omitted in four arithmetic operations.
To learn more about the operator precedence and its interpretation, refer to ISRA C 2012 Rule 12.1
(p.103).
[Related rule］ M1.5.1

保守性

1.5 関数のアドレス取得の演算や比較演算を省略しない。

 function identifier function name shall only be
used with either a preceding “ &” , or with a parenthe-
siz ed parameter list, which may be empty.

【M I SRA C:20 0 4 16.9 】

M1.5.1

void func(void);
void (*fp)(void) = &func;

if (func()) {

void func(void);
void (*fp)(void) = func; // Non-compliant:
 // There is no &
if (func) { // Non-compliant: Address is

// obtained rather than calling the
// function. It might be mistakenly
// written as afunction call without
// arguments.

In C language, if a function name is written alone, it means obtaining the function address, and not call-
ing the function. This means that, for obtaining the function address, there is no need of placing & in
front of the function name. owever, the function name without a preceding &, in some cases, may be
misunderstood that it is for a function call (for example, when using languages like Ada and Ruby that
write only the name to call a subprogram without arguments). y following the rule to add & when ob-
taining the function address, it will become easier to detect mistakes in function names written as they
are without & and subsequent () .
[Related rule］ M1. .

M 1 . 5 Ex plicitly describe operations that may lead to mis-
understanding when omitted.

Compliant ex ample N on- compliant ex ample

Compliant ex ample N on- compliant ex ample

P ref eren ce
 guide

R ule

P ref eren ce
 guide

R ule

79M ain tain ab ility1 ● M 1 C on sider th at oth ers will read th e program .

1

M
aintainability

omparisons ith ero shall be e plicitly ritten
in conditional ex pressions.

M1.5.2

int x = 5;

if (x != 0) {
 …
}

int x = 5;

if (x) {
 …
}

In conditional expressions, when the result of the expression is ero (0), it is treated as false, and non-
zero is treated as true. Therefore, comparative operations may be omitted in conditional expressions.

owever, such description may cause unintended behavior. or this reason, the comparisons should not
be omitted to make the intention of the program explicit. oreover,since bool, true and false are
defined as macros in <stdbool.h>, any of them should be used to describe a type that represents true
or false, or a constant that represents a true or false value.

[Related rules］ . .1 M1. .1

保守性

1.6 領域は1つの利用目的に使用する。

V ariables shall be prepared for each purpose.
M1.6.1

M 1 . 6 U se one area for one purpose.

Compliant ex ample N on- compliant ex ample

P ref eren ce
 guide

R ule

P ref eren ce
 guide

R ule

 // replacement are different
for (i = 0; i < MAX; i++) {
 data[i] = i;
}
if (> x) {

wk = ;
x = ;
 = wk;

}

Compliant ex ample

 // Counter variable and work variable for
 // replacement are the same
for (i = 0; i < MAX; i++) {
 data[i] = i;
}
if (> x) {
 i = x;
 x = ;
 = i;
}

N on- compliant ex ample

 // Counter variable and work variable for

80 P art2 C odin g P ractices f or E m b edded S of tware: P ractices C h art

	
	

1

M
aintainability

Reusing variables should be avoided as it impairs readability and increases the risk of causing errors
during modification.

[Related rule］ M1. .1

 Unions shall not be used 【M I SRA C:20 0 4 18 .4】
 f unions are used the same members that are

 assigned v alues shall be referenced.

M1.6.2

compliant example of (2)
// When the typ is INT, i_var is valid
// When the type is CHAR, c_var[4] is valid
struct stag {
 int type;
 union utag {
 char c_var[4];
 int i_var;
 } u_var;
} s_var;
…
int i;
…
if (s_var.type == INT) {
 s_var.u_var.i_var = 1;
}
…
i = s_var.u_var.i_var;

Non-compliant example of (2)
// When the typ is INT, i_var is valid
// When the type is CHAR, c_var[4] is valid
struct stag {
 int type;
 union utag {
 char c_var[4];
 int i_var;
 } u_var;
} s_var;
…
int i;
…
if (s_var.type == INT) {
 s_var.u_var.c_var[0] = 0;
 s_var.u_var.c_var[1] = 0;
 s_var.u_var.c_var[2] = 0;
 s_var.u_var.c_var[3] = 1;
}
…
i = s_var.u_var.i_var;

nion allows the same memory space to be declared with areas of different si es. owever, since the
way bits of data overlap among members is implementation-dependent, unexpected behavior may occur.
Therefore, if union is going to be used, follow rule (2) as a precautionary measure.

[Related rule］ .1.3

Compliant ex ample N on- compliant ex ample

P ref eren ce
 guide

R ule

81M ain tain ab ility1 ● M 1 C on sider th at oth ers will read th e program .

	
	

1

M
aintainability

保守性

1.7 名前を再使用しない。

M1.7.1

int var1;
void func(int arg1) {
 int var2;
 var2 = arg1;
 {
 int var3;
 var3 = var2;
 …
 }
}

int var1;
void func(int arg1) {
 int var1; // The same name of a variable
 // outside the function is used
 var1 = arg1;
 {
 int var1; // The same name of a variable
 // in the outer scope is used
 …
 var1 = 0; // Intention of which var1 is
 // assigned is unclear
 …
 }
}

The program will become easier to read by using uni ue names within the program, except for cases like
automatic variables where the scope is limited.
In C language, in addition to the scope defined by file and block, names have the following four name
spaces that vary according to the category they belong to
 1. L abel 　2.Tag　3. Member of structure or union　 . ther identifiers
 * acro has no name space.
The language specification allows using the same name to different identifiers if their name spaces dif-
fer, but this rule restricts such usage for the purpose of improving the readability of the program.

M 1 . 7 D o not reuse names.

1. n identifier declared in an inner scope shall not hide an identifier
declared in an outer scope. 【M I SRA C:20 12 R5.3】

 typedef name shall be a uni ue identifier【M I SRA C:20 13 R5.6】
3 tag name shall be a uni ue identifier【M I SRA C:20 12 R5.7 】
4. I dentifiers that define obj ects or functions with ex ternal link age

shall be uniq ue. 【M I SRA C:20 12 R5.8 】
5. I dentifiers that define obj ects or functions with internal link age

should be uniq ue.【M I SRA C:20 12 R5.9 】
 o identifier in one name space should have the same spelling as
an identifier in another name space ith the e ception of structure
member and union member names.【M I SRA C:20 0 4 5.6】

Compliant ex ample N on- compliant ex ample

The rules below shall be followed for name uniq ue-
ness.

P ref eren ce
 guide

R ule

82 P art2 C odin g P ractices f or E m b edded S of tware: P ractices C h art

	
	

1

M
aintainability

N ames for functions, v ariables and macros in the
standard library shall not be redefined or reused n
addition those macro names shall not be undefined

M1.7.2

#include <string.h>
void *my_memcpy(void *arg1, const void *arg2,
size_t size) {
 …
}

#undef NULL
#define NULL ((void *)0)

#include <string.h>
void *memcpy(void *arg1, const void *arg2, size_
t size) {
 …
}

Redefining names for functions, variables and macros defined in the standard library degrades the read-
ability of the program.

[Related rule］ M1. .

Compliant ex ample N on- compliant ex ample

P ref eren ce
 guide

R ule

As the exception of rule 2., the typedef name may be the same as the name of the structure member,
union member or tag related to that typedef. As the exception of rule 3., the tag name may be the same
as the name of the typedef related to that tag.

[Related rule］ M .3.1

83M ain tain ab ility1 ● M 1 C on sider th at oth ers will read th e program .

	
	

1

M
aintainability

ames variables that start ith an underscore shall
not be defined

M1.7.3

— int _Max1; // Reserved
int __max2; // Reserved
int _max3; // Reserved

struct S {
 int _mem1; // Not reserved, but shall not be
 // used
};

C language standard defines the following names as reserved.
（1） ame that starts with an underscore and is followed by either an uppercase letter or another

 underscore;
　　Examples：_Abc, __abc

（2）N ames that start with an underscore
　　These names are reserved for variables or functions with file scope and for tag names.
　　 hen the reserved names are redefined, the behavior of the compiler will not be guaranteed.
 N ames that start with an underscore and are followed by a lowercase letter are not reserved for use
 outside the file scope. ut to make it easy to remember, this rule restricts the use of all names
 starting with an underscore.

[Related rule］ M1. .

Compliant ex ample N on- compliant ex ample

P ref eren ce
 guide

R ule

84 P art2 C odin g P ractices f or E m b edded S of tware: P ractices C h art

	
	

1

M
aintainability

保守性

1.8 勘違いしやすい言語仕様を使用しない。

The right- hand operand of a logical && or || operator
shall not contain side effects. 【M I SRA C:20 12 R13.5】

M1.8.1

volatile int *io_port = ...; // Address for
 // memory mapped I/O
int io_result = *io_port;
// I/O is processed, regardless of the
// conditions of the if statement
if ((x != 0) && (io_result > 0)) {
 …
}

volatile int *io_port = ...; // Address for
 // memory mapped I/O
// Whether I/O is processed or not varies,
// depending on the conditions of the if
// statement
if ((x != 0) && (*io_port > 0)) {
 …
}

The right-hand side of && or || operators may not be executed, depending on the result of the condi-
tion of their left-hand side. Take, for example, an expression with a side effect of incrementing. It this
expression is written on the right-hand side, whether the increment is executed or not will be difficult to
understand, because it depends on the condition of the left-hand side. Therefore, expressions with side
effects shall not be described on the right-hand side of && or || operators.

[Related rules］ 3. .1 3. .

C macros shall only ex pand to a braced initializ er, a
constant, a parenthesised ex pression, a type q uali-
fier a storage class specifier or a do- hile- ero con-
struct. 【M I SRA C:20 0 4 19 .4】

M1.8.2

#define START 0x0410
#define STO 0x0401

#define BIGIN {
#define END }
#define LOO _STAT for(;;) {
#define LOO _END }

acro definitions can be leveraged to make the code look like it is written in a language other than C, or
greatly reduce the amount of code. owever, using macros for these purposes will degrade readability.
It is important to use macros only where coding and modification errors can be avoided. or do-while-
ero, see ISRA C 200 .
urthermore, in CERT C, there is a rule that says, o not conclude macro definitions with a semicolon

(RE11-C). The programmers should also keep this recommendation in mind when defining the macros
since inserting a semicolon at the end of a macro definition may unexpectedly change the control flow of
the program.

[Related rule］ M1. .

Compliant ex ample N on- compliant ex ample

Compliant ex ample N on- compliant ex ample

P ref eren ce
 guide

R ule

P ref eren ce
 guide

R ule

M 1 . 8 D o not use language specifications that are lik ely
to cause misunderstanding.

85M ain tain ab ility1 ● M 1 C on sider th at oth ers will read th e program .

	
	

1

M
aintainability

#line shall not be used, unless it is automatically
generated by a tool.

M1.8.3

#line serves as the means to intentionally modify file names or line numbers of warning or error mes-
sages output from the compiler. It is provided under the assumption that code is generated by tools, and
is not intended to be used directly by the programmers.

Compliant ex ample N on- compliant ex ample

P ref eren ce
 guide

R ule

Seq uences of three or more characters starting with
?? and alternativ e tok ens shall not be used.

M1.8.4

s = "abc?(x)"; s = "abc??(x)"; // Compilers that can process
 // trigraph sequences interpret
 // this as abc[x)

C language standard defines trigraph se uences and alternative tokens, assuming that there may be cases
where some characters cannot be used for coding, depending on the environment used for development.
The following nine three-character patterns, known as trigraph se uences
??= ??(??/ ??) ?? ??< ??! ??> ??-
can be replaced respectively at the beginning of preprocessing with the following corresponding single-
character counterparts
[] { | } ~
The following two-character patterns, known as digraph se uences
< > <: :> : : :
are handled respectively as e uivalent to
{ } [] # ##
in the lex ical analysis.
C defines the following macros in the header iso6 6.h
and and_eq bitand bitor compl
not not_e or or_e xor xor_e
as alternative spellings that correspond respectively to the following tokens.
&& &= & | ~ ! != || |= =
Since trigraph se uences and alternative tokens are not fre uently used, many compilers support them as
an optional feature.

P ref eren ce
 guide

R ule

Compliant ex ample N on- compliant ex ample

86 P art2 C odin g P ractices f or E m b edded S of tware: P ractices C h art

	
	

1

M
aintainability

 se uence starting ith ero that is t o or
more digits long shall not be used as a constant.

M1.8.5

// Digits are not aligned for better appearance
a = 0;
b = ;
c = 100;

// Examples of aligning the digits for better
// appearance
a = 000; // Interpreted as zero (0) in octal
 // notation
b = 010; // Interpreted as eight () and not as
 // ten (10) in decimal notation
c = 100; // Interpreted as hundred (100) in
 // decimal notation

Constants starting with ero (0) are interpreted as octal. o ero (0) can be added in front of decimal
numbers to align their digits for the purpose of appearance (i.e. ero padding is not allowed).

[Related rule］ M1. .

保守性

1.9 特殊な書き方は意図を明示する。

I f statements that do nothing need to be intentionally
described, comments or empty macros shall be used
to mak e them noticeable.

M1.9.1

for (;;) {
 // Waiting for interruption
}

#define NO_STATEMENT
i = COUNT;
while ((--i) > 0) {
 NO_STATEMENT;
}

for (;;) {
}

i = COUNT;
while ((--i) > 0);

[Related rule］ M1.1.1

M 1 . 9 W hen writing in an unconv entional style, ex plicitly
state its intention.

Compliant ex ample N on- compliant ex ample

P ref eren ce
 guide

R ule

Compliant ex ample N on- compliant ex ample

P ref eren ce
 guide

R ule

87M ain tain ab ility1 ● M 1 C on sider th at oth ers will read th e program .

	
	

1

M
aintainability

《The unified style of writing infinite loops shall be
defined 》

M1.9.2

efine the unified style of writing infinite loops, for example, by selecting from one of the following
・ rite the infinite loops uniformly as for(;;); .
・ rite the infinite loops uniformly as while(1); .
・ se the macro defined for the infinite loop.

保守性

1.10 マジックナンバーを埋め込まない。

 meaningful constant shall be used after defining it
as a macro.

M1.10.1

#define MAXCNT
if (cnt == MAXCNT) {
 …

if (cnt ==) {
 …

y defining a constant as a macro, its meaning can be stated explicitly. hen modifying a program
where the same constant is used in multiple places, modification errors can be prevented much more
easily if this same constant is defined as a macro, because then, there will only be a need to modify one
macro.
For data size, however, use sizeof instead of using a macro.

[Related rule］ M . .

M 1 . 1 0 D o not embed magic numbers.

Compliant ex ample N on- compliant ex ample

P ref eren ce
 guide

R ule

P ref eren ce
 guide

R ule

88 P art2 C odin g P ractices f or E m b edded S of tware: P ractices C h art

	
	

1

M
aintainability

保守性

1.11 領域の属性は明示する。

Read- only areas shall be declared as const type.
M1.11.1

const volatile int read_only_mem;
 // Read-only memory
const int constant_data = 10;
 // Read-only data that does not
 // require memory allocation
// Only reads the contents pointed by arg
void func(const char *arg, int n) {
 int i;
 for (i = 0; i < n; i++) {
 put(*arg++);
 }
}

int read_only_mem; // Read-only memory
int constant_data = 10;
 // Read-only data that does not
 // require memory allocation
// Only reads the contents pointed by arg

void func(char *arg, int n) {
 int i;
 for (i = 0; i < n; i++) {
 put(*arg++);
 }
}

hen a variable is only referenced and not modified, declaring it as const- ualified variable makes
it clear that it is not modified.That is why read-only variables should be const- ualified. oreover, a
memory that is only referenced by the program but modified by other execution units should be declared
with const volatile ualification so that the compiler can check and prevent the program from re-
newing it by mistake. Furthermore, function interfaces can be clearly stated by adding consts to param-
eters when the memory spaces indicated by the parameters are only referenced in function processing.

[Related rule］ 1.1.

Compliant ex ample N on- compliant ex ample

P ref eren ce
 guide

R ule

M 1 . 1 1 Ex plicitly state the area attributes.

89M ain tain ab ility1 ● M 1 C on sider th at oth ers will read th e program .

	
	

1

M
aintainability

Areas that may be updated by other ex ecution units
shall be declared as volatile.

M1.11.2

volatile int x = 1;
while (x == 1) {
 // x is not modified within the loop and is
 // modified by other execution units
}

int x = 1;
while (x == 1) {
 // x is not modified within the loop and is
 // modified by other execution units
}

Areas ualified as volatile prohibit the compiler from optimi ing them. rohibition of optimi ation
means that executable ob ect is generated strictly to every description, including even those considered
logically as unnecessary of processing. Suppose there is a description x;” that has no meaning logically
except for only referencing variable x. If it is not ualified as volatile , the compiler will normally ig-
nore such statement and will not generate an executable ob ect. hereas, if it is ualified as volatile
, the compiler will generate an executable ob ect that only references variable x (loads it to the register).
This description can be assumed to have meaning in indicating the interface to I registers (mapped to
the memory) that are reset when the memory is read. Embedded software has I registers for controlling
hardware that should be ualified as volatile when considered appropriate, based on their characteristics.

《Rules for v ariable declaration and definition for
i ation shall be defined》

M1.11.3

const int x = 100; // Allocate to ROM int x = 100;

Variables ualified as const can be allocated to R i ation target areas. or example, when developing
a program where R i ation is applied, ualify the read-only variables as const , and specify the name
of the section to which these variables are allocated by, such as, #pragma.

[Related rule］ 1.1.

Compliant ex ample N on- compliant ex ample

Compliant ex ample N on- compliant ex ample

P ref eren ce
 guide

R ule

P ref eren ce
 guide

R ule

90 P art2 C odin g P ractices f or E m b edded S of tware: P ractices C h art

	
	

1

M
aintainability

	
	

M
aintainability

保守性

1.12 コンパイルされない文でも正しい記述を行う。

Correct code shall be described ev en if it is going to
be deleted by the preprocessor.

M1.12.1

#if 0
 /* */
#endif

#if 0
…
#else
 int var;
#endif

#if 0
 /* I don't know */
#endif

#if 0
 /*
#endif

#if 0
…
#else1
 int var;
#endif

#if 0
 I don't know
#endif

[Related rule］ M1.1.

M 1 . 1 2 Correctly describe the statements ev en if they are
not compiled.

P ref eren ce
 guide

R ule

Compliant ex ample N on- compliant ex ample

91

	
	

1

M
aintainability

M ain tain ab ility2●

	
	

M
aintainability

W rite in a style that can prev ent
modification errors

M aintainability

2
ne of the patterns that allows bugs to slip into a program easily is when other bugs are

created by mistake while fixing detected bugs. Especially if it has been a while since the
source code was written or if an engineer other than the creator modifies the source code,
unexpected misunderstanding may occur.

Efforts to reduce such modification errors as much as possible are strongly desired.

M aintaiability 2.1 Clarify the grouping of structured data and block s.

M aintainability 2.2 L ocalize access ranges and related data.

92 P art2 C odin g P ractices f or E m b edded S of tware: P ractices C h art

	
	

1

M
aintainability

	
	

M
aintainability

保守性

2.1 構造化されたデータやブロックは、まとまりを明確化する。

I f arrays and structures are initializ ed with v alues
other than 0 , their structural form shall be indicated
by using braces ‘ { }’ . D ata shall be described without
any omission, ex cept when all v alues are 0 .

