
WP2/D2.1: Systems Engineering Study:
Challenges and Best Practices

Authors:
Jens Heidrich
Binish Tanveer
Rolf van Lengen
Thomas Kleinberger
Liubov Gorodilova
Thomas Kuhn
Martin Becker
Thomas Bauer
Andreas Morgenstern

Fraunhofer IESE is an institute of the
Fraunhofer-Gesellschaft.
The institute transfers innovative software
development techniques, methods and
tools into industrial practice, assists compa-
nies in building software competencies cus-
tomized to their needs, and helps them to
establish a competitive market position.

Fraunhofer IESE is directed by
Prof. Dr.-Ing. Peter Liggesmeyer
(Executive Director)
Prof. Dr. Dieter Rombach
(Business Development Director)
Fraunhofer-Platz 1
67663 Kaiserslautern
Germany

Copyright © Fraunhofer IESE 2016 / IPA/SEC2016 iii

Table of Contents

Management Summary 1

1 Trends towards System Engineering 4
1.1 Trend of System Integration 4
1.2 Motivation for Systems Engineering 6
1.3 Background Information 7
1.3.1 Industrie 4.0 7
1.3.2 Cyber-Physical Systems (CPS) 8
1.3.3 Internet of Things (IoT) 8
1.3.4 Cloud Computing 9
1.3.5 Internet of Services 9
1.3.6 Industrial Internet 9
1.3.7 Big Data 9

2 Related Studies on System Engineering 11
2.1 Model-Based Systems Engineering (MBSE) Methodologies 11
2.2 Improving the Integration of Program Management and

Systems Engineering 12
2.3 Systems Engineering in Industrial Practice 13
2.4 Systems Engineering Effectiveness 14
2.5 Model-Driven Development 15

3 Systems Engineering Study Results 16
3.1 Context 17
3.2 Challenges 18
3.3 Solution Approaches 22
3.4 Outlook and Capabilities 25
3.5 Discussion of Potential Threats and Limitations 27

4 Study Key Outcomes and Recommendations 29
4.1 Key Outcomes 29
4.2 Recommendations and Areas of Activity 31
4.2.1 Organizational Development 31
4.2.2 Technical Development 32

5 Selected Industrial Practices and Cases 35
5.1 Model-driven System Development 35
5.1.1 Example Approaches 36
5.1.2 Practical Cases 37

Copyright © Fraunhofer IESE 2016 / IPA/SEC2016 iv

5.1.3 Lessons Learned and Recommendations 38
5.2 System Requirements Engineering 39
5.2.1 Example Approach 39
5.2.2 Practical Cases 40
5.2.3 Lessons Learned and Recommendations 43
5.3 System Verification and Validation 44
5.3.1 Example Approaches 45
5.3.2 Practical Cases 45
5.3.3 Lessons Learned and Recommendations 46
5.4 Integrated Tool Chains 46
5.4.1 Example Approaches 47
5.4.2 Practical Cases 48
5.4.3 Lessons Learned and Recommendations 50
5.5 Virtual Engineering of Systems 50
5.5.1 Example Approaches 51
5.5.2 Practical Cases 51
5.5.3 Lessons Learned and Recommendations 52

Bibliography 54

Management Summary

Copyright © Fraunhofer IESE 2016 / IPA/SEC2016 1

Management Summary

This booklet discusses the general trend towards Systems Engineering, summa-
rizes existing studies in the field, and highlights results from an interview series
about challenges and best practices in the area of Systems Engineering across
innovative companies in the German-speaking region. Furthermore, selected
best practices are explained and cases of companies applying these practices are
summarized. The study was performed by Fraunhofer IESE in Germany and was
sponsored by the Ministry of Economy, Trade and Industry in Japan.

Part 1 The amount of software in formerly largely hardware-dominated products has
continuously increased over time. Software is perceived as an enabler of new,
innovative services and business models in all sectors of industry and society.
Systems Engineering is an interdisciplinary approach that considers both the busi-
ness and the technical needs of all customers. Being able to establish appropriate
Systems Engineering practices in the organization is crucial for staying competi-
tive and for developing innovative products on time, within budget, and with a
high level of quality.

Part 2 Our goal was to collect the state of the practice regarding Systems Engineering
in the German-speaking region, focusing on challenges and solution approaches
in terms of best practices (work processes, methods, and tools). The scope of the
study was on Systems Engineering practices across different domains and was
not specialized to any single domain. Even though we found some already exist-
ing surveys and studies related to this goal, none fitted our scope completely.

Part 3 Overall, 42 invitations were sent to people from 34 different organizations. 22
of them agreed to be interviewed. Finally, 20 interviews with people from 18
different companies were performed, including experts from, e.g., Airbus DS
Electronics and Border Security, ETAS GmbH, Hella KGaA Hueck & Co., Robert
Bosch GmbH, and ZF TRW Automotive Holdings Corp. The key outcomes are as
follows:

Product Engineering Trends: Companies are mainly driven by the increased
complexity of system requirements (aspect stated by 60%) as well as by the ever
larger number of product variations demanded by their customers (stated by half
of the companies).

Importance of Systems Engineering: On a scale from 1 (not important) to 10
(essential for survival), the average importance of Systems Engineering is 7.6 and
will increase to 8.5 within the next five years.

Management Summary

Copyright © Fraunhofer IESE 2016 / IPA/SEC2016 2

Systems Engineering Challenges: 80% stated that change management
within the organization is the no. 1 challenge, followed by managing complex
requirements and interfaces.

Systems Engineering Process: The larger organizations basically cover every
process area of ISO/IEC 15288 and 12207, whereas the SMEs have a clear focus
on the technical and implementation processes.

Systems Engineering Practices: Among the already established practices, the
companies largely (close to or more than 50%) picked methods, techniques, and
approaches related to model-driven development, requirements engineering,
test-driven development, and verification and validation.

Specification Languages and Tools: More than 80% of the participants re-
ferred to UML as the major relevant specification language. Large organizations
tend to use SysML as a more specific language for system modeling. More than
50% of the Systems Engineering tools mentioned were related to modeling dif-
ferent aspects of the overall system or the software as part of the system.

Improvement Potential: The greatest improvement potential for Systems Engi-
neering lies in increased virtual engineering and better integration of the tool
chains used, with 50% of the participants mentioning each of these areas.

Systems Engineering Capabilities: The majority of organizations/units rely on
internal and external training programs to improve their capabilities related to
Systems Engineering. Furthermore, participation in Systems Engineering confer-
ences was mentioned.

Part 4 Based on the key outcomes of the study, a couple of recommendations and areas
of activity can be derived for organizations striving towards Systems Engineering:

Organizational Development: Companies should establish a proper change
management strategy for introducing Systems Engineering practices and they
need to build up appropriate competencies in Systems Engineering in general
and Software Engineering in particular. Especially the larger organizations need
to think about managing their portfolio of different Systems Engineering pro-
jects.

Technical Development: Companies should develop and integrate a Systems
Engineering approach including all stakeholders and establish practices in the
areas of System Requirements Engineering, Model-Driven Systems Development,
and System Verification and Validation. More mature companies should prepare
to establish practices in the areas of Virtual Systems Engineering and Integrated
Systems Engineering Tool Chains.

Management Summary

Copyright © Fraunhofer IESE 2016 / IPA/SEC2016 3

Part 5 For all of the five technical development practice areas mentioned above, there
already exist established techniques, methods, and tools that cover substantial
areas of activity and are applied and have been evaluated in practical settings, or
there are techniques, methods, and tools that are currently under development
in national and international research and development projects and initiatives.

Trends towards Systems
Engineering

Copyright © Fraunhofer IESE 2016 / IPA/SEC2016 4

1 Trends towards Systems Engineering

1.1 Trend towards System Integration

The trend across almost all domains points in the direction of complete integra-
tion of systems into so-called Smart Ecosystems, which offer customer-specific
solutions across companies driven by a common goal. These Smart Ecosystems
break down former insular solutions for the control of business processes and
technical processes and make them converge towards an integrated overall so-
lution.

Figure 1: The trend towards Smart Ecosystems

To achieve this, a change of paradigms is going to take place: from monolithic
single systems to open, interconnected, scalable, and service-oriented Software
Ecosystems. Figure 1 illustrates this trend.

Information Systems (IS) evolve into Emergent Software Systems, which allow for
a flexible combination of information systems across system providers and sup-
ported business processes. Embedded Systems (ES) evolve into Cyber-Physical
Systems (CPS), which allow for a digital representation of physical, real-world
objects, making use of dedicated communication infrastructures and the Internet

Trends towards Systems
Engineering

Copyright © Fraunhofer IESE 2016 / IPA/SEC2016 5

of Things (IoT) to connect systems. In both domains, Mobile Apps are also be-
coming intensely integrated into business processes today (Naab, Knodel, Kuhn,
& Rost, 2016).

A Smart Ecosystem flexibly integrates non-trivial Information Systems used to
accomplish business goals with non-trivial Embedded Systems used to achieve
technical goals across company boundaries. It functions as one unit to achieve
common higher-level goals that no single system would be able to achieve on its
own.

The value of data and the potential from using Big Data increases with higher
levels of system integration. Good examples of this system integration trend can
be found everywhere, such as in the automotive industry (e.g., with Car-2-X
communication), in the production area (with Industrie 4.0), in the energy indus-
try (with Smart Energy), in medical technology (with Smart Health), or in agricul-
tural technology (with Smart Farming), and in many other areas. Increasing in-
terconnection is a key factor for innovation and a major contributor to sustaina-
ble success (see Figure 2).

Figure 2: Smart Ecosystem: A trend across domains

Trends towards Systems
Engineering

Copyright © Fraunhofer IESE 2016 / IPA/SEC2016 6

1.2 Motivation for Systems Engineering

The basis for the development of such highly integrated systems is a paradigm
shift: from monolithic single systems to open, interconnected, scalable, and ser-
vice-oriented software ecosystems. To allow this vision to become reality, the
development organizations behind the systems must change as well. The amount
of software in formerly largely hardware-dominated products is continuously in-
creasing. Collaboration across organizational boundaries is a key element for
successful software development. The physical world is becoming digital and
smart; the Internets of Services, of Things, and of Data are merging with each
other.

Software is increasingly used and perceived as an enabler of new, innovative
services and business models in all sectors of industry and society. In the future,
unique selling points and competitive advantages over competitors will increas-
ingly be generated from interconnecting proprietary products with other sys-
tems.

According to the International Council on Systems Engineering (INCOSE), Sys-
tems Engineering is an interdisciplinary approach that considers both the busi-
ness and the technical needs of all customers with the aim of providing a quality
product that meets the user’s needs.

Being able to establish appropriate Systems Engineering practices in the organi-
zation is crucial for staying competitive and for developing innovative products
on time, within budget, and with a high level of quality. Specifically, it allows an
organization to deal with the typical characteristics of future systems:

(1) Complexity: The complexity of future systems will increase. An organization
needs to have means to cope with this complexity. This requires, for instance,
model-based engineering approaches instead of textual descriptions, proper sys-
tems requirements engineering, scalable architectures that allow for enough flex-
ibility, and mature system development processes.

(2) Diversity: Future systems will most likely comprise and integrate diverse sys-
tems and stakeholders across companies and domains. This requires, for in-
stance, interoperable architectures that allow for easy integration, standardiza-
tion of interfaces, and Quality of Service (QoS) guarantees.

(3) Uncertainty: A system must be able to deal with an uncertain environment:
the stakeholders and how to interact with them may change over time. This re-
quires, for instance, highly adaptable systems, the ability to certify certain quali-
ties (such as system performance, functional safety, security, or privacy) at

Trends towards Systems
Engineering

Copyright © Fraunhofer IESE 2016 / IPA/SEC2016 7

runtime, as well as simulation and virtual engineering approaches in order to
connect development time and runtime more closely.

(4) Safety and Security: If highly critical embedded systems are integrated with
sensitive information systems, the resulting system needs to address functional
safety and security issues at the same time. Otherwise, a security flaw may be-
come a safety issue. This requires, for instance, integrated models addressing
security and functional safety at the same time.

(5) User Experience: Despite the rapidly increasing complexity, the systems
must stay usable. Product success is more and more dependent on the experience
a user makes while using a product. In order to guarantee this user experience,
integrated strategies for the user’s interaction with the systems are required, for
instance.

(6) Autonomy: On the basis of smart data usage, future systems will function
increasingly autonomously or semi-autonomously. This requires, for instance, a
large degree of (artificial) intelligence and adaptability of the individual systems.

(7) Data-Drivenness: The intelligence of future systems will largely depend on
connecting the right data from different sources, analyzing them appropriately,
and building models. This requires, for instance, the ability to identify and collect
data with an appropriate level of quality on the one hand, and the introduction
of powerful data protection mechanisms for guaranteeing an individual’s privacy
on the other hand.

1.3 Background Information

The following section provides some background explanations about related
concepts underlying the trend towards Systems Engineering.

