

March 2010

How to Secure Your Web Site
S u p p l e m e n t a r y V o l u m e

How to Use

SQL Calls to Secure

Your Web Site

 IT SECURITY CENTER (ISEC)

INFORMATION-TECHNOLOGY PROMOTION AGENCY, JAPAN

This guideline is available for download at:

How to Use SQL Calls to Secure Your Web Site

http://www.ipa.go.jp/security/vuln/websecurity.html

http://www.ipa.go.jp/security/vuln/websecurity.html

Contents

Contents ... 2

Preface ... 3

1. Introduction .. 4

2. Literals and SQL Injection ... 5

2.1. Structure of SQL Statement ... 5

2.2. Literals .. 5

2.3. Escaping of String Literals ... 6

2.4. Numeric Literals ... 6

2.5. Causes of SQL Injection .. 7

2.5.1. SQL Injection against String Literals ... 7

2.5.2. SQL Injection against Numeric Literals ... 8

2.5.3. Requirements to Securely Call SQL Procedure .. 8

3. How to Call SQL Procedure .. 10

3.1. Building SQL Statement by String Concatenation ... 10

3.2. Building SQL Statement using Placeholder... 10

3.2.1. Static Placeholder ... 11

3.2.2. Dynamic Placeholder ... 12

3.3. Chapter Summary .. 13

4. Building SQL Statement Appropriately to Database Engine .. 14

4.1. Using the quote Method for Concatenation ... 14

4.2. Dynamic Placeholder and Database Engine ... 15

5. DBMS Study .. 18

5.1. Study Purpose ... 18

5.2. Java + Oracle ... 18

5.2.1. Sample Code ... 19

5.3. PHP + PostgreSQL .. 20

5.3.1. Sample Code ... 21

5.4. Perl + MySQL... 23

5.4.1. Implementation of Placeholder .. 23

5.4.2. Metacharacters to Be Escaped ... 23

5.4.3. Numeric Literals with the quote Method .. 23

5.4.4. Character Encoding ... 24

5.4.5. Sample Code ... 25

5.5. Java + MySQL ... 27

5.5.1. Implementation of Placeholder .. 27

5.5.2. Metacharacters to Be Escaped ... 27

5.5.3. Character Encoding ... 27

5.5.4. Sample Code ... 28

5.6. ASP.NET + Microsoft SQL Server ... 29

5.6.1. Sample Code ... 30

5.7. Summary .. 32

Appendix A. Technical Information .. 33

A.1. Escaping of Backslash ... 33

A.2. SQL Injection Risk with Shift_JIS .. 34

A.3. SQL Injection Risk with Unicode .. 35

A.4. Creating Oracle Database with Unicode ... 37

A.5. Microsoft SQL Server and Character Encoding .. 38

Preface

3

Preface

Since 2005, security incidents, such as information leak and web site alteration, have become frequent.

Among the nine vulnerabilities discussed in the How to Secure Your Web Site, SQL injection is the one that

needs a special attention and must be dealt with immediately considering the large impact and serious

damage it could cause.

In addition, the use of open source software became active in the last few years in the field of the web

application development. Some of those software, however, are being used without enough security

verification. Depending on the programming language and type of database engine, software may be

exploited by attackers through vulnerability in software-specific specifications or character encoding errors

even if software is implemented with standard SQL injection countermeasures.

IPA pointed out the importance of implementing the countermeasures against SQL injection in the How

to Secure Your Web Site and has been strongly recommending the use of the bind mechanism as a

fundamental solution. Depending on software, however, some cases suggest that the bind mechanism itself

may have a vulnerability. In addition, although some books and articles introduce the method of escaping

instead of the use of the bind mechanism as a countermeasure against SQL injection, escaping may not be

enough to build secure SQL statements depending on the type or configuration of database engines.

This guideline examines the requirements to securely use the bind mechanism and escaping method, and

presents some examples of how to use which DBMS products to build and implement secure SQL

statements.

IPA hopes that this guideline will help you secure your web site from SQL injection.

1. Introduction

4

1. Introduction

The version four of the How to Secure Your Web Site introduces the countermeasures against SQL

injection as follows.

A fundamental solution for SQL injection is to use the bind mechanism. If it isn‟t an option for some

reason, escaping can be used instead. As mentioned above, however, the metacharacters that have a special

meaning to SQL statements differ depending on database engines and you should escape them appropriate

to your system environment. The How to Secure Your Web Site does not give a detailed explanation on

how to do it.

This supplementary volume gives that. It explains the necessity of the countermeasures appropriate to

database engine and shows the research results of whether the suggested countermeasures work correctly as

expected with the DBMS products, as well as the impact the character encoding has on SQL injection.

Based on these analyses, how to use what DBMS products to build and implement secure SQL statements

is clarified.

In the next chapter, the literals, one of the potential causes of SQL injection, will be explained.

■ Fundamental Solutions

1)-2 If binding mechanism is not supported, perform escaping for everything that makes up

SQL statements

What does it mean?

This is a secondary solution that should be applied if binding mechanism suggested in 1)-1

is not available for use.

You should perform escaping for everything that makes up SQL statements, from user input

and database values to every single variable and arithmetic operation outcomes. You should

escape the characters that have a special meaning to SQL statements. For example, replace

„ (single quote) with „ „ (two single quotes) and \ (backslash) with \\ (two backslashes) .

You need to escape the SQL special characters appropriate for database engine you use

since they differ for each database engine.

How to Secure Your Web Site, 4
th

 Version, p5-7

SQL injection allows an attacker to manipulate the database with maliciously-crafted

requests.

SQL Injection

Supply input that
would result in building
a malicious command

Send the command

Web application vulnerable to
SQL injection

Malicious
Attacker

Web Site

Database

Modification

Information
Leak

Deletion

2. Literals and SQL Injection

5

2. Literals and SQL Injection

2.1. Structure of SQL Statement

The structure of an SQL statement is explained using the following example.

An SQL statement is composed by the elements such as key words, operators, identifiers and literals.

Key Words (Reserved） SELECT FROM WHERE AND

Operators = >= ,

Identifiers a b c atable name age

Literals 'YAMADA' 20

2.2. Literals

For example, to search an employee that has an “employee ID” of “052312”, you can execute the

following SQL statement.

Here, a constant like “052312” in the SQL statement is called literals and if it is a string, it‟s especially

called string literals. Besides string literals, there are also numeric literals, boolean literals and date and

time literals.

【Examples of Numeric Literals】

20

-17

0

3.14159

6.0221415E+23

SELECT name, age FROM employee WHERE employee_id = '052312'

SELECT a,b,c FROM atable WHERE name='YAMADA' and age>=20

SQL

SQL

SQL

2. Literals and SQL Injection

6

【Examples of String Literals】

【Examples of Date and Time Literals】

2.3. Escaping of String Literals

When writing string literals or data and time literals, you bracket the literals in single quotes. It is called

“quoting”. A problem arises when a single quote appears in a string to be quoted because the program needs

to distinguish whether it is a character and part of a literal or the metacharacter that suggests the end of the

literal.