M2.1.1

int arr1[2][3] = {{0, 1, 2}, {3, 4, 5}};
int arr2[3] = {1, 1, 0};

int arr1[2][3] = {0, 1, 2, 3, 4, 5};
int arr2[3] = {1, 1};

In initiali ation of arrays and structures, at least a pair of braces { }’ is required, but in this case, it is
difficult to see how the data for initiali ation are assigned. It is safer to create blocks according to the
structure, and fully describe the data for initialization without omitting any.

[Related rules］ 1. .1 M . .3

Compliant ex ample N on- compliant ex ample

M 2. 1 Clarify the grouping of structured data and block s.

P ref eren ce
 guide

R ule

If there is only one statement that is controlled by, such as, an if statement, there is no need to enclose
this statement into a block. owever, when the program is modified and this single statement is changed
into multiple statements, there is a possibility of forgetting to enclose these multiple statements into a
block. To prevent such modification errors, enclose the body of each controlled statement into a block
In CERT C, there is a rule that says, o not place a semicolon on the same line as an if, for, or while
statement (E 1 -C). y following this recommendation, unexpected insertion of a semicolon, such
as, the following
 if (x==b); {
 ...
 }
can be prevented. This kind of code can be detected by using a code checker..

if (x == 1) {
 func();
}

if (x == 1)
 func();

Compliant ex ample N on- compliant ex ample

The body of if, else if , else , while , do , for , and
switch statements shall be enclosed into block s.

M2.1.2 P ref eren ce
 guide

R ule

93

	
	

1

M
aintainability

M ain tain ab ility2●

	
	

M
aintainability

保守性

2.2 アクセス範囲や関連するデータは局所化する。

V ariables used only in one function shall be declared
within the function.

M2.2.1

void func1(void)
{
 static int x = 0;
 if (x != 0) { // Refer to the value in the
 // immediately preceding call
 x++;
 }
 …
}
void func2(void)
{
 int y = 0; // Initialize each time
 …
}

int x = 0; // x is accessed only from func1
int y = 0; // y is accessed only from func2
void func1(void) {
 if (x != 0) { // Refer to the value in the
 // immediately preceding call
 x++;
 }
 …
}
void func2(void) {
 y = 0; // Initialize each time
 …
}

To declare variables in functions, it is sometimes effective to declare them with static storage class
specifiers. The following positive effects can be expected if static is specified

・Static memory space is reserved and the space is valid until the end of the program (ithout static,
generally, stack memory is used and is valid until the end of the function.)

・Initiali ation occurs only once after the program is started and if a function is called more than once,
the value assigned in the previous call is retained.

Therefore, among the variables accessed only within a function, the variables with values that are re-
tained even after the function terminates should be declared with static storage class specifiers.
In addition, declaring a large memory space for an automatic variable may cause stack overflow. hen
there is such risk, one preventive measure is to use static to reserve static memory space even if the
values do not need to be retained after the function terminates. However, when using static for such
purpose, its intention should be explicitly stated by, such as, comments (to prevent potential misunder-
standing that static has been used by mistake).

[Related rule］ M . .

M 2. 2

Compliant ex ample N on- compliant ex ample

P ref eren ce
 guide ●

R ule

L ocaliz e access ranges and related data.

94 P art2 C odin g P ractices f or E m b edded S of tware: P ractices C h art

	
	

1

M
aintainability

	
	

M
aintainability

V ariables accessed by sev eral functions defined in
the same file shall be declared ith static in the file
scope.

M2.2.2

// x is not accessed by other files
static int x;
void func1(void) {
 …
 x = 0;
 …
}
void func2(void) {
 …
 if (x == 0) {
 x++;
 }
 …
}

// x is not accessed by other files
int x;
void func1(void) {
 …
 x = 0;
 …
}
void func2(void) {
 …
 if (x==0) {
 x++;
 }
 …
}

The fewer the global variables, the higher the readability of the entire program becomes. To prevent the
number of global variables from increasing, static storage class specifiers should be used as much as
possible.

[Related rules］ M . .1， M . .3

unctions that are called only by functions defined in
the same file shall be static.

M2.2.3

// func1 is not called from functions in other
// files
static void func1(void) {
 …
}
void func2(void) {
 …
 func1();
 …
}

// func1 is not called from functions in other
// files
void func1(void) {
 …
}
void func2(void) {
 …
 func1();
 …
}

Compliant ex ample N on- compliant ex ample

P ref eren ce
 guide

R ule

P ref eren ce
 guide

R ule

Compliant ex ample N on- compliant ex ample

95

	
	

1

M
aintainability

M ain tain ab ility2●

	
	

M
aintainability

The fewer the global functions, the higher the readability of the entire program becomes. To prevent the
number of global functions from increasing, static storage class specifiers should be used as much as
possible.

[Related rule］ M . .

enum shall be used rather than #define hen defining
related constants.

M2.2.4

enum ecountry {
 ENGLAND, FRANCE,
} country;
enum eweek {
 SUNDAY, MONDAY,
} day;
…
if (country == ENGLAND) {
if (day == MONDAY) {
if (country == SUNDAY) { // It is possible
 // to check by tools

#define ENGLAND 0
#define FRANCE 1
#define SUNDAY 0
#define MONDAY 1
int country, day;
…
if (country == ENGLAND) {
if (day == MONDAY) {
if (country == SUNDAY) { // It is impossible
 // to check by tools

To define the constants that are related like a set, use the enumeration type. y defining related constants
as enum type, and using this type, mistakes caused by the use of incorrect values can be prevented.

hile macro names defined by #define are expanded at the preprocessing stage and the compiler does
not process those names, enum constants defined by enum declaration will be the names processed by
the compiler. The names processed by the compiler are easier to debug, becouse they can be referenced
during symbolic debugging.

[Related rules］ M1.1 .1 1.3.

P ref eren ce
 guide

R ule

Compliant ex ample N on- compliant ex ample

96 P art2 C odin g P ractices f or E m b edded S of tware: P ractices C h art

	
	

1

M
aintainability

	
	

M
aintainability

 W rite programs simply.
M aintainability

3
rom the standpoint of software maintainability, there is no better software than those

created from simply written programs.
C language enables the structuring of software by, such as, dividing the program into

separate source files and functions. Structured programming that represents program
structure through three forms se uence, selection and repetition, is also one of the applicable
techni ues to write simple software programs. riting simple software descriptions through
effective use of software structuring is strongly desired. oreover, particular attention should
also be given to writing styles applied to describe, such as, iteration processing, assignment
and operations, as some may make the program difficult to maintain.

M aintaiability 3.1 D o structured programming.

M aintaiability 3.2 L imit the number of side effects per statement to
 one.

M aintaiability 3.3 W rite ex pressions that differ in purpose separately.

M aintaiability 3.4 D o not use complicated pointer operations.

97

	
	

1

M
aintainability

M ain tain ab ility3 ● M 3 W rite program s in a sim ple way.

	
	

M
aintainability

保守性

3.1 構造化プログラミングを行う。

There should be no more than one break or goto
statement used to terminate any iteration statement.

【M I SRA C:20 12 R15.4】

M3.1.1

end = 0;
for (i=0; loop iteration condition && !end; i++)
{

Iterated processing 1;
if (termination condition1 || termination
 condition2) {
end = 1;

} else {
Iterated processing 2;

 }
}
-or-
for (i=0; loop iteration condition; i++) {
　Iterated processing 1;
　if (termination condition1 || termination
　　 condition2) {
 break;
 }
 Iterated processing 2;
}

for (i=0; loop iteration condition; i++) {
Iterated processing 1;

 if (termination condition1) {
break;

 }
 if (termination condition1) {

break;
 }
 Iterated processing 2;
}

This rule is to prevent the program logic from becoming complex. If a flag has to be prepared only for
eliminating the break statement, sometimes it is better not to prepare the flag and to use a break state-
ment. (e careful, however, when using an end flag like in the case shown above as compliant example,
because it may complicate the program.)

M 3 . 1 D o structured programming.

Compliant ex ample N on- compliant ex ample

P ref eren ce
 guide

R ule

98 P art2 C odin g P ractices f or E m b edded S of tware: P ractices C h art

	
	

1

M
aintainability

	
	

M
aintainability

（1）The goto statement shall not be used.
（2） W hen using a goto statement, the destination to

j ump to shall be the label declared after the goto
statement that is within the block enclosing the
goto statement.

M3.1.2

Compliant example of (1) and (2)
for (i = 0; loop iteration condition; i++) {
 Iterated processing; // goto is not
 // included
}

Compliant example of (2)
{
 if (err != 0) {
 goto ERR_RET;
 }
 …
ERR_RET:
 end_proc();
 return err;
}

Non-compliant example of (1) and (2)
 i = 0;
LOO :
 Iterated processing;
 i++;
 if (loop iteration condition) {
 goto LOO ;
 }

These rules are to prevent the program logic from becoming complex. The purpose is not to eliminate
all the goto statements. The important point is to eliminate unnecessary goto statements to prevent the
program from becoming complicated (i.e., not being able to read it straightforwardly from top to bot-
tom). In some cases, the readability can actually be improved by writing goto statements. Therefore,
when programming, keep in mind how simply the logic can be expressed.

or example, goto statement can be useful to make the program simple, such as, when it is used to
ump to error processing or exit from multiple loops. or more information, CERT C E 12-C should

also serve as a good source of reference.

Compliant ex ample N on- compliant ex ample

P ref eren ce
 guide

R ule

99

	
	

1

M
aintainability

M ain tain ab ility3 ● M 3 W rite program s in a sim ple way.

	
	

M
aintainability

M3.1.4

Compliant example of (1) and (2)
switch (week) {
case A:
 code = MON;
 break;
case B:
 code = TUE;
 break;
case C:
 code = WED;
 break;
default:
 code = ELSE;
 break;
}

Compliant example of (2)
dd = 0;
switch (status) {
case A:
 dd++;
 // FALL THROUGH
case B:

Non-compliant example of (1) and (2)
// No matter what the value of week is, the
// code will be ELSE ==> bug
switch (week) {
case A:
 code = MON;
case B:
 code = TUE;
case C:
 code = WED;
default:
 code = ELSE;
}

// This This is a case where processing of case
// B is continued after dd++, but it is non-
// compliant not only to (1) but also to (2)
// because there is no comment
dd = 0;
switch (status) {
case A:
 dd++;
case B:

ne of the typical examples of coding error is caused by forgetting to write the break statement in a
switch statement in C language. To prevent it, avoid writing a case statement without the break state-
ment unnecessarily. If the code is intended to continue processing to the next case without the break
statement, always insert a comment to explicitly indicate that the absence of the break statement is not
a problem. efine what kind of comment to insert in such case in the coding convention. As one ex-
ample, // FALL THROUGH is a comment that is frequently used.

[Related rule］ 3. .

 statement is not going to be ended with a break statement,
 《a project-specific comment shall be defined》and that comment

shall instead be inserted.

（1） Each case clause and default clause in a switch
statement shall always end with a break state-
ment.

（2） I f the case clause or default clause in a switch

Compliant ex ample N on- compliant ex ample

P ref eren ce
 guide

R ule

100 P art2 C odin g P ractices f or E m b edded S of tware: P ractices C h art

	
	

1

M
aintainability

	
	

M
aintainability

（1）A function shall end with one return statement.
（2） A return statement to return in the middle of

processing shall be written only in case of recov -
ery from abnormality.

M3.1.5

This rule is to prevent the program logic from becoming complex. hen a program has many entry or
exit points, they will not only complicate the program but will also make it difficult to set break points
during debugging. In C language, there is only one entry point for a function but the exit points are
where the return statements are written.

保守性

3.2 One statement should have one side effect.

（1）Comma ex pressions shall not be used.
（2）Comma ex pressions shall not be used, other

than in ex pressions for initializ ing or updating in
for statements.

M3.2.1

Compliant example of (1) and (2)
a = 1;
b = 1;

j = 10;
for (i = 0; i < 10; i++) {
 …
 j--;
}

Compliant example of (2)
for (i = 0, j = 10; i < 10; i++, j--) {
 …
}

Non-compliant example of (1) and (2)
a = 1, b = 1;

Non-compliant example of (1)
for (i = 0, j = 10; i < 10; i++, j--) {
 …
}

In general, the use of comma expressions make the program complicated. owever, the progam may
sometimes become easier to understand in expressions for initiali ing and updating in for statements by
using comma expressions to collectively describe all the pre-loop operations as one set and all the loop-
end operations as another set.

[Related rule］ M3.3.1

Compliant ex ample N on- compliant ex ample

M 3 . 2 L imit the number of side effects per statement to
one.

P ref eren ce
 guide

R ule

P ref eren ce
 guide

R ule

101

	
	

1

M
aintainability

M ain tain ab ility3 ● M 3 W rite program s in a sim ple way.

	
	

M
aintainability

M ultiple assignments shall not be written in one
statement, ex cept when the same v alue is assigned
to multiple v ariables.

M3.2.2

x = y = 0; y = (x += 1) + 2;
y = (a++) + (b++);

Assignments include the compound assignments (+= -=, etc) beside the simple assignment (=). ultiple
assignments may be written in one statement, but since they impair readability, one statement should
contain only one assignment.

owever, commonly used conventional descriptions shown below do not impair readability in many
cases. They may be treated as exceptions of this rule.
c = *p++;
*p++ = *q++;

保守性

3.3 目的の違う式は、分離して記述する。

The three ex pressions of a for statement shall be
concerned only with loop control.

【M I SRA C:20 0 4 13.5】

M3.3.1

for (i = 0; i < MAX; i++) {
 …
 j++;
}

for (i = 0; i < MAX; i++, j++) {
 …
}

In ISRA C 2012, rules 13. and 13.6 in ISRA C 200 have been consolidated into R1 .2, which
states that a for loop shall be well-formed . According to this rule, the first clause of a for statement,
for example, shall either be empty, assign a value in the loop counter or define and initiali e the loop
counter (C).

[Related rules］ M3. .1， M3.3.

M 3 . 3 W rite ex pressions that differ in purpose separately.

Compliant ex ample N on- compliant ex ample

Compliant ex ample N on- compliant ex ample

P ref eren ce
 guide

R ule

P ref eren ce
 guide

R ule

102 P art2 C odin g P ractices f or E m b edded S of tware: P ractices C h art

	
	

1

M
aintainability

	
	

M
aintainability

N umeric v ariables being used within a for loop for
iteration counting shall not be modified in the body of
the loop.【M I SRA C:20 0 4 13.6】

M3.3.2

for (i = 0; i < MAX; i++) {
 …
}

for (i = 0; i < MAX;) {
 …
 i++;
}

See M3.3.1.

[Related rule］ M3.3.1

（1）Assignment operators shall not be used in
 ex pressions to ex amine true or false.

（2）Assignment operators shall not be used in
　 ex pressions to ex amine true or false, ex cept for
 conv entionally used notations.

M3.3.3

Compliant example of (1) and (2)
p = top_p;
if (p != NULL) {
 …
}

Compliant example of (1)
c = *p++;
while (c != 0) {
 …
 c = *p++;
}

Non-compliant example of (1) and (2)
if (p = top_p) {
 …
}

Non-compliant example of (1)
while (c = *p++) {
 …
}
// Since this is an expression used
// conventionally, it is compliant to (2).
// (However, be careful of its usage, because its
// readability depends on the programmer’s coding
// skills.)

The following are the expressions to examine true or false
if (expression), for (; expression ;), while (expression), (expression)?:,
expression && expression , expression || expression

Compliant ex ample N on- compliant ex ample

P ref eren ce
 guide

R ule

P ref eren ce
 guide

R ule

Compliant ex ample N on- compliant ex ample

103

	
	

1

M
aintainability

M ain tain ab ility4 ● M 4 W rite in a con sisten t way.

	

保
守
性	

	
	

M
aintainability

保守性

3.4 複雑なポインタ演算は使用しない。

Three or more pointer indirections shall not be used.
M3.4.1

int **p;
typedef char **strptr_t;
strptr_t q;

int ***p;
typedef char **strptr_t;
strptr_t *q;

Since it is difficult to understand the changes in the pointer values in three or more levels, multiple
pointer indirections impair maintainability.

M 3 . 4 D o not use complicated pointer operations.

P ref eren ce
 guide

R ule

Compliant ex ample N on- compliant ex ample

104 P art2 C odin g P ractices f or E m b edded S of tware: P ractices C h art

	
	

1

M
aintainability

	
	

M
aintainability

rite in a unified style
M aintainability

4
Recently, developing programs under the shared efforts of multiple programmers has become a

widely accepted approach in software pro ects. If these programmers apply different coding styles
to write their assigned portion of the source code, the reviewers or other programmers may later
face difficulty checking what each programmer has written. oreover, if the naming of variables,
information to be described in a file, and the order to describe the information, among others, are
not uniform, unexpected misunderstanding or errors may arise from such inconsistencies. This is
why writing the source code as much as possible according to a unified coding style in a single
pro ect or within the organi ation is often said to be desirable.

M aintaiability 4.1 U nify the coding styles.

M aintaiability 4.2 U nify the style of writing comments.

M aintaiability 4.3 U nify the naming conv entions.

M aintaiability 4.4
Unify the contents to be described in a file and the

 order of describing them.

M aintaiability 4.5 U nify the style of writing declarations.

M aintaiability 4.6 U nify the style of writing null pointers.

M aintaiability 4.7 U nify the style of writing preprocessor directiv es.

105

	
	

1

M
aintainability

M ain tain ab ility4 ● M 4 W rite in a con sisten t way.

	

保
守
性	

	
	

M
aintainability

保守性

4.1 コーディングスタイルを統一する。

《Conv entions regarding the style of using, such as,
the braces‘ { }’ , indentation and space shall be de-
fined 》

M4.1.1

To make the code easier to read, it is important to unify the coding style applied in the pro ect.
hen defining a new style convention to be followed in the pro ect, the recommended approach would

be to select from already existing coding styles. Existing coding styles have been developed from vari-
ous schools, and many programmers create their programs based on any one or more of these pre-
established styles. ne of the benefits of selecting from these existing coding styles is that the format
can be easily specified by the format commands available in editors and other tools. If no coding style is
clearly specified in the existing pro ect, the recommendation would be to define a coding convention that
matches most closely with the current source code.

hat is most important in deciding on the style convention is not in deciding what kind of style to de-
fine, but is in defining a unified style to be followed .
Explained below are the set of style-related items to be defined

（1） Position of braces ‘ { }’
nify the position to place the braces { }’ so that the beginning and end of a block will become easier

to read (see Representative styles).

（2） I ndentation
Indentation makes a group of declarations and operations easier to read. or unified use of indentation,
define the following

　・ hether to use spaces or tabs for indentation
　・If spaces are used, how many space characters are set for one indent If tabs are used, how many
　　characters are set for each tab

（3）How to use spacing
Spacing makes the code easier to read. or example, define the following rules

　・Add a space before and after binary and ternary operators, except for the following operators.
　　[],　 ->, 　. (period), 　, (comma operator)
　・ o not add a space between unary operator and its operand.

y applying these rules, coding errors that are attributable to compound assignment operators will be-
come easier to detect.

M 4 . 1 U nify the coding styles.