1.3.1 Industrie 4.0

With the advent of industrialization, technology has progressed by leaps and
bounds, leading to four industrial revolutions: the first revolution was in the field
of mechanization, the second revolution refers to the intensive use of electric
energy, and the widespread digitalization marks the third revolution, where every
physical “thing” is getting a digital representation. Advanced digitalization, i.e.,
the combination of the Internet and futuristic technologies in the field of “smart”
objects (machines and products) will initiate another paradigm shift, resulting in
the fourth industrial revolution a.k.a. Industrie 4.0 (Federal Ministry for Economic
Affairs and Energy, 2016), in industrial production.

The Industrie 4.0 strategic initiative was proposed by the German government in
the context of the High-Tech Strategy 2020 plan. A variety of terms are used

Trends towards Systems
Engineering

Copyright © Fraunhofer IESE 2016 / IPA/SEC2016 8

outside German-speaking countries to describe the concept of Industrie 4.0. For
example, in the English-speaking world and at EU level, the Internet of Things
(IoT) and the trend towards digitalization referred to the third Industrial Revolu-
tion. The terms “Smart Production”, “Smart Manufacturing”, or “Smart Fac-
tory” are used in Europe, China, and the US to refer to the digital networking of
production to create smart manufacturing systems (Kagermann, Helbig,
Hellinger, & Wahlster, 2013).

The Reference Architecture Model for Industrie 4.0 (RAMI 4.0) (Hankel, M.; Bosch
Rexroth, 2015) is a unified architecture model that serves the purpose of a com-
mon understanding regarding the standards, use cases, etc. that are necessary
for Industrie 4.0 and allows discussing associations and details. In RAMI 4.0, In-
dustrie 4.0 components are defined regarding their structure and function. This
enables cross-company networking and integration across value-added net-
works.

This massive integration of data results in technical systems of systems whose
capabilities include self-organization, re-organization, and self-optimization.
These individualized products constitute a transition from static solutions de-
signed during development time to dynamic solutions that adapt and optimize
autonomously during runtime.

1.3.2 Cyber-Physical Systems (CPS)

Cyber-Physical Systems (CPS) are systems evolving from connecting embedded
systems with each other and with web-based services (acatech - National
Academy of Science and Engineering, 2016). That is, they stand for the connec-
tion of the physical and the IT world and result from complex interaction and
integration between embedded systems, application systems, and infrastruc-
tures, while taking into account Human-Computer Interaction in application pro-
cesses. They are the technological basis of Industrie 4.0 (Jazdi, 2014).

1.3.3 Internet of Things (IoT)

In a nutshell, “IoT is a novel paradigm relying on the interaction of smart objects
(things) with each other and with physical and/or virtual resources through the
Internet” (Cavalcante, et al., 2016). The scope of an IoT system varies from a
small system with uniquely identifiable “Things” to a system with millions of in-
terconnected “Things” with a physical or virtual representation (e.g., identity,
status, location) in the digital world. These “Things” are interconnected using
standard protocols, possess sensing/actuation and potential programmability ca-
pabilities, and deliver complex services. Taking security into account, the services
provided by these “Things” can be made available anytime, anywhere (Minerva,
Biru, & Rotondi, 2015).

Trends towards Systems
Engineering

Copyright © Fraunhofer IESE 2016 / IPA/SEC2016 9

1.3.4 Cloud Computing

The U.S. National Institute of Standards and Technology (NIST) provides a defini-
tion for cloud computing that starts with: “Cloud computing is a model for en-
abling ubiquitous, convenient, on-demand network access to a shared pool of
configurable computing resources (e.g., networks, servers, storage, applications,
and services) that can be rapidly provisioned and released with minimal manage-
ment effort or service provider interaction”. The introduced cloud model is com-
posed of five essential properties, three service models, and four deployment
models (Mell & Grance, 211).

1.3.5 Internet of Services

IoT and cloud computing converge to provide a set of services called Internet of
Services, which represent manufacturing processes. This set of services is pub-
lished and deployed using cloud-based technologies. Cloud-based manufactur-
ing, for example, is then used to compose services and provide solutions to virtual
enterprises (Pisching, Junqueira, dos Santos Filho, & Miyagi, 2015). Customers
can request services via a web portal connected to the cloud. After verifying the
availability of these services, the background system will then provide these ser-
vices to the customer to satisfy their needs.

1.3.6 Industrial Internet

Industrial Internet is considered as a sub-paradigm of IoT that focuses more on
safety-critical industrial applications (Bruner, 2013). It refers to the integration of
complex physical machines with sensors and software in a common network.
Technologies that form the basis of the Industrial Internet include “pervasive net-
works, open source microcontrollers, software that is capable of analyzing mas-
sive amount [sic] of data, that understands human preferences and then optimize
[sic] across many variables, and the computing power needed to run this intelli-
gence available anywhere at little cost” (Wang, et al., 2015).

1.3.7 Big Data

“With an aggressive push towards “Internet of Things”, data has become more
accessible and ubiquitous, contributing to the big data environment. This phe-
nomenon necessitates the right approach and tools to convert data into useful,
actionable information” (Lee, Lapira, Bagheri, & Kao, 2013). By 2020, it is esti-
mated the digital universe will reach 44 trillion gigabytes of data. The recent
trends towards increased digitization and system integration increase the
amount of available data called “Big Data” (as depicted in Figure 1), making it a
major enabler for new business models and innovation.

Trends towards Systems
Engineering

Copyright © Fraunhofer IESE 2016 / IPA/SEC2016 10

Big Data can be characterized according to three dimensions: the volume of data,
the required velocity of providing and processing data, and the increasing variety
of data. The usage of Big Data supports companies, for instance in making better
strategic decisions, controlling processes, understanding customers better, and
reducing costs. But it can also be seen as an enabler for the development of new
business models (Heidrich, Trendowicz, & Ebert, 2016).

Related Studies on Systems
Engineering

Copyright © Fraunhofer IESE 2016 / IPA/SEC2016 11

2 Related Studies on Systems Engineering

The analysis of current international studies and publications on usage and best
practices of Systems Engineering processes and methods resulted in three surveys
and two studies, as described briefly in the following.

2.1 Model-Based Systems Engineering (MBSE) Methodologies

This survey created in 2007 by Jet Propulsion Laboratory and the California Insti-
tute of Technology provides a cursory description of some of the leading Model-
Based Systems Engineering (MBSE) methodologies used in industry (Estefan,
2007). The intent of the survey was to educate the reader, principally members
of the INCOSE MBSE Focus Group, about the various candidate MBSE method-
ologies that are commercially available and the tools that support the method.
The following MBSE methodologies were investigated:

Telelogic Harmony-SE: Harmony-SE: A subset of the larger integrated systems
and software development process known as Harmony®. Harmony-SE uses a
“service request-driven” modeling approach along with Object Management

Group™ Systems Modeling Language™ (OMG SysML™) artifacts.1

INCOSE Object-Oriented Systems Engineering Method (OOSEM): OOSEM inte-
grates a top-down, model-based approach that uses OMG SysML™ to support
the specification, analysis, design, and verification of systems.

IBM Rational Unified Process for Systems Engineering (RU®P SE) for Model-Driven
Systems Development (MDSD): RUP® SE is a derivative of the Rational Unified
Process® (RUP®). RUP® is a methodology that is both a process framework and
process product and has been used extensively in government and industry. RUP®
SE specifically addresses the needs of systems engineering projects. The objective
of its creation was to apply the discipline and best practices of the RUP® for soft-
ware development to the challenges of system specification, analysis, design, and
development.

Vitech Model-Based System Engineering (MBSE) Methodology: The Vitech MBSE
methodology is based on four primary concurrent SE activities that are linked and
maintained through a common System Design Repository. Each of these primary
SE activities is linked within the context of associated “domains”, where the SE

1 Remark: At the time of this survey in 2007, Telelogic was an independent company. Meanwhile, Rational
has acquired Telelogic and the Harmony Development Process is being further developed as IBM Rational
Harmony for Systems Engineering (IBM).

Related Studies on Systems
Engineering

Copyright © Fraunhofer IESE 2016 / IPA/SEC2016 12

activities are considered elements of a particular kind of domain known as the
Process Domain. An MBSE System Definition Language (SDL) is used to manage
model artifacts.

State Analysis (SA): State Analysis (SA) is an MBSE methodology that leverages a
model- and state-based control architecture, where state is defined to be “a rep-
resentation of the momentary condition of an evolving system,” and models de-
scribe how a state evolves. SA provides a process for capturing system and soft-
ware requirements in the form of explicit models, thereby helping to reduce the
gap between the requirements on software specified by systems engineers and
the implementation of these requirements by software engineers.

2.2 Improving the Integration of Program Management and Systems Engineering

In this survey, 3,000 INCOSE members (systems engineers) and 5,000 PMI mem-
bers (program managers) were asked in 2012 about their understanding of how
Program Management and Systems Engineering are integrated within their or-
ganization and to describe the interactions between the use of standards, inte-
gration, formalization, level of effectiveness, and degree of unproductive tension
between Program Management and Systems Engineering (Conforto, Rossi,
Rebentisch, Oehmen, & Pacenza, 2013).

680 Chief Systems Engineers and Program Managers provided answers. Their
organization types were mainly commercial entities (78%), primarily in the US
(58%), but also in India, UK, Germany, China, and S. Africa. The industry focus
was mainly on professional/scientific (36%), manufacturing (13%), public ad-
ministration (12%), transportation (6%), and healthcare (4%).

About 30% of the respondents indicated some or significant unproductive ten-
sion between Systems Engineering and Program Management. About 20% in-
dicated no unproductive tension. Smaller organizations (below $500 million an-
nual revenue) and large organizations (above $5 billion) are particularly at risk of
suffering from unproductive tension. Lack of integrated planning was the key
source of unproductive tension. Fully integrated organizations show almost no
or only minimal unproductive tension.

The key levers for reducing unproductive tension were: improving the integration
of Systems Engineering and Program Management by using standards from both
domains, formalizing the definition of integration, developing integrated engi-
neering program assessments, and effectively sharing responsibility for risk man-
agement, quality, lifecycle planning, and external suppliers.

Related Studies on Systems
Engineering

Copyright © Fraunhofer IESE 2016 / IPA/SEC2016 13

2.3 Systems Engineering in Industrial Practice

The objective of this study conducted by Fraunhofer IPT, Heinz Nixdorf Institute,
Unity Consulting & Innovation in 2013 was to gain a clear representation of the
capability of systems engineering and to obtain the current level of use of SE in
practice and in activities in training and further education (Gausemeier, et al.,
2015). The current barriers preventing full exploitation of potential benefits are
highlighted and recommendations for overcoming them are given. The study is
based on 33 interviews with experts from industrial companies and service pro-
viders from Germany, Austria, and Switzerland (DACH region). The study partic-
ipants hold various positions within their companies; primarily CEOs, develop-
ment managers, production managers, and systems engineers were interviewed.
The main results are described below.

The term systems engineering is familiar in practice; most companies have a basic
understanding. However, only real experts have a deep understanding. Often,
when systems engineering is discussed, the focus is only on software develop-
ment and is too narrow.

In principle, all participants see considerable potential in the application of sys-
tems engineering. Particularly in small and medium-sized companies, the topic
of systems engineering has been very person-specific. However, these people, in
particular, are mostly keen to transfer the ideas and approaches of systems en-
gineering to their everyday work. Similarly, company-wide awareness of systems
engineering is also not yet evident in large companies.

Across all sectors and company sizes, all topics were deemed important, regard-
less of the systems engineering expertise of the persons interviewed. On average,
companies with less systems engineering expertise rated themselves better than
companies with more expertise. The following aspects must be overcome here:
lack of know-how, lack of a methodical approach, as well as insufficient tool
support.

The study proves that, from the industry’s perspective, systems engineering is a
necessary prerequisite for developing complex technical systems. This concerns
not only future systems, which will become increasingly smart and networked,
but also current products and product systems to be developed. The multi-disci-
plinarity of the system, which can no longer be mastered using solely a discipline-
specific approach, is an important complexity driver.

In the German-speaking region, the application of systems engineering depends
largely on the sector. It has been firmly established in the aerospace industry, as
expected, for a long time and is considered indispensable in this area. By now,
systems engineering is also regarded as an important “enabler” in the automo-
tive manufacturing industry. German OEMs, in particular, have recognized the

Related Studies on Systems
Engineering

Copyright © Fraunhofer IESE 2016 / IPA/SEC2016 14

potential it offers them to retain their position as system integrators. On the other
hand, in the industrial field, and particularly in mechanical and plant engineering,
which are largely dominated by small and medium-sized enterprises, systems en-
gineering is largely unknown.

2.4 Systems Engineering Effectiveness

In 2012, the National Defense Industrial Association Systems Engineering Division
(NDIA-SED) collaborated with the Institute of Electrical and Electronic Engineers
Aerospace and Electronic Systems Society (IEEE-AESS) and the Software Engi-
neering Institute (SEI) of Carnegie Mellon® to obtain quantitative evidence of
the benefit of systems engineering (SE) best practices on project performance
(Elm & Goldenson, 2012). The objective of the survey was to identify SE best
practices used in projects, collect performance data on these projects, and iden-
tify relationships between the application of these SE best practices and project
performance.

