

 September 2010

Approaches for

Embedded System

Information Security

(2010 Revised Edition)

Know Your Organization’s Security Level

by Checking 16 Points

IT Security Center,

INFORMATION-TECHNOLOGY PROMOTION AGENCY, Japan

This page intentionally left blank.

ⅰ

Contents

Background of the Guide ... 1

Background of Revision ... 2

1. Preface ... 3

1.1. Current Status and Challenges Surrounding Embedded System Security 3

1.2. Purpose of This Guide ... 3

2. Terminologies ... 4

3. Security Level ... 5

3.1. Embedded Systems and Security ... 5

3.1.1. Internal Architecture of Embedded Systems .. 5

3.1.2. Attacks against Embedded Systems and Countermeasures 6

3.2. Lifecycle of Embedded Systems ... 7

3.2.1. Definition of Lifecycle... 7

3.3. Security Levels .. 9

3.3.1. Management Policy .. 10

3.3.2. Planning and Development Policy ... 11

3.3.3. Operation Policy .. 12

3.3.4. Disposal Policy ... 13

4. Security Measures at Each Phase .. 14

4.1. Management ... 14

4.1.1. Security Rules .. 14

4.1.2. Security Education ... 16

4.1.3. Collecting Security Information .. 18

4.2. Planning Phase .. 19

4.2.1. Budgeting .. 19

4.2.2. Selecting Development Platform .. 20

4.3. Development Phase .. 22

4.3.1. Designing .. 22

4.3.2. Software Implementation .. 28

4.3.3. Outsourcing .. 30

4.3.4. Security Assessment Test and Debugging ... 32

4.3.5. User Guide ... 34

4.3.6. Factory Production Control .. 37

4.3.7. Support of New Technology ... 39

4.4. Operation Phase ... 42

4.4.1. Handling Security Issues .. 42

4.4.2. User Notification and Fixing Vulnerability .. 43

4.4.3. Leveraging Vulnerability Information .. 45

4.5. Disposal Phase .. 46

ⅱ

4.5.1. Promoting User Preparation for Disposal ... 46

Appendix .. 49

Figures

Figure 3-1 Internal Architecture Model for Embedded System.................................... 5

Figure 3-2 Examples of security problems at each phase of the lifecycle 7

Tables

Table 3-1 Threats against Embedded Systems and Countermeasures 6

Table 3-2 Examples of Information Assets Embedded System Should Protect 8

Table 3-3 Security Levels at Each Phase of Lifecycle... 9

Table 4-1 Examples of Typical Side Channel Attacks ... 25

Background of the Guide

In these years, a network environment where you can bring various types of embedded systems into it has

become a growing reality. It is expected that embedded systems will keep evolving with higher functionality and

more multifunctionality, and become literally embedded into every aspect of the society. While this happens, a

major concern has also been addressed that the adoption of off-the-shelf, general-purpose software used for PCs

and servers into developing embedded systems for cost and time reduction and increased productivity may harm

the level of the quality and safety required for embedded systems. Moreover, because of their networked

environment, embedded systems now must face the same cybersecurity threats as PCs do as well. For malicious

cyber attackers, embedded systems that are closely entwined with money-related information can be a perfect

target. For those who wish to cause chaos in the society, the embedded systems are a desirable target as one of the

social infrastructures.

It is becoming more and more important that establishing and implementing a strategic approach that enables

and encourage embedded system developers to implement necessary security measures based on what we have

learned with security incidents over PCs and servers.

In reality, there is no perfect security and the balance between security and cost usually comes into play. To

find the adequate balance between them, the developers must properly know the current security effort and level

of their organization. Especially for the embedded system projects, it often happens that the time schedule is

severely tight and the required specifications and constraint conditions change during the development. To

overcome these difficulties, a concrete, specific security guide that helps the developers sort out security problems

and improve security of their product.

By using this guide as a reference, the developers will be able to know the security level of their organization

and see what need to be done to achieve a higher level.

Here, IPA provides a guide that serves the above purpose as an output of the Project on Information Security

Technology for Embedded Systems funded by Japan Science and Technology Agency.

In addition to ensuring reliability and safety, we must also discuss and adopt security measures that protect

embedded systems from malicious attacks.