For example, if you build a SQL statement like the following to search a person named “O‟Reilly”, it

results in syntax error.

It is because the program interprets the string literal ends at the second single quote „O‟ and the

following Reilly‟ part spills out of the literal. SQL syntax suggests if a single quote appears in a string

literal, mark a single quote with another single quote to tell the program that it is a character and part of the

string literal. The example above should have been written like the following. This processing is called

“escaping” of string literals.

Note that the single quote is not the only metacharacter that needs to be escaped. What should be escaped

differs depending on the type and configuration of database engines. The details are given in the chapter

4.1.

2.4. Numeric Literals

Numeric literals do not need to be quoted. The syntax for integer literals, which are part of numeric

SELECT * FROM employee WHERE name = 'O''Reilly'

SELECT * FROM employee WHERE name = 'O'Reilly'

DATE '2009-11-04'

TIME '13:59:26'

'Information-technology Promoting Agency'

'052312'

'O''Reilly'

SQL

SQL

SQL

SQL

2. Literals and SQL Injection

7

literals, is as follows.

Integer ← sign unsigned-integer or unsigned-integer

Sign ← the plus sign (+) or minus sign (-)

Unsigned-Integer ← more than one digit

Digit ← 0 - 9

As described above, an integer literal starts with a sign or digit and ends with the character before the

first non-digit character. Note that SQL JIS/ISO standard (JIS X 3005、ISO/IEC 9075) defines that the

numeric literal must be followed by a symbol, space or comment.

The following SQL statement is evaluated as JIS/ISO-compliant.

On the other hand, the next SQL statement violates the JIS/ISO rule.

There needs to be a space or comment between 25 and and. Some database engine implementation

(Microsoft SQL Server and PostgreSQL), however, accepts such SQL statement.

Since numeric literals do not need to be quoted, you do not have to do escaping like string literals.

2.5. Causes of SQL Injection

When calling SQL procedures with applications, it is common to use a parameter to substitute for the

literal part of an SQL statement. If a literal is not built grammatically correctly when the literal is replaced

with the parameter value, part of the parameter value will be cut off from the literal and interpreted as

another SQL statement which follows the literal. This is how SQL injection occurs.

2.5.1. SQL Injection against String Literals

The following SQL statement written in Perl shows an example of how SQL injection takes place. The

id is an SQL identifier and is a string type. The $id is a Perl variable and its value is given externally.

Let‟s suppose that the following value is given to the $id.

';DELETE FROM atable--

$q = "SELECT * FROM atable WHERE id='$id'";

SELECT * FROM employee WHERE age >= 25and age <= 60

SELECT * FROM employee WHERE age >= 25--comment

SQL

SQL

Perl

Txt

2. Literals and SQL Injection

8

With the insertion, the resulting SQL statement will become as follows.

As you can see, a DELETE statement is added after the SELECT statement and all the database contents

will be deleted upon execution. The hyphens (--) and the input after them are ignored as comments.

Like the example above, when using a parameter to substitute for the literal part of an SQL statement,

attackers could change what the SQL statement is supposed to do by inserting another SQL statement. This

vulnerability is called SQL injection.

2.5.2. SQL Injection against Numeric Literals

With numeric literals, caution is required when the application is implemented with a programming

language that does not provide parameter types, such as Perl and PHP. The application developers write a

application with the premise that only numeric value is inputted for the numeric parameters, but the

application will process the input value as string when non-numeric value is entered if the programming

language does not provide parameter types.

Let‟s see an example. It is the same statement shown in 2.5.1 but here the id is a numeric type. $id does

not need to be quoted since it is a numeric literal

Assume that the SQL process above is called and the following value is given to the $id.

With the insertion, the resulting SQL statement will become as follows.

Once again, a DELETE statement is added after the SELECT statement and all the database contents will

be deleted upon execution.

2.5.3. Requirements to Securely Call SQL Procedure

As seen in the examples, it is necessary to replace the literals with the parameter values properly and

securely to call SQL processes safely. To do that, make sure the following.

・ For string literals, escape the characters that should be escaped

SELECT * FROM atable WHERE id=0;DELETE FROM atable

0;DELETE FROM atable

$q = "SELECT * FROM atable WHERE id=$id";

SELECT * FROM atable WHERE id='';DELETE FROM atable--'

SQL

Perl

SQL

Txt

2. Literals and SQL Injection

9

・ For numeric literals, make sure that non-numeric value is not inserted as their value

The next chapter will classify the methods to call SQL procedure from applications in three types and

show how literals are processed in each method.

3. How to Call SQL Procedure

10

3. How to Call SQL Procedure

When calling an SQL procedure with applications, it is common to use parameters to specify the search

conditions. If the identifiers represent the employee name or employee ID like the examples in the previous

chapter, the application needs to pass a name or employee ID of the person you wants to find to SQL. It is

done in two main ways.

・ Building an SQL statement by string concatenation

・ Building an SQL statement using a placeholder

3.1. Building SQL Statement by String

Concatenation

String concatenation is a method to insert a parameter values and build an SQL statement by joining two

character strings end to end. The below is an example of the SQL statement written in PHP to search an

employee whose name is specified in the CGI parameter name. Note that this example program is

vulnerable to SQL injection.

If the given value for the PHP variable $name is YAMADA, the following SQL statement will be built upon

insertion.

To eliminate the SQL injection vulnerability, you need to perform escaping on the value of $name when

quoting and concatenating $name. The metacharacters that need to be escaped differ depending on the type

and configuration of database engines.

3.2. Building SQL Statement using Placeholder

Placeholder is a method to insert a parameter value and build an SQL statement by marking a place

where a parameter value is later inserted with some symbol, such as ?, and mechanically replacing it with

the actual parameter value later on. The below is an example written in Java.

SELECT * FROM employee WHERE name='YAMADA'

$name = $_POST['name'];

//...

$sql = "SELECT * FROM employee WHERE name='" . $name . "'";

SQL

PHP

3. How to Call SQL Procedure

11

The symbol of ? here that marks the parameter part in the statement is called a placeholder and replacing

it with the actual input value is called “binding”. The placeholder is also called the bind variable.

The method of building an SQL statement using a placeholder is classified into two types depending on

the timing of when to perform biding.

・ Static placeholder

・ Dynamic placeholder

3.2.1. Static Placeholder

In the JIS/ISO standard, the static placeholder is defined as prepared statement. It is a method where an

SQL statement containing a placeholder is sent to the database engine in advance and prepared for syntax

analysis before execution. When executing the SQL statement, the actual parameter value is sent to the

database engine and the database engine performs binding.