P ref eren ce
 guide

R ule

106 P art2 C odin g P ractices f or E m b edded S of tware: P ractices C h art

	
	

1

M
aintainability

	
	

M
aintainability

　　[Ex amples]
　　　x=-1; /* Intended to write x-=1, but made a mistake => difficult to distinguish */

 　 x =- 1; /* Intended to write x-=1, but made a mistake => easy to distinguish */
esides those stated above, the following rules are also defined in some cases

　・Add a space after a comma (except for commas for parameters in macro definitions)
　・Add a space before the left parenthesis enclosing control statements such as, if and for. D o not
　　add a space before the left parenthesis of a function call. This rule makes it easier to identify
 function calls. This rule makes it easier to identify function calls.

（4）Position to place a new line character for line continuation
hen an expression becomes lengthy and extends beyond the length of an easily readable line, a new

line character shall be placed at an appropriate position. In placing a new line character, the recom-
mended approach is to apply either one of the following two methods. hat is important is to write the
continuation line after indenting.

[M ethod 1]
　 ：
　x = var1 + var2 + var3 + var4 +
　　 var5 + var + var + var + var ;
　if (var1 == var2 &&
　　 var3 == var4)

[M ethod 2]
　 ：
　x = var1 + var2 + var3 + var4
　　 + var5 + var + var + var + var ;
　if (var1 == var2
　　 && var3 == var4)

●Representativ e styles
（1）K & R style

This is a coding style used in The C rogramming anguage (widely known as R). R used as
the acronym of this book derives from the initials of the two authors. In the R style, the braces { }’
and indentation are placed in the positions described below

・Position of braces: lace the braces { } for function definition on the new line at the column
aligned with the beginning of the previous line. lace the braces { }’ for oth-
ers (including structures and control statements, such as, if, for and while) on
the same line without continuing to a new line (see Example of R style).

・I ndentation: 1 tab. In the first edition of The C rogramming anguage , the width
　　　　　　　　　　　 of a tab was set to spaces, but in the second edition (A SI compliant),
 the number of spaces is set to .

107

	
	

1

M
aintainability

M ain tain ab ility4 ● M 4 W rite in a con sisten t way.

	

保
守
性	

	
	

M
aintainability

（2）B SD style
This is a description style adopted by Eric Allman who wrote many S utilities. It is also called the
Allman style. In the S style, the braces { } and indentation are placed in the positions described
below

・Position of braces: Start all the function definitions, if , for and while , etc, from a new line
and place the braces { }’ at the column aligned with the beginning of the
previous line (see Example of S style).

・I ndentation: 　　　 enerally defined as spaces, but is also common.

（3）GN U style
This is a coding style for writing packages. It is defined in Coding Standards written by
Richard Stallman and volunteers in the pro ect. In the style, the braces { }’ and indentation
are placed in the positions described below

・Position of braces: Start all the function definitions, if , for and while , etc, from a new
line. Place the braces { } for function definitions at column 0, and braces
{ } for others after indenting 2 spaces (see Example of style).

・I ndentation: 　　　 2 spaces. Indent 2 spaces for both the braces { }’ and their body.

（1）Example of &R style
void func(int arg1)
{ // Write the { of a function on a
 // new line
 // Indent is 1 tab
 if (arg1) {
 …
 }
 …
}

　　

（2）Example of BSD style
void
func(int arg1)
{ // Write the { of a function on a
 // newline
 if (arg1)
 {
 …
 }
 …
}

（3）Example of GNU style
void
func(int arg1)
{ // Write the { of a function on a
 // new line at column 0
 if (arg1)
 {
 …
 }
 …
}

108 P art2 C odin g P ractices f or E m b edded S of tware: P ractices C h art

	
	

1

M
aintainability

	
	

M
aintainability

 コメントの書き方を統一する。

《 onvention regarding the style of riting file header
comments, function header comments, end of line
comments, block comments and copyright shall be
defined 》

M4.2.1

riting good comments makes the program easier to read. To improve the readability further, a unified
style of writing is necessary.
There are document generation tools that create documents for maintenance and ex amination from
the source code. When utilizing such tools, they can be most effectively used by writing in a style that
conforms to their specifications. In general, when the explanation of the variables and functions are
described according to certain comment conventions, the document generation tools enable these de-
scriptions to be extracted from the source code and reflected in the generated documents. Therefore, it is
important to examine the specifications of these tools and define the comment conventions accordingly.
Presented below are some established styles of writing comments that have been ex tracted from ex isting
coding conventions and related literature.

●Representativ e styles of writing comments
（1）I ndian Hill coding conv entions

The following comment rules are described in Indian ill C Style and Coding Standards

・B lock comments
　 Comments that describe data structures, algorithms, etc., should be in block comment form with the

opening / in column 1, a * in column 2 before each line of comment tex t, and the closing */ in col-
umns 2-3. (N ote that grep ’^.* ’ will catch all block comments in the file.)

　 :
 /* Write a comment.
 * Write a comment.
 */

・Position of comments
- B lock comments inside a function

 Should be tabbed over to the same tab setting as the code that they describe.
- End-of-line comments
 Start them apart from the statement by using the tab. If there are more than one of such
 comments, align them all to the same tab setting.

（2）GN U coding standards
The following comment rules are described in the Coding Standards

・L anguage 　English.

P ref eren ce
 guide

R ule

M 4 . 2 U nify the style of writing comments.

109

	
	

1

M
aintainability

M ain tain ab ility4 ● M 4 W rite in a con sisten t way.

	

保
守
性	

	
	

M
aintainability

・Position and contents
　-

 rite a comment that briefly explains what the program does at the beginning of every
 program.
　　-
 rite comments that provide the following information for each function.
 hat the function does, explanation of parameters (values, meaning, usage), return value
　　- #endif
 Except for short conditions that are not nested, add comments to explicitly state the conditions
 at the end of line of every #endif.
　　-

 lace two spaces at the end of each comment sentence.

（3）“ The Practices of Programming”
The following comment rules are described in The ractices of rogramming.

　・Position D escribe comments for functions and global data.

　・O ther practices
　　- D on’ t belabor the obvious.
　　- D on’ t contradict the code.
　　- Clarify, don t confuse

（4）O thers
　・ efine the policy on when to use /* */ comment and // comment.
 Example 1 se // for the comment at the end of statement, and /* */ for block comment.
 Example 2 se only //, because there is a risk of forgetting to close /* */.
 Example 3 o not use /* or // within a comment, provided that // may be used within a //
 comment.
 ・ escribe the copyright notice in the comment.
 ・ efine the comment for the switch statements without break.
 Example：

 switch (status) {
 case CASE1:
 rocessing;
 // FALL THROUGH
 case CASE2:
 　 ・・・

　・ efine the comment for no processing.
 Example：

 if (Condition 1) {
 rocessing;
 } else if (Condition 2) {
 rocessing;
 } else {
 // NOT REACHED
 }

　・ ine-splicing shall not be used in // comments. (ISRA C 2012 R3.2)

110 P art2 C odin g P ractices f or E m b edded S of tware: P ractices C h art

	
	

1

M
aintainability

	
	

M
aintainability

保守性

4.3 名前の付け方を統一する。

《Conv ention for naming ex ternal v ariables and inter-
nal variables shall be defined 》

M4.3.1

See ☆ Rules on naming conv entions below.

[Related rules］ M1. .1 M1. . M1. .3 M .3. 1.1. 1. .1

《 onvention for naming files shall be defined 》
M4.3.2

See ☆ Rules on naming conv entions below.

[Related rules］ M .3.1 1.1. 1. .1

☆Rules on naming conv entions
Readability of programs is greatly affected by naming. There are various methods for naming but im-
portant points are to be consistent and to make the names easy to understand.

or naming, the following items shall be defined

　・Guidelines for names in general
　・ ow to name files (including folders and directories)
　・How to name globally and locally
　・How to name macros, etc.
Presented in the following are some naming guidelines and rules introduced in ex isting coding conven-
tions and related literature. They are useful as reference when creating a pro ect-specific naming con-
vention newly. If no naming convention is explicitly defined in the existing pro ect, the recommendation
would be to create a naming convention that is closest to the current source code.

●Typical naming conv entions
（1）I ndian Hill coding conv entions
　・ ames with leading and trailing underscores are reserved for system purposes and should not be
　　used.
　・#define constants should be in all CA S.
　・enum constants should either have the initial character or all the characters capitali ed.
　・It is best to avoid names that differ only in case, like foo and Foo.

P ref eren ce
 guide

R ule

M 4 . 3 U nify the naming conv entions.

P ref eren ce
 guide

R ule

111

	
	

1

M
aintainability

M ain tain ab ility4 ● M 4 W rite in a con sisten t way.

	

保
守
性	

	
	

M
aintainability

　・ lobal names should have a common prefix identifying the module that they belong with.
　・A file name should be eight characters or less (excluding the extension), starting with an alphabetic
 character and followed by alphanumeric characters.
　・ ile names that are the same as library header filenames should be avoided.

O v erall ・
・
　 foo Foo

V ariable and
function
names

Global
L ocal

O ther ・
　 #define MACRO

・enum

（2）GN U coding standards
　・D on’ t choose terse names―instead, look for names that give useful information about the meaning
　 of the variable or function. ames should be English.
　・ se underscores to separate words in a name.
　・Stick to lower case reserve upper case for macros and enum constants, and for name-prefixes that
　　follow a uniform convention.

O v erall ・
　 get_name

・ enum

V ariable and
function
names

Global

L ocal

O ther ・
　 #define MACRO

・ enum

（3）“ The Practice of Programming”
　・ se descriptive names for globals, short names for locals.
　・ ive related things and related names that show their relationship and highlight their difference.
　・ unction names should be based on active verbs, perhaps followed by nouns.

112 P art2 C odin g P ractices f or E m b edded S of tware: P ractices C h art

	
	

1

M
aintainability

	
	

M
aintainability

O v erall
V ariable and
function
names

Global
L ocal

O ther

（4） O thers
・ hen naming files, variables and other ob ects, use only the following
 - etters in the English alphabet (A through and a through)
 - igits (0 through)
 - Space
 - , - .
 (See CERT C SC0 -C for related information.)

・Identifiers will not differ by
 - The presence absence of the underscore character
 - The interchange of the letter , or with the digit 0
 - The interchange of the letter I , with the letter l (lower case of) or the digit 1
 - The interchange of the letter S with the digit
 - The interchange of the letter with the digit 2
 - The interchange of the letter n with the letter h .
 - The interchange of the letter with the digit
 - The interchange of the letter m with the string rn .

・How to separate a name: A name that consists of multiple words should be either separated with
underscore or delimited using an uppercase letter for the first letters of the
words. etermine which style to adopt.

・Hungarian notation: There is a notation called ungarian notation that explicitly indicates the
type of variable.

・Ho to name files ive a name with a prefix, for example, that expresses the subsystem.

The validity of file names is also dependent on the environment, such as, the file system. Some file sys-
tems do not allow the use of characters like comma (,) and colon () for file names, while some others
have a special meaning defined for space () and underscore (). The programmers need to watch out for
these local restrictions and definitions applied to specific characters to prevent what they write as the file
name using any of these characters from behaving unexpectedly.

[Related rules］ 1.1. 1. .1

113

	
	

1

M
aintainability

M ain tain ab ility4 ● M 4 W rite in a con sisten t way.

	

保
守
性	

	
	

M
aintainability

保守性

4.4 ファイル内の記述内容と記述順序を統一する。

《The descriptiv e contents of header files (declara-
tions definitions etc and the order they are de -
scribed in shall be defined 》

M4.4.1

Items commonly used in a program shall be described in header files to prevent the risk of modification
errors when they are scattered in different places. eader files should contain macro definitions, tag dec-
larations for structures, unions and enumeration types, typedef declarations, external variable declara-
tions and function prototype declarations that are commonly used in multiple source files.

or example, they should be described in the following order

　（1） File header comment
　（2） Inclusion of system headers
　（3） Inclusion of user defined headers
　（4） #define macros
　（ ） #define function macros
　（6 ） typedef definitions (type definitions for basic types such as int or char)
　（7 ） enum tag definitions (together with typedef)
　（ ） struct/union tag definitions (together with typedef)
　（ ） extern variable declarations
　（10） unction prototype declarations
 （11）Inline function

B y using typedef or macro, the readability of the program at first sight can be improved and coding
changes can be locali ed. They should, however, be used according to a specific rule or rules that define
their usage. r else, they may lead to an adverse result, such as, when a different definition is established
for the macro with the same description (making the program more difficult to read or easier to overlook
the coding changes). Therefore, the specific usage of typedef and macros in a pro ect should be de-
fined before starting the pro ect, and such pro ect-specific rule or rules should be consistently followed
throughout the pro ect to mitigate the aforesaid risk of adverse effects.

M 4 . 4 U nify the contents to be described in a file and the
order of describing them.

P ref eren ce
 guide

R ule

114 P art2 C odin g P ractices f or E m b edded S of tware: P ractices C h art

	
	

1

M
aintainability

	
	

M
aintainability

《The descriptiv e contents of source files (declara-
tions definitions etc and the order they are de -
scribed in shall be defined 》

M4.4.2

In a source file, definitions of variables and functions, definitions or declarations of macros, tags, and
types (typedef types) used only in the individual source file should be described.

or example, they should be described in the following order

　（1）File header comment
　（2）Inclusion of system headers
　（3）Inclusion of user-defined headers
　（4）#define macros used only in this file
　（ ）#define function macros used only in this file
　（6 ）typedef definitions used only in this file
　（7 ）enum tag definitions used only in this file
　（ ）struct/union tag definitions used only in this file
　（ ）static variable declarations shared in this file
　（10）static function declarations
　（11）Variable definitions
　（12） unction definitions

*Regarding (2) and (3), be careful not to include unnecessary items.
*Avoid describing () through () as much as possible.

P ref eren ce
 guide

R ule

115

	
	

1

M
aintainability

M ain tain ab ility4 ● M 4 W rite in a con sisten t way.

	

保
守
性	

	
	

M
aintainability

o use or define e ternal variables or functions e -
cept for functions used only in the file the header
file describing their declarations shall be included

M4.4.3

--- my_inc.h ---
extern int x;
int func(int);

#include "my_inc.h"
int x;
int func(int in)
{
 …

// Declaration of variable x and function func
// are missing
int x;
int func(int in)
{
...
// Declaration of variable x and function func
// are written in the same file and not included
// from the header file
extern int x;
int func (int);
...
int x;
int func (int in) {
 ...

In C language, variables must either be declared or defined before being used. n the other hand, func-
tions can be used without declarations or definitions. owever, to ensure that declarations and defini-
tions are consistent, the declarations should be described in the header file, and that header file should be
included.

E ternal variables shall not be defined in multiple lo-
cations.

M4.4.4

int x; // Definition of one external variable
 // shall be only once

int x;
int x; // Definition of an external variable
 // in multiple locations does not cause
 // a compile error

efinitions without initiali ation for external variables can be described more than once. owever, the
behavior is not guaranteed when an external variable is initiali ed in multiple files.

Compliant ex ample N on- compliant ex ample

P ref eren ce
 guide

R ule

P ref eren ce
 guide ●

R ule

Compliant ex ample N on- compliant ex ample

116 P art2 C odin g P ractices f or E m b edded S of tware: P ractices C h art

	
	

1

M
aintainability

	
	

M
aintainability

V ariable definitions or function definitions shall not
be described in a header file

M4.4.5

--- file1.h ---
extern int x; // ariable declaration
int func(void); // Function declaration

--- file1.c ---
#include "file1.h"
int x; 　　　　　 // ariable definition
int func(void) // Function definition
{
 …
}

--- file1.h ---
int x; // External variable definition
static int func(void) // Function definition
{
 …
}

eader files might be included into several source files. Therfore, describing variable definitions and
function definitions in a header file may unnecessarily enlarge ob ect code si e generated after compila-
tion. asically, only declarations or type definitions should be described in a header file.

Header files shall be descriptiv ely capable of han-
dling redundant inclusions.《The descriptiv e method
to achieve this capability shall be defined 》

M4.4.6

--- myheader.h ---
#ifndef MYHEADER_H
#define MYHEADER_H
 Contents of the header file
#endif // MYHEADER_H

--- myheader.h ---
void func(void);
// end of file

The descriptive contents of header files should be organi ed to avoid redundant inclusions. owever,
there are cases when redundant inclusions become unavoidable. To prepare for such cases, header files
should be written in such a way that will make them possible of handling multiple inclusions.
As an example, the following may be defined as the rule for writing header files that are capable of han-
dling redundant inclusions
Ex ample of the rule:
#ifndef macro that j udges whether the header has already been included or not shall be written at the
beginning of the header file, so that the descriptions that follow will not be compiled in subse uent in-
clusions. In this case, the macro name should be the same as the header file name but replacing all the
lowercase letters to uppercase letters, and the period . to underscore _ ’ .

Compliant ex ample N on- compliant ex ample

Compliant ex ample N on- compliant ex ample

P ref eren ce
 guide

R ule

P ref eren ce
 guide

R ule

117

	
	

1

M
aintainability

M ain tain ab ility4 ● M 4 W rite in a con sisten t way.

	

保
守
性	

	
	

M
aintainability

保守性

4.5 宣言の書き方を統一する。

M4.5.1

Compliant example of (1)
int func1(int, int);

int func1(int x, int y)
{
 // rocess the function
}

Compliant example of (2)
int func1(int x, int y);
int func2(float x, int y);

int func1(int x, int y)
{
 // rocess the function
}

int func2(float x, int y)
{
 // rocess the function
}

Non-compliant example of (1) and (2)
int func1(int x, int y);
int func2(float x, int y);

int func1(int y, int x) // The parameter
 // name differs from
 // the name in the
 // prototype
 // declaration
{
 // rocess the function
}

typedef int INT;
int func2(float x, INT y) // The type of y is
 // not literally the
 // same as in the
 // prototype
 // declaration
{
 // rocess the function
}

In a function prototype declaration, parameter names can be omitted, but describing appropriate param-
eter names is useful as function interface information. hen describing parameter names, use the same
name as in the definition to avoid unnecessary confusion. As for the parameter type name, making it
literally the same as the function definition is also recommended to make the code easier to read.

oreover, if the parameter is an array of specific si e, it is desirable to specify the number of its ele-
ments.

Ex ample: void func(int a[4]) { ... }
void func2(size_t n, int arr[n]) { ... } // In case of variable length array

See also CERT C A I0 -C for related information.

[Related rule］ M1. .1

Compliant ex ample N on- compliant ex ample

P ref eren ce
 guide

R ule

（1）I n a function prototype declaration, all the pa-
rameters shall not be named types only

（2）I n a function prototype declaration, all the pa-
rameters shall be named. I n addition, the types of the parameters,
their names and the type of the return v alue shall be literally the
same as those of the function definition

M 4 . 5 U nify the style of writing declarations.

118 P art2 C odin g P ractices f or E m b edded S of tware: P ractices C h art

	
	

1

M
aintainability

	
	

M
aintainability

Structure tags and v ariables shall be declared sepa-
rately.