The survey population consisted of projects and programs executed by system
developers reached through the NDIA-SED, IEEE-AESS, and INCOSE. About 148
participants completed the survey. The majority of the responses came from U.S.
defense industry organizations that were executing contracts within the U.S. for
the U.S. Department of Defense (DoD).

Overall, the study found clear and significant relationships between the applica-
tion of SE best practices to projects and the performance of those projects as
shown in Figure 3.

Figure 3: Relationship between Systems Engineering and Performance (Source: Carnegie Mellon University,
Software Engineering Institute)

52%

29%
20%

33%

47%

24%

15%
24%

57%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Lower SEC (n=48) Middle SEC (n=49) Higher SEC (n=51)

Pr
oj

ec
t P

er
fo

rm
an

ce

Total System Engineering Capability (SEC)

Lower Performance Middle Performance Higher Performance

Related Studies on Systems
Engineering

Copyright © Fraunhofer IESE 2016 / IPA/SEC2016 15

The results of the survey identified those SE process groups that have the strong-
est relationships to project performance. It also shows that more challenging
projects tend to perform worse than less challenging projects. However, projects
that face less challenge still tend to benefit from implementing systems engineer-
ing best practices. Moreover, the impact of employing systems engineering best
practices is even greater for more challenging projects.

2.5 Model-Driven Development

This study was performed in 2013 by Fraunhofer IESE for a large industrial com-
pany in Germany in the automotive area that wishes to remain anonymous. The
objective of the study was to investigate how to use model-driven development
approaches in the practical development of software and systems. Of high inter-
est were the tools used and the integration of tools into a tool chain for imple-
menting a development process. 36 persons working in software development
departments in production and research of industrial companies in the automo-
tive domain took part in this study.

Most participants were modeling functional behavior (with Simulink and ASCET)
and software structure (with UML/SysML and Simulink/ASCET). Modeling was
mainly used for the system architecture and for interfaces. Requirements were
usually not modeled very often.

Regarding the usage of models, the study provided the following results: For
requirements elicitation, partly Simulink and Visio were being used for structure
models (SysML, UML). For functional modeling, Simulink, ASCET, Modelica were
being used for executable models, and SysML, UML for structure models. For
architectures, Visio was being used for structure models (SysML, UML). For de-
sign, UML, Simulink was being used. For testing, Simulink and other tools were
being used.

Regarding the creation of models, the study provided the following results: The
time investigated in modeling is well invested. Models are often used to validate
decisions. Models help to understand algorithms. Models help to detect faults
earlier. Automatic generation of code is not always helpful (code quality is often
not good enough).

Regarding the quality of the models, many participants stated that SysML/UML
models do have faults, inconsistencies, or are not up to date. They also noted
that the quality of Simulink models is usually higher than that of SysML/UML
models.

Systems Engineering Study
Results

Copyright © Fraunhofer IESE 2016 / IPA/SEC2016 16

3 Systems Engineering Study Results

The goal of the study was on collecting the state of the practice regarding Sys-
tems Engineering in the German-speaking area, focusing on challenges and so-
lution approaches in terms of best practices (work processes, methods, and
tools). The scope of the study was on Systems Engineering practices across dif-
ferent domains and was not specialized on a single domain. Overall, 42 invita-
tions were sent to people from 34 different organizations. 22 of them agreed to
be interviewed. Finally, 20 interviews with people from 18 different companies
were performed. 6 organizations/units were classified as a Small or Medium-
sized Enterprise (SME) and 14 as a Large Organization (LO). The following com-
panies agreed to be mentioned as a study participant:

Company Domains Type

Airbus DS Electronics
and Border Security

Aerospace, electronics LO

Art of Technology AG Production, healthcare, aerospace SME

AVL LIST GmbH Automotive LO

Binder Elektronik GmbH Industry electronics, healthcare SME

camLine GmbH Software supplier for production,
healthcare, automotive, aerospace, and
semiconductors

SME

CIBEK technology +
trading GmbH

Solutions for senior citizens, automa-
tion technology

SME

ETAS GmbH Automotive LO

Hella KGaA Hueck & Co. Automotive, Electronics, Lighting LO

Robert Bosch GmbH Production, automotive, consumer elec-
tronics

LO

ZF TRW Automotive
Holdings Corp.

Automotive LO

Table 1: List of study participants

The average duration of an interview was about 60 minutes. A single interview
contained 29 questions (12 heading questions with sub-questions). The ques-
tions were grouped into four different interview parts dealing with the context
of the participant and her/his organization/unit, the challenges related to Systems
Engineering they confronted, solution approaches and practices for addressing
the challenges, and an outlook to the future improvement potential of Systems
Engineering and the organizational capabilities in general.

Systems Engineering Study
Results

Copyright © Fraunhofer IESE 2016 / IPA/SEC2016 17

3.1 Context

Domains: The distribution of domains of the organizations/units can be seen in
Figure 4. The majority are from the automotive and production domain, followed
by aerospace, transportation, and healthcare. A few companies are from the
electronics and mechanical engineering domain.

Figure 4: Distribution of participants across domains

Figure 5: Recent trends

24%

11%

16%

30%

3%

5%

11%

Production Healthcare

Aerospace Automotive

Transportation Mechanical Engineering

Electronics

0% 10% 20% 30% 40% 50% 60% 70%

Requirements become more complex

Shorter time to market (shorter R&D
phases)

Increasing product variation

Global product engineering

Increasing cost pressure

Higher integration and higher interface
diversity

Shorter product life cycles

Increasing innovational demands

Systems Engineering Study
Results

Copyright © Fraunhofer IESE 2016 / IPA/SEC2016 18

Current trends in product engineering: The companies are currently con-
fronted by many trends in product engineering. Some of them are common, such
as increasing requirements complexity (60% of the answers), shorter time to
market/shorter R&D phases (55%), and increasing product variation due to cus-
tomer expectations for individualized products (50% of the respondents). 45%
of the respondents mentioned increasing cost pressure and global product engi-
neering as recent trends. A list of the most popular trends is presented in Figure
5.

Future trends in product engineering: Many respondents assume that the
current trends will remain relevant over the next five years, but according to the
respondents, the leading trends in the future will be the growing multi-discipli-
nary development, increasing cost pressure, and shorter time to market (each of
them was mentioned in 20% of the cases) as can be seen in Figure 6.

Figure 6: Trends in 5 years

3.2 Challenges

This part talks about practical challenges (e.g., with regard to products, system
development processes, organizational structures, required competences) re-
lated to Systems Engineering the organization needs to face today and in 5 years
from now on.

Importance of Systems Engineering today: On a scale from 1 (not important)
to 10 (essential for survival) all organizations state that their implemented Sys-
tems Engineering process (including project processes, technical processes,
agreement processes, and organizational processes) is important, very important,
or essential (cf. Figure 7). The lowest importance value given by the participating

0% 5% 10% 15% 20% 25%

Growing multi-disciplinary
development

Increasing cost pressure

Shorter time to market (shorter
R&D phases)

Increasing product variation

Requirements become more
complex

Higher integration and higher
interface diversity

Higher complexity

Global product engineering

Systems Engineering Study
Results

Copyright © Fraunhofer IESE 2016 / IPA/SEC2016 19

organizations is 5 (moderate importance), the highest value is 10 (essential for
survival). The average importance is 7.6, meaning important.

For about 25% of the participating organizations, this process is really essential
(importance value 9 or 10). About 35% of all participating organizations stated
that Systems Engineering is only of moderate importance (importance value 5 or
6). All other participating organizations gave values in between. The standard
deviation is 1.5, meaning that the answers given are within a narrow margin.

There is no organization where Systems Engineering does not play any role or
just a minor role. No significant difference between large organizations and SMEs
can be discovered.

Figure 7: The importance of Systems Engineering today

Importance of Systems Engineering in 5 years: Nearly all organizations esti-
mate that Systems Engineering will become more important in the future. The
average importance is increasing significantly from 7.6 to 8.7 within the next 5
years (cf. the upwards shift of the importance values from Figure 10 to Figure
11). This increase is seen in general across all types and sizes of organizations
and also across all application domains. Nevertheless, it can be seen in Figure 11
that large organizations generally estimate a higher importance value in 5 years
compared to SMEs. This can be interpreted such that Systems Engineering will
play a more important role in large organizations in the future than in SMEs.

The standard deviation decreases from 1.5 to 1.1, which means that the esti-
mated importance in 5 years is even more focused around the average im-
portance of 8.7 (more organizations estimate the same higher importance).

0%

10%

20%

30%

40%

50%

1 2 3 4 5 6 7 8 9 10

Overall SME LO

Systems Engineering Study
Results

Copyright © Fraunhofer IESE 2016 / IPA/SEC2016 20

Figure 11: The importance of Systems Engineering in 5 years

Figure 8: Current Systems Engineering challenges

Current Challenges in Systems Engineering: Change management within
the organization is the top challenge that nearly all organizations are currently

0%

10%

20%

30%

40%

50%

1 2 3 4 5 6 7 8 9 10

Overall SME LO

0% 20% 40% 60% 80% 100%

Other

Growing multidisciplinary development

Integration of methods and processes

Human Resources Management

Establishing coherent tool chains

Methodological skills

Ensuring product quality

Data and information management

Modelling and simulation

Requirements and interface
management

Change management within the
organization

Overall SME LO

Systems Engineering Study
Results

Copyright © Fraunhofer IESE 2016 / IPA/SEC2016 21

confronted with, followed by requirements and interface management (cf. Fig-
ure 8). Other important challenges are modeling and simulation, data and infor-
mation management, ensuring product quality, establishing/keeping methodo-
logical skills within specialist disciplines and across disciplines, establishing coher-
ent tool chains, and human resources management.

SMEs are mainly confronted with change management within the organization,
methodological skills within specialist disciplines and across disciplines, establish-
ing coherent tool chains within the organization and across organizational
boundaries, and ensuring product quality (e.g., reliability, safety, security).

Large organizations are mainly confronted with requirements and interface man-
agement of complex systems or even systems of systems, modeling and simula-
tion, change management within the organization creating acceptance of new
approaches and technologies, establishing coherent tool chains within the or-
ganization and across organizational boundaries, and ensuring product quality
(e.g., reliability, safety, security).

Additionally, nearly every organization is fighting other individual challenges de-
pending on its current product roadmap, process organization, infrastructure, or
tool chain. In Figure 8, these individual challenges are summarized in the cate-
gory “Other”.

Future Challenges in Systems Engineering: For most organizations, chal-
lenges related to Systems Engineering within the next five years are largely the
same challenges they are confronted with today. Additional future Systems En-
gineering challenges are highly diversified, depending on the application domain
and the individual system development processes of each organization.

On the technical process level, these challenges range from model-based devel-
opment via agile development or rapid prototyping to verification and validation
with virtual prototyping and simulations. Better requirements and interface man-
agement for upcoming systems of systems was also mentioned.

On the project process level, new challenges such as introducing more product
variants or keeping up the product quality (especially w.r.t. security and safety)
are becoming more important. Here, SMEs have a special interest in data and
information management and in introducing change management in the organ-
ization.

On the organizational process level, new challenges such as improved change
management aimed at handling the transformation process of digitalization in
the company or close leadership to really perform the Systems Engineering pro-
cesses seem to be important. Some organizations plan to place more emphasis

Systems Engineering Study
Results

Copyright © Fraunhofer IESE 2016 / IPA/SEC2016 22

on human resources management in order to build up and preserve Systems
Engineering know-how.

No specific trend can be discovered here across the type or size of organization.
Nevertheless, specific trends towards new functionality exist in individual appli-
cation domains; e.g. in the automotive domain, autonomous driving creates new
challenges for requirements and interface management for networked systems,
modeling and simulations of products/solutions, and safety requirements.

3.3 Solution Approaches

After discussing the major challenges related to System Engineering this part dis-
cusses the most promising solution approaches taken by industry. This comprises
the use of best practices, standards, methods, tools, etc.

System Engineering Process: The larger organizations basically cover every
process area of ISO/IEC 15288 and 12207, whereas the SMEs have a clear focus
on the technical and implementation processes. The standards they adhere to
are quite domain-specific, except for quite general approaches such as ISO 9001.
40% of the larger organizations explicitly referred to ISO/IEC 15288.

Regarding the process model used, more than 45% of the large organizations
and SMEs claim that they are following an agile model, whereas more than 50%
of the large organizations follow a waterfall model or iterative waterfall model.
Furthermore, more than 80% of the large organizations provide different vari-
ants of their standard process.

The majority of the SMEs (83%) have defined a common development process
with little variants. In 86% of the larger organizations, several variants of the
development process exist. However, in general a standard development process
is defined that is tailored according to project needs.