Applications repeatedly execute the same SQL statements with different values. Therefore, preparing for

syntax analysis in advance will improve the execution efficiency. The static placeholder, however, may not

be supported by some database engines and libraries.

With the method using the static placeholder, the strings that are to be passed to the placeholder do not

need to be quoted because the syntax of the SQL statement is fixed before binding. In turn, escaping on

single quotes is unnecessary. Numeric literals are properly bound without intervention as well.

PreparedStatement prep = conn.prepareStatement("SELECT * FROM employee WHERE name=?");

prep.setString(1, "YAMADA");

Java

3. How to Call SQL Procedure

12

From these reasons, it can say that using the static placeholder is the most secure. With this method, the

syntax of the SQL statement is fixed when preparing the statement and does not change later, the parameter

value will not spill out of the expected literal. As a result, the method is free of SQL injection vulnerability.

3.2.2. Dynamic Placeholder

The dynamic placeholder is different from prepared statements. Although the dynamic placeholder uses a

placeholder, this method performs parameter binding on the application side using libraries instead of on

the database engine side.

As shown in the figure above, an SQL statement is sent to the database engine after parameter binding

every time an SQL procedure is called. For that, the execution efficiency is lower than the static

placeholder method. Yet some of the database engines offer the dynamic placeholder feature instead of the

static placeholder feature. Sometimes the dynamic placeholder feature is called client-side prepared

statements but remember that they are different from so-called prepared statements defined by JIS/ISO.

From security perspective, because insertion of the parameter values is done through binding using a

placeholder mechanically by the library, it is expected that escaping errors by application developers are

prevented more effectively compared to building the SQL statement through string concatenation.

The dynamic placeholder, however, is different from the static placeholder and there is a possibility that

some libraries - the very mechanism that performs binding - may have a vulnerability and enables SQL

injection attacks.

3. How to Call SQL Procedure

13

3.3. Chapter Summary

The methods of calling SQL procedure discussed in this chapter are summarized below.

The method of using the static placeholder is free of SQL injection vulnerability because the syntax of

the SQL statement is fixed when preparing the statement and does not change later.

On the other hand, with the method of using the dynamic placeholder, there is a possibility that some

libraries - the very mechanism that performs binding - may have a vulnerability and enables SQL injection

attacks.

The method of building a statement by string concatenation has a risk of escaping errors by application

developers. It is a challenge since the metacharacters that need to be escaped differ depending on the type

and configuration of database engines and it is difficult to develop each application accordingly and

appropriately to them.

In the next chapter, we closely look into the problems the string concatenation method and dynamic

placeholder method would present.

The method of calling

SQL procedure

By string concatenation

By using placeholder

Static placeholder

Dynamic placeholder

4. Building SQL Statements Appropriately with Database Engine

14

4. Building SQL Statement

Appropriately to Database Engine

In this chapter we look into what we should do to safely call SQL procedure by string concatenation or

using the dynamic placeholder.

4.1. Using the quote Method for Concatenation

To safely call SQL procedure through building an SQL statement by string concatenation, you must

satisfy the following requirements.

・ For string literals, escape the characters that should be escaped

・ For numeric literals, make sure that non-numeric value is not inserted as their value

As Appendix A.1 shows, however, the metacharacters that need to be escaped when generating string

literals differ depending on the type of database engine and sometimes on its configuration as well. If you

do not implement the escaping process accordingly and appropriately to the database engine in use, you

may jeopardize your system with the risk of SQL injection vulnerability.

Since implementing the escaping process can be troublesome, some programming languages and

database engines provide a special method or function to generate SQL literals as strings.

The quote method offered by Perl DBI, PHP Pear::MDB2 and PDO (PHP Data Objects) is a versatile

method dedicated to generate SQL literals and application developers can use it to implement the escaping

process properly without regard to the type and configuration of database engines.

【Calling the quote Method with PHP Pear::MDB2】

As shown above, specify the type of literal to be generated in the second parameter of the quote method.

require_once 'MDB2.php';//Load libraries

// Connect to DB (in the case of PostgreSQL)

$db = MDB2::connect('pgsql://dbuser:password@hostname/dbname?charset=utf8');

// Specify the string type and get a quoted string for the string literal

(snip) $db->quote($s, 'text') (snip)

// Specify the numeric type and get a string for the numeric literal

(snip) $db->quote($n, 'decimal') (snip)

PHP

4. Building SQL Statements Appropriately with Database Engine

15

If the character string type is specified as 'text', the method executes the escaping process accordingly

and appropriately to the type and configuration of the database engine in use and returns a single-quoted

string. If a numeric type such as 'decimal' is specified, it returns a string appropriate as a numeric

literal.

The table below shows the examples of the return values when some data are given to the quote method

of PHP Pear::MDB2.

Input Data Type Return Value

abc 'text' 'abc' (PHP character string-typed value, incl. quotes)

O'Reilly 'text' 'O''Reilly' (PHP character string-typed value, incl. quotes)

-123 'decimal' -123 (PHP character string-typed value)

123abc 'decimal' 123 (PHP character string-typed value)

-123 'integer' -123 (PHP integer-typed value)

123abc 'integer' 123 (PHP integer-typed value)

These are the literals generated from the correct escaping process
1
. By using this method, you can

prevent SQL syntax errors and in turn, SQL injection vulnerability.

However, according to IPA‟s study, the quote method may fail to return the correct, expected value

depending on the combination between the programming language and the database engine. We will look

into this problem in Chapter 5.

4.2. Dynamic Placeholder and Database Engine

The dynamic placeholder method executes string concatenation mechanically by using the libraries or

drivers instead of by applications. First, we see how an SQL statement is built using the dynamic

placeholder.

One example that is implemented with the dynamic placeholder method is the DBD::mysql module of

Perl DBI. With the placeholder feature provided by the DBD::mysql module, you can explicitly specify

whether you want to use the dynamic placeholder or static placeholder as an option when connecting to the

database.

1
 For PHP’s Pear::MDB2, when you specify 'integer' as a type with the quote method, the return value is not a

character string but a PHP integer-typed value. The value is later converted into a character string when
concatenated as a part of the SQL statement.

4. Building SQL Statements Appropriately with Database Engine

16

In this example, the dynamic placeholder is specified with the option mysql_server_prepare=0.

The SQL statement built from the above program is as follows.

With the same program, if the value O'reilly and \100 are given to the name identifier, then the

resulting SQL statements are as follows.

Since the default settings of MySQL define that ' and \ are to be escaped, the results become just as

seen above. If you set the NO_BACKSLASH_ESCAPES option in MySQL, then the program performs escaping

just on ' as defined by the JIS/ISO standard (see Appendix A.1). In this case, the resulting SQL statement

will become as follows.

Like this, the DBD::mysql module performs escaping accordingly and appropriately depending on the

MySQL settings.