M4.5.2

struct TAG {
 int mem1;
 int mem2;
};
struct TAG x;

struct TAG {
 int mem1;
 int mem2;
} x;

M4.5.3

Compliant example of (1)
struct tag data[] = {
 { 1, 2, 3 },
 { 4, 5, },
 { , , } // There is no comma after the
 // last element
};
Compliant example of (2)
struct tag data[] = {
 { 1, 2, 3 },
 { 4, 5, },
 { , , }, // There is a comma after the
 // last element
};

Non-compliant example of (1) and (2)
struct tag x = { 1, 2, };
// Not clear whether there are only two members
// or there are three or more

The usage of comma in descriptions for initiali ing multiple data is generally divided into two schools of
coding rules. ne school follows the tradition of not placing a comma after the last initial value in order
to indicate the end of initiali ation explicitly. Another school follows the tradition of placing a comma at
the end by considering the easiness of adding or deleting initial values. D ecide on which rule to follow
by weighing the importance of the usage of comma for such descriptions in your specific cases.
In C 0 standard, it was not acceptable to have , ust before }” that indicates the end of an enumera-
tor list, but this became acceptable in C standard.

[Related rule］ M .1.1

Compliant ex ample N on- compliant ex ample

Compliant ex ample N on- compliant ex ample

P ref eren ce
 guide

R ule

（2） “ ,” shall not be placed before the last “ }” in the list of initial v alue
　 ex pressions for structures, unions and arrays, nor in the list of
 　 enumerators. Howev er, placing “ ,” before the last “ }” in the list of
 　 initial v alues for array initializ ation is allowed.

（1）“ ,” shall not be placed before the last “ }” in the
list of initial v alue ex pressions for structures,
unions and arrays, nor in the list of enumerators.

P ref eren ce
 guide

R ule

119

	
	

1

M
aintainability

M ain tain ab ility4 ● M 4 W rite in a con sisten t way.

	

保
守
性	

	
	

M
aintainability

保守性

4.6 ナルポインタの書き方を統一する。

（1） 0 shall be used for the null pointer. NULL shall not
be used in any case.

（2） NULL shall be used for the null pointer. NULL shall
not be used for anything other than the null point-
er.

M4.6.1

Compliant example of (1)
char *p;
int dat[10];

p = 0;
dat[0] = 0;

Compliant example of (2)
char *p;
int dat[10];

p = NULL;
dat[0] = 0;

Non-compliant example of (1)
char *p;
int dat[10];

p = NULL;
dat[0] = NULL;

Non-compliant example of (2)
char *p;
int dat[10];

p = 0;
dat[0] = NULL;

NULL has been conventionally used to express the null pointer, but the expression of the null pointer var-
ies, depending on the execution environment. or this reason, some people think that it is safer to use 0.

Compliant ex ample N on- compliant ex ample

M 4 . 6 U nify the style of writing null pointers.

P ref eren ce
 guide

R ule

120 P art2 C odin g P ractices f or E m b edded S of tware: P ractices C h art

	
	

1

M
aintainability

	
	

M
aintainability

保守性

4.7 前処理指令の書き方を統一する。

The body and parameters of a macro that includes
operators shall be enclosed with parentheses ().

M4.7.1

#define M_SAM LE(a, b) ((a)+(b)) #define M_SAM LE(a, b) a+b

If the body and parameters of a macro are not enclosed with parentheses () , there is a risk of bug be-
ing produced when the operations are not performed in the expected order, since the operation order
depends on the order of precedence of operators that come next to the macro after expanding the macro
and the operators in the macro.

#else, #elif or #endif that correspond to #ifdef,
#ifndef or #if shall be described in the same file,
and 《their correspondence relationship shall be
clearly stated with a comment defined in the proj -
ect》.

M4.7.2

#ifdef AAA
// rocess when AAA is defined
 …
#else // not AAA
// rocess when AAA is not defined
 …
#endif // end AAA

#ifdef AAA
// rocess when AAA is defined
 …
#else
// rocess when AAA is not defined
 …
#endif

If #else or #endif is described in a distant location or nested in a partitioned process by macros, such
as, #ifdef , their correspondence becomes difficult to understand. Therefore, add a pro ect-defined
comment to #else or #endif that corresponds with, such as, #ifdef to make their correspondence
easier to understand.

[Related rules］ M1.1.1， M1.1.

Compliant ex ample N on- compliant ex ample

M 4 . 7 U nify the style of writing preprocessor directiv es.

P ref eren ce
 guide

R ule

P ref eren ce
 guide

R ule

Compliant ex ample N on- compliant ex ample

121

	
	

1

M
aintainability

M ain tain ab ility5 ● M 5 W rite in a way easy to test.

	
	

M
aintainability

defined(macro_ name) or defined macro_ name shall
be used to check whether the macro name has al-
ready been defined by #if or #elif.

M4.7.3

#if defined(AAA)
…
#endif
- or -
#if defined AAA
…
#endif

#if AAA
 …
#endif
- or -
#defined DD(x) defined(x)
#if DD(AAA)
 …
#endif

“#if macro name” does not determine whether a macro is defined or not. or example, when #if AAA
is written, it will be evaluated as false not only when macro AAA is not defined, but also when the
value of macro AAA is 0. The C language standard does not define how to process defined operator.
Therefore, to check whether a macro is defined or not, defined operator should be used.
defined operator should not be described other than by defined(macro name) or defined macro
name, because they are the only two ways of describing defined that are supported in C language
standard, and any other descriptions of defined may cause an error or may be interpreted differently,
depending on the compiler used.

[Related rule］ M . .

M acros shall not be #define’ d or #undef’ d within a
block . 【M I SRA C:20 0 4 19 .5】

M4.7.5

#define AAA 0
#define BBB 1
#define CCC 2
struct stag {
 int mem1;
 char *mem2;
};

// Members with restriction on the assignable
// values exist
struct stag {
 int mem1; // The following values are
 // assignable:
#define AAA 0
#define BBB 1
#define CCC 2
 char *mem2;
};

P ref eren ce
 guide ●

R ule

Compliant ex ample N on- compliant ex ample

Compliant ex ample N on- compliant ex ample

P ref eren ce
 guide

R ule

122 P art2 C odin g P ractices f or E m b edded S of tware: P ractices C h art

	
	

1

M
aintainability

	
	

M
aintainability

enum etag { AAA, BBB, CCC };
struct stag {
 enum etag mem1;
 char *mem2;
};

[Related rule］ M . .

#undef shall not be used.【M I SRA C:20 12 R19 .6】
M4.7.6

#undef can change the state of #define d macro name to undefined. ut the use of #undef involves
the risk of degrading the readability, because the interpretation of #undef may differ, depending on
where the macro name is referred to.

[Related rule］ M . .

In general, macro definitions (#define) are all described together at the beginning of the file. If they are
scattered in various parts of the file, for example, by describing them in blocks, they will become dif-
ficult to read. oreover, cancellation of definitions (#undef) within a block will also degrade the read-
ability. Also note that, unlike the scope of variables, macro definitions are valid only up to the end of the
file. The description below shows how the program in the above non-compliant example can be rewrit-
ten to make it compliant

P ref eren ce
 guide

R ule

123

	
	

1

M
aintainability

M ain tain ab ility5 ● M 5 W rite in a way easy to test.

	
	

M
aintainability

In case of #if or #elif controlling expression, true or false is evaluated by the controlling expres-
sion. Therefore, the controlling expression should be described in a way that would make it easy to
evaluate true or false, thus making the program easy to read.

[Related rule］ M . .3

#define TRUE 1
#define FALSE 0
#if TRUE
 …
#if defined(AAA)
 …
#if VERSION == 2
 …
#if 0 // Invalidated due to ～
 …

#define ABC 2
#if ABC
 …

Controlling ex pression of #if or #elif preprocess-
ing directiv e shall be ev aluated as 0 or 1.

【M I SRA C:20 12 R20 .8 】

M4.7.7 P ref eren ce
 guide

R ule

Compliant ex ample N on- compliant ex ample

124 P art2 C odin g P ractices f or E m b edded S of tware: P ractices C h art

	
	

1

M
aintainability

	
	

M
aintainability

W rite in a style that mak es testing
easy.

M aintainability

5
ne of the essential tasks in embedded software development is to check the behaviors

(through testing). owever, with recent complex embedded software, it is becoming
increasingly challenging to fulfill this task when faced with difficulties caused by, such as,
bugs and malfunctions detected during tests that cannot be reproduced. Therefore, when
writing the source code, it is desirable to be more conscious of writing in a style that will
make the root cause analysis easy to perform when problem arises. oreover, particular
attention must also be given to descriptions that involve, such as, the use of dynamic
memory, by keeping in mind the risk of memory leak, among other points of concern.

M aintaiability 5.1 W rite in a style that mak es it easy to inv estigate the
 causes of problems when they occur.

M aintaiability 5.2 B e careful when using dynamic memory allocations.

125

	
	

1

M
aintainability

M ain tain ab ility5 ● M 5 W rite in a way easy to test.

	
	

M
aintainability

保守性

5.1 問題発生時の原因を調査しやすい書き方にする。

《The rules for writing the code for setting debug op-
tions and for recording logs in release modules shall
be defined 》

M5.1.1

esides implementing the specified functionalities correctly, a good program re uires coding that also
takes account of the easiness to debug and investigate into the causes of problems when they occur. e-
scriptions that make investigation of problems easy to conduct can be achieved by writing descriptions
for debugging that are not reflected in the release modules and descriptions for outputting logs after re-
lease that are reflected in the release modules. Explained below are the points to take into consideration
when determining the rules to be followed in writing each of these descriptions.

● D escriptions for debugging
escriptions for debugging, including print statements used during program development, need to be

written as isolated descriptions that are not reflected in the release module. Explained below are two
ways of writing the descriptions for debugging (a) by isolating the debug descriptions using macro defi-
nitions and (b) by using assert macros for debugging purpose.

a Using macro definitions to isolate debug descriptions
se the macro definitions to identify the code parts to be compiled so that the debug descriptions are not

reflected in the provided release module. Strings, such as, DEBUG and MODULEA DEBUG” that contain
DEBUG as part of the name are commonly used as those macro names.

#ifdef DEBUG shall be used to isolate the debug code. (DEBUG macro shall be specified at compile
time.)

[Code example]
 #ifdef DEBUG
 fprintf(stderr, "var1 = %d/n", var1);
 #endif

The following macro definitions can also be used.

#ifdef DEBUG shall be used to isolate the debug code. (DEBUG macro shall be specified at compile
time). In addition, the following macro shall be used to output debug information.

DEBUG_ RINT(str); // Output str to standard output

M 5 . 1 W rite in a style that mak es it easy to inv estigate the
causes of problems when they occur.

P ref eren ce
 guide

R ule

126 P art2 C odin g P ractices f or E m b edded S of tware: P ractices C h art

	
	

1

M
aintainability

	
	

M
aintainability

Since this macro is defined in the common header of the pro ect, debug_macros.h , this header shall
be
included when using this macro.

-- debug_macros.h --
 #ifdef DEBUG
 #define DEBUG_ RINT(str) fputs(str, stderr)
 #else
 #define DEBUG_ RINT(str) ((void) 0) // no action
 #endif // DEBUG

[Code example]
void func(void) {
 DEBUG_ RINT(">> func n");
 ・・・
 DEBUG_ RINT("<< func n");
}

b Using the assert macro
In C language standard, assert macro is provided as a macro for program diagnosis. It is useful for
making coding errors easier to detect during debugging. To facilitate debugging, define where to use the
assert macro and follow this defined usage throughout the pro ect. y doing so, it will be possible to
collect consistent debug information during, such as, the integration test, and such information, as a re-
sult, will help make debugging easier.
The following is a brief explanation on how to use the assert macro, using a coding example that
shows how this macro is used in a function definition written under the precondition that the null pointer
is never passed as the argument.

void func(int *p) {
 assert(p != NULL);
 *p = INIT_DATA;
 ・・・
}

If the NDEBUG macro is defined at compile time, the assert macro does nothing. O n the other hand, if
the NDEBUG macro is not defined and the expression passed to the assert macro is false, the program
abends after outputting the file name and the line number of the source to the standard error. ote that
the macro name is NDEBUG, not DEBUG.
assert macro is a macro provided by the compiler in <assert.h>. y using the following example as
a reference, examine how to abort the program and determine whether to use the macro provided by the
compiler or to provide your own assert function.

#ifdef NDEBUG
#define assert(exp) ((void) 0)
#else
#define assert(exp) (void) ((exp)) || (_assert(#exp, __FILE__, __LINE__)))
#endif
void _assert(char *mes, char *fname, unsigned int lno) {
 fprintf(stderr, "Assert:%s:%s(%d)¥n", mes, fname, lno);
 fflush(stderr);
 abort();
}

127

	
	

1

M
aintainability

M ain tain ab ility5 ● M 5 W rite in a way easy to test.

	
	

M
aintainability

C11 allows embedding static assert that can be evaluated by the compiler in the source code, confirming
the offset of a structure member and the length of a string constant, and detecting, such as, the type si es
and internal representations that differ depending of the compiler used, at the time the code is compiled.

_Static_assert(sizeof(t) <= 4, "The size of t is exceeding 4 bytes.");

● O utputting logs after release
It is also useful to include descriptions for problem investigation in the release module that dose not
contain descriptions for debug. ne common method is to record the result of the investigation as log
information. og information is helpful for validation testing of the release module as well as for inves-
tigation of problems that occurred in the system provided to the customer.
In case of recording the log information, the following items should be determined in advance and de-
fined as the coding convention.

　・W hen to output logs

　　 ogs should be output not only when an abnormal condition is detected, but also at the timing of,
 such as, data communication with an external system. The point is to output logs at appropriate
 timing (such as, when key events occur) that will make it easier to trace the history and faster to
 identify the root cause of the detected abnormality.
　・W hat to output in logs

　　 Information on the process executed immediately before the occurrence of the abnormal condition,
the data values processed at that time, and information for tracing memory usage are some of the
log information that should be recorded to enhance the traceability of the history and facilitate the
investigation of the cause of the abnormality.

　・M acro or function for outputting log information

　　 ocali e the log information output as a macro or a function. It is often preferable to make the
 log output destination changeable.

 he # and ## preprocessor operators should not
 be used.【M I SRA C:20 12 R20 .10 】

 macro parameter immediately follo ing a # op-
erator shall not immediately be followed by a ##
operator.【M I SRA C:20 12 R20 .11】

M5.1.2

Compliant example of (2)
#define AAA(a, b) a#b
#define BBB(x, y) x##y

Non-compliant example of (1) and (2)
#define XXX(a, b, c) a#b##c

The evaluation order of # operator and ## operator is not defined. Therefore, # and ## operators should
not be mix ed, nor used twice or more.

Compliant ex ample N on- compliant ex ample

P ref eren ce
 guide

R ule

128 P art2 C odin g P ractices f or E m b edded S of tware: P ractices C h art

	
	

1

M
aintainability

	
	

M
aintainability

F unction shall be used rather than using function-
lik e macro.

M5.1.3

int func(int arg1, int arg2)
{
 return arg1 + arg2;
}

#define func(arg1, arg2) (arg1 + arg2)

sing functions rather than function-like macros facilitates tracking processes by stopping at the begin-
ning of a function during debugging etc.
In addition, the compiler performs type checking with the functions and helps to detect coding mistakes.
The functions can be inline functions. or more information about the performance of inline functions
and ob ect code si e, see E1.1.1.

[Related rules］ 1.1.1 .1.1

保守性

5.2 動的なメモリ割り当ての使用に気を付ける。

 Dynamic memory shall not be used
 f dynamic memory is used 《the means to allo-
cate and free the memory, the max imum

 amount of memory that can be used, process to
 be tak en when running out of memory, and
 debugging procedure shall be defined 》

M5.2.1

M 5 . 2 B e careful when using dynamic memory allocations.

P ref eren ce
 guide

R ule

P ref eren ce
 guide

R ule

Compliant ex ample N on- compliant ex ample

sing dynamic memory involves the risk of memory corruption caused by invalid memory access as
well as the risk of memory leak that leads to depletion of system resources, which may be caused by
forgetting to return the obtained memory space to the system. The use of dynamic memory should be
avoided, but there are unavoidable cases, such as, when middleware is used, and these cases are, in fact,
not that rare. In case the use of dynamic memory is unavoidable, specific rule or rules, including those
exemplified below, should be established to prevent the aforesaid risks from arising and facilitate the
debugging process

Example 1 rite the code for allocating the memory and freeing the allocated memory symmetrically
in the same translation unit.

Example 2 Assign a new value to the pointer that points to the freed memory.

129

	
	

1

M
aintainability

M ain tain ab ility5 ● M 5 W rite in a way easy to test.

	
	

M
aintainability

Example 3 efine in advance the maximum si e of the dynamic memory to be used.
Example efine the process to be taken when running out of memory.
Example To allocate or free dynamic memories, do not use standard functions, such as, malloc or

free. Instead, prepare for the pro ect one or more functions that facilitates the debugging
process, as shown in the example below.

Since some compilers already provide functions for debug, consider using them as well. pen source
software also has pieces of source code for debug and should serve as useful references when creating
your own.

-- X_MALLOC.h --
#ifdef DEBUG
void *log_malloc(size_t size, char*, char*);
void log_free(void*);
#define X_MALLOC(size) log_malloc(size, __FILE__, __LINE__)
#define X_FREE(p) do {log_free(p, __FILE__, __LINE__); p=NULL;} while(0)
#else
#include <stdlib.h>
#define X_MALLOC(size) malloc(size)
#define X_FREE(p) do {free(p); p=NULL;} while(0)
#endif
[Use of those functions]
#include X_MALLOC.h
...
p = X_MALLOC(sizeof(*p) * NUM);
if (p == NULL) {
 return (MEM_NOTHING);
}
...
X_FREE(p);
return (O);

[Related rule］ 3. .

● eference Problems hen using dynamic memory
escribed below are problems that you should watch out when using dynamic memory.

・ uffer over o
This occurs as a result of referencing or updating areas beyond the range of obtained memory. In
particular, when an area outside the range is accidentally updated, this failure does not occur at the
time of update but will occur when the memory destroyed by the update is referenced.

・F orgetting to initializ e
emories obtained by typical dynamic memory functions are not initiali ed (there are some dy-

namic memory obtaining functions perform initiali ation). ike automatic variables, the memories
should be initiali ed in the program before using them.

unctions for initiali ing the obtained memory space, such as, calloc, can be used.

・M emory leak
There is a risk of this problem being caused by forgetting to free the obtained memory space. This

130 P art2 C odin g P ractices f or E m b edded S of tware: P ractices C h art

	
	

1

M
aintainability

	
	

M
aintainability

problem does not occur with programs that terminate each time after running once. owever, with
programs that keep running, memory leak can occur and become the cause of memory depletion
and system malfunction.

・U sing freed memory
There are cases when the freed memory is used. hen the obtained memory space is freed with
functions, such as, free or realloc, the freed memory space may be reused later, such as, when
malloc function is called. In case a pointer that points to the freed memory (also known as dan-
gling pointer) is used to update the memory, the memory space will be destroyed if it is already be-
ing reused for other purpose.

・D ouble free
This term refers to freeing the allocated memory more than once with functions, such as, free or
realloc. Since the behavior after double free is undefined, the behavior of the program that uses
double freed memory is not guaranteed. ne of the methods to prevent this problem from occurring
is to assign a null pointer as the pointer that points to this memory, immediately after freeing this
memory.
The behavior of the program that specifies a null pointer as the argument of free or realloc
function is guaranteed. ouble free can therefore be prevented by making it a rule to assign a null
pointer as the pointer that points to the freed memory,

The code that leads to these problems does not cause a compile error. In addition, problems do not occur
at the location where the bugs were implanted, making them undetectable in tests that are ust for check-
ing the normal specifications. They cannot be discovered unless the code is carefully reviewed or tests
are performed after inserting a test code specifically written to detect such problems or after adding a
special library to the program for similar purpose.