Stakeholder Involvement: In large organizations, the different stakeholders
and disciplines are interlinked and coordinated by following a defined process
(85%). Personal communication is the preferred way of smaller companies to
organize their product development (20%).

Workshops and the creation of mixed teams to get a common project under-
standing are established in all organizations (SMEs: 80%, LOs: 57% resp. 50%).
The use of tools and common data pools across organizational boundaries is an
issue for all organizations (SMEs: 20%, LOs: 50%).

The integration of external suppliers into development activities is mostly per-
formed by supplier agreements (SMEs: 40%, LOs: 93%). A closer relationship is
established by larger organizations through subcontractor management (43%).

Systems Engineering Study
Results

Copyright © Fraunhofer IESE 2016 / IPA/SEC2016 23

In addition, body leasing concepts are applied by LOs on a large scale (64%) to
provide external knowledge for development activities. Training activities includ-
ing workshops together with external suppliers are the means by which smaller
organizations get a common understanding in development activities (40%).

Figure 9: External supplier integration

Figure 10: Top Established Systems Engineering Practices

Top 3 Established Practices: As can be seen from Figure 10, from the already
established practices, the companies largely (close to or more than 50%) picked
methods, techniques, and approaches related to model-driven development, re-
quirements engineering, test-driven development, and verification and valida-
tion. Further practices mentioned by at least more than one organization include

0%

20%

40%

60%

80%

100%

Overall SME LO

0%

20%

40%

60%

80%

100%

Overall SME LO

Systems Engineering Study
Results

Copyåright © Fraunhofer IESE 2016 / IPA/SEC2016 24

integrated tool chains and virtual engineering, and an overall system architec-
ture.

Moreover, the selection of the top practices varies between large organizations
and SMEs. The variance is especially large for model-driven development and for
system verification and validation, which were chosen by more than 60% and
80% of the large organizations, respectively, but only by less than 40% and
about 50% of SMEs, respectively. More than 80% of the SMEs picked test-driven
development as a top established practice. This was only picked by about 30%
of the large organizations. Please note that this does not mean that large organ-
izations do not do test-driven development; it only means that this was not
picked as one of the top three practices.

Regarding the most strongly impacted process areas, the participants agreed
with a huge majority that the technical and software implementation process
areas (as defined by ISO/IEC 15288 and 12207) are impacted by the practices.

Languages for System Modeling: As can be seen in Figure 11, the majority
referred to UML as the major relevant modeling language. Large organizations
tend to use SysML (based on UML) as a more specific language for system mod-
eling. Furthermore, some domain-specific languages were mentioned. Singular
answers included DFD (Data Flow Diagrams), FMI (Functional Mock-up Inter-
faces), OSLC (Open Services for Lifecycle Collaboration), Structured Analysis,
XML/XMI, IDef0, and Autosar.

Figure 11: Used Specification Languages

Systems Engineering Tools: Overall, more than 90 statements about tool us-
ages related to Systems Engineering were made by the study participants (80%
of them stem from large organizations) and over 40 different tools or compo-
nents of tools were among these statements.

0%

20%

40%

60%

80%

100%

UML SysML DSL Other

Overall SME LO

Systems Engineering Study
Results

Copyright © Fraunhofer IESE 2016 / IPA/SEC2016 25

The vast majority of tools mentioned is related to modeling different aspects of
the overall system or the software as part of the system. Depending on the do-
main, some tools were quite domain-specific (such as appropriate CAD soft-
ware). Furthermore, mostly requirements-specific simulation tools and testing
tools were mentioned to support the previously listed practices.

Regarding modeling tools, about 50% of the participants stated that they are
using “Enterprise Architect” and “MATLAB”. Regarding requirements tools,
30% use “DOORS” and “Microsoft Office”. Regarding simulation tools, 40%
use MATLAB’s “Simulink” extension. Regarding testing tools, a variety of differ-
ent tools were mentioned.

Close to 90% of the tools or components mentioned were specific for a certain
type of activity, whereas a bit more than 10% were multi-purpose tools or inte-
grated tool suites. Furthermore, close to 10% of the answers mentioned self-
developed tools. Mostly this was used in the area of simulation (about 5%).

Emerging Technologies and Needs: The most prominent emerging technolo-
gies, with close to 40%, were the adoption of more formal methods and model-
based system development approaches instead of informal/textual specifications.
Furthermore, the general need for better integration of tool chains, virtual engi-
neering incl. simulation, and the development of their own specialized tools were
mentioned as technological areas for the near future. Moreover, some general
more product-/feature-related trends were mentioned that have an impact on
the choice of technologies, such as Big Data, Internet of Things, and service ori-
entation.

3.4 Outlook and Capabilities

Improvement potential: As can be seen in Figure 12, the greatest improvement
potentials for Systems Engineering, with more than 50% each, are in increased
virtual engineering and better integration of the tool chains used. The demand
seems to be bigger for SMEs.

For nearly 40% of the larger organizations, improved program management
(aka. project portfolio management) is also worth mentioning. This is no surprise
as larger organizations need to deal with a larger number of projects running
simultaneously. For close to 40% of the SMEs, a higher degree of automation
was seen as an important improvement potential.

Improving System Engineering Capabilities: Regarding ways to improve an
organization’s own capabilities in Systems Engineering, a variety of answers were
given. However, as can be seen in Figure 13, the vast majority relies on making
use of internal and external training programs. Not surprisingly, nearly all of the
organizations offer such training programs internally. Furthermore, participation

Systems Engineering Study
Results

Copyright © Fraunhofer IESE 2016 / IPA/SEC2016 26

in Systems Engineering conferences for the purpose of exchanging knowledge
and experience among peers and with researchers and discussions about trends
and solution approaches was mentioned by more than 50% of the overall par-
ticipants and by more than 60% of those from larger organizations.

Figure 12: Areas of Improvement Potential for Systems Engineering

Figure 13: Approaches for Improving System Engineering Capabilities

0%

20%

40%

60%

80%

100%

Overall SME LO

0%

20%

40%

60%

80%

100%

Overall SME LO

Systems Engineering Study
Results

Copyright © Fraunhofer IESE 2016 / IPA/SEC2016 27

3.5 Discussion of Potential Threats and Limitations

This part discusses a summary of the major potential threats and limitations of
the performed study related to the methodology applied and their performers:

(1) Sample size: The overall number of interviews performed is fairly small. This
limits the generalizability of the results on the one hand, but also our possibilities
of analyzing relationships among the answers on the other hand. However, be-
cause of the relatively small amount of interviews, it was possible to focus more
on the single answers provided and to get deeper insights into single cases.

(2) Self-reported data: The participants of the study were asked to report about
their specific knowledge and about experience limited to their specific context in
the organization/unit. They were asked to explicitly answer based on their first-
hand experiences and not to make assumptions about what is going on outside
their responsibilities and fields of expertise. However, the answers given are still
biased by their personal perception. As only one person of an organization or of
a specific unit of a (larger) organization was interviewed, there was no chance to
analyze discrepancies among answers; the researcher had to trust what was said
about the organization/unit.

(3) Questionnaire: The questionnaire used to guide the interviews was systemat-
ically derived from the goals of the study and peer-reviewed internally by Fraun-
hofer IESE researchers. During the first two interviews, it was experienced that
some questions were hard to answer without some further hints about the in-
tention of the question. Furthermore, the interviews took longer than initially
planned (60 minutes at most). For that reason, example answers (mostly contain-
ing potential alternatives) for 13 out of the 29 questions were provided. The
example answers were created based on the related studies previously analyzed
and on the experience of the Fraunhofer IESE researchers from past Systems En-
gineering projects. However, it was made clear that the interviewee should not
just select from the provided examples, but should also be encouraged to think
beyond them. The consequence was that coding of the provided answers was
simplified as many answers could be mapped to the existing list. This contributed
to facilitate comparability of the answers. Furthermore, the time for conducting
an interview could be significantly reduced.

(4) Trust and openness: The Fraunhofer-Gesellschaft is well known in Germany
as an objective, neutral, and independent partner. This guarantees a certain
openness towards participating in a study as well as openly talking about chal-
lenges and solution approaches (at least if it is not conflicting with the core in-
tellectual property of the company). Furthermore, it was made clear in the invi-
tation to the interview for what purpose the results would be used, that the
minutes would be anonymized before being analyzed, and that the interviewees

Systems Engineering Study
Results

Copyright © Fraunhofer IESE 2016 / IPA/SEC2016 28

would have the chance to review the minutes and would have to explicitly ap-
prove the use of the minutes as part of the analysis.

(5) Language: All interviews were performed in German and then translated into
English for further analysis. After translation the interviews were sent to the par-
ticipants for approval. This gave the interviewees the chance to check the accu-
racy of the translation to their best knowledge and was done to confirm that the
interview minutes reflect the opinion of the interviewees properly. Furthermore,
the interviewees had the chance to make extensions and corrections to the given
answers.

Study Key Outcomes and
Recommendations

Copyright © Fraunhofer IESE 2016 / IPA/SEC2016 29

4 Study Key Outcomes and Recommendations

4.1 Key Outcomes

The following key outcomes can be extracted from the 20 interviews based on
our analysis:

(1) Product Engineering Trends: Companies are mainly driven by the increased
complexity of system requirements (aspect stated by 60%) as well as by the ever
larger number of product variations demanded by their customers (stated by half
of the companies). In combination with shorter time to market (about 55%), this
puts a lot of pressure on current system engineering. In the future, more cross-
disciplined development is seen (by 20%) as an additional driving factor, which
will in turn increase the complexity of projects. The trend to increasing cost pres-
sure and shorter time to market is expected to remain.

(2) Importance of Software: More than 85% of the companies stated that
software plays a major role in their products; even though about 70% of the
participants stated that they come from a pure hardware development world.
Furthermore, 85% stated that they spent 30% or more (up to 90%) of the de-
velopment budget on software development. More than half of the participants
agreed that this will further increase within the next five years.

(3) Importance of Systems Engineering: On a scale from 1 (not important) to
10 (essential for survival), the average importance of Systems Engineering is 7.6.
Though Systems Engineering is currently already very important, this will increase
to 8.7 within the next five years. Most participants stated that the reason for the
increasing importance are customer demand for higher product quality in com-
bination with increased complexity of the products. This especially refers to re-
quirements related to system platforms and system integration.

(4) Systems Engineering Challenges: 80% stated that change management
within the organization is the no. 1 challenge, followed by managing complex
requirements and interfaces (especially for systems of systems). Additional future
Systems Engineering challenges are human resources management, the trans-
formation and organization processes regarding Systems Engineering within the
organization and data- and information management.

(5) Systems Engineering Process: The larger organizations basically cover
every process area of ISO/IEC 15288 and 12207, whereas the SMEs have a clear
focus on the technical and implementation processes. The standards they adhere

Study Key Outcomes and
Recommendations

Copyright © Fraunhofer IESE 2016 / IPA/SEC2016 30

to are quite domain-specific, except for quite general approaches such as ISO
9001. 40% of the larger organizations explicitly referred to ISO/IEC 15288. Re-
garding the process models used, more than 45% of the large organizations and
SMEs claim that they are following an agile model, whereas more than 50% of
the large organizations follow a waterfall model or iterative waterfall model. Fur-
thermore, more than 80% of the large organizations provide different variants
of their standard process.

(6) Multiple Stakeholders: There are many different disciplines and corre-
sponding stakeholders involved in the Systems Engineering process across all or-
ganizations regardless of their size. However, classic engineering disciplines like
Hardware Engineer or Software Engineer are still viewed as “isolated” disciplines
within the organizations. The particular role of “Systems Engineer” is only de-
fined in larger organizations. In 85% of the large organizations, different stake-
holders and disciplines are interlinked and coordinated by following a defined
process. For SMEs, this figure is less than 20%. Instead, personal communication
is the preferred way of smaller companies. Between 60% and 70% of the com-
panies create joint teams and perform joint workshops and meetings for coordi-
nation purposes.

(7) External Suppliers: Almost 60% of the organizations get less than 25% of
their product parts supplied from external sources. Nevertheless, one third of the
organizations obtain up to 50% from external suppliers. The average proportion
of externally supplied product parts is about 25% across all organizations. The
average criticality in terms of intellectual property of externally supplied compo-
nents is 3,5 on a scale from 1 (not critical) to 10 (highly critical).

(8) Systems Engineering Practices: Among the already established practices,
the companies largely (close to or more than 50%) picked methods, techniques,
and approaches related to model-driven development, requirements engineer-
ing, test-driven development, and verification and validation. Further practices
mentioned by at least more than one organization include integrated tool chains,
virtual engineering, and an overall system architecture. Whereas large organiza-
tions focus on model-driven development as well as system verification and vali-
dation, which was chosen by 60% and 80%, respectively, around 80% of the
SMEs picked test-driven development as their top established practice.

(9) Impacted Processes: The participants agreed with a huge majority that the
technical and software implementation engineering process areas (as defined by
ISO/IEC 15288 and 12207) are mostly impacted by Systems Engineering prac-
tices.