Next, we see what will happen when giving a non-numeric value to the first placeholder. When 1 or 1=1

is inputted, the following will occur.

【SQL Statement Generated】

SELECT * FROM aTable where age >= 1 and name = 'Yamamoto'

SELECT * FROM test3 where age >= 27 and name = 'O''reilly'

SELECT * FROM test3 where age >= 27 and name = '\100'

SELECT * FROM test3 where age >= 27 and name = 'O\'reilly'

SELECT * FROM test3 where age >= 27 and name = '\\100'

SELECT * FROM test3 where age >= 27 and name = 'YAMAMOTO'

my $db = DBI->connect("DBI:mysql:$dbname:$host;mysql_server_prepare=0",

$user, $pwd) || die $DBI::errstr;

my $sql = "SELECT * FROM test3 where age >= ? and name = ?";

my $sth = $db->prepare($sql);

$sth->bind_param(1, 27, SQL_INTEGER);

$sth->bind_param(2, 'YAMAMOTO', SQL_VARCHAR);

my $rt = $sth->execute();

Perl

SQL

SQL

SQL

SQL

4. Building SQL Statements Appropriately with Database Engine

17

【Error Message】

Because the error message says failed, it looks as if the SQL statement was not executed. But it indeed

was executed. In this case, the character string 1 or 1=1 was converted into a digit (1) and bound to the

first placeholder, and then the statement was executed. Since the string had been converted into a numeric

value, an SQL injection attempt was prevented.

In Chapter 5, we will look into whether the processing related to the dynamic placeholder behaves

correctly and expectedly with some combination between the programming language and database engine.

DBD::mysql::st bind_param failed: Binding non-numeric field 1, value '1 or 1=1' as

a numeric! at C:\・・・file name・・・ line 23.

Txt

5. DBMS Study

18

5. DBMS Study

5.1. Study Purpose

Based on what we presented in the previous chapters, we studied and clarified the following points for

the combinations between some programming languages and database engines often used to develop web

applications.

・ Whether implementation of the placeholder is static (prepared statement) or dynamic

・ Whether the escaping process with the dynamic placeholder is correctly and expectedly done or not

・ Whether the quote method is correctly and expectedly done or not

・ What character encoding can be used

5.2. Java + Oracle

When calling Oracle stored procedure from Java, it is common to use JDBC, and there are some JDBC

implementations for Oracle. In this study, IPA picked up ojdbc6.jar provided by Oracle Corporation and

used the character encoding for the database as UTF-8 (see Appendix A.4).

【Study Results】

Study Item Results

Placeholder Implementation Static placeholder only

Escaping Process

with Dynamic Placeholder

N/A (the dynamic placeholder feature not provided)

The quote Method N/A (the quote method not provided)

Character Encoding Use UTF-8 when connecting to the database

Since only the static placeholder is used with the Java + Oracle + ojdbc6.jar combination, you do not

have to do anything special as long as you use the JAVA PreparedStatement interface.

Because Java does not provide a library that is equivalent to the quote method and therefore you cannot

perform escaping accordingly and appropriately to the type and configuration of database engines

automatically, it is not recommended using string concatenation to build SQL statements.

5. DBMS Study

19

5.2.1. Sample Code

import java.sql.*;

public class OraclePrepared {

 public static void main(String[] args) {

 String url = "jdbc:oracle:thin:@SERVERNAME:1521:ORCL";

 try {

 // Load JDBC driver

 Class.forName("oracle.jdbc.OracleDriver");

 // Connect to the database

 db = DriverManager.getConnection(url, userName, password);

 String param =

 String sql = "SELECT * FROM atable WHERE name=?";

 PreparedStatement stmt = con.prepareStatement(sql);

 stmt.setString(1, param); // Replace ? with the value

 ResultSet rs = stmt.executeQuery();

 while(rs.next()){

 int id = rs.getInt("id");

 String name = rs.getString("name");

 String address = rs.getString("address");

 String comment = rs.getString("comment");

 System.out.printf("id = %d name = %s address = %s comment = %s\n",

 id, name, address, comment);

 }

 rs.close();

 stmt.close();

 con.close();

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

}

Java

5. DBMS Study

20

5.3. PHP + PostgreSQL

There are various libraries that can call PostgreSQL procedure from PHP. IPA picked up PEAR::MDB2

based on the points below.

・ Other than PostgreSQL, MDB2 provides versatile interface capability for calling SQL procedure to

multiple DBMSs, such as MySQL, and Oracle.

・ MDB2 still keeps being developed while other modules that offer the same capability, such as

Pear::DB and Pear::MDB, will be no longer modified and updated.

・ MDB2 gives consideration to character coding issues.

・ The static placeholder is available with MDB2.

・ MDB2 gives consideration to the data types when quoting and binding the values into the

placeholders.

The study results are presented below.

【Study Results】

Study Item Result

Placeholder Implementation Static placeholder only

Escaping Process

with Dynamic Placeholder

N/A (the dynamic placeholder feature not provided)

The quote Method

(string literal generation)

Correctly done

The quote Method

(numeric literal generation)

Correctly done

Character Encoding Enable to specify when connecting to the database

Since only the static placeholder is used with the PHP + MDB2 + PostgreSQL combination, you do not

have to do anything special as long as you use the placeholder.

You can use the quote method instead of the placeholders. The quote method in this combination

generates both string literals and numeric literals correctly.

5. DBMS Study

21

5.3.1. Sample Code

A sample SQL call program using MDB2 is shown below.

【Points When Connecting to the Database】

1. Specifying character encoding

Specify the character encoding to communicate with PostgreSQL as UTF-8.

In PHP, you can specify the character encoding to be used in the program in the configuration file

php.ini. If you specify the character encoding as Shift_JIS, the code of 5C, which may appear in the

second byte for Shift_JIS, is interpret as \ and exploited in SQL injection attacks. For that reason,

IPA recommend using UTF-8 or EUC-JP. IPA also suggests setting the same character encoding for

both the PHP program and the database.

2. Specifying type of placeholder

You can specify the type of the placeholder. If not specified, the database considers it as varchar

charset=utf8

<?php

require_once 'MDB2.php';//Load libraries

$db = MDB2::connect('pgsql://username:password@hostname/dbname' .

'?charset=utf8');

if(PEAR::isError($db)) {

 //Error processing

}

$stmt = $db->prepare('SELECT * FROM atable WHERE name=? and num=?',

 array('text', 'integer'), array('text', 'text', 'integer'));

$rs = $stmt->execute(array($name, $num)); //String-typed and integer-typed variables

if(PEAR::isError($rs)) {

 //Error processing

}

//Display search results

while($row = $rs->fetchRow()) {

 printf("%s:%s:%s\n", $row[0], $row[1], $row[2]);

}

PHP

Txt

5. DBMS Study

22

(the type to store variable length character strings) and an implicit type conversion from the string

type to the actual type will take place when executing the SQL statement. This may cause

unexpected errors or performance degradation.