One of the distinctive aspects of embedded software is that
there are diverse options in the platform used for software op-
eration. This also means that there are many possible combina-
tions of MPU options and OS options to select the hardware and
software platforms from. As the number of functionalities real-
ized by the embedded software increases, opportunities to port
the existing software to other platforms by modifying or remod-
eling it to make it compatible with multiple platforms are also on
the rise.
Due to this trend, software portability is becoming an extremely
important element also at the source code level. In particular,
writing in a style that is implementation-dependent is one of the
most common mistakes made on a regular basis.

●Portability 1: Write in a style that is not dependent on
 　 the compiler.

●Portability 2: Localize the code that has a problem with
　　　　　　 portability.

Portability

132

	

信
頼
性	

セクション

P art2 C odin g P ractices f or E m b edded S of tware: P ractices C h art

	
	

1

Portability

W rite in a style that is not
dependent on the compiler.

Portability

1
U se of compilers is unavoidable when programming in C++ language. Various compilers

are available in the world and each has its own features. If the source code is written poorly,
the code may become dependent on the features of the compiler used, and may cause
unex pected results when a different compiler is used.

For this reason, programming must be performed carefully with an awareness that the code
must be written in a style that is not implementation-dependent.

Portability 1.1 D o not use functionalities that are adv anced features or
implementation-defined

Portability 1.2 Use only the characters and escape se uences defined in
the language standard.

Portability 1.3
onfirm and document data type representations behav-

ioral specifications of advanced functionalities and imple-
mentation- dependent parts.

Portability 1.4
or source file inclusion confirm the implementation-

dependent parts and write in a style that is not implementa-
tion- dependent.

Portability 1.5 W rite in a style that does not depend on the env ironment
used for compiling.

133P ortab ility1 ● P 1 W rite in a com piler in depen den t way.

	
	

1

Portability

移植性

1.1 拡張機能や処理系定義の機能は使用しない。

 unctionalities not specified in the language
standard shall not be used.
 f functionalities not specified in the language
standard are used, 《the functionalities used and
their usage shall be documented.》

P1.1.1

At present, while C99 is the widely used C language standard, the latest version is C11. In addition, there
are still many compilers that also support the older version, C90.

ne way of thinking would be to choose rule (2) and allow the use of functionalities defined in the latest
language standard, C11, that are specifically supported by the compiler used.
Regarding the acceptable ways of using the functionalities that are not specified in the language stan-
dard, the details are provided in the following related rules.

［Related rules］ 1.1.3， 1. .1， 1. . ， 1.3. ， .1.1， .1.

《 ll usage of implementation-defined behavior shall
be documented.》【M I SRA C:20 0 4 3.1】

P1.1.2

In the language standard, there are implementation-defined items whose behavior varies depending on
the compiler used. or example, the following are implementation-defined and should be documented if
they are used.

・ ow to represent floating-point numbers
・For C90, how to handle signs of remainders for integer division
・The search order of files for the #include directive
・#pragma

P 1 . 1 D o not use functionalities that are adv anced fea-
tures or implementation- defined.

P ref eren ce
 guide

R ule

P ref eren ce
 guide

R ule

134

信
頼
性

セクション

P art2 C odin g P ractices f or E m b edded S of tware: P ractices C h art

1

Portability

To use a program written in another language, 《its
interface shall be documented and its usage shall
be defined 》

P1.1.3

The C language standard does not define the interface for making programs written in other languages
available from a C language program. In other words, using a program written in another language re-
quires the use of an advanced functionality, which means that portability will be impaired. Therefore,
when using such a program, document the specifications of the compiler used and define its usage, re-
gardless of the possibility of porting.

［Related rules］ 1.1.1， .1.1

移植性

1.2 言語規格で定義されている文字や拡張表記のみを使用する。

o use characters other than those defined in the
language standard for writing a program, the com-
piler specifications shall be confirmed and 《their
usage shall be defined 》

P1.2.1

Compliant ex ample N on- compliant ex ample

P 1 . 2
U se only the characters and escape seq uences de-
fined in the language standard.

P ref eren ce
 guide

R ule

P ref eren ce
 guide

R ule

The basic character set defined in the language standard as usable for source code are upper and lower
case letters of the L atin alphabet, decimal digits, graphic characters (! “ # % & ‘ () * + , -
. / : ; < = > ? [\] ^ _ { | } ~), space character, and control characters that represent the
horizontal tab, vertical tab and form feed. However, a part of these graphic characters varies in countries
and are therefore implementation-dependent. As a result, they may not be correctly processed.
International characters and multibyte characters (like Japanese) can be used as identifiers and charac-
ters, but they may not be supported by some compilers. Therefore, if these characters are going to be
used, check beforehand that they can be used in the following locations and define their usage.

const char * table[MAX]; // table of names
// Compliant

const char * table[MAX];// 名前表
// Non-compliant: In Shift_JIS, the second byte of
// a double-byte character“表”is '\' in ASCII,
// and may be misinterpreted as
// comment line-splicing

135P ortab ility1 ● P 1 W rite in a com piler in depen den t way.

	
	

1

Portability

・
・
・

- Processing when \ ex ists in the character codes of the string (whether special care is required or
whether options are required at the time the code is compiled, etc.)

- The necessity to write using wide string literals (with the prefix L such as L“string”.)
- The necessity to write using char16 t string literals (with the prefix u such as u“string”.) (in case

of C11)
- The necessity to write using char32 t string literals (with the prefix U such as U“string”.) (in case

of C11)
・

- The bit length of the character constant
- Process when \ ex ists in the character code of character constants (whether special consideration is

necessary or whether option is specified at the time the code is compiled, etc.)
- The necessity to write using wide character constants (with the prefix L such as L‘あ’)
- The necessity to write using char16 t character constants (with the prefix u such as u‘あ’) (in case

of C11)
- The necessity to write using char32 t character constants (with the prefix U such as U‘あ’) (in case

of C11)
・ #include

or example, define the following rules.
・As the identifier, only the alphanumeric characters and underscore should be used.
・ Comments can be written in Japanese. The character code used should be U TF-8. Halfwidth Katakana

shall not be used.
・Japanese shall not be used in strings, string constants and file names of #include.

Many compilers these days support U nicode to process multibyte character set that includes Japanese. In
Japan, Shift_ JIS has long and often been used as the character code for processing Japanese characters.
B ut recently, there are increasing number of development proj ects using open source that are adopting
U TP-8 as the character code.

［Related Rules］ M .3.1 M .3. 1.1.1

136

	

信
頼
性	

セクション

P art2 C odin g P ractices f or E m b edded S of tware: P ractices C h art

	
	

1

Portability

nly escape se uences defined in the language
standard shall be used.

P1.2.2

char c = '\t'; // compliant char c = '\e'; // Non-compliant: The escape sequence
// is not defined in the
// language standard
// It is not portable

The language standard defines the following seven nongraphic characters as escape se uences

 \a (alert) \b (backspace) \f (form feed) \n (new line)

 \r (carriage return) \t (horizontal tab) \v (vertical tab)

［Related rule］ P1.1.1

P1.3.1

char c = 'a'; // Used to store characters
int8_t i8 = -1; // To use it as 8-bit data,
 // use a type defined, for
 // example, with typedef

char c = -1;
if (c > 0) { … }
// Non-compliant: char can be signed or unsigned
// depending on the compiler, and this difference
// affects the result of the comparison

P ref eren ce
 guide

R ule

Compliant ex ample N on- compliant ex ample

P ref eren ce
 guide

R ule

Simple char type (that does not specify the signed-
ness) shall be used only for storing character v al-
ues. I f a process that depends on signedness (im-
plementation-defined is re uired unsigned char or
signed char that specifies its signedness shall be used

Compliant ex ample N on- compliant ex ample

P 1 . 3
Confirm and document data type representations, behav ioral
specifications of adv anced functionalities and implementa-
tion- dependent parts.

137P ortab ility1 ● P 1 W rite in a com piler in depen den t way.

	
	

1

Portability

U nlike other integer types like int , char that does not specify its signedness will be either signed or
unsigned depending on the compiler (int type is the same as signed int type.) Therefore, using char
that depends on the signedness is not portable. This is because char that does not specify its signed-
ness is an independent type provided for storing characters (comprised of three types char , unsigned
char and signed char) and the language standard assumes such usage. For using char as a small
integer type, such as, when a process that depends on signedness is required, use either unsigned char
or signed char that specifies its signedness. In this case, it is desirable to use typedef as the type to lo-
cali e the range of modification during porting.
A problem similar to this rule ex ists with the returned type of the standard function getc that is int and
must not be received by char . However, this is rather a problem pertaining to function interface (as-
signment that may cause information loss).

【Reference materials for those wanting to know more in detail about this rule】
・ ISRA C 2012 Rule 10.1

［Related rule］ .1.3

The members of an enumeration type (enum) shall
be defined ith values that can be represented as
int type.

P1.3.2

// If int is 16bits and long is 32bits
enum largenum {
 LARGE = INT_MAX
};

// If int is 16bits and long is 32bits
enum largenum {
 LARGE = INT_MAX+1
};

In the C language standard, the members of an enumeration type must have values that can be repre-
sented as int type. However, some compilers that support this functionality ex tendedly may not cause
an error even if the value ex ceeds the range of int type for the members of an enumeration type.

Reference C++ allows values in the range of long type for the members of an enumeration type.

［Related rule］ P1.1.1

Compliant ex ample N on- compliant ex ample

P ref eren ce
 guide

R ule

138

	

信
頼
性	

セクション

P art2 C odin g P ractices f or E m b edded S of tware: P ractices C h art

	
	

1

Portability

P1.3.3

Compliant example of (2)
struct S {
 unsigned int bit1:1;
 unsigned int bit2:1;
};
extern struct S * p; // Compliant if p points
 // to a date that is, for
 // example, just a set of
 // flags and bit1 can be
 // any bit in that data

p->bit1 = 1;

Non-compliant example of (2)
struct S {
 unsigned int bit1:1;
 unsigned int bit2:1;
};
extern struct S * p;
// If the bit positions are meaningful, for
// example, when p points at IO ports; in
// other words, if there is a meaning for bit1
// to point at either the lowest bit or the
// highest bit of the data, the program is non-
// portable

p->bit1 = 1; // As to which bit of the data,
 // p will point at, is
 // implementation-dependent

The following behaviors of bit field vary depending on the compiler used

(1) hether the bit field of an int type that does not specify its signedness will be handled as signed ;
(2) Assignment order of the bit fields within a unit
(3) oundary of a bit field in a storage unit

If bit fields are used to access data whose bit positions are meaningful, such as, the I ports, portability
problem arises due to rules (2) and (3). Therefore, in such cases, do not use bit fields, but instead, use
bitwise operations, such as, & and | .

［Related rules］ . .1， 3.11.

Compliant ex ample N on- compliant ex ample

P ref eren ce
 guide

R ule

(1) it fields shall not be used
(2) it fields shall not be used for data hose bit
 positions are meaningful.
(3) 《I f it is being relied upon, the implementation-

defined behavior and pac ing of bit fields shall be documented 》
【M I SRA C:20 0 4 3.5】

139P ortab ility1 ● P 1 W rite in a com piler in depen den t way.

	
	

1

Portability

The #include directiv e shall be followed by either a
<filename> or “filename” seq uence.

【M I SRA C:20 12 R20 .3】

P1.4.1

#include <stdio.h>
#include "myheader.h"
#if VERSION == 1
#define INCFILE "vers1.h"
#elif VERSION == 2
#define INCFILE "vers2.h"
#endif
#include INCFILE

#include stdio.h
 // Neither <> nor “ ” is placed
#include "myheader.h" 1
 // 1 is specified at the end

In C language standard, the behavior is not defined for cases where the format of the header name does
not match with neither of the two styles (< > or “ ”) after macro-ex pansion of the # include directive.
Most compilers will output an error if it cannot match the format with neither of the two styles, while
some others may not handle it as an error. Therefore, write the header name format in either of the two
styles to ensure safety.

《The usage of <> format and “” format for #include
file specification shall be defined 》

P1.4.2

#include <stdio.h>
#include "myheader.h"

#include "stdio.h"
#include <myheader.h>

There are two ways of writing include . To unify the writing style, define rules, for example, that in-
clude the following

・Specify the header provided by the compiler by enclosing it with < > ;
・ Specify the header created in the proj ect by enclosing it with “ ” ;
・ Specify the header provided by the purchased software by enclosing it with “ ” .

P 1 . 4
F or source file inclusion, confirm the implementation-
dependent parts and write in a style that is not implemen-
tation- dependent.

Compliant ex ample N on- compliant ex ample

P ref eren ce
 guide ●

R ule

Compliant ex ample N on- compliant ex ample

P ref eren ce
 guide

R ule

140

	

信
頼
性	

セクション

P art2 C odin g P ractices f or E m b edded S of tware: P ractices C h art

	
	

1

Portability

Characters ‘, \, “, /*, // and : shall not be used
for file specification in #include.

P1.4.3

#include "inc/my_header.h" // Compliant #include "inc\my_header.h" // Non-compliant

The language standard does not define the behavior when the characters mentioned above are used (more
specifically, in the following cases) that is to say, the operation result is not certain when these charac-
ters are used in the following cases, which conse uently make the code non-portable .

・When characters ’\” or /* appear in the string enclosed with < > ;
・When characters ’\” or /* appear in the string enclosed with “ ” .
Also, the behavior of the character : (colon) differs depending on the compiler, and makes the code
nonportable.

The absolute path shall not be written for #include
file specification

P1.5.1

#include "h1.h" #include "/project1/module1/h1.h"

If an absolute path is written in the code, there will be a need to modify the path when the program is
compiled after changing the directories.

Compliant ex ample N on- compliant ex ample

P ref eren ce
 guide

R ule

Compliant ex ample N on- compliant ex ample

P ref eren ce
 guide

R ule

P 1 . 5 W rite in a style that does not depend on the env i-
ronment used for compiling.

141P ortab ility1 ● P 1 W rite in a com piler in depen den t way.

	
	

1

Portability

Compliant ex ample N on- compliant ex ample

P ref eren ce
 guide

R ule
sizeof shall be used to determine the siz e of a type
or v ariable.

P1.5.2

#define LEN 10
...
int *p = (int *)malloc(sizeof(int)*LEN);

#define LEN 10
#define INT_SIZE 4
...
int *p = (int *)malloc(INT_SIZE*LEN);

Since the size of a type or variable varies depending on the complier used, use the sizeof operator to
find out the si e of a type or variable that are implementation-defined.

［Related rules］ 3.1. 3. .3

Compliant ex ample N on- compliant ex ample

P ref eren ce
 guide

R ule

142

	

信
頼
性	

セクション

P art2 C odin g P ractices f or E m b edded S of tware: P ractices C h art

	
	

1

Portability
	

	
Portability

L ocaliz e the code that has a
problem with portability.

Portability

2
The principle is not to write implementation-dependent source code as much as possible.

B ut in some cases, this may be unavoidable. A typical ex ample is when an assembly
language program is called from C language. In such case, it is recommended to localize the
implementation-dependent parts of the code as much as possible.

Portability 2.1

L ocaliz e the code that has a problem with portability.

143

	
	

1

Portability

P ortab ility2● P 2 L ocaliz e code with portab ility issues.

	
	

Portability

P2.1.1

#define SET_ ORT1 asm(" st.b 1, port1")
void f() {
 …
 SET_ ORT1;
 …
}

void f() {
 …
 asm(" st.b 1,port1");
 …
}
// asm and other processes are mixed

In C99, inline-specified functions can be written. Many compilers provide ex tended support
to (string) format as a method to include the assembly language code. However, there
are some compilers that do not provide such support. Moreover, the same format may lead to
different behavior depending on the compiler used, thus making it non-portable.

［Related rules］ M .1.3， 1.1.1， 1.1.3， 1.1.1

K eywords ex tended by the compiler shall be used
by localiz ing them after 《defining the macros 》.

P2.1.2

// interrupt is defined as a keyword extended by
// a specific compiler
#define INTERRU T interrupt
INTERRU T void int_handler (void) {
 …
}

// interrupt is defined as a keyword extended
// by a specific compiler. It is used without
// being defined by a macro
interrupt void int_handler(void) {
 …
}

Compliant ex ample N on- compliant ex ample

P ref eren ce
 guide

R ule

tions of C language that contain only inline assembly language
code or describing them using macros.

W hen assembly language programs are called
from C language, 《how to localiz e such parts shall
be defined》 , such as, by ex pressing them as func-

P ref eren ce
 guide

R ule

Compliant ex ample N on- compliant ex ample

P 2. 1 L ocaliz e the code that has a problem with portabil-
ity.

144

	

信
頼
性	

セクション

P art2 C odin g P ractices f or E m b edded S of tware: P ractices C h art

	
	

1

Portability
	

	
Portability

Some compilers provide ex tended keywords instead of using the #pragma directive, B ut the code will
become non-portable when these keywords are used. Therefore, when using them, localize them, such
as, by defining them as macros. or the macro name, use the keyword written in uppercase letters, as
shown above in the compliant ex ample.

［Related rule］ P1.1.1

P2.1.3

Compliant example of (1) and (2)
uint32_t flag32; // Use unit32_t if 32bits is
 // assumed

Compliant example for (2)
int i;
for (i = 0; i < 10; i++) { … }
// i is used as an index. It can be 8bits,
// 16bits or 32bits and a basic type in the
// language specification can be used for i

Non-compliant example of (1) and (2)
unsigned int flag32; // used by assuming int as

// 32bits

that are used in the project shall be defined 》
(2) W hen using any of the basic types (char, int, long, long long,

, double and long double) in a form that is dependent on
its si e the type defined by typedef for each of these basic
types shall be used. 《 he types defined by typedef that are
used in the project shall be defined 》

(1) The basic types (char , int , long , long long ,
float , double and long double) shall not be
used. I nstead, the types defined by typedef
shall be used. 《 he types defined by typedef

P ref eren ce
 guide

R ule

Compliant ex ample N on- compliant ex ample

The si e and internal representation of integer types and floating point types vary depending on the com-
piler. C specifies the following typedefs to be provided as the language standard. Therefore, these
type definitions should be used. hen using C 0, it is advisable to refer to them as the typedef names
for these basic types.

　Si e-specific types int8_t, int16_t, int32_t, int 4_t, uint8_t, uint16_t, uint32_t, uint 4_t

　 east-width integer types int_least8_t, uint_least8_t, … , int_least 4_t, uint_least 4_t

　 astest least-width integer types int_fast8_t, uint_fast8_t, … , int_fast 4_t, uint_fast 4_t

　 aximum-width integer types intmax_t, uintmax_t

Moreover, use size_t for size or length resulting from, such as, the use of sizeof, ptrdiff_t for the
result from pointer subtraction, and wchar_t for wide character.

145

	
	

1

Portability

P ortab ility2● P 2 L ocaliz e code with portab ility issues.

	
	

Portability

In case of C11, rsize_t should be used rather than size_t. Runtime error occurs if rsize_t type
variable exceeds the maximum si e defined by RSIZE_MAX.

【Reference materials for those wanting to know more in detail about this rule】
・ CERT IN T01-C

［Related rule］ P1.3.1

Embedded software is characteristic for being embedded
in a product and operating together with hardware to serve
its purposes in the real world. The increasing demand for
further product cost reduction has imposed various restric-
tions, not only on, such as, MPU or memory, but also on
software.
In addition, requirements, such as, on real-time property
have placed stricter time constraints that need to be met.
Embedded software must therefore be coded with particular
attention on resource efficiency like efficient use of memory
and time efficiency that takes account of time performance.