Study Key Outcomes and
Recommendations

Copyright © Fraunhofer IESE 2016 / IPA/SEC2016 31

(10) Specification Languages and Tools: More than 80% of the participants
referred to UML as the major relevant specification language. Large organiza-
tions tend to use SysML as a more specific language for system modeling. Fur-
thermore, domain-specific languages were mentioned in general. More than
50% of the Systems Engineering tools mentioned were related to modeling dif-
ferent aspects of the overall system or the software as part of the system. Fur-
thermore, 30% mentioned requirements and 40% simulation tools as being rel-
evant. Moreover, close to 10% of the answers mentioned self-developed tools.
Mostly these are used in the area of simulation (about 5%). Moreover, close to
40% mentioned the adoption of more formal methods and model-based system
development approaches instead of informal/textual specifications as a techno-
logical area to be addressed in the near future.

(11) Improvement Potential: The greatest improvement potential for Systems
Engineering lies in increased virtual engineering and better integration of the tool
chains used, with 50% of the participants mentioning each of these areas. The
demand seems to be bigger for SMEs. For nearly 40% of the larger organizations,
improved program management (aka. project portfolio management) is also
worth mentioning. For close to 40% of the SMEs, a higher degree of automation
was seen as an important improvement potential.

(12) Systems Engineering Capabilities: The majority of organizations/units
rely on internal and external training programs (close to 100% and more than
60%, respectively) to improve the capabilities related to Systems Engineering.
Furthermore, participation in Systems Engineering conferences was mentioned
by more than 50% of the overall participants and more than 60% of those from
the larger organizations.

4.2 Recommendations and Areas of Activity

From the given 12 key outcomes of the study, a few recommendations and areas
of activity can be derived for organizations striving towards Systems Engineering.
Please note that these recommendations and actions are motivated by the study
outcomes, but they are somewhat subjective as there may be other strategies for
reaching the same goal.

We split the recommendations and areas of activity into those more closely re-
lated to organizational development and those more technically related to how
organizations develop systems.

4.2.1 Organizational Development

(O1) Change Management Strategy: 80% of the companies stated that
change management within the organization is the key challenge for Systems
Engineering (see outcome #4). Therefore, it is important to openly think about

Study Key Outcomes and
Recommendations

Copyright © Fraunhofer IESE 2016 / IPA/SEC2016 32

which organizational structure and processes are best suited for coping with Sys-
tems Engineering challenges. In particular, it is important to include all stake-
holders in that process in order to gain acceptance and to better motivate/com-
municate changes and carefully plan how these changes should happen (see
outcome #6).

(O2) Systems Engineering Competencies: Creating internal and buying-in ex-
ternal training programs on different Systems Engineering topics was obligatory
for the majority of organizations (see outcome #12). Additionally, we would rec-
ommend that organizations participate in Systems Engineering conferences and
become active members of corresponding communities in order to get infor-
mation about recent developments and exchange experiences regarding Do’s
and Don’ts (see outcome #12).

(O3) Software Engineering Competencies: As 85% of the companies stated
that software plays a major role in their products although they come from a
more hardware-oriented development world (see outcome #2) and as this will
increase in the future, it is important for companies to build up or maintain an
appropriate number of Software Engineering competencies. This number de-
pends on the degree to which their product depends on software and what the
major IP (intellectual property) and USP (unique selling point) of the company is.
If the IP/USP is in software or is becoming software, it would make sense to build
up their own resources in the area of Software Engineering. If software is only a
means to an end, it makes at least sense to build up competencies for managing
external software suppliers and partners (see outcome #7).

(O4) Project Portfolio Management: Larger organizations should place special
focus on the management of the overall portfolio of their projects and the inter-
connections and dependencies among them, as this was mentioned as a special
issue for improvement (see outcome #11).

4.2.2 Technical Development

(T1) Integrated Systems Engineering Approach: As time to market for new
products is getting shorter and product complexity is increasing at the same time
(see outcome #1), it is important to efficiently and effectively deliver value to the
customers. Systems Engineering is considered very important for dealing with
this issue, especially when it comes to system platforms and system integration
(see outcome #3). This requires a well-integrated and aligned approach across all
disciplines involved (see outcome #6). Especially when it comes to technical and
implementation processes, companies should carefully think about what impact
Systems Engineering has (see outcome #9) and – as there are no silver bullet
approaches – what a custom-tailored process should look like that best fits the
needs of the individual organization (see outcome #5).

Study Key Outcomes and
Recommendations

Copyright © Fraunhofer IESE 2016 / IPA/SEC2016 33

(T2) System Requirements Engineering: The complexity of system require-
ments and the number of product variants has increased over time. As a matter
of fact, in the near future they will further increase as (even) more cross-disci-
plined development will come into play (see outcome #1). This forces companies
to think about how to elicit/develop requirements on the system level and how
to manage them systematically over time. This also includes how to break them
down into lower-level (especially software) requirements (see outcome #2).

(T3) Model-driven Systems Development: The study confirmed that model-
driven development of systems is seen as a key practice for an organization.
Larger organizations have already implemented it at least partially (see outcome
#8) or see this as an essential improvement potential (see outcome #11). The
actual use of formal modeling languages varies, even though there are very
prominent ones such as UML and SysML. In the area of tool support, a variety of
tools were mentioned as well (see outcome #9). An organization should there-
fore carefully evaluate which aspects of the system specification to model and
what appropriate language and tool support is available. This tool selection
should also be influenced by the interfaces provided by suitable tools to ensure
seamless integration into the tool landscape of the development process (see
outcome #10 and T6).

(T4) System Verification and Validation: Companies should think about es-
tablishing proper techniques and methods for system verification and validation
and specifically for test-driven system development, as these areas were seen as
crucial by many organizations (see outcome #8). Additionally, the development
process should ensure that system verification and validation is properly linked
to system requirements at all times.

(T5) Virtual Systems Engineering: As the complexity of products is increasing
(see outcome #1) and development is becoming more multi-disciplined (see out-
come #6), it becomes difficult and very cost-intensive to compose the different
system parts physically. Therefore, companies should think about the feasibility
of using virtual engineering systems based on sound models. In the future, this
is seen as a major improvement potential for speeding up development (see out-
come #11). Some companies have already introduced or developed their own
simulation tools for system verification and validation (see outcome #10).

(T6) Integrated Systems Engineering Tool Chains: As we have observed, a
variety of different tools are used for Systems Engineering in the organizations.
Furthermore, companies have developed their own tools for particular tasks and
for overcoming the shortages of existing tools (see outcome #10). One major
point for improvement is better integration of the tool chains (see outcome #11).,
Especially when starting to do Systems Engineering, companies should therefore

Study Key Outcomes and
Recommendations

Copyright © Fraunhofer IESE 2016 / IPA/SEC2016 34

put special emphasis on the interoperability of their tools and on having as much
integration across the tool chain as possible.

Selected Industrial Practices and
Cases

Copyright © Fraunhofer IESE 2016 / IPA/SEC2016 35

5 Selected Industrial Practices and Cases

Based on the results of the study, this part will give more details on how selected
best practices for Systems Engineering can be implemented in the organization.
Among the already established practices, the companies largely (close to or more
than 50%) picked methods, techniques, and approaches related to the following
areas:

1. Model-driven System Development
2. System Requirements Engineering
3. System Verification and Validation

As the greatest potential improvement areas for Systems Engineering, the fol-
lowing areas were mentioned by 50% of the companies:

4. Systems Engineering Tool Chain Integration
5. Virtual Engineering of Systems

Whereas we have some evidence that the former three are at least partially ap-
plied at more than half of the interviewed companies, the latter two still seem to
be at the beginning of their practical application and implementation, but are
considered to have great potential for Systems Engineering. Therefore, in the
following, for each of these five practice areas, we will give a brief description,
highlight some concrete examples of methods, techniques, and approaches, pre-
sent industrial cases of their implementation and application in real settings, and
summarize some recommendations and lessons learned.

5.1 Model-driven System Development

The development of modern systems is becoming increasingly difficult and chal-
lenging. Domains such as automotive and avionics demand high integrity levels
between hardware and software to ensure proper execution of their systems. A
commercial airplane, for example, contains systems that control ground proxim-
ity, navigation, and engine commands, amongst others. Because of that, it is
important to ensure that each aspect of the system is properly described and
understood.

Model-driven System Development (a.k.a. Model-based Systems Engineering) is
a system development approach that is based on the refinement of models. This
refinement of models usually happens on different abstraction levels until such a
level of detail is achieved that the system can be implemented immediately, or,

Selected Industrial Practices and
Cases

Copyright © Fraunhofer IESE 2016 / IPA/SEC2016 36

ideally, extracted automatically from the models. It usually provides a set of inte-
grated modeling techniques and tools to support all substantial development
disciplines, starting with model-based requirements engineering, via model-
based design and model-driven implementation (which can be partially auto-
mated by extracting code from models) to the certification of these systems (us-
ing modeling techniques such as fault trees).

Model-driven Software Development is a part of the overall model-driven system
development that incorporates different techniques across the entire spectrum
of software development activities, including model-driven requirements engi-
neering, model-driven design, code generation from models, model-driven test-
ing, model-driven software evolution, and more.

Model-driven system development is an important technique for managing the
complexity of modern systems. It provides a set of integrated modeling tech-
niques and tools to support all substantial development disciplines including the
certification of these systems (e.g., using modeling techniques such as fault
trees).

5.1.1 Example Approaches

The SPES 2020 methodology (Pohl, Achatz, & Broy, 2012) for the development
of embedded systems is a concrete method for model-driven system develop-
ment. The SPES (Software Platform Embedded Systems) 2020 initiative was a
joint research and development project between academia and industry partners
from different domains like avionics, automotive, health care, and energy. The
SPES 2020 modeling framework organizes the development artifacts of model-
driven system development into four architecture viewpoints.

Requirements Viewpoint: This view aims at supporting the requirements en-
gineering process in eliciting, documenting, and managing the system require-
ments. In SPES, the elicitation of requirements starts with the identification of
the system context, such as users, stakeholders, and external systems that some-
how interact with the system. These entities are documented in a system/context
diagram of the requirements viewpoint, which shows the system as a black box
and documents the interaction of the system with its environment. This diagram
complements traditional RE techniques (like scenarios) and helps in eliciting func-
tional and quality requirements, business drivers, and constraints (e.g., legal con-
straints), which are all documented in the requirements viewpoint.

Functional Viewpoint: Every system has a set of functions that each offers a
particular service to the users of the system. One of the main purposes of the
functional viewpoint is to identify and formalize these functions. In the SPES
methodology, the context diagram and the scenarios from the requirements
viewpoint are used as the starting point for identifying the user functions. The

Selected Industrial Practices and
Cases

Copyright © Fraunhofer IESE 2016 / IPA/SEC2016 37

functional viewpoint then formalizes these user functions by defining the in-
put/output behavior, e.g., by means of functional dataflow diagrams. The func-
tional viewpoint is also the place where dependencies between functions are
identified and where a refinement of user functions into sub-functions takes
place.

Logical Viewpoint: Once the functional model has been established, the next
step is to identify which of the functionalities are to be implemented by software
or hardware (or as a mixture). Hence, the logical model describes how the func-
tionality of the system (as identified in the functional perspective) should be de-
composed into a network of communicating and cooperating components. The
logical viewpoint is the first place where design decisions should be taken and is
hence solution-oriented, whereas the functional viewpoint is ideally only prob-
lem-oriented.

Technical Viewpoint: In this viewpoint, the hardware and software elements
are detailed in implementation entities that realize the logical components. Be-
sides the detailed software design, this view includes the Hardware Network
View, which describes networks of hardware elements such as buses, sensors,
and actuators, and the Deployment View, which shows the deployment strategy
of logical software components to hardware entities.

While the views sketched above seem to indicate a waterfall-like process from
the requirements viewpoint to the technical viewpoint, the SPES methodology is
actually more iterative. Usually, one starts by eliciting requirements on a high
abstraction level, which are formalized in the functional model and realized at
the logical/technical level. Each of the identified components at the logical level
can itself be regarded as a system under discussion with its own more concrete
requirements, functions, logical and technical solutions.

5.1.2 Practical Cases

The methodology was successfully applied at industry companies from different
domains (Pohl, Achatz, & Broy, 2012). We describe a practical case in the context
of developing the control software of a large telescope array that monitors
gamma rays in the universe (Achary & Actis, 2013). The architecture model was
created using a refined UML profile that supports the SPES viewpoints (Kuhn &
Antonino, 2014). A detailed description of the work can be found in (Oya, et al.,
2016).

The Cherenkov Telescope Array (CTA) is an initiative to build two large arrays of
Cherenkov gamma-ray telescopes. It will serve as an open observatory to a wide
astrophysics community and will provide a deep insight into the non-thermal
high-energy universe. Cherenkov telescope systems use the effect that gamma
rays produce particle cascades that emit so-called Cherenkov light showers,

Selected Industrial Practices and
Cases

Copyright © Fraunhofer IESE 2016 / IPA/SEC2016 38

which can then be detected by cameras hosted by ground-based telescopes. The
aims of CTA can be roughly grouped into three main themes serving as key sci-
ence drivers: understanding the origin of cosmic rays and their role in the uni-
verse, understanding the nature and variety of particle acceleration around black
holes, and searching for the ultimate nature of matter and physics beyond the
standard model.