In the example above, those specified in the second parameter are the type of the placeholders. The

third parameter specifies the type of the return values and is optional.

【Escaping When Placeholder Is Unavailable】

If the placeholder is unavailable for use for some reason, you can use the quote method and successfully

perform escaping that is appropriate to the data types and configuration of the database engine.

In PostgreSQL, the backslash \ is processed as one of the metacharacters that need to be escaped with

the standard settings, but if you enable standard_conforming_strings (making it on), the backslash is no

longer considered as a metacharacter (see Appendix A.1). Thus, escaping must be done accordingly to the

content of the standard_conforming_strings setting. The quote method in MDB2 does it automatically.

In addition, you can specify the data type with the quote method in MDB2.

$db->quote ('10', 'integer') returns a PHP integer-typed value of 10 that is to be interpreted as an

SQL numeric literal of 10, and is later converted to a PHP character string of 10 when string concatenation

occurs. Likewise, $db->quote ('10', 'text') returns a PHP character string of 10 that is to be

interpreted appropriately as an SQL string literal later. By using this function, escaping that is appropriate

to the data type will be achieved.

$sql = 'SELECT * FROM atable WHERE name=' . $db->quote($name, 'text') . ' and num=' .

$db->quote($num, 'integer');

$stmt = $db->prepare('SELECT * FROM atable WHERE name=? and num=?',

 array('text', 'integer'), array('text', 'text', 'integer'));

PHP

PHP

5. DBMS Study

23

5.4. Perl + MySQL

When calling SQL procedure from Perl, it is common to use a DBI module. The DBI modules provide a

versatile interface capability for calling SQL procedure and there is a DBI module appropriate for each

DBMS.

When calling SQL procedure using a DBI module, you can use the placeholder with the prepare method,

and the quote method is also available.

The study results of the combination of PerlDBI and DBD::MySQL are presented below.

【Study Results】

Study Item Results

Placeholder Implementation Dynamic or static

Escaping Process

with Dynamic Placeholder

Correctly done

The quote Method

(string literal generation)

Correctly done

The quote Method

(numeric literal generation)

Incorrectly done (returns the input data as they are)

Character Encoding Enable to specify UTF-8 explicitly when connecting to the database

5.4.1. Implementation of Placeholder

With the default settings, the dynamic placeholder is selected. If you want to use the static placeholder,

you need to specify the parameter mysql_server_prepare=1 when connecting to the database.

5.4.2. Metacharacters to Be Escaped

In MySQL, the backslash \ is processed as one of the metacharacters that need to be escaped with the

standard settings, but if you enable the NO_BACKSLASH_ESCAPES setting, the backslash is no longer

considered as a metacharacter (see Appendix A.1). Thus, escaping must be done accordingly to the content

of this setting. The quote method in DBD::MySQL does it automatically and performs escaping for string

literals correctly.

5.4.3. Numeric Literals with the quote Method

Even if the numeric type is specified in the second parameter of the quote method, the method does not

check whether the input data are appropriate for the specified data type nor convert them to the numeric

value, and just returns the input data as they are.

5. DBMS Study

24

【Example】

Thus, the quote method cannot be used as a countermeasure against SQL injection and it is not

recommended using string concatenation to build SQL statements with the current specification of

DBD::MySQL. Unless you have inevitable reasons, such as needing it as an ad-hoc countermeasure against

SQL injection for an existing application, the use of the placeholders is recommended.

5.4.4. Character Encoding

After Perl 5.8, the use of UTF-8 is recommended as its character encoding within the programs. By

specifying mysql_enable_utf8=1 when connecting to the database, you can set the same character

encoding for both the Perl program and the database.

$dbh->quote("1 or 1=1", SQL_INTEGER); # → returns "1 or 1=1"

Perl

5. DBMS Study

25

5.4.5. Sample Code

A sample SQL call program using DBI/DBD is shown below.

【Points When Connecting to the Database】

1. Specifying type of placeholder as static

Specify the type of placeholder as static. Otherwise, the dynamic placeholder will be specified and

escaping will be performed within the database connection driver before SQL call.

mysql_server_prepare=1

#!/usr/bin/perl

use CGI;

use DBI;

use DBI qw(:sql_types);

use strict;

use utf8;

use Encode 'decode', 'encode';

my $db = DBI->connect(

'DBI:mysql:database=xxxx;host=xxxx;mysql_server_prepare=1;mysql_enable_utf8=1',

'xxxx', 'xxxx');

if (! $db) {

 # Connection error process

}

my $sql = 'SELECT * FROM antable WHERE num=? AND name=?';

my $sth = $db->prepare($sql);

$sth->bind_param(1, $num, SQL_INTEGER);

$sth->bind_param(2, $name, SQL_VARCHAR);

my $rt = $sth->execute();

if (! $rt) {

 # SQL call error process

}

search result fetching process

$sth->finish;

$db->disconnect;

Perl

Txt

5. DBMS Study

26

By using the static placeholder, SQL statements and parameter values are sent separately to the

database engine. Since syntax analysis of SQL statements is done before the placeholder symbol ?

in the SQL statements is replaced, the risk of SQL injection can be avoided in principal.

2. Specifying character encoding

Specify the character encoding as UTF-8.

The line above specifies the character encoding to connect to the database as UTF-8.

After Perl 5.8, by using Encode.pm, character encoding for the internal process is performed with

UTF-8. By also specifying character encoding to connect to the database as UTF-8, you can avoid

garbled characters and the security issues caused by character encoding.

3. Specifying type of binding process

Use the bind_param method for binding and specify the data type in the third parameter of the

bind_param method.

You can also provide parameter values using the execute method. In that case, however, the data

type of the parameters are all considered as varchar and an implicit type conversion from the string

type to the actual type will take place when executing the SQL statement. Since the type conversion

from the string type to the numeric type in MySQL is performed using the floating point type in the

process, the accuracy can be impaired. For this reason, IPA recommends you explicitly specify the

data type in the bind_param method for binding in MySQL.

$sth->bind_param(1, $num, SQL_INTEGER);

$sth->bind_param(2, $name, SQL_VARCHAR);

mysql_enable_utf8=1

Perl

Txt

5. DBMS Study

27

5.5. Java + MySQL

To call SQL procedure from Java, you can use JDBC (MySQL Connector/J). JDBC does not provide the

quote method, therefore, you need to use the PrepeardStatement interface to call SQL procedure.

【Study Result】

Study Item Result

Placeholder Implementation Dynamic or static

Escaping Process

with Dynamic Placeholder

Correctly done (depending on the version, however, the problem

addressed in Appendix A.3 will occur)

The quote Method N/A (the quote method not provided)

Character Encoding Enable to specify when connecting to the database

5.5.1. Implementation of Placeholder

With the default settings, the dynamic placeholder is selected. If you want to use the static placeholder,

you need to specify the parameter useServerPrepStmts=true when connecting to the database.