●Efficiency1: Write in a style that takes account of re-
source and time efficiencies.

Efficiency

148 P art2 C odin g P ractices f or E m b edded S of tware: P ractices C h art

	
	

1

Efficiency

rite in a style that ta es account
of resource and time efficiencies

Efficiency

1
D epending on how the source code is written, the obj ect size may increase and the

ex ecution speed may slow down. If there are restrictions on memory size and processing
time, the code must be written thoughtfully with additional considerations given to these
restrictions.

Efficiency rite in a style that ta es account of resource and
time efficiencies.

149●

	
	

1

Efficiency

効率性

1.1 資源や時間の効率を考慮した書き方にする。

M acro functions shall be used only in parts related
to speed performance.

E1.1.1

extern void func1(int,int); // func1: called
 // only once
#define func2(arg1, arg2) // func2: called
 // many times

func1(arg1, arg2);
for (i = 0; i < 10000; i++) {
 func2(arg1, arg2); // Speed performance is
 // critical for this
 // process
}

#define func1(arg1, arg2) // func1: called only
 // once
extern void func2(int, int); // func2: called
 // many times

func1(arg1, arg2);
for (i = 0; i < 10000; i++) {
 func2(arg1, arg2); // Speed performance is
 // critical for this
 // process
}

Function is safer than macro function. So, use function as much as possible (see M5 .1.3).
However, processing of function calls and returns may slow down the speed performance.
The use of inline function can be one way of preventing the processsing speed from slowing
down. B ut since inlining is implementation-dependent, inline function may not be ex panded
as intended, depending on the complier used. Therefore, if speed performance is an issue that
has to be improved, use macro function instead.
Yet, the frequent use of macro function may increase the obj ect size because the code will be
spread to wherever the macro function is used.

［Related rule］ M5.1.3

O perations that remain unchanged shall not be per-
formed within an iterated process.

E1.1.2

var1 = func();
for (i = 0; (i + var1) < MAX; i++) {
 …
}

// Function func returns the same result
for (i = 0; (i + func()) < MAX; i++) {
 …
}

E 1 . 1 rite in a style that ta es account of resource and
time efficiencies.

Compliant ex ample N on- compliant ex ample

Compliant ex ample N on- compliant ex ample

P ref eren ce
 guide ●

R ule

P ref eren ce
 guide ●

R ule

150 P art2 C odin g P ractices f or E m b edded S of tware: P ractices C h art

	
	

1

Efficiency

Repeating the same process that returns the same result is inefficient. Although optimi ation of the com-
piler is often reliable for preventing such inefficiency, attention is still necessary in some cases, like in
the non-compliant ex ample shown above, where the compiler used cannot determine the invariance..

I nstead of structures, pointers to structures shall be
used as function parameters.

E1.1.3

typedef struct stag {
 int mem1;
 int mem2;
 …
} STAG;
int func (const STAG *p) {
 return p->mem1 + p->mem2;
}

typedef struct stag {
 int mem1;
 int mem2;
 …
} STAG;
int func (STAG x) {
 return x.mem1 + x.mem2;
}

If a structure is passed as a function argument, all the structure data are copied into the area for storing
arguments when the function is called. If the size of the structure is large, it will become the cause of
speed performance degradation.
If a structure passed is read-only, not only pass it as a pointer to the structure, but also qualify it with
const.

《The policy of selecting either switch or if state-
ment shall be determined and defined by ta ing
readability and efficiency into consideration 》

E1.1.4

switch statements often provide higher readability than if statements. In addition, recent compilers
tend to output optimized code using, such as, table j ump or binary search when they process switch
statements. Take these matters into consideration when defining this rule.

switch statement shall be used instead of if statement when:
 - a process branches according to the value of the ex pression (integer value), and
 - the number of branches is three or more.
However, this rule shall not apply if:
 - using the switch statement causes an efficiency issue that impedes the improvement of program per-
formance.

［Related rule］ M1.3.1

Compliant ex ample N on- compliant ex ample

P ref eren ce
 guide

R ule

P ref eren ce
 guide

R ule

Part3
Typical Coding Errors

in Embedded Software

 1 Meaningless expressions and statements

 2 Wrong expressions and statements

 3 Wrong memory usage

 4 Errors due to misunderstanding in logical expressions

 5 Mistakes due to typos

 6 Wrong descriptions that do not cause errors in some compilers

152 P art3 T ypical C odin g E rrors in E m b edded S of tware

Typical Coding Errors in Embedded Software

This section focuses on showing some typical ex amples of coding errors that are easily made,
not only by C language beginners, but even by skilled programmers as well. Some recent compil-
ers provide enhanced warning functions as options, and some of the ex amples taken up here can be
captured by means of compiler warnings or static analysis tools. In particular, compiler warnings are
easy for anyone to use. B y using the compiler warnings and being careful not to make such coding
errors during the coding stage, the amount of corrective work in later processes can be reduced.

Some ex isting coding conventions provide rules for preventing such coding errors. The members
of software development proj ects or organizations are recommended to ex amine whether to include
such rules into their coding conventions or not, by taking account of the skill levels of those in-
volved in the development of software programs.

In this section, the following six error-prone points are highlighted and ex plained with ex amples.

・M ean in gless ex pression s an d statem en ts

・W ron g ex pression s an d statem en ts

・W ron g m em ory usage

・E rrors due to m isun derstan din g in logical operation s

・M istak es due to typos

・W ron g description s th at do n ot cause errors in som e com pilers

	1 M eaningless ex pressions and statements

L eaving statements or ex pressions that are not ex ecuted in the source code is likely to create mis-
understanding that often leads to problems as a result. It is said that confusion tends to be caused es-
pecially when the source code is modified by engineers who are not the originator of that particular
code.

Ex ample 1: W riting statements that are not ex ecuted

return ret;
ret = ERROR;

This problem is caused either by putting a statement to branch the program control flow (return,
continue, break, goto statement) into the wrong place, or forgetting to delete unnecessary state-
ments when putting such a branch statement.

153T ypical C odin g E rrors in E m b edded S of tware

Ex ample 2: W riting statements whose ex ecution result is not used

void func(･･･) {
 int cnt;
 ･･･
 cnt = 0;
 return;

Automatic variables and formal parameters cannot be referenced after the function return. There-
fore, if the updated variables are not referenced between the update and the return statement, the
update becomes an unnecessary expression (statement). There is a possibility that some operations
have been missed or unnecessary statements may have been left undeleted due to slippage during
program modification.

Ex ample 3: W riting ex pressions whose ex ecution result is not used

int func(･･･) {
 int cnt;
 ･･･
 return cnt++;

The postfix ++ operation updates the value of the variable after it is referenced, so increments as
shown in the above ex ample are meaningless. If there is a need to return the incremented value to
the caller, the prefix increment must be used.

Ex ample 4: V alues passed as arguments are not used

int func(int in) {
 in = 0; // Overwriting the parameter
 ･･･
}

O verwriting a parameter without referencing its value, as shown in the above ex ample, means that
the value of the argument set by the caller is ignored. This may be a coding error.

154 P art3 T ypical C odin g E rrors in E m b edded S of tware

 2 W rong ex pressions and statements

To write proper source code, it must be written according to the grammar of the programming
language being used. B ut even programmers who are familiar with the programming language be-
ing used can make careless mistakes. Presented below are some ex amples of wrong ex pressions and
statements that are often seen.

E ample ncorrect range specification
if (0 < x < 10)
 ･･･
if (x == y == z)
 ･･･

The program shown in the above example appears to be a correct description at first sight. ut in
C language, such description is not interpreted mathematically and is treated as a conditional ex pres-
sion that always becomes true.

Ex ample 2: Comparing outside the range

unsigned char uc;
unsigned int ui;
 ･･･
if (uc == 256)
 ･･･
switch (uc) {
case 256:
 ･･･
}
if (ui < 0)
 ･･･

The variable is compared with a value beyond the range it can ex press. uc can only ex press values
between 0 and 25 5 . ui can never be negative.

Ex ample 3: String comparisons cannot be performed with == operation
if (str == "abc")

The condition shown in the above ex ample compares addresses, and is not a condition for evaluat-
ing whether the string “ abc” is equal to the string pointed by str or not.

155T ypical C odin g E rrors in E m b edded S of tware

Ex ample 4: I nconsistency between a function type and return statement of
the function

int func1(int in) {
 if (in < 0) return; // Non-compliant
 return in ;
}

int func2(int in) {
 if (in < 0) return 0;
} // Non-compliant

int func3(void) {// Non-compliant
 ･･･
 return;
}

In the definition of a function that returns a value, all the return statements must describe the value
to be returned in return expression (function func1). The function that returns a value must not
end the ex ecution with anything other than the return statement (function func2). If a value is not
returned with return, the return value of the function is undefined. In addition, the type of function
with one or more return statements that respectively do not return a value should be void (function
func3). In C99, the inconsistency between such type of function and return statement is detected
as an error by the compiler.

Ex ample 5: Pointer addition or subtraction error

#define　N　10

int data[N];
int *p;

p = data;
p += sizeof(data); // p points to 160 bytes ahead and not 40 bytes ahead.

A value for addition or subtraction of integer to or from a pointer variable is automatically scaled
to the size of the type of the obj ect pointed-to. The sizeof operator returns the number of the data
in bytes. Therefore, if the result of sizeof is used as the value for pointer addition or subtraction,
the pointer after the arithmetic may point to an unintended destination.

If the number of data bytes of int type in the above ex ample is 4, sizeof(data) will be 40
(10). If the result of this sizeof is added to p, which is a pointer that points to int type, the
pointer will point to 160 bytes (0) ahead, scaling the result of 0 by a factor of prior to the ad-
dition. Pointer p, as a result, will point at an unintended destination.

156 P art3 T ypical C odin g E rrors in E m b edded S of tware

	3 W rong memory usage

O ne of the characteristics of C language is that memory can be handled directly. While this is a
very useful feature when creating embedded software, it also often causes incorrect operations and
must therefore be used carefully.

Ex ample 1: Reference and update outside the array bounds

char var1[N];
･･･
for (i = 1; i <= N; i++) {/* Accessing outside the array bounds (error) */
 var1[i] = i;
}
var1[-1] = 0; // error
var1[N] = 0; // error

The array index in C language starts with 0 and its maximum value is 1 less than the element
count.

Ex ample 2: Passing the address of an automatic v ariable to the caller mistak enly

int *func(tag *p) {
 int x;
 p->mem = &x; // The automatic variable memory area is referenced after the
 // function return (risky)
 return &x; // The automatic variable memory area is referenced after the
 // function return (risky)
}
･･･
 tag y;
 int *p;
 p = func(&y);
 *p = 10; // Destroying invalid memory area
 *y.mem = 20; // Destroying invalid memory area

Areas for automatic variables or parameters are freed to the system when the function ends, and
may be reused for other purposes. If the address of an automatic variable is specified as a function
return value or set in an area that can be referenced by the caller, as shown in the above ex ample,
unex pected faults may occur when the area that has been returned to the system is referenced or up-
dated.

The area for compound literal introduced in C99 is freed and may be reused for other purposes

157T ypical C odin g E rrors in E m b edded S of tware

when the ex ecution proceeds outside the enclosing block of the compound literal.

 void f ()
 ｛
 …
 int *p;
 ｛
 p = (int []) {2, 4};
 …
 ｝
 x = p[0]; // The memory area may be referenced after it is freed (risky)
 …
 ｝

Ex ample 3: Referencing memory after being freed as dynamic memory

struct stag { // A list structure
 struct stag *next;
 ...
};
struct stag *wkp; // Pointer to the list structure
struct stag *top; // Start pointer to the list structure
 ...
// Process to free the list structure by its elements one after another
// No good: It will access to an already freed area at the third control
// expression in the for statement
for (wkp = top; wkp != NULL; wkp = wkp-> next) {
 free(wkp);
}

Memories obtained with, such as, malloc function need to be freed to the system by using free
function. The areas that have been freed by free function must not be referenced because they may
be reused by the system.

Ex ample 4: W riting into string literals mistak enly

char *s;
s = "abc"; // The string literal may be in ROM area
s[0] = 'A'; // Cannot be written

D epending on the compiler, string literals may be allocated in the const area. Programmers must
therefore be careful not to overwrite string literals.

158 P art3 T ypical C odin g E rrors in E m b edded S of tware

Ex ample 5: Specifying copy size s mistak enly

#define A 10
#define B 20
char a[A];
char b[B];
･･･
memcpy(a, b, sizeof(b));

When one array is copied to another, it will corrupt the memory area if the copy is made in the
size of the source that is larger than the size of the destination. The best way to copy from one array
to another is to use arrays of the same size. O r specifying the size of the destination as the copy size
will at least prevent the memory from corrupting.

	4 Errors due to misunderstanding in logical ex pressions

The use of logical operators is relatively error-prone. In situations where they are used, close at-
tention must be given especially to the operation results, since in many cases, they lead to different
subsequent processes.

Ex ample 1: U sing a logical product mistak enly instead of a logical sum

if (x < 0 && x > 10)

The above ex ample shows a logical product written mistakenly instead of a logical sum. In C lan-
guage, conditions must be written carefully because they will not be processed as compile error even
if it is not possible to fulfill them.

Ex ample 2: U sing a logical sum mistak enly instead of a logical product

int i, data[10], end = 0;
for (i = 0; i < 10 || !end; i++) {
 data[i] = Value_assigned; // risk of corrupting outside the area
 if (termination_condition) {
 end = 1;
 }
}

When a different condition is added as a condition for an iteration statement that sequentially ref-
erences or updates the array elements to a condition for ensuring that array bounds are not ex ceeded,

159T ypical C odin g E rrors in E m b edded S of tware

these conditions must be specified with a logical product. The logical sum, as shown in the above
ex ample, may cause the system to access outside the array bounds.

Ex ample 3: U sing a bitwise operation mistak enly instead of a logical operation

if (len1 & len2)

This is an example showing that bitwise A operator (&) has been written mistakenly instead
of a logical product operator (&&). The bitwise AN D operator does not mean that the conditions
are processed to gain a logical product. Make sure that the intention of the program is correctly de-
scribed.

 5 M istak es due to typos

Some operators in C language like = and == have completely different meaning even though they
do not differ that much. hen writing these operators, sufficient attention must be given to prevent
careless mistakes or typos.

Ex ample 1: W riting = operator instead of == operator

if (x = 0)

To check whether two values are equal or not, == must be written as the operator instead of =.
Rules to prevent such errors caused by typos include “ Assignment operators shall not be used in ex -
pressions to ex amine true or false.”

There are also reverse cases like a==b; where == operator is written mistakenly instead of = op-
erator. Easy mistake like this must also be carefully avoided.

	6 W rong descriptions that do not cause errors in some compilers

Each compiler has various characteristics of its own. N ote that some compilers do not cause com-
pile errors during compilation even if the program contains inappropriate descriptions.

E ample acro ith the same name that has multiple definitions

// Depending on where AAA is referenced, what is expanded varies

160 P art3 T ypical C odin g E rrors in E m b edded S of tware

#define AAA 100
 a = AAA; // 100 is assigned
#define AAA 10
 b = AAA; // 10 is assigned

acro name defined by define will not become a compile error in some compilers even when it
is redefined without applying undef beforehand. acro name that may be processed differently de-
pending on where it is used should be avoided since it has the risk of impairing the readability of the
program.

Ex ample 2: W riting into the const area mistak enly

void func(const int *p) {
 *p = 0; // Writing into the const area (error)

Some compilers do not cause a compile error even if the const area is rewritten. Programmers
should be careful not to rewrite the const area.

Appendices

 Appendix A List of practices and rules

	Appendix B Rule classification based on C language grammar

	Appendix C Regarding the implementation-defined behaviors

162 A ppen dices

Appendix A L ist of practices and rules

[eliability] nitiali e areas and use them by ta ing their si es into consideration

P ractice in detail R ule P age

R 1 . 1 U se areas af ter in itializ in g th em . R 1 . 1 . 1 A utom atic v ariab les sh all b e in itializ ed at th e tim e of
declaration , or th e in itial v alues sh all b e assign ed j ust
b ef ore usin g th em .

3 3

R 1 . 1 . 2 con st v ariab les sh all b e in itializ ed at th e tim e of decla-
ration .

3 3

R 1 . 2 D escrib e in itializ ation s with out R 1 . 2. 1
in itializ ed with v alues th at m atch th e n um b er of th e ele-
m en ts.

3 4

R 1 . 2. 2 -

m em b er.

3 4

R 1 . 3 R 1 . 3 . 1
】

sh all b e used f or ref eren ces an d assign m en ts to th e
allocated area.

3 5

R 1 . 3 . 2 3 6

R 1 . 3 . 3
-

structure.

3 7

R 1 . 3 . 4
【 】

3 7

Appendix A L ist of practices and rules

163A ppen dix A L ist of practices an d rules

[eliability] Use data by ta ing their ranges si es and internal representations into consideration

P ractice in detail R ule P age

R 2. 1 - R 2. 1 . 1 3 9

R 2. 1 . 2
coun ter.

3 9

R 2. 1 . 3
un ion s.

R 2. 2 W h en v alues such as logical

ran ge.

R 2. 2. 1

R 2. 3 - R 2. 3 . 1 - 4 1

R 2. 3 . 2 - 4 1

R 2. 3 . 3 4 2

R 2. 4 R 2. 4 . 1 4 2

R 2. 4 . 2 4 3

R 2. 5
th e risk of in f orm ation loss.

R 2. 5 . 1

-

4 4

164 A ppen dices

[eliability] Use data by ta ing their ranges si es and internal representations into consideration

P ractice in detail R ule P age

R 2. 5
th e risk of in f orm ation loss.

R 2. 5 . 2 -
sion s.

4 5

R 2. 5 . 3 - 4 5

R 2. 5 . 4
m ore, an d less th an th e b it width of th e lef t- h an d side.

4 6

R 2. 6
target data.

R 2. 6 . 1

-

used.

-

4 6

R 2. 6 . 2

R 2. 7 R 2. 7 . 1
-

-

-

4 9

165A ppen dix A L ist of practices an d rules

[eliability] Use data by ta ing their ranges si es and internal representations into consideration

P ractice in detail R ule P age

R 2. 7 R 2. 7 . 2

【 】

5 2

R 2. 7 . 3 5 2

5 3

of argum en ts. 【 】
-

gum en ts, 《
》

5 3

5 4

[eliability 3] 3 rite in a ay that ensures intended behavior

P ractice in detail R ule P age

R 3 . 1
area siz e.

R 3 . 1 . 1

th e n um b er of elem en ts.

5 6

R 3 . 1 . 2 - 5 7

R 3 . 1 . 3 - 5 7

R 3 . 1 . 4
【 】

R 3 . 1 . 5
v ariab le.

argum en t.

166 A ppen dices

[eliability 3] 3 rite in a ay that ensures intended behavior

P ractice in detail R ule P age

R 3 . 2
cause run tim e error f rom f allin g
in to error cases.

R 3 . 2. 1 5 9

R 3 . 2. 2

R 3 . 3 C h eck th e in terf ace restriction s
wh en a f un ction is called.