The array control and data acquisition (ACTL) project within CTA will deliver the
software to control and acquire the data from the CTA instrumentation. The
objective is to create and maintain a single architecture model that will allow
tight integration of software development and coordination processes and deci-
sions. First, the model will provide the main input for managing the project man-
agement organization, for example for generating a work breakdown structure
(WBS), creating the effort estimates, evaluating the risks, and providing input for
the definition of priorities and the identification of unplanned work. It will also
provide specifications/contracts for the developers of the team so they can un-
derstand the context of the software to be developed, and will hence be used to
automatically generate the developer documentation. Furthermore, the model
should drive the verification and validation process to test the code provided by
the developers. Finally, it will allow communicating the requirements, decisions,
and adopted technical solutions inside and outside the work packages.

5.1.3 Lessons Learned and Recommendations

Based on (Pohl, Achatz, & Broy, 2012), a few recommendations and lessons
learned can be derived from the practical evaluation in the different domains:

• The SPES methodology provided traceable and seamless support for all engi-
neering life cycle phases with various levels of integration depending on the
domain. The highest level of integration was achieved in the automotive
area.

• It allowed for early consideration and verification of system properties, ad-
dressing users’ expectations regarding completeness, consistency, safety, or
traceability.

• The methodology addressed safety, standard compliance, and certifiability
needs. For instance, in the automotive domain, the logical architecture al-
lowed for automated transformation into AUTOSAR application compo-
nents. The integrated design and safety modeling showed that engineers can
seamlessly work on the same model.

Furthermore, it was concluded that integrated development such as supported
by the SPES methodology is essential for the engineering of embedded systems.

Selected Industrial Practices and
Cases

Copyright © Fraunhofer IESE 2016 / IPA/SEC2016 39

5.2 System Requirements Engineering

Several institutions provide definitions of the term Requirements Engineering
(RE). The International Requirements Engineering Board (IREB) defines it as: “Re-
quirements engineering is the systematic and methodologically sound approach
to requirements analysis and management” (Sophist). The IEEE defines RE as:
“Requirements Engineering is the branch of systems engineering concerned with
managing desired properties and constraints of software-intensive systems and
with goals to be achieved in the environment. It is concerned with these aspects
from the problem analysis stage to the implementation and maintenance stages
of a system. Additional variety is added because of differences in issues that arise
in different domains, ranging from public administration software to workflow
systems, groupware and embedded systems and control software”.

The goal of RE is to develop good requirements and to manage them during
development with respect to risks and quality. RE is the discipline within systems
and software engineering that bridges the entire life cycle and thus determines
the success or failure of a product or project. It is an engineering discipline be-
cause of its disciplined and systematic approach (Ebert, 2014).

5.2.1 Example Approach

The processes used for RE vary widely depending on the application domain, the
people involved, and the organization developing the requirements. The follow-
ing generic activities are common to all processes according to (Software
Engineering Institute, Carnegie Mellon):

• Requirements Elicitation: The process of discovering, reviewing, document-
ing, and understanding the user’s needs and constraints for a system.

• Requirements Analysis: The process of refining the user’s needs and con-
straints.

• Requirements Validation: The process of ensuring that the system require-
ments are complete, correct, consistent, and clear.

• Requirements Specification: The process of documenting the user's needs
and constraints clearly and precisely.

• Requirements Change Management: The process of scheduling, coordinat-
ing, and documenting the requirements engineering activities (that is, elici-
tation, analysis, specification, and verification).

For each of these generic activities, lots of techniques exist that can be applied
to execute the processes. A good overview of best practices can be found in the
article “Requirements Engineering: Best Practice” (Fricker, Grau, & Zwingli,
2014).

Selected Industrial Practices and
Cases

Copyright © Fraunhofer IESE 2016 / IPA/SEC2016 40

RE is a very crucial part of a product or project. Many studies show that projects
have failed because of poor requirements analysis (The Standish Group, 2014).
Even though plenty of state-of-the-art RE techniques exist, adequate implemen-
tation and satisfactory execution are obviously still missing. A good overview of
frequently observed deficiencies in RE processes is provided in the Trends &
Benchmark Reports on Software Development (SwissQ & Gallen, 2014). Typical
deficiencies are misunderstandings in communication, continuously growing or
changing requirements, or time pressure.

To overcome these inadequacies, new methods of Model-based Requirements
Engineering have been developed in recent years. Model-based Requirements
Engineering (MBRE) is an approach in which requirements and related business
and development information are collected, organized, and structured not only
by using natural language, but also with formal, semi-formal, or informal mod-
eling languages (Teufl, Khalil, & Mou, 2013). These models are mostly a reduced
and descriptive representation of the subject of discussion compared to the real
world. Models in MBRE allow documenting requirements and their relationships
to other artifacts in a (mostly graphical) language with less interpretation possi-
bilities than documenting in natural language only would present. Additionally,
they can provide abstraction and different perspectives on the data and therefore
support communication and discussion among all stakeholders. Modeling with
UML or SysML is common practice in MBRE.

5.2.2 Practical Cases

The German Federal Ministry of Defense issued a directive for an efficient and
uniform product acquisition and utilization process. This process, named Cus-
tomer Product Management CPM (Germany Federal Ministry of Defense, 2012),
describes procedures for RE, procurement, and in-service support in the German
armed forces. It covers the whole system life cycle from the early concept stage
in the system life cycle up to retirement on a very high level. The directive defines
three main phases in the system life cycle:

• Analysis phase: In the analysis phase, the first objective is to identify capability
gaps and to prioritize measures for closing such gaps. In this phase, most of
the RE activities and system modeling activities are performed.

• Production phase: In the production phase, the objective is to provide us-
ers/operators with suitable and operational products and services in good
time. Requirements models and system models are further developed and
form the basis of a specification for an award of construction contract.

• In-service phase: The in-service phase covers the use of products and services
in accordance with their intended purpose. All measures for maintaining and
restoring operational viability, capability, and readiness must be carried out

Selected Industrial Practices and
Cases

Copyright © Fraunhofer IESE 2016 / IPA/SEC2016 41

in order to ensure the safe and economic use of products and services under
realistic conditions and in a legal manner until disposal.

Together with the Federal Office of Bundeswehr Equipment, Information Tech-
nology and In-Service Support (BAAINBw) as the representative of the German
Federal Ministry of Defense, Fraunhofer IESE conducted selected parts of the
analysis phase and production phase with a systems engineering approach for a
new modular multipurpose combat ship class. Since this project has a very large
size and budget and the time schedule is fixed and tight, a pragmatic approach
for systems engineering was applied (Webel, et al., 2015).

Analysis Phase part 1: The RE activities in the first part of the analysis phase of
the CPM process resulted in a hierarchical catalog of functional requirements
prioritized according to their importance or criticality (Prioritized Requirements
Catalog). This catalog is based on defined operation and usage conditions and
related usage profiles.

• Requirements were formulated in a functional way in order to document only
the operational needs and leave open the technical solution.

• Requirements were categorized hierarchically into functional groups accord-
ing to common performance parameters (such as functionality and operation
on the top level).

• Requirements were prioritized in order to identify criteria for stopping the
project in case of non-fulfillment.

• Requirements were weighed against each other to document the contribu-
tion of each requirement to the organizational capabilities and to separate
important and non-important requirements.

• All requirements underwent a quality assurance process in order to fulfill the
quality criteria according to IEEE 830:1998 Software Requirements Specifica-
tion, such as correctness, completeness, consistency, traceability to their
origin, verifiability, unambiguity, etc.

Finally, an operational architecture according to the Architecture Data Model of
the Armed Forces, an adaption of the NATO architecture framework, version 3.1
(NATO), was developed. This architecture framework is based on SysML and ex-
tends the modeling capabilities with domain-specific extensions individually
adapted to the needs of defense projects. In the analysis phase part 1, the oper-
ational architecture contained mainly

• a capability view model with a high-level understanding of the organizational
capabilities with a description of the tasks and activities, operational ele-
ments, and information exchange,

• an operational view model that generally reflects requirements or operations
from a user’s perspective (scenarios), and

Selected Industrial Practices and
Cases

Copyright © Fraunhofer IESE 2016 / IPA/SEC2016 42

• a top-level glimpse at a systems view model with actual or proposed imple-
mentations and descriptions of systems, and the system context.

An integrated approach for RE and system modeling, which was specifically de-
veloped along with tool chain integration, ensured that the requirements model
and the system models were in sync. For example, the functional requirements
were translated into system functions mapped to the initial system components
defined in the systems view of the architecture model.

Additionally, a style guide helped to specify requirements in a good linguistic
style and gave advice on how to comply with the requirements definition proce-
dure and tools.

Analysis Phase part 2: In the second part of the analysis phase in the CPM
process, further functional and non-functional requirements were added. The
requirements model grew up to more than 10,000 requirements of different
types such as technical, logistics, product life cycle, project and risk management,
and quality management. A system structure was developed and all require-
ments were linked to the system structure on the one hand and to the functional
requirements model built in the first part of the analysis phase on the other hand
in order to ensure traceability.

The architecture model was extended by a system architecture according to the
Architecture Data Model of the Armed Forces. The systems view was extended
by a much more detailed structure view in synchronization with the system struc-
ture of the requirements model. Important system interconnections among sys-
tem components and between system components and the context were added.

In this phase, the integrated approach for RE and system modeling was further
developed to map technical requirements to the system components in the sys-
tem model and to keep them in sync during the analysis phase.

Production phase: With the beginning of the production phase according to
the CPM process, the requirements model and the system architecture were fur-
ther specified and detailed in negotiation with industry partners with the aim of
developing a system specification as a foundation for ordering the realization.
This phase is currently ongoing.

Both the directive regarding the definition of requirements and the directive re-
garding the model-driven design are highly integrated. In all models for require-
ments, operational architectures, and system architectures, the same functional
and non-functional requirements were specified and mapped to the appropriate
model elements to ensure traceability in all phases of the system life cycle. To

Selected Industrial Practices and
Cases

Copyright © Fraunhofer IESE 2016 / IPA/SEC2016 43

perform this efficiently, a customized tool chain was developed comprising re-
quirements management, system modeling, traceability and impact analysis, pri-
oritization of requirements, and communication and collaboration.

All tools were customized and extended with their integrated programming en-
gines or additional scripts to realize seamless interaction according to the defined
processes for RE and system modeling. Additionally, several operation manuals
were created and several tutorials were performed for the stakeholders to assist
each of the more than 100 stakeholders involved in the CPM processes of the
project in collecting the required data with the right tools and using the tools in
the right way for processing and forwarding the data to the next step in the
process.

5.2.3 Lessons Learned and Recommendations

Based on the lessons learned while collaborating with the customer in this pro-
ject, the following recommendations can be provided from the Fraunhofer IESE
point of view regarding the introduction and usage of RE methods and RE tools
in such kinds of industry projects.

• Requirements Elicitation: The selection of an appropriate requirements elici-
tation technique should depend on the factors influencing the project and
especially on the expected availability and skills of the required stakeholders.
These factors represent considerable risks that have to be addressed. The RE
primer in (SOPHIST, 2016) contains a selection matrix that provides very good
hints on which elicitation technique is best suited for which influencing fac-
tors.

• Requirements Analysis: The analysis process of refining the users’ needs and
constraints should be considered in the overall project plan. Refining users’
needs and constraints often leads to additional work, where the original
stakeholders have to be involved again and have to agree on suggested
changes. This process can often be supported very strongly with RE tools by
creating specific selections and viewpoints on the requirements that have to
be reworked. In the project described above, it was very valuable that the RE
tool used was highly configurable and could be extended with scripts to cre-
ate these specific selections and views.

• Requirements Validation: The process of ensuring completeness, correctness,
clearness, and consistency of requirements should be aligned with standard-
ized quality measures such as defined in the standard IEEE:830. This can be
significantly supported by using an RE tool that is able to define constraints
on individual attributes or can be extended by scripts or programs to check

Selected Industrial Practices and
Cases

Copyright © Fraunhofer IESE 2016 / IPA/SEC2016 44

individual project-/product-specific parameters automatically. Reworking re-
quirements when quality deficits are detected should always be foreseen in
the project schedule and the original stakeholders should be involved again
to resolve the issues.

• Requirements Specification: Documenting the users’ needs and constraints
clearly and precisely with all necessary attributes can largely be supported by
an RE tool. It should be possible to adjust or extend this tool with a scripting
engine to build up tool chains in order to provide comprehensive support for
all requirements engineering processes.