5.5.2. Metacharacters to Be Escaped

In MySQL, the backslash \ is processed as one of the metacharacters that need to be escaped with the

standard settings, but if you enable the NO_BACKSLASH_ESCAPES setting, the backslash is no longer

considered as a metacharacter (see Appendix A.1). Thus, escaping must be done accordingly to the content

of this setting. If you use the dynamic placeholder in MySQL Connector/J, it is done automatically and

escaping for string literals is performed correctly.

5.5.3. Character Encoding

You can specify what character encoding to use with the characterEncoding parameter when

connecting to the database. In Appendix A.3, IPA recommends the use of UTF-8.

5. DBMS Study

28

5.5.4. Sample Code

import java.sql.*;

public class MysqlPrepared {

 public static void main(String[] args) {

String url = "jdbc:mysql://HOSTNAME/DBNAME?user=USERNAME&password=PASSWORD&"

+ "useUnicode=true&characterEncoding=utf8&useServerPrepStmts=true";

 try {

 Class.forName("com.mysql.jdbc.Driver");

 Connection con = DriverManager.getConnection(url);

 String param =

 String sql = "SELECT * FROM atable WHERE name=?";

 PreparedStatement stmt = con.prepareStatement(sql);

 stmt.setString(1, param); // Replace ? with the value.

 ResultSet rs = stmt.executeQuery();

 while(rs.next()){

 int id = rs.getInt("id");

 String name = rs.getString("name");

 String address = rs.getString("address");

 String comment = rs.getString("comment");

 System.out.printf("id = %d name = %s address = %s comment = %s\n",

 id, name, address, comment);

 }

 stmt.close();

 con.close();

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

}

Java

5. DBMS Study

29

5.6. ASP.NET + Microsoft SQL Server

When calling SQL procedure in the combination of Microsoft SQL Server and ASP.NET, you can use

ADO.NET. Other than calling SQL procedure through ODBC and OLE.DB, ADO.NET can use the drivers

for Microsoft SQL Server and Oracle as well.

【Study Result】

Study Item Result

Placeholder Implementation Static placeholder only

Escaping Process

with Dynamic Placeholder

N/A (the dynamic placeholder feature not provided)

The quote Method N/A (the quote method not provided)

Character Encoding Use UTF-16 when connecting to the database

Since only the static placeholder is used with the ASP.NET + Microsoft SQL Server combination, you do

not have to do anything special as long as you use the placeholder.

5. DBMS Study

30

5.6.1. Sample Code

A sample SQL call program using ADO.NET with the Microsoft SQL Server driver (.NET Framework

Data Provider for SQL Server) written in Visual Basic .NET is shown below.

Because .NET Framework does not provide a library that is equivalent to the quote method and

Imports System.Data.SqlClient

Partial Class SqlSample

Inherits System.Web.UI.Page

'Page loading process

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) Handles

Me.Load

Dim dbcon As SqlConnection

Dim dbcmd As SqlCommand

Dim dataRead As SqlDataReader

Dim sqlStr As String

'Create DB connection

dbcon = New SqlConnection(

"Server=HOSTNAME; database=DBNAME;userid=USERID;password=PASSWORD")

'Connect DB

dbcon.Open()

'SQL statement

sqlStr = "select * from aTalbe where name=@s1"

'Build SQL command

dbcmd = New SqlCommand(sqlStr, dbcon)

Dim param As String =

'Set paramaters

Dim p1 As SqlParameter = New SqlParameter("@s1",param)

dbcmd.Parameters.Add(p1)

'Execute SQL statement

dataRead = dbcmd.ExecuteReader()

'Fetch result(snip)

'Closing process

dataRead.Close()

dbcmd.Dispose()

dbcon.Close()

dbcon.Dispose()

end sub

End class

Visual Basic .NET

5. DBMS Study

31

therefore you cannot perform escaping accordingly and appropriately to the type and configuration of

database engines automatically, it is not recommended using string concatenation to build SQL statements.

5. DBMS Study

32

5.7. Summary

The summary of the study is shown in the table below.

Java

+Oracle

PHP

+MDB2

+PostgreSQL

Perl

+MySQL

Java

+MySQL

ASP.NET

+SQL Server

Placeholder Implementation
Static Only Static Only

Static or

Dynamic

Static or

Dynamic
Static Only

Escaping Process

with Dynamic Placeholder
－ － ○ △ －

The quote Method

(string literal generation)
－ ○ ○ － －

The quote Method

(numeric literal generation)
－ ○ × － －

Character Encoding

Defined as

UTF-8

Able to

Specify

Able to

Explicitly

Specify

UTF-8

Able to

Specify

Defined as

UTF-16

If the implementation of the placeholder limits that only the static placeholder can be used, the

developers do not need to do anything special as long as using the placeholder.

Note that some methods like prepare, whose name sounds like being implemented with the static

placeholder (prepared statement), use the dynamic placeholder with the default setting and you must be

careful when using them.

When using the dynamic placeholder, you must be careful with some specific conditions. For example,

SQL injection vulnerability may be built in due to the character encoding problems depending on the

implementation of the drivers and libraries, like the risk posed by using the older version of MySQL

Connector/J with the Java + MySQL combination.

If you need to use string concatenation to build SQL statements for some inevitable reasons, you can use

the quote method and expect it to perform escaping accordingly and appropriately to the type and

configuration of database engines. Note that in some cases like the Perl + MySQL combination, however,

generation of numeric literals may not be done correctly.

The study results not shown this time suggest that in some other environments, such as Perl DBD::PgPP

(Pure Perl PostgreSQL driver for the DBI), the dynamic placeholder and the quote method may not

perform escaping accordingly and appropriately to the type and configuration of database engines

(confirmed with DBD::PgPP version 0.08).

As for character encoding when connecting to the database, UTF-8 or UTF-16 is predefined in some

environments, and in other environments, it may be better specified explicitly. The study results not shown

this time suggest that in some environments, such as PHP PDO (PHP Data Objects), the character encoding

specified may be ignored (confirmed with PDO version 1.0.4dev).

Appendix A. Technical Information

33

Appendix A. Technical Information

A.1. Escaping of Backslash

Depending on the database products, characters other than single quotes must be escaped. Typical

example are MySQL and PostgreSQL. With these databases, backslash is interpreted as one of the

metacharacters to escape a single quote. Thus, if a backslash is contained in string literals, the backslash

itself needs to be escaped as well.

Escape Target Escape Method

' '' (\' can be used as well)

\ \\

You can also change the settings not to interpret backslash as a metacharacter.