R 3 . 3 . 1 I f a f un ction return s error in f orm ation , th en th at error
in f orm ation sh all b e tested. 【 】

R 3 . 3 . 2 T h e f un ction sh all ch eck if th ere are con strain ts on 6 1

R 3 . 4 R 3 . 4 . 1
 【 】

6 2

R 3 . 5
an d describ e h ow to h an dle cases

R 3 . 5 . 1 T h e else clause sh all b e written at th e en d of an if - else
if statem en t. I f it is k n own th at th e else con dition does

sh all b e eith er on e of th e f ollowin g:
《
th e else clause.

in th e else clause. 》

6 3

R 3 . 5 . 2 《T h e def ault clause sh all b e written at th e en d of
a switch statem en t. I f it is k n own th at th e def ault

th e def ault clause sh all b e eith er on e of th e f ollowin gs.
《
th e def ault clause.

in th e def ault clause. 》

6 4

R 3 . 5 . 3 6 5

R 3 . 6
ev aluation .

R 3 . 6 . 1
-

sion .

6 6

R 3 . 6 . 2 F un ction calls with side ef f ects an d v olatile v ariab les 6 7

167A ppen dix A L ist of practices an d rules

[eliability 3] 3 rite in a ay that ensures intended behavior

P ractice in detail R ule P age

R 3 . 6
ev aluation .

R 3 . 6 . 3
h av e side ef f ect.

R 3 . 1 1 B e caref ul with h ow to access th e

th reads or sign als.

R 3 . 1 1 . 1

R 3 . 1 1 . 2 - 6 9

[aintainability] eep in mind that others ill read the program

P ractice in detail R ule P age

M 1 . 1 M 1 . 1 . 1 7 3

M 1 . 1 . 2
【 】

《th e codin g
》

7 3

M 1 . 2 M 1 . 2. 1 -

-
tion statem en t, b ut v ariab les with in itializ ation an d
v ariab les with out in itializ ation sh all n ot b e m ix ed.

7 4

M 1 . 2. 2 7 5

M 1 . 2. 3
literals sh all b e con caten ated with out usin g n ewlin es
with in th e strin g literal.

7 5

M 1 . 3 D o n ot write in an un con v en tion al M 1 . 3 . 1 7 6

M 1 . 3 . 2 T h e case lab els an d def ault lab el in a switch statem en t
-

of th e switch statem en t.

7 6

168 A ppen dices

[aintainability] eep in mind that others ill read the program

P ractice in detail R ule P age

M 1 . 3 D o n ot write in an un con v en tion al M 1 . 3 . 3
an d declaration s of f un ction s an d v ariab les.

7 7

M 1 . 4 - M 1 . 4 . 1 7 7

M 1 . 4 . 2 《
》

M 1 . 5
-

M 1 . 5 . 1

【
1 6 . 9 】

M 1 . 5 . 2 7 9

M 1 . 6 M 1 . 6 . 1 7 9

M 1 . 6 . 2

 assign ed v alues sh all b e ref eren ced.

M 1 . 7 D o n ot reuse n am es. M 1 . 7 . 1 -
n ess.

 【 】

 【 】

 【 】
-

【 】
-

【 】

un ion m em b er n am es. 【 】

169A ppen dix A L ist of practices an d rules

[aintainability] eep in mind that others ill read the program

P ractice in detail R ule P age

M 1 . 7 D o n ot reuse n am es. M 1 . 7 . 2 N am es f or f un ction s, v ariab les an d m acros in th e

M 1 . 7 . 3

-

m isun derstan din g.
sh all n ot con tain side ef f ects. 【 】

【 】

-

an d altern ativ e tok en s sh all n ot b e used.

digits lon g sh all n ot b e used as a con stan t.

M 1 . 9 W h en writin g in an un con v en tion al M 1 . 9 . 1

to m ak e th em n oticeab le.

M 1 . 9 . 2 《 -
》

D o n ot em b ed m agic n um b ers.
a m acro.

M 1 . 1 1 M 1 . 1 1 . 1

M 1 . 1 1 . 2
sh all b e declared as v olatile.

M 1 . 1 1 . 3 《
》

M 1 . 1 2 M 1 . 1 2. 1 C orrect code sh all b e describ ed ev en if it is goin g to b e

170 A ppen dices

[aintainability] rite in a style that can prevent modification errors

P ractice in detail R ule P age

M 2. 1
data an d b lock s.

M 2. 1 . 1

-

9 2

M 2. 1 . 2
statem en ts sh all b e en closed in to b lock s.

9 2

M 2. 2 L ocaliz e access ran ges an d
related data.

M 2. 2. 1
with in th e f un ction .

9 3

M 2. 2. 2
..

9 4

M 2. 2. 3 9 4

M 2. 2. 4
related con stan ts.

9 5

[aintainability3] 3 rite programs simply

P ractice in detail R ule P age

M 3 . 1 M 3 . 1 . 1
【M I S R A

】

9 7

M 3 . 1 . 2

statem en t th at is in th e sam e b lock or with in th e
b lock en closin g th e goto statem en t.

M 3 . 1 . 4

 I f th e case clause or def ault clause in a switch
 statem en t is n ot goin g to b e en ded with a b reak

statem en t, 《 -
》an d th at com m en t sh all in stead b e in serted.

9 9

M 3 . 1 . 5
-

171A ppen dix A L ist of practices an d rules

[aintainability3] 3 rite programs simply

P ractice in detail R ule P age

M 3 . 2 O n e statem en t sh ould h av e on e
side ef f ect.

M 3 . 2. 1

-
m en ts.

M 3 . 2. 2 -

M 3 . 3 M 3 . 3 . 1 -
【 】

M 3 . 3 . 2 -

. 【 】

M 3 . 3 . 3

-
-

M 3 . 4 M 3 . 4 . 1

[aintainability] rite in a unified style

P ractice in detail R ule P age

M 4 . 1 M 4 . 1 . 1 《
》

M 4 . 2 -
m en ts.

M 4 . 2. 1 《
com m en ts, f un ction h eader com m en ts, en d of lin e

》

M 4 . 3 M 4 . 3 . 1 《C on v en tion f or n am in g ex tern al v ariab les an d in tern al
》

M 4 . 3 . 2 《 》

M 4 . 4
-

in g th em .

M 4 . 4 . 1 《

》

1 1 3

172 A ppen dices

[aintainability] rite in a unified style

P ractice in detail R ule P age

M 4 . 4
-

in g th em .

M 4 . 4 . 2 《

》

1 1 4

M 4 . 4 . 3
-

scrib in g th eir declaration s sh all b e in cluded.

1 1 5

M 4 . 4 . 4 -
tion s.

1 1 5

M 4 . 4 . 5 1 1 6

M 4 . 4 . 6
redun dan t in clusion s. 《

》

1 1 6

M 4 . 5 -
tion s.

M 4 . 5 . 1 -

-

1 1 7

M 4 . 5 . 2 -

M 4 . 5 . 3

-

M 4 . 6 -
ers.

M 4 . 6 . 1 1 1 9

M 4 . 7 -
cessor directiv es.

M 4 . 7 . 1

173A ppen dix A L ist of practices an d rules

[aintainability] rite in a unified style

P ractice in detail R ule P age

M 4 . 7 -
cessor directiv es.

M 4 . 7 . 2
《th eir

》.

M 4 . 7 . 3 1 21

M 4 . 7 . 5
b lock . 【 】

1 21

M 4 . 7 . 6 # un def sh all n ot b e used. 【 】 1 22

M 4 . 7 . 7
【

】

1 23

[aintainability] rite in a style that ma es testing easy

P ractice in detail R ule P age

M 5 . 1
to in v estigate th e -

M 5 . 1 . 1 《 -
tion s an d f or recordin g logs in release m odules sh all b e

》

1 25

M 5 . 1 . 2
 b e used. 【 】

【 】

1 27

M 5 . 1 . 3 F un ction sh all b e used rath er th an usin g f un ction - lik e
m acro.

M 5 . 2 M 5 . 2. 1
《T h e m ax im um

》

[Portability] P rite in a style that is not dependent on the compiler

P ractice in detail R ule P age

P 1 . 1 D o n ot use f un ction alities th at are
-

P 1 . 1 . 1 -
dard sh all n ot b e used.

-
dard are used, 《th e f un ction alities used an d th eir
usage sh all b e docum en ted. 》

1 3 3

174 A ppen dices

[Portability] P rite in a style that is not dependent on the compiler

P ractice in detail R ule P age

P 1 . 1 D o n ot use f un ction alities th at are
-

P 1 . 1 . 2 《
docum en ted. 》 【 】

1 3 3

P 1 . 1 . 3 《its
in terf ace sh all b e docum en ted an d its usage sh all b e

》

1 3 4

P 1 . 2

lan guage stan dard.

P 1 . 2. 1

《th eir usage
》

1 3 4

P 1 . 2. 2 -
dard sh all b e used.

1 3 6

P 1 . 3

-

P 1 . 3 . 1 -

-

1 3 6

P 1 . 3 . 2 1 3 7

P 1 . 3 . 3

《

docum en ted. 》 【 】

P 1 . 4 P 1 . 4 . 1 -

【 】

1 3 9

P 1 . 4 . 2 《
》

1 3 9

P 1 . 4 . 3

P 1 . 5 P 1 . 5 . 1

175A ppen dix A L ist of practices an d rules

[Portability] P rite in a style that is not dependent on the compiler

P ractice in detail R ule P age

P 1 . 5 P 1 . 5 . 2
v ariab le.

1 4 1

[Portability] P ocali e the code that has a problem ith portability

P ractice in detail R ule P age

P 2. 1 - P 2. 1 . 1
lan guage, 《 》

-

1 4 3

P 2. 1 . 2
localiz in g th em af ter 《 》.

1 4 3

P 2. 1 . 3 -

《

》

《
》

1 4 4

[Efficiency] E rite in a style that ta es account of resource and time efficiencies

P ractice in detail R ule P age

E 1 . 1 E 1 . 1 . 1 1 4 9

E 1 . 1 . 2 - 1 4 9

E 1 . 1 . 3

E 1 . 1 . 4 《

》

176 A ppen dices

ppendi ule classification based on the language grammar

The rules are classified according to the C language grammar shown below.

on th e gram m ar N o. R ule

1 . 1 M 4 . 1 . 1 《
》

1 . 2 C om m en ts M 4 . 2. 1 《

》

1 . 3 N am in g M 1 . 7 . 1

【 】
【 】

【 】

【 】

【 】

un ion m em b er n am es.【 】

M 1 . 7 . 2 N am es f or f un ction s, v ariab les an d m acros in th e

M 1 . 7 . 3

M 4 . 3 . 1 《C on v en tion f or n am in g ex tern al v ariab les an d in tern al v ariab les sh all b e
》

M 4 . 3 . 2 《 》

1 . 4 M 4 . 4 . 1 《
》

M 4 . 4 . 2 《
》

M 4 . 4 . 3

M 4 . 4 . 5

177A ppen dix B

on th e gram m ar N o. R ule

1 . 4 M 4 . 4 . 6
《 》

1 . 5 C on stan ts M 1 . 2. 2
-

M 1 . 2. 3 -
en ated with out usin g n ewlin es with in th e strin g literal.

used as a con stan t.

1 . 6 M 1 . 1 . 2
【 】

sh all n ot b e used.

M 1 . 9 . 1

M 5 . 1 . 3 F un ction sh all b e used rath er th an usin g f un ction - lik e m acro.

2. 1 R 2. 6 . 2

P 1 . 3 . 1
-

sign edn ess sh all b e used.

P 2. 1 . 3
《T h e
》

《
》

178 A ppen dices

on th e gram m ar N o. R ule

2. 2 R 2. 1 . 3

M 1 . 6 . 2 【 】

ref eren ced.

M 1 . 7 . 2

M 4 . 5 . 2

2. 3 R 2. 6 . 1

used.

R 3 . 1 1 . 2

P 1 . 3 . 3

《
》 【 】

2. 4 R 1 . 2. 2

M 2. 2. 4

P 1 . 3 . 2

3 . 1 I n itializ ation R 1 . 1 . 1 A utom atic v ariab les sh all b e in itializ ed at th e tim e of declaration , or th e in itial
v alues sh all b e assign ed j ust b ef ore usin g th em .

R 1 . 1 . 2 con st v ariab les sh all b e in itializ ed at th e tim e of declaration .

179A ppen dix B

on th e gram m ar N o. R ule

3 . 1 I n itializ ation R 1 . 2. 1
m atch th e n um b er of th e elem en ts.

R 3 . 1 . 3
in dicated.

M 2. 1 . 1

M 4 . 5 . 3 -

-

in itializ ation is allowed.

3 . 2 R 3 . 1 1 . 1 -
tiv e.

M 1 . 2. 1 ）

（2）
b e declared in on e declaration statem en t, b ut v ariab les with in itializ ation
an d v ariab les with out in itializ ation sh all n ot b e m ix ed.

M 1 . 6 . 1

M 1 . 1 1 . 1

M 1 . 1 1 . 2 -
tile.

M 1 . 1 1 . 3 《 》

M 2. 2. 1

M 2. 2. 2 -

M 4 . 4 . 4

180 A ppen dices

on th e gram m ar N o. R ule

3 . 3

 【 】
《

M 2. 2. 3
static.

M 4 . 5 . 1

3 . 4 R 3 . 1 . 1

-
m en ts.

R 3 . 1 . 4 【 】

3 . 5 M 1 . 1 . 1

M 1 . 3 . 3 -
tion s an d v ariab les.

4 . 1 F un ction call R 3 . 3 . 1 I f a f un ction return s error in f orm ation , th en th at error in f orm ation sh all b e
tested【 】

R 3 . 3 . 2

R 3 . 4 . 1
【 】

181A ppen dix B

on th e gram m ar N o. R ule

4 . 2 P oin ter R 1 . 3 . 1

to th e allocated area.

-

R 1 . 3 . 2
【 】

R 1 . 3 . 3

sam e structure.

R 2. 7 . 1

R 2. 7 . 3 -
f orm ed.

R 3 . 2. 2

M 3 . 4 . 1

M 4 . 6 . 1

4 . 3 C ast R 2. 4 . 2
-

f orm ed.

R 2. 7 . 2
【 】

182 A ppen dices

on th e gram m ar N o. R ule

4 . 4 R 2. 5 . 2

R 3 . 1 . 5

R 3 . 6 . 3 th at h av e side ef f ect.

M 1 . 5 . 1

【 】

4 . 5 T h e f our arith m etic R 3 . 2. 1 -

4 . 6 S h if t R 2. 5 . 4
b it width of th e lef t- h an d side.

4 . 7 R 2. 1 . 1

R 2. 2. 1
ex am in e true or f alse.

M 1 . 5 . 2

R 2. 5 . 3

4 . 9 M 1 . 4 . 1

-
f ects.【 】

R 2. 3 . 2

4 . 1 1 A ssign m en t R 2. 4 . 1
-

183A ppen dix B

on th e gram m ar N o. R ule

4 . 1 1 A ssign m en t R 2. 5 . 1 -
-

M 3 . 3 . 3)�
f alse.

《
 》

4 . 1 2 C om m a M 3 . 2. 1
-

4 . 1 3
ef f ect

R 3 . 6 . 1

R 3 . 6 . 2 F un ction calls with side ef f ects an d v olatile v ariab les sh all n ot b e describ ed
-

sion s.

M 1 . 4 . 2 《
》

4 . 1 4 R 2. 3 . 1

5 . S tatem en t

5 . 1 if statem en t R 3 . 5 . 1 T h e else clause sh all b e written at th e en d of an if - else if statem en t. I f it is

else caluse sh all b e eith er on e of th e f ollowin g:
《

》

5 . 2 switch statem en t R 3 . 5 . 2 《T h e def ault clause sh all b e written at th e en d of a switch statem en t. I f it is

def ault clause sh all b e eith er on e of th e f ollowin g.
《

》

M 1 . 3 . 1 -

184 A ppen dices

on th e gram m ar N o. R ule

5 . S tatem en t

5 . 2 switch statem en t M 1 . 3 . 2

M 3 . 1 . 4
en d with a b reak statem en t.

b e en ded with a b reak statem en t,《
》an d th at com m en t sh all in stead b e in serted

5 . 3 R 2. 1 . 2

R 2. 3 . 3

R 3 . 1 . 2

n ot.

R 3 . 5 . 3 -

M 1 . 9 . 2 《 》

M 3 . 1 . 1
【 】

M 3 . 3 . 1
con trol.【 】

M 3 . 3 . 2
【 】.

5 . 4 M 2. 1 . 2 -
closed in to b lock s.

M 3 . 1 . 2

declared af ter th e goto statem en t th at is in th e sam e b lock or with in th e
b lock en closin g th e goto statem en t.

M 3 . 1 . 5 ）A f un ction sh all en d with on e return statem en t.

185A ppen dix B

on th e gram m ar N o. R ule

5 . S tatem en t

5 . 4 M 3 . 2. 2

6 .

6 . 1 # if related M 4 . 7 . 2
《

》.

M 4 . 7 . 3

M 4 . 7 . 7
【 】.

6 . 2 # in clude P 1 . 4 . 1
【 】

P 1 . 4 . 2 《
》

P 1 . 4 . 3

P 1 . 5 . 1

6 . 3 M acro
-

struct.【 】

M 4 . 7 . 1 -

M 4 . 7 . 5 【
1 9 . 5 】

M 4 . 7 . 6 # un def sh all n ot b e used.【 】

6 . 4

M 1 . 1 2. 1 -
cessor.

186 A ppen dices

on th e gram m ar N o. R ule

6 . 4 M 5 . 1 . 2 【
】】

-
【 】

7 . 1 P 1 . 1 . 1
《th e

f un ction alities used an d th eir usage sh all b e docum en ted.》

P 1 . 1 . 2 《 》
【 】

P 1 . 1 . 3 《its in terf ace sh all b e docu-
》

P 1 . 2. 1
《th eir

》

P 1 . 2. 2

P 1 . 5 . 2 sizeof�shall�be�used�to�determine�the�size�of�a�type�or�variable.

P 2. 1 . 1 《h ow to lo-
》

code or describ in g th em usin g m acros.

P 2. 1 . 2 《
n in g th e m acros.》

7 . 2 P erf orm an ce R 1 . 3 . 4 【 】.

E 1 . 1 . 1

E 1 . 1 . 2

E 1 . 1 . 3 -
eters.

E 1 . 1 . 4 《
》

187A ppen dix B

on th e gram m ar N o. R ule

7 . 3 -
b ug

M 5 . 1 . 1 《
》

7 . 4 O th er M 5 . 2. 1
《

》

189A ppen dix C

ppendi egarding the implementation-defined behaviors

C language standard has behaviors that are unspecified or undefined in its language specifications.
(Refer to Column nspecified ehavior and ndefined ehavior below.) Some of the
unspecified behaviors are defined by the compiler, and they are referred to as implementation-defined
behaviors . Every implementation-defined behavior is compiler-specific. In other words, it always
behaves the same way when it is processed by the same type of compiler.

hat this also means is that the behavior may not always be the same when it is processed by a
different type of compiler, even if the code written in the source program is the same. Therefore,
attention is necessary when the program is ported or when the compiler is changed. oreover, if the
programmers are used to working in an environment that only uses a specific type of compiler, they
may incorrectly assume that implementation-defined parts of the code used in their development
pro ect tare all specified in the C language standard and do not consider the possibility of changes
in their implementation-defined behaviors when a different type of compiler is used to process the
program that they write. To prevent them from causing any unexpected errors, it is desirable to check
and keep in mind which behaviors are implementation-defined before starting the programming
process.