• Requirements Change Management: Defining project-/product-specific pro-
cesses related to the requirements engineering processes and using all avail-
able tools to support these processes (e.g., analysis tools, import/export tools,
modeling tools) is necessary to keep control of all data processed. A collabo-
ration tool specifically configured to support these processes helps to imple-
ment this and forces all stakeholders to follow the defined processes. One
additional specific finding of the large project described above was that im-
plementing a Change Control Board in the RE processes that checks and re-
leases intended changes on requirements while considering their impact on
other project/product artifacts, helps to avoid unintended changes in the re-
quirements database.

5.3 System Verification and Validation

The extensive use of software in technical devices in many embedded systems
domains has become the main driver for new innovations. The growing com-
plexity of the software-controlled parts increases the impact of software defects
on the quality properties of the integrated system. The effectiveness and effi-
ciency of system verification and validation processes play a crucial role in the
development of software and software-intensive systems in order to meet the
specified quality requirements and the customer needs.

Innovative model-based quality assurance techniques have been developed to
analyze, verify, and validate the different output artifacts of the development
activities, including requirements, design models, program code, and integrated
electronic control units. Recent trends aim at early quality assurance, such as
virtual validation techniques (Feth, Bauer, & Kuhn, 2015) and highly automated
verification and validation using mathematical models and appropriate tool
chains.

Selected Industrial Practices and
Cases

Copyright © Fraunhofer IESE 2016 / IPA/SEC2016 45

5.3.1 Example Approaches

The Integrated Quality Assurance (InQA) approach is a systematic method for the
combination of static and dynamic quality assurance techniques such as different
formal verification, review, and testing techniques (Elberzhager, Rosbach, &
Bauer, 2014). The combined techniques benefit from each other to exploit syn-
ergy effects, i.e., results from one applied quality assurance technique, such as
component coverage and defect distribution, is used to guide and fine-tune the
subsequent ones in order to improve the quality assurance process.

The InQA approach consists of three main steps: definition, calibration, and ap-
plication. In the definition step, the objective of the integrated application of the
quality assurance techniques and the context has to be defined, such as experi-
ence of the test engineers, available effort, or type and maturity of the software
being developed. The second step, calibration, is continuously applied to achieve
a valid and mature knowledge base for smart integration. First of all, the appro-
priate quality assurance techniques have to be selected, the order needs to be
defined, and the level (e.g., component or system level) of their application must
be determined. Then the data and the metrics that should be considered, such
as defect numbers, complexity of components, and effort numbers, have to be
defined. The third step, application, deals with the validation of assumptions and
the evaluation of how this knowledge can be used to exploit synergies during
quality assurance activities.

5.3.2 Practical Cases

The applicability and impact of the InQA approach for technical systems from the
transportation domains have been assessed in the large-scale European project
MBAT (Kläs, Bauer, Dereani, Söderqvist, & Helle, 2015). Within this evaluation
project, the InQA approach was tailored and adapted for the early quality assur-
ance of technical systems. The set of techniques comprised the verification and
validation of different system design artifacts by means of system simulation,
model-based quality assurance, i.e., techniques that work with specific mathe-
matical models for the verification of properties, such as models of the code
structure or system composition, and the derivation of functional test cases, such
as data flow or behavior models.

In the MBAT project, research partners, tool vendors, and industrial use case pro-
viders from 39 organizations and eight countries jointly investigated and devel-
oped quality assurance techniques and the corresponding tool platforms for
safety-related software-intensive systems from different transportation domains,
i.e., automotive, avionics, and rail systems. 13 industrial use cases from different
leading-edge companies like Daimler and Volvo were conducted and evaluated.

Selected Industrial Practices and
Cases

Copyright © Fraunhofer IESE 2016 / IPA/SEC2016 46

The use cases stated the context, settings, and problems that should be ad-
dressed by the technologies and provided the opportunity to get quantitative
feedback by conducting a corresponding case study. The addressed use cases
covered different steps of the system and software quality assurance processes
as well as different quality properties, such as functional correctness, time be-
havior, and compliance with standards, e.g. ISO 26262 (ISO, 2011) for passenger
cars, to evaluate the range of applicability of the techniques. For example, the
automotive use cases by Daimler (a light control subsystem of a passenger car)
and Volvo (a brake-by-wire subsystem) dealt with the verification and validation
of software design artifacts and program code.

In the evaluation, the relevant goals and assessment aspects of the industrial use
cases were determined and refined. The main goals comprised the verification
and validation costs, the defect costs, and the system quality. All use cases and
the underlying combined quality assurance approaches, including InQA, were
assessed regarding these goals in several iterations.

5.3.3 Lessons Learned and Recommendations

The costs for the application of verification and validation techniques could be
significantly reduced, by an average of 32% considering the data collected in the
13 case studies. The costs caused by remaining defects in subsequent develop-
ment stages could also be reduced by an average of 27%. The goals for the
system quality could not be aggregated like the cost items due to the variety of
the sub-goals assessed, such as test coverage and post-release defects. In the use
cases, all sub-criteria of this goal could be improved by at least 8%. The signifi-
cant improvement of the cost and quality aspects in all use cases are very prom-
ising for the future application of combined quality assurance approaches, in-
cluding InQA.

5.4 Systems Engineering Tool Chain Integration

In industrial practice, a series of method- and tool-related impediments compli-
cate systems engineering in general and model-based systems engineering in
particular.

First, there exists a broad heterogeneity of engineering methods, tools, and data
involved in the engineering platforms across the life cycle. Second, there is an
increasing need to bridge the gap between development platforms and opera-
tional ones, for instance in the context of safety-critical systems. By doing so,
human in-the-loop or virtual testing, heterogeneous co-simulation, or monitor-
ing and maintenance of large-scale distributed applications can improve the de-
velopment and decision-making processes in large developing organizations.
Third, the distributed and multi-tier nature of development teams in modern

Selected Industrial Practices and
Cases

Copyright © Fraunhofer IESE 2016 / IPA/SEC2016 47

large-scale organizations, spread over multiple countries and suppliers, is an is-
sue. The common denominator of these factors is the need to interoperate seam-
lessly in today’s (still fragmented) tool landscapes.

5.4.1 Example Approaches

Across the automotive, aerospace, rail, and health care domains, the CRYSTAL
(critical system engineering acceleration) project researched different approaches
with broad industry involvement to improve method and tool interoperability in
systems engineering. The project achieved valuable results, e.g., an overview of
typical engineering methods and tool chains in the different application domains,
clearly identified interoperability challenges, an Interoperability Specification
(IOS), improved tool interfaces and adapters, and findings related to sound sys-
tems engineering use cases (CRYSTAL, 2016).

The key idea promoted in the CRYSTAL project was to rely on standardized inte-
gration interfaces to support lifecycle interoperability with the aim of overcoming
redundant integration problems across the boundaries of engineering disciplines,
application domains, and tool providers.

Such standardized integration interfaces have to define lightweight and generic
concepts as a common denominator for all the artifacts used holistically through-
out the development cycle. In the context of lifecycle interoperability, the focus
is on the semantics of the links and dependencies among the artifacts crossing
the boundaries between the engineering disciplines.

The emerging open standard OSLC (Open Services for Lifecycle Collaboration)
was taken as a basis to tackle the interoperability problems (Open Services for
Lifecycle Collaboration, 2016). OSLC defines a set of specifications focusing on
the support of life cycle activities. In the meantime, the OSLC open initiative has
grown up from a “loosely coupled” web community to a member of the open
standard organization OASIS. Many commercial and open source products have
adopted the open standard and the number of participating organizations is con-
stantly growing.

Although OSLC is already an excellent basis for an interoperability specification,
some additional needs for interoperability were identified and the following ex-
tensions were proposed by the CRYSTAL project:

• OSLC Configuration and Change Management specification,

• OSLC Tracked Resource Set specification, allowing a server to expose an ex-
act set of resources, track additions to and removals from the set, and track
changes to the resources in the set.

Selected Industrial Practices and
Cases

Copyright © Fraunhofer IESE 2016 / IPA/SEC2016 48

With these specifications, OSLC is a promising approach to mitigate interopera-
bility challenges in systems engineering and has gained momentum in the tool
industry.

5.4.2 Practical Cases

The public use cases of the CRYSTAL project in the aerospace and automotive
domains provide good overviews of typical engineering methods, related in-
teroperability issues, and possible tool integrations. The aerospace case focuses
on the specification, analysis, design, and simulation of a regional aircraft de-
icing system. The process steps covered can be seen in Figure 14.

Figure 14: Process steps covered by the CRYSTAL public aerospace case (Source: Airbus Group)

The automotive case covers different stages in the development of a car – from
powertrain design on the vehicle level down to the development of microproces-
sors and software – and provides insights into the engineering settings of differ-
ent automotive companies. The case focuses on interoperability challenges aris-
ing throughout the entire V-model, including system analysis, variability or vari-
ant management, functional safety, and traceability. The covered stages and as-
pects can be found in Figure 15.

Selected Industrial Practices and
Cases

Copyright © Fraunhofer IESE 2016 / IPA/SEC2016 49

 Figure 15: Stages and aspects covered by the CRYSTAL public automotive case (Source: AVL)

The practice areas and tools included in the different use cases comprise the
following areas and cover a substantial amount of tool functionality typically used
in systems engineering settings:

• Advanced traceability: Reqtify, Rational SSE, RELM

• Model-based systems engineering: RequisitePro, IBM DOORS NG, Rhapsody,
Design Manager, PTC Integrity, Modeler

• Requirements quality analysis: Requirements Quality Suite

• Test management: TVS assureSign

• Safety analysis: Fault Tree+

• Simulation: Simulink, OpenModelica

• Variability management: pure::variants

• Process automation: Rational Method Composer, Rational Team Concert

With respect to the interoperability of the tool chains, engineers typically expect
the following:

• Semantic links are created across tool boundaries supporting uniform impact
and coverage analysis, reporting and metrics.

• Requirements are checked against quality characteristics and improvement is
guided.

• System design and functional safety are seamlessly integrated using shared
artifacts.

• Simulation models focusing on distinct system aspects can be coupled into a
holistic system simulation.

• Variability models manage explicit variation points in the various artifact types
and resolve the variabilities of different product variants.

Selected Industrial Practices and
Cases

Copyright © Fraunhofer IESE 2016 / IPA/SEC2016 50

• Workflow support is provided and ensures process compliance.

5.4.3 Lessons Learned and Recommendations

The experience in the use cases shows that tool interoperability can be improved
substantially based on OSLC, and has advanced significantly in recent years. An
increasing number of tool providers such as IBM, PTC, PureSystems, Siemens,
etc., are providing standardized interfaces to interoperate with other tools and
have shown compelling tool interoperation scenarios among tools from different
tool providers.

Besides these advances, certain complexities regarding the setup and mainte-
nance of the tool adapters and data also became apparent in the use cases. An-
other issue is link management. For the time being, OSLC does not really specify
where links should be managed and how – this is completely up to the developer
of the interfaces. Regarding the implementation of OSLC-based interfaces, it be-
came apparent that it is quite challenging to implement an OSLC interface for
an existing tool because the availability of the source code is a prerequisite.

A main lesson learned with regard to tool interoperability is that tool interoper-
ation still remains an issue to be investigated in detail on a tool-by-tool basis in a
concrete setting. The generalization of meta models and tool interfaces for the
typical interoperation scenarios is work in progress and it iss unclear whether this
will be achieved at all. Following a use-case-driven approach to improve tool in-
teroperation is a good practice to identify shortcomings and value-adding im-
provements in the tool chains in a systematic and measurable way. This can also
help to educate the engineers in new tooling capabilities.

Beyond tool interoperation, open data formats can also help to archive important
data without facing the challenge of having to reinstall complicated tool infra-
structures in order to access the data of past projects.

5.5 Virtual Engineering of Systems

Virtual engineering substitutes real artifacts with simulation models. Substituted
artifacts may be mechanical parts that are substituted by CAD models, hardware
platforms under development that are substituted by virtual platforms that im-
plement instruction set simulators, and software implementations that are sub-
stituted, e.g., by Simulink behavior models.

The main purpose of virtual engineering is to ensure important properties and
features of artifacts under development. Virtual prototypes are available much
earlier than real prototype implementations. Evaluating features with virtual pro-
totypes enables quantitative evaluations much earlier than if implementations/re-
alizations were to be used. This lowers risks when developing complex systems

Selected Industrial Practices and
Cases

Copyright © Fraunhofer IESE 2016 / IPA/SEC2016 51

and reduces the effort required for rework because defects or wrong specifica-
tions are detected early.

Since complex systems consist of a large number of different artifacts, it is chal-
lenging for developers to create simulations that include all relevant aspects. This
is, however, necessary in future designs to detect emergence effects, which hap-
pen due to the interactions of different parts of systems. One example for the
evaluation of emergence effects is the performance evaluation of car-to-car com-
munication, which depends on properties of the wireless networks used, driver
behavior, traffic models, and protocol behavior. Simulation tools are usually spe-
cialized and have a narrow focus. They only simulate selected effects. Simulation
of emergence effects is therefore hard to evaluate without integrating simulators
for all relevant parts of the system under development. In the last few years,
simulator coupling has been getting popular as a means to overcome this situa-
tion.