MySQL Option NO_BACKSLASH_ESCAPES

Do not interpret backslash as a metacharacter when escaping

PostgreSQL Option standard_conforming_strings

Do not interpret backslash as a metacharacter when escaping

If you use the database products that require escaping of backslash but neglect it, you expose your

system to the risk of SQL injection vulnerability. We will show it using a SQL call example below.

Here, a string below is given as an attack code.

Performing escaping of just single quotes gives the following result.

Now, the result will be put into the original SQL statement.

As mentioned above, \' is interpreted as the metacharacters to escape a single quote and the following

another single quote escapes the escaping process.

SELECT * FROM atable WHERE a='\'';DELETE FROM atable--'

\'';DELETE FROM atable--

\';DELETE FROM atable--

$q = "SELECT * FROM atable WHERE a='$s'";

SQL

Txt

Txt

Perl

Appendix A. Technical Information

34

As a result, the string after ;DELETE spills out of the intended literal and is interpreted as another SQL

statement.

On the other side, if you use the database products that do not require escaping of backslash yet you

escape it, double backslashes will be stored in the database, corrupting the accuracy of the data as the result

of wrong escaping.

A.2. SQL Injection Risk with Shift_JIS

When you implement escaping for string literals, you must take into account character encoding issues.

SQL injection vulnerability especially and likely occurs in an environment where you use Shift_JIS as

character encoding and you need to escape backslash \, but problems may occur when other conditions are

met.

We will see it using a SQL call example below.

Here, a string below is given to $id.

The Japanese character code for the 表' part is as below:

表 '

0x95 0x5c 0x27

0x5c represents a backslash in US-ASCII and ISO-8859-1. If you perform escaping for this string

without consideration of character encoding, 0x5c will be interpreted as one of the escaping targets. The

result of the escape process may become as follows:

0x95 0x5c 0x5c 0x27 0x27

Decode it by Shift_JIS, it becomes like below.

表 \ ' '

0x95 0x5c 0x5c 0x27 0x27

Now, the result will be put into the original SQL statement.

表';DELETE FROM atable--

$q = "SELECT * FROM atable WHERE a='$id'";

SELECT * FROM atable WHERE a='\'';DELETE FROM atable--'

 ↑single quote missed to escape

SQL

Txt

Perl

Appendix A. Technical Information

35

Since the program interprets that the backslash \' escapes the first single quote, the string literal ends

with the second single quote. As the result, the string after the semicolon spills out of the intended literal

and is interpreted as another SQL statement.

For this reason, you should take into account the following points when implementing character

encoding.

・ Use a database engine, placeholder, library like the quote method, application programming

language with which string processing is properly implemented with regard to character encoding

・ Avoid the use of Shift_JIS which increases the risk of SQL injection vulnerability due to character

encoding errors

A.3. SQL Injection Risk with Unicode

When using the combination of MySQL and Java (MySQL Connector/J), even if you use the placeholder,

SQL injection may occur if the following conditions are met.

・ MySQL Connector/J version 5.1.7 or before is used

・ Shift_JIS or EUC-JP is used as character encoding for the connection between the database and

application

・ The dynamic placeholder is used

Let‟s look at a concrete example.

The example above uses the dynamic placeholder by not specifying the useServerPrepStmts parameter

(or setting false to the parameter) when connecting to the database. It also uses Shift_JIS or EUC-JP as

character encoding for the connection between the database and application by specifying

characterEncoding=sjis (or not specifying the characterEncoding parameter but by setting the

server-side character to sjis or ujis in my.ini).

If the following string is given and bound in this environment, SQL injection will occur.

\u00a5 in the string literal written in Java programming language means U+00A5 in Unicode and

assigned with the Yen symbol \. In Unicode, the Yen symbol \ and the backslash symbol \ (U+005C) exist

"\u00a5'or 1=1#"

Connection con = DriverManager.getConnection(

"jdbc:mysql://HOSTNAME/DBNAME?user=USERNAME&password=PASSWORD&useUnicode=true&ch

aracterEncoding=sjis");

SELECT * FROM atable WHERE a='表\'';DELETE FROM atable--'

SQL

Java

Java

Appendix A. Technical Information

36

separately. Shift_JIS and EUC-JP, however, do not differentiate them and convert both into \ (0x5C). As a

result, the following phenomenon occurs when building SQL statements.

【Input Strings (Unicode)】

Code Point 00A5 0027 006F 0072 0020 0031 003D 0031 0023

Character ¥ ’ o r SP 1 = 1 #

【Output String after Escape Process (Unicode)】

Code Point 00A5 005C 0027 006F 0072 0020 0031 003D 0031 0023

Character ¥ \ ’ o r SP 1 = 1 #

【String after Converted into Shift_JIS】

Character Code 5C 5C 27 6F 72 20 31 3D 31 23

Character ¥ ¥ ’ o r SP 1 = 1 #

【SQL Statement (input value is bound to the dynamic placeholder)】

Here, \\ is interpreted as a metacharacter that escaped the backslash and the string literal ends with the

following single quote. As a result, the subsequent string of or 1=1# is interpreted as a part of the SQL

statement and hereby occurs a successful SQL injection attack.

The cause of this problem is that the character encoding used in the escaping process while building an

SQL statement using the dynamic placeholder and the character encoding used when the SQL statement is

executed are different, and two different characters are assigned to the same character when the character

encoding conversion from the one used in the escaping process to the one used in execution.

This problem is identified as a vulnerability in MySQL Connector/J (5.1.7 and before) and was fixed in

July 20092。

To fix this vulnerability, you must implement one or more of the following. IPA recommends you

implement all of them.

・ Specify Unicode (UTF-8) as the character encoding when connecting to MySQL

（Set the connection character string parameter characterEncoding=utf8）

・ Use the static placeholder

（Set the connection character string parameter useServerPrepStmts=true）

・ Use the latest version of MySQL Connector/J

2 JVN#59748723: MySQL Connector/J vulnerable to SQL injection

http://jvn.jp/jp/JVN59748723/index.html

SELECT * FROM test WHERE name='\\'or 1=1#'

SQL

http://jvn.jp/jp/JVN59748723/index.html

Appendix A. Technical Information

37

A.4. Creating Oracle Database with Unicode

You cannot choose the character encoding for each table or column with Oracle but only one for the

database. Since you cannot change the character encoding for an existing database, you must think over and

decide what character encoding to use when creating a new database.

The figure above is the Oracle Database Configuration Assistant wizard with which the character set is

being chosen. Here, the character set is changed from the default database character set, Shift_JIS

(JA16SJISTILDE), to .Unicode（AL32UTF8）.

It does not mean that not choosing Unicode as the database character set always results in SQL injection

vulnerability, but there is the risk that characters stored in the database may be converted into other

characters, causing new and unexpected bugs. IPA recommends using Unicode.