Implementation-defined behaviors are normally listed in the manual of each compiler. Some of
the widely-known implementation-defined behaviors are outlined below.

	 epresentative implementation-defined behavior E ecution environment

A term that often appears in descriptions about implementation-defined behavior is freestanding
environment . Simply put, freestanding environment is an environment that does not have an
operating system. In such environment, the name and type of the function called at program startup
are implementation-defined. ormally, main function is called, but which function (invisible to
programmers) is called before the main function is called after program startup depends on the
compiler that is used.

oreover, when the main function is terminated or when the program is suspended because the
exit function is called, the subse uent behavior is implementation-defined. Although writing a
program that does not behave differently depending on the compiler used comes first and foremost,
it is also necessary for programmers to understand the different kinds of behaviors that can be
expected when they are implementation-defined and how they may affect the program execution.

	 epresentative implementation-defined behavior haracter code

Character codes are a set of values assigned respectively to the characters, symbols, etc. processed
in a computer. Each character coding system has one or more charts that show which character
corresponds to which character code in tabular form. In Table 1, the hori ontal axis of the chart
shows the upper 3-bit and the vertical axis shows the lower -bit. As to which character code system
will be used is implementation-defined. In case of alphabetic character A , for example, upper 3-bit

190 A ppen dices

is and lower -bit is 1 , which mean that the corresponding code is 0x 1 .
The explanation of the above example is based on ASCII (American Standard Code for

Information Interchange) 7-bit coding system. ut in case of E C IC (Extended inary Coded
ecimal Interchange Code), which is an -bit coding system as shown below in Table 2, the

corresponding code for alphabetic character A would be 0xC1 , and not 0x 1 as in ASCII.

　High order bits 　High order bits

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 8 9 A B C D E F
0 NUL DLE SP 0 @ P ` p 0 NUL DLE DS SP ＆ － ｛ ｝ ＼ 0
1 SOH DC1 ! 1 A Q a q 1 SOH DC1 SOS ／ ａ ｊ ～ Ａ Ｊ 1
2 STX DC2 " 2 B R b r 2 STX DC2 FS SYN ｂ ｋ ｓ Ｂ Ｋ Ｓ 2
3 ETX DC3 ♯ 3 C S c s 3 ETX TM ｃ ｌ ｔ Ｃ Ｌ Ｔ 3
4 EOT DC4 $ 4 D T d t 4 PF RES BYP PN ｄ ｍ ｕ Ｄ Ｍ Ｕ 4
5 ENQ NAK ％ 5 E U e u 5 HT NL LF RS ｅ ｎ ｖ Ｅ Ｎ Ｖ 5
6 ACK SYN ＆ 6 F V f v 6 LC BS ETB UC ｆ ｏ ｗ Ｆ Ｏ Ｗ 6
7 BEL ETB ´ 7 G W g w 7 DEL IL ESC EOT ｇ ｐ ｘ Ｇ Ｐ Ｘ 7
8 BS CAN (8 H X h x 8 CAN ｈ ｑ ｙ Ｈ Ｑ Ｙ 8
9 HT EM) 9 I Y i y 9 EM ` ｉ ｒ ｚ Ｉ Ｒ Ｚ 9
A LF SUB * : J Z j z A SMM CC SM ￠ ！ ｜ ：
B VT ESC + ; K [k { B VT CU1 CU2 CU3 ・ ＄ ， ＃
C FF FS , < L ＼ l | C FF IFS DC4 ＜ ＊ ％ ＠
D CR GS - = M] m } D CR IGS ENQ NAK （ ） ＿ ’
E SO RS . > N ^ n ~ E SO IRS ACK ＋ ； ＞ ＝
F SI US / ? O ＿ o DEL F SI IUS BEL SUB │ ┐ ？ ”

Lo
w

er
 o

rd
er

 b
its

 Table 1 ASCII code chart Table 2 EBCDIC code chart

Lo
w

er
 o

rd
er

 b
its

As you can see, the code used for representing each character varies with each character coding
system. Therefore, close attention is re uired on how the compiler processes the characters when
the character coding system used in the translation environment (environment where the source
program is processed) differs from the character coding system used in the execution environment
(environment where the execution files are processed for operation).

In case of Japanese characters (hiragana, kan i, etc.), a character code composed of 2 bytes or
more is assigned to each character. There are multiple character coding systems that handle Japanese
characters. At present, many personal computers in Japan use the character coding system called
Shift JIS that expresses each Japanese character as a double-byte character. Since the value assigned
to each Japanese character varies with each character coding system, close attention is necessary on
how the compiler handles the Japanese characters.

Another character coding system that began to be widely used in recent years is nicode, which
has been developed to handle the characters of different languages in the world including Japanese
in a unified manner. In nicode, one character may be expressed with 1 byte or multiple bytes (up
to 6 bytes). There are mainly three coding systems in nicode that define the method of expressing
each character (encoding method), which are as follows

1. T - All the characters covered in ASCII are expressed with 1 byte. The rest are expressed in
 variable length (from 2 bytes to 6 bytes).
2. T -16 ses 16-bit as a unit to express each character. All the characters are expressed either in
 one unit (16-bit) or two units (32-bit).
3. T -32 All the characters are expressed in a fixed length of 32-bit only.

191A ppen dix C

C language has been extending its features by using wide character , which has been introduced
to handle the characters expressed in multiple bytes in specific character coding systems respectively
with an integer of a fixed bit length. or example, in C , wchar t has been introduced as a type for
wide character, and libraries that supports wide characters have been added.

Example of a library that supports wide characters

 int vwprintf (const wchar_t * restrict format, va_list arg);
 // A version of printf that supports wide character

In C11, char16_t (2-byte length) and char32_t (-byte length) have been added as types that
support wide characters.

The si e of wchar t and the character codes that correspond respectively to wide character types
are implementation-defined. In C11, however, two macros, __STDC_UTF_16__ and __STDC_
UTF_32__ have been introduced, and when these macros are defined, char16_t and char32_t are
encoded respectively according to T -16 and T -32.

eside the behavioral differences expected with the character coding system used, attention is also
necessary, for example, when kan i characters are expressed in Shift JIS. In Shift JIS, each Japanese
character is encoded in two bytes. ut there are some Japanese characters whose second byte is the
same as (back slash or ¥) in ASCII. or example, the character code that corresponds to the
kan i character 表 is 0x c in Shift JIS. The second byte 0x c in Shift JIS corresponds to
in ASCII. (See Table 1).

If the compiler used does not support Shift JIS, double-byte characters will be recogni ed as
single-byte characters. In case of double-byte kan i character 表 , it will be processed as escape
se uence since the compiler will recogni e this character as . As a result, the character may be
displayed differently from the intended representation (making it garbled, etc.)

Example
 Source code printf("表\n"); // Byte sequence: 0x95 0x5c 0x5c 0x6e
 // → 0x5c 0x5c(\\) becomes 0x5c(\).
 utput 表n // Byte sequence: 0x95 0x5c 0x6e
 // Actually intended to begin a new line after "表"

	 epresentative implementation-defined behavior 3 Pointer and address

Address with an absolute value is often written in the program for embedded software. A pointer
is used to access a specific address. In the following case, for example, the calculation re uires an
integer to be assigned to a pointer (or vice versa).

unsigned char *addrp = (unsigned char *)0xffff0123L;

The execution code actually used for such conversion between an integer and pointer is
implementation-defined. oreover, the si e of the address value is also implementation-defined.
These behaviors not only depend on the compiler used, but are also largely dependent on the actual
architecture of the processor used for program execution.

192 A ppen dices

	 epresentative implementation-defined behavior rray

The si e resulting after subtraction of two pointers to the element in the same array is not
necessarily guaranteed as the si e (bit length) applied to the address. It is implementation-defined.
C language standard IS IEC 1 defines ptrdiff_t in <stddef.h> as the type of the
result of subtracting two pointers.

	 epresentative implementation-defined behavior nteger

hether the signed integer type will be expressed as sign and magnitude representation, ones
complement representation or two s complement representation is implementation-defined.
Therefore, in the following example,

if ((int al & 0x 0000000) == 0x 0000000) { // if the most significant bit is 1

expected behavior will occur only if the compiler processes the most significant bit of the signed
integer type as representation of the sign bit (1 if the value is negative).

oreover, whether the extraordinary value is a trap representation or an ordinary value is also
implementation-defined. Extraordinary value refers to the calculation result that is a value that
does not fit in the si e of the variable. If the variable is unsigned, and the calculation result exceeds
the variable representation range, the actual result in that variable will be the remainder of the
calculation result divided by the maximum representable value of that variable 1. Take an unsigned
-bit variable for example. If the calculated value is 2 7, the remainder of the value 2 7 divided by

2 6 (the maximum representable value of -bit variable 1) that is 1 will be the calculation result.
This behavior is called wrap around .

n the other hand, if the variable is signed, and the calculation result exceeds the variable
representation range, an overflow will occur. In this case, the compiler may either represent the
calculation result in the same way as the case with unsigned variable (as the value left in the
variable) or process it as trap representation, which is a bit pattern specially defined in the system for
internal processing. If the system is using two s complement, the most significant bit of the pattern
defined as trap representation will be 1 and the rest will all be 0.

	 epresentative implementation-defined behavior it field

The so-called embedded C compiler can use the bit field of a si e of unsigned -bit. It is fre uently
used to access the processor registers where bits are assigned to microcontroller functions.

owever, how the bit field is used is implementation-defined. There is no guarantee that a
behavior that was normal with a specific compiler will be the same when a different compiler is
used. oreover, whether the bit se uence will be in the ascending order from 0 set as the most
significant bit or as the least significant bit is also implementation-defined.

urthermore, even when the bit field is used, whether the actual execution code will command bit
access to, such as, internal registers or not is also implementation-defined. The execution code may
command a read-modify-write operation that accesses the byte that includes that bit, and cause an
unexpected failure.

193A ppen dix C

	 epresentative implementation-defined behavior ccess to volatile ualified type object 	

volatile ualifier is used to suppress the optimi ation of the compiler. or example, to wait for
interrupt, there is a code somewhere in the interrupt handler that sets InterruptFlag to 1, as shown
below in the while loop, which does the polling.

while (InterruptFlag == 0) { ; }

In this case, the process to make the variable, InterruptFlag, a value of 1 is not in this loop.
The compiler may optimi e and transform the loop into a simple infinite loop. volatile ualifier
can prevent the compiler from optimi ing in this way.
volatile ualified ob ect implicitly indicates that it may be processed without being recogni ed

by the compiler. ow the execution code configures the access to volatile ualified ob ect is
implementation-defined.

	 epresentative implementation-defined behavior Preprocessing directives

There are various preprocessing directives that are implementation-defined, as outlined below.
• ethod of corresponding each of the header names specified in series by or to either

the header or the name of the external source file
• hether the value of the character constant of the constant e uation that controls the

conditional include matches with the value of the same character constant in the execution
character set

• hether the character constant of a single character of the constant e uation controls the
conditional include takes a negative value or not

• ethod of forming the header name from the preprocessing token in the include directive
(which may also be generated from macro expansion)

• esting limitation when processing #include

• hether is inserted in front of that is the first character of a universal character name
or not when operator is in the character constant or string constant

• ehavior of non-ST C #pragma
rom C (IS IEC 1), a specific #pragma directive was defined additionally as a

standard directive in C language. This is called ST C (standard C) #pragma directive .
Any #pragma that is not ST C is implementation-defined.

• ow the __DATE__ and __TIME__ are processed when the translated date and time are not
known.

194 A ppen dices

	 epresentative implementation-defined behavior thers

Even when inline instruction or register ualifier is specified, whether it will be forced or not is
implementation-defined.

To learn about other implementation-defined behaviors that have not been mentioned above, refer
to the manual of the compiler (of the precise version) used in the development.

195

In C language, there are four kinds of behavior that re uire particular attention.

 Unspecifi ed behavior
 Undefi ned behavior

3 mplementation-defi ned behavior
 ocale-specifi c behavior

(or details, refer to C language standard IS IEC 1 rogramming anguage
C Annex J.)

nspecified behavior and undefined behavior are alike, but do not mean the same, as
explained below.

■Unspecifi ed behavior

There are some behaviors that are grammatically correct (and therefore will not be
processed as error) but have alternative execution results depending on which alternative
the compiler chooses to process. These behaviors are collectively referred to as unspecifi ed
behavior . or example, the order of evaluating the actual argument to a function may differ
depending on the choice made by the compiler.

printf("%d %d ¥n", i, i++);

In case of the above code, the result displayed will differ depending on whether i or i++ is
evaluated fi rst. To gain an overall knowledge about what kind of behavior is unspecifi ed, refer
to the list under J.1 in IS IEC 1 . escriptions that will cause unspecifi ed behavior
should be avoided as much as possible.

■Undefi ned behavior

ndefi ned behavior refers to a set of behaviors that are not defi ned in C language standard.
or example, the behavior of division by ero is undefi ned. To gain an overall knowledge

about what kind of behavior is unspecifi ed, refer to the list under J.2 in IS IEC 1 .
Any descriptions that cause undefi ned behavior must be avoided by all means, since the

behavior resulting from any of such descriptions is not defined in the language standard.
There is a need to know beforehand which undefi ned behavior can be detected or not by the
static analysis tool that is going to be used for the development.

olumn Unspecifi ed behavior and undefi ned behavior

196

Citat ions and References

[1] ISO /IEC 25 010:2011, Systems and software enginieering -- Systems and software Q uality Requirements and
Evaluation (SQ uaRE) -- System and software quality models.

[2] ISO /IEC 9899:1990, Programming languages – C, ISO /IEC 9899:1990/Cor 1:1994, ISO /IEC 9899:1990/Cor 2:1996 ,

　 ISO /IEC 9899:1990/Amd 1:1995 , C Integrity

[3] ISO /IEC 9899:1999, Programming languages – C, ISO /IEC 9899/Cor1:2001

[4] ISO /IEC 14882:2003, Programming languages – C++

[5] “ MISRA Guidelines for the U se of the C L anguage in Vehicle B ased Software” , The Motor Industry Software
Reliability Association, ISB N 0-95 2415 6 -9-0, Apr. 1998, https://www.misra.org.uk

[6] “ MISRA-C:2004 Guidelines for the U se of the C L anguage in Critical Systems” , The Motor Industry Software
Reliability Association, ISB N 0-95 2415 6 -2-3, O ct. 2004, https://www.misra.org.uk

[7] “ MISRA C:2012 Guidelines for the U se of the C L anguage in Critical Systems” ,March. 2013, ISB N 97 8-1-906 400-
10-1 / Amendment 1, April 2016 / Addendum 2, April 2016 / Technical Corrigendum 1, June 2017 , https://www.
misra.org.uk

[8] “ Indian Hill Style and Coding Standards” , ftp://ftp.cs.utoronto.ca/doc/programming/ihstyle.ps

[9] “ comp.lang.c Frequently Asked Q uestions” , http://www.eskimo.com/~ scs/C-faq/top.html

[10] “ GN U coding standards” , Free Software Foundation, http://www.gnu.org/prep/standards/

[11] “ The C Programming L anguage, Second Edition” , B rian W. Kernighan and D ennis M. Ritchie, ISB N 0-13-11036 2-
8, Prentice Hall PTR, Mar. 1988

[12] “ Writing Solid Code: Microsoft' s Techniques for D eveloping B ug-Free C Programs ” , Steve Maguire, ISB N
1-5 5 6 15 -5 5 1-4, Microsoft Press, May. 1993

[13] “ The Practice of Programming ” , B rian W. Kernighan and Rob Pike, ISB N 0-201-6 15 86 -X , Addison-Wesley
Professional, Feb. 1999

[14] “ L inux kernel coding style” , http://www.kernel.org/doc/D ocumentation/CodingStyle

[15] “ C Style Standards and uidelines efining rogramming Standards for rofessional C rogrammers” , D avid
Straker, ISB N 0-1311-6 898-3, Prentice Hall, Jan. 1992

[16] “ C Programming FAQ s:Frequently Asked Q uestions ” , Addison-Wesley Professional, N ov. 1995 . ISB N
97 80201845 198, Steve Summit

[17] “ C STYL E GU ID E (SO FTWARE EN GIN EERIN G L AB O RATO RY SERIES SEL -94-003)” , N ASA, Aug. 1994,
http://sel.gsfc. nasa.gov/website/documents/online-doc/94-003.pdf

[18] “ The CERT® C Secure Coding Standard” , Robert C. Seacord, ISB N 97 8-03215 6 3217 , Addison-Wesley Professional,
O ct. 2008 (SEI CERT C Coding Standard, 2016 Edition)

197R ef eren ces

V er. 1. 0 & V er. 1. 1 A uthors and editors (in alp habetical order)
AO KI N ao IPA/SEC
EN D O Arisa IPA/SEC
EN D O U Ryuj i Mitsubishi Space Software Co., L td.
FU RU YAMA Hisaki Matsushita Electric Industrial Co., L td.
FU TAGAMI Takao TO YO Corporation
HACHIYA Shouichi GAIA System Solutions Inc.
HAYASHID A Seij i TO SHIB A CO RPO RATIO N
HIRAYAMA Masayuki IPA/SEC
MITSU HASHI Fusako N EC Electronics Corporation
MU RO Shuj i IPA/SEC
N AMIKI Rieko O GIS-RI Co., L td.
O HN O Katsumi IPA/SEC
O HSHIMA Kenj i Ricoh Company, L td.
SHISHID O Fumio eSO L Co., L td.
U ED A N aoko Fuj itsu L imited
U N O Musubi Matsushita Electric Industrial Co., L td.

V er. 2 . 0 & V er. 3 . 0 A uthors and editors (in alp habetical order)
FU TAGAMI Takao TO YO Corporation
ITO H Masako Fuj itsu L imited
MIHARA Yukihiro IPA/SEC
MITSU HASHI Fusako N EC Corporation
N ISHIYAMA Hiroyasu Hitachi, L td.
SHU KU GU CHI Masahiro eSO L Co., L td. / eSO L TRIN ITY Co., L td.
TACHI N obuyuki N agoya U niversity
TO YAMA Keisuke IPA/SEC
 (rgani ational affiliations are as of the publication of Japanese edition.)

Contributors to E ng lish translation v ersion
SHIMIZ U Tatsuo Shimizu International
TO YAMA Keisuke IPA/SEC

Written and edited by Software Reliability Enhancement Center,
Technology Headquarters, Information-technology Promotion Agency, Japan

ESCR
【Rev ised edition】
Embedded System dev elopment Coding Reference guide [C language edition]

V er. 3.0

M arch 28 , 20 1 8

W ritten an d edited b y S of tware R eliab ility E n h an cem en t C en ter,
T ech n ology Headquarters, I n f orm ation - tech n ology P rom otion A gen cy, J apan

B un k yo G reen C ourt C en ter O f f ice
2- 28 - 8 Hon k om agom e, B un k yo- k u, T ok yo, 1 1 3 - 6 5 9 1 J apan
h ttps: / / www. ipa. go. j p/ en glish / sec/

© 20 1 8 , I P A / S E C

3.0

	ESCR4_3
	ESCR5_3
	ESCR6_2
	ESCR7_1
	ESCR8_2
	ESCR9_3
	ESCR_hyou4