5.5.1 Example Approaches

Developing simulator couplings is difficult because the models of computation
and communication (MOCCs) of simulation models often differ. These need to
be integrated consistently (Kuhn, Forster, Braun, & Gotzhein, 2013).

An MOCC defines when a simulation model is executed and how it communi-
cates. Three common MOCCs are Discrete Time, Discrete Event, and Continuous
Time models. One common application in industry is the virtual evaluation of
Electrical/Electronic (E/E) architectures. E/E architectures consist of hardware con-
trol units that are connected by networks. Different networks are connected via
gateways. Tasks are deployed to electronic control units. Depending on the im-
plemented control algorithms, a task might be sensitive with respect to schedul-
ing and communication delays, or sensitive to communication and scheduling
jitter. The decision about whether one task is to be deployed on a specific pro-
cessor of a particular controller might therefore significantly affect the perfor-
mance of an algorithm. Furthermore, network communication and safety mech-
anisms can be evaluated using the virtual E/E architecture.

5.5.2 Practical Cases

The following application example is an anonymized result from an industry pro-
ject. The project was about the development of a safety mechanism for a re-
motely controlled lift that is attached to a truck. The lift should be controlled with
a smartphone, which is considered to be an unsafe device. The safeguarding
mechanism was to be implemented on a gateway hardware in the truck, while
the smartphone was treated as a simple sensor. The safety mechanism consisted
of a UI concept on the smartphone that ensured that the measured user inten-
sions were unambiguous, a communication protocol on the smartphone that

Selected Industrial Practices and
Cases

Copyright © Fraunhofer IESE 2016 / IPA/SEC2016 52

implemented a safe communication layer, the communication layer on the gate-
way device, and a logic that evaluated the received results. This logic needed to
ensure that the measured sensor inputs represented the user’s intensions, i.e.,
that no sensor defects were masking valid user inputs, that no transmission errors
occurred, and that no conflicting commands were received.

Figure 16: Application example for virtual evaluation

The virtual evaluation had to check that the gateway logic yielded safe system
behavior in all cases. This was implemented by defining a number of test cases
(scenarios) that yielded correct behavior, and by defining rules describing safe
system behavior. The simulation injects faults according to fault models, which
include, for example, bit flips in communication networks or stuck-at faults of
sensors. In all cases, the system must either yield the intended behavior of the
users or one of the predefined safe behaviors. In the case of the hydraulic lift,
this was a stop of all movements.

5.5.3 Lessons Learned and Recommendations

By using virtual engineering, it is possible to also develop revolutionary concepts
that are not an evolution of existing approaches, but rather realize new ideas.
Simulations enable developers to collect experience and to quantitatively evalu-
ate and compare the performance of different approaches. The ability to evalu-
ate critical aspects early and without risks in simulation in conjunction with the
increasing speed and accuracy of simulation models continuously increases the
importance and applicability of virtual engineering techniques.

In the near future, product complexity will significantly increase and system de-
velopment will become more multi-disciplined. As a consequence, the assembly
of large systems will become more difficult and cost-intensive.

Hardware-in-the-Loop testing is a common practice in industry today. However,
integration testing is performed at a very late project stage. The correction of
defects is therefore very costly, leads to complications and to unnecessary project
delays. Considering the increasing system complexity and architecture, integra-
tion testing should start as soon as possible in the development process. Virtual

Selected Industrial Practices and
Cases

Copyright © Fraunhofer IESE 2016 / IPA/SEC2016 53

Hardware-in-the-Loop testbeds, created by coupling existing simulators, should
be considered as an efficient approach.

Bibliography

Copyright © Fraunhofer IESE 2016 / IPA/SEC2016 54

Bibliography

acatech - National Academy of Science and Engineering. (2016, 9 23). Retrieved from
http://www.acatech.de

Achary, B., & Actis, M. (2013). Introducing the CTA confept. Astroparticle Physics, 43(3).

Bruner, J. (2013). Industrial Internet. O'Reilly Media, Inc.

Cavalcante, E., Pereira, J., Alves, M., Maia, P., Moura, R., Batista, T., . . . Pires, P. (2016). On the
interplay of Internet of Things and Cloud Computing: A systematic mapping study. Computer
Communications.

Conforto, E., Rossi, M., Rebentisch, E., Oehmen, J., & Pacenza, M. (2013). Survey Report:
Improving Integration of Program Management and Systems Engineering. Philadelphia: PMI and
INCOSE.

CRYSTAL. (2016). Retrieved from CRYSTAL - Critical System Engineering Acceleration:
http://www.crystal-artemis.eu

Ebert, C. (2014). Requirements Engineering - Industry Practice. Vector Consulting Services.
Retrieved 09 08, 2016, from
http://vector.com/portal/medien/vector_consulting/publications/Ebert_RequirementsEngineering_
Overview_EN.pdf

Elberzhager, F., Rosbach, A., & Bauer, T. (2014). An Integrated Analysis and Testing Methodology
to Support Model-Based Quality Assurance. Software quality days (SWQD 2014). Vienna:
Springer.

Elm, J. P., & Goldenson, D. R. (2012). The Business Case for Systems Engineering Study: Results
of the Systems Engineering Effectiveness Study. Carnegie Mellon University, Software
Engineering Institute, AESS, NDIA.

Estefan, J. A. (2007). Survey of Model-Based Systems Engineering (MBSE) Methodologies.
INCOSE MBSE Focus Group.

Federal Ministry for Economic Affairs and Energy. (2016, 9 23). Plattform Industrie 4.0. Retrieved
from http://www.plattform-i40.de

Feth, P., Bauer, T., & Kuhn, T. (2015). Virtual Validation of Cyber Physical Systems. Software
Engineering and Management 2015 (SE 2015) (pp. 201-206). Dresden: Springer.

Fricker, S., Grau, R., & Zwingli, A. (2014). Requirements Engineering: Best Practice. In S. A.
Fricker, C. Thümmler, & A. Gavras, Requirements Engineering for Digital Health (pp. 25-38).
Heidelberg, New York, Dordrecht, London: Springer.

Gausemeier, P.-I., Dumitrescu, R., Steffen, D., Czaja, A., Wiederkehr, O., & Tschirner, C. (2015).
Systems Engineering in industrial Practice. Heinz Nixdorf Institute, Fraunhofer Institute for
Production Technology, Unity AG.

Germany Federal Ministry of Defense. (2012). Customer Product Management (amended).
German Federal Ministry of Defense.

Hankel, M.; Bosch Rexroth. (2015). Industrie 4.0: The Reference Architectural Model Industrie 4.0
(RAMI 4.0). Frankfurt am Main, Germany: ZVEI - German Electrical and Electronic Manufacturers’
Association.

Heidrich, J., Trendowicz, A., & Ebert, C. (2016). Exploiting Big Data's Benefits. IEEE Software,
33(4), 111-116.

IBM. (n.d.). IBM Rational Harmony for Systems Engineering: The Harmony Process. IBM. Retrieved
09 22, 2016, from

Bibliography

Copyright © Fraunhofer IESE 2016 / IPA/SEC2016 55

http://www.ibm.com/support/knowledgecenter/SSB2MU_8.1.5/com.btc.tcatg.user.doc/topics/atg
reqcov_SecSysControllerHarmony.html

ISO. (2011). ISO 26262: Road vehicles – Functional safety. International Organization for
Standardization.

Jazdi, N. (2014). Cyber physical systems in the context of Industry 4.0. IEEE International
Conference on Automation, Quality and Testing, Robotics (pp. 1-4). IEEE.

Kagermann, H., Helbig, J., Hellinger, A., & Wahlster, W. (2013). Recommendations for
implementing the strategic initiative INDUSTRIE 4.0: Securing the future of German
manufacturing industry. Final report of the Industrie 4.0 Working Group, Forschungsunion.
Retrieved from
http://www.acatech.de/fileadmin/user_upload/Baumstruktur_nach_Website/Acatech/root/de/Mat
erial_fuer_Sonderseiten/Industrie_4.0/Final_report__Industrie_4.0_accessible.pdf

Kläs, M., Bauer, T., Dereani, A., Söderqvist, T., & Helle, P. (2015). A Large-Scale Technology
Evaluation Study: Effects of Model-Based Analysis and Testing. 37th International Conference on
Software Engineering (ICSE 2015) (pp. 119-128). Stockholm: IEEE Computer Society.

Kuhn, T., & Antonino, P. (2014). Model Driven Development of Embedded Systems. Embedded
Software Engineering Kongress (ESE).

Kuhn, T., Forster, T., Braun, T., & Gotzhein, R. (2013). FERAL – Framework for Simulator
Coupling on Requirements and Architecture Level. ACM-IEEE International Conference on Formal
Methods and Models for System Design. Portland, USA.

Lee, J., Lapira, E., Bagheri, B., & Kao, H. (2013). Recent advances and trends in predictive
manufacturing systems in big data environment. Manufacturing Letters, 1(1), 38-41.

Mell, P., & Grance, T. (211). The NIST Definition of Cloud Computing. Gaithersburg, Maryland,
USA: National Institute of Standards and Technology.

Minerva, R., Biru, A., & Rotondi, D. (2015). Towards a definition of the Internet of Things (IoT).
IEEE Internet Initiative.

Naab, M., Knodel, J., Kuhn, T., & Rost, D. (2016). Smart Ecosystems Reference Model. Fraunhofer
IESE.

NATO. (n.d.). NATO Architecture Framework RFCP Regarding NAF V3.1 Chapter 5: NATO
Architecture Framework Metamodel (NMM) and Architecture Data Exchange Specification
(ADES). Retrieved from http://www.nhqc3s.nato.int/ARCHITECTURE

Open Services for Lifecycle Collaboration. (2016). Retrieved from http://open-services.net

Oya, I., Füßling, M., Oliveira Antonino, P., Conforti, V., Hagge, L., Melkumyan, D., . . . the CTA
consortium. (2016). The Software Architecture for the Cherenkov Telescope Array. SPIE -
International Society for Optics and Photonics Conference and Exhibition 2016. 9913. Edinburgh,
Scotland, UK: Software and Cyberinfrastructure for Astronomy III.

Pisching, M., Junqueira, F., dos Santos Filho, D., & Miyagi, P. (2015). AN ARCHITECTURE FOR
ORGANIZING AND LOCATING SERVICES TO THE INDUSTRY 4.0. ABCM International Congress of
Mechanical Engineering. Rio de Janeiro, Brazil.

Pohl, K., Achatz, R., & Broy, M. (2012). Model-Based Engineering of Embedded Systems- The
SPES 2020 Methodology. Springer.

Software Engineering Institute, Carnegie Mellon. (n.d.). A Framework for Software Product Line
Practice - Requirements Engineering. Retrieved 09 08, 2016, from
http://www.sei.cmu.edu/productlines/frame_report/req_eng.htm

SOPHIST. (2016). RE Primer. Retrieved 09 21, 2016, from
https://www.sophist.de/publikationen/wissen-for-free/

Sophist. (n.d.). FAQ Requirements Engineering. Retrieved 09 08, 2016, from
https://www.sophist.de/en/requirements/requirements-engineering/faq-requirements-
engineering/

Bibliography

Copyright © Fraunhofer IESE 2016 / IPA/SEC2016 56

SwissQ, & Gallen, U. o. (2014). Trends & Benchmarks Report in Software Development. Zürich:
SwissQ Consulting AG. Retrieved 09 08, 2016, from http://swissq.it/wp-
content/uploads/2016/02/Agile_RE_Testing-Trends_und_Benchmarks2014.pdf

Teufl, S., Khalil, M., & Mou, D. (2013). Requirements for a Model-based Requirements:
Systematic Literature Review and Survey. Munich: fortiss GmbH. Retrieved 09 08, 2016, from
http://download.fortiss.org/public/projects/af3/research/2013/MbRE_tool_requirements_for_embe
dded_systems.pdf

The Standish Group. (2014). CHAOS Report. The Standish Group.

Wang, H., Osen, O., Li, G., Li, W., Dai, H., & Zeng, W. (2015). Big data and industrial internet of
things for the maritime industry in northwestern norway. IEEE Region 10 Conference TENCON
(pp. 1-5). IEEE.

Webel, C., Darting, S., Schmitt, M., Kleinberger, T., Braun, R., & Weber, J. (2015). Pragmatisches
Systems Engineering in einem Großprojekt mit Einschränkungen. Tag des Systems Engineering
2015 (pp. 323-332). Munich: Carl Hanser Verlag GmbH & Co. KG.

Document Information

Title: WP2/D2.1: Systems Engi-
neering Study: Challenges
and Best Practices

Date: October 12, 2016
Status: Final Reviewed 2

Copyright 2016 Fraunhofer IESE / IPA/SEC2016.
All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted,
in any form or by any means including, without limitation,
photocopying, recording, or otherwise, without the prior
written permission of the publisher. Written permission
is not needed if this publication is distributed for non-
commercial purposes.