Appendix A. Technical Information

38

A.5. Microsoft SQL Server and Character

Encoding

Microsoft .NET, uses UTF-16 as the character encoding for internal processing. On the other hand, the

character encoding used when storing character strings to the Microsoft SQL Server tables depends on the

code page used in the operating environment where Microsoft SQL Server is installed. In the Japanese

environment, the code page 932 (CP932) is used.

UTF-16 encoded strings passed from the applications to Microsoft SQL Server are converted into CP932

when being stored to the database. Therefore, a character that is not defined in CP932 is turned into garbage

and cannot be stored in the database correctly.

Microsoft SQL Server provides a way to store Unicode encoded strings. When storing Unicode encoded

strings, use nchar or nvachar as the data type instead of char or vachar. For string literals, precede all

Unicode string literals with a prefix N that identifies they are Unicode encoded.

【Example: NVARCHAR】

【Example: Unicode String Literal】

Characters may be garbled in some cases. For example, Unicode U+00A5 \ （Yen symbol） may be

converted into CP932 5C \ (backslash).

This does not become a cause of SQL injection vulnerability because this character encoding conversion

takes place after syntax analysis of SQL statements is done. It may, however, cause unexpected bugs or

other vulnerabilities.

【References】

Microsoft MSDN – Using Unicode Data

http://msdn.microsoft.com/en-us/library/aa223981(SQL.80).aspx

INSERT INTO aTable VALUES (N'Sato', N'Yokohama');

CREATE TABLE aTable (name NVARCHAR(30), city NVARCHAR(30));

SQL

SQL

http://msdn.microsoft.com/en-us/library/aa223981(SQL.80).aspx

Produced and Copyrighted by Information-technology Promotion Agency, Japan (IPA)

Editor Hideaki Kobayashi

Author Hiroshi Tokumaru, Yukinobu Nagayasu, Motokuni Soma, Naoto Katsumi

 Hiromitsu Takagi National Institute of Advanced Industrial Science and

Technology (AIST)

Advisor Hiroyuki Itabashi, Shunsuke Taniguchi, Shingo Ootani, Masashi Ohmori

 Tadashi Yamagishi Hitachi, Ltd.

*Affiliation omitted for the personnel of IPA

How to Secure Your Web Site Supplementary Volume

How to Use SQL Calls to Secure Your Web Site

[iPublicationi] Mar. 18, 2010 First Edition, First Printing

[Produced and Copyrighted by] IT Security Center, Information-technology Promotion

Agency, Japan (IPA)

[Collaborated with] Research Center for Information Security, National Institute of

Advanced Industrial Science and Technology

独立行政法人 情報処理推進機構
〒113-6591

東京都文京区本駒込二丁目28番8号

文京グリーンコートセンターオフィス16階

http://www.ipa.go.jp

セキュリティセンター
TEL: 03-5978-7527 FAX 03-5978-7518

http://www.ipa.go.jp/security/

IPA セキュリティセンターでは、経済産業省の告示に基づき、コンピュータウイルス・不正ア

クセス・脆弱性関連情報に関する発見・被害の届出を受け付けています。

ウェブフォームやメールで届出ができます。詳しくは下記のサイトを御覧ください。

URL: http://www.ipa.go.jp/security/todoke/

ソフトウエア製品脆弱性関連情報

OSやブラウザ等のクライアント上のソフトウ

エア、ウェブサーバ等のサーバ上のソフトウエ

ア、プリンタやICカード等のソフトウエアを組み

込んだハードウエア等に対する脆弱性を発見

した場合に届け出てください。

ウェブアプリケーション脆弱性関連情報

インターネットのウェブサイトなどで、公衆に向

けて提供するそのサイト固有のサービスを構成

するシステムに対する脆弱性を発見した場合に

届け出てください。

情報セキュリティに関する届出について

コンピュータウイルス情報 不正アクセス情報

ネットワーク（インターネット、ＬＡＮ、ＷＡＮ、パソ

コン通信など）に接続されたコンピュータへの不

正アクセスによる被害を受けた場合に届け出て

ください。

コンピュータウイルスを発見、またはコン

ピュータウイルスに感染した場合に届け出てく

ださい。

脆弱性関連情報流通の基本枠組み 「情報セキュリティ早期警戒パートナーシップ」

脆弱性関連
情報届出

受付機関

分析機関

報告された脆弱性

関連情報の内容確認

報告された脆弱性

関連情報の検証

脆弱性関連
情報届出

対策情報ポータル

W eb サイト運営者

検証、対策実施

個人情報漏洩時は事実関係を公表

発
見
者

脆弱性関連
情報通知

脆弱性関連情報通知

対策方法等
公表

対応状況の集約、
公表日の調整等調整機関

公表日の決定、

海外の調整機関

との連携等

ユーザー

政府

企業

個人システム導入
支援者等

ソフト
開発者等

脆弱性関連情報流通体制

ソフトウェ ア

製品の脆弱性

W eb サイトの

脆弱性

対応状況

脆弱性関連情報通知

ユーザ

報告された

脆弱性関連情報の

内容確認・検証

受付・分析機関

分析支援機関

産総研など

Webサイト運営者

検証、対策実施

個人情報の漏えい時は事実関係を公表

脆弱性対策情報ポータル

セキュリティ対策推進協議会

※JPCERT/CC：有限責任中間法人 JPCERT コーディネーションセンター、産総研：独立行政法人 産業技術総合研究所

How to Report Information Security Issues to IPA

Designated by the Ministry of Economy, Trade and Industry, IPA IT Security Center

collects information on the discovery of computer viruses and vulnerabilities, and
the security incidents of virus infection and unauthorized access.

Make a report via web form or email. For more detail, please visit the web site:

URL: http://www.ipa.go.jp/security/todoke/ (Japanese only)

Computer Viruses

When you discover computer viruses

or notice that your PC has been
infected by viruses, please report to

IPA.

Software Vulnerability and

Related Information

When you detect unauthorized access

to your network, such as intranets,
LANs, WANs and PC communications,

please report to IPA.

When you discover vulnerabilities in

client software (ex. OS and browser),
server software (ex. web server) and

hardware embedded software (ex.

printer and IC card) , please report to
IPA.

Unauthorized Access

Web Application Vulnerability and

Related Information

When you discover vulnerabilities in

systems that provide their customized
services to the public, such as web sites,

please report to IPA.

INFORMATION-TECHNOLOGY PROMOTION AGENCY, JAPAN

2-28-8 Honkomagome, Bunkyo-ku, Tokyo 113-6591 JAPAN

http://www.ipa.go.jp/index-e.html

IT SECRITY CENTER

Tel: +81-3-5978-7527 FAX: +81-3-5978-7518

http://www.ipa.go.jp/security/english/

Framework for Handling Vulnerability-Related Information

～ Information Security Early Warning Partnership ～

JPCERT/CC: Japan Computer Emergency Response Team Coordination Center, AIST: National Institute of Advanced Industrial Science and technology