IT Security Center, Information-technology Promotion Agency, Japan

Security Engineering Laboratory Director, Hideaki Kobayashi

Information-technology Promotion Agency, Japan (Ubiteq, Inc. *) Senei Akabane

Information-technology Promotion Agency, Japan (Hitachi, Ltd. *) Masaharu Ukeda

Information-technology Promotion Agency, Japan (Hitachi, Ltd. *) Makoto Kayashima

Information-technology Promotion Agency, Japan (IT Doraku Research Laboratory, Ltd. *) Motohide Soeno

Information-technology Promotion Agency, Japan (Toppan Printing Co., Ltd. *) Satoru Takahashi

Information-technology Promotion Agency, Japan Manabu Nakano

*As of June 2009

2

Background of Revision

A market for embedded systems, especially for information home appliances like digital TV with the Internet

connectivity, is rapidly growing. Information home appliances are under severe development pressure and it is

becoming common that the developers adopt the Web browser functions that have high usability and is easy to

develop, and off-the-shelf, general-purpose technology like the Web server functions as an infrastructure to create

a configure interface.

Meanwhile, the emergence of new network environments, such as IPv6 (Internet Protocol Version 6) and NGN

(Next Generation Network), or the countdown to transition to the next-generation encryption algorithms gives

embedded system developers heads ups on yet another issues and technologies they need to consider and adapt to.

Moreover, the information home appliance market is global and it is expected that the products will be sold

worldwide. This means that the information home appliances may become a potential target of cyber attacks from

all over the world, and once a security incident breaks out, the product developer has the responsibility of

responding to the incident for the worldwide customers.

IPA revised the guide incorporating the feedback on the first issue, and also added technologies needed in

developing information home appliances for worldwide use, especially to safely use advanced technologies, such

as IPv6 and Web technologies.

IT Security Center, Information-technology Promotion Agency, Japan

Security Engineering Laboratory Director, Hideaki Kobayashi

Information-technology Promotion Agency, Japan (Fourteenforty Research Institute, Inc.) Yuji Ukai

Information-technology Promotion Agency, Japan (Hitachi, Ltd.) Makoto Kayashima

Information-technology Promotion Agency, Japan (Hitachi, Ltd.) Chisato Konno

Information-technology Promotion Agency, Japan Manabu Nakano

Information-technology Promotion Agency, Japan Tomoka Hasegawa

Writing Partners

OKI Networks Co., Ltd. Yutaka Ibuki Nippon Telegraph and Telephone Co. Tomohiro Fujisaki

Nippon Telegraph and Telephone Co. Kazuhiko Ohkubo BUFFALO Inc. Tatsuo Inagaki

Nippon Telegraph and Telephone Co. Hiroki Tanaka Panasonic Corporation Kazutaka Maeda

Nippon Telegraph and Telephone Co. Takemi Nisase Panasonic Corporation Masao Ito

Interview Collaborators (Individuals)

SHARP Co. Takuya Ohkubo Toshiba Co. Satoshi Ozaki

Sony Co. Tadashi Morita Hitachi Consumer Electronics Co., Ltd. Yoshihiro Yamada

Sony Co. Masakazu Kobayashi Hitachi, Ltd. Satoshi Sano

Toshiba Co. Tadahiro Aihara

Interview Collaborators (Organizations) Mitsubishi Electric Co.

(In no particular order, titles omitted) As of September 2010

3

1. Preface

1.1. Current Status and Challenges Surrounding Embedded System Security

As semiconductors, such as microprocessor and memory, improve in performance, industrial equipments and

information home appliances are becoming more and more high-tech. Embedded systems literally embedded to

control those devices have been used in a wide area. As information communication technology advances,

embedded systems also become connected to open networks like the Internet. This exposed the embedded systems

to a new risk: cyber attacks by malicious attackers just like PCs.

If embedded systems are connected to the Internet, they also have to adapt to new technologies the Internet is

built and operated upon. For example, to respond to IPv4 address depletion, the global transition to IPv6 is

currently underway. Given this situation, the developers are required to support both IPv4 and IPv6 to develop

embedded systems that communicate using the Internet or those that perform remote update of firmware, and

monitoring and operation.

As the variety of services keeps expanding, such as high-vision broadcasting, online shopping and private

information management using the high-tech weight scale, the value of information embedded systems work with

becomes higher. For this reason, implementation of security measures against cyber attacks, such as preventin of

unauthorized data duplication and attacks via network, and privacy countermeasures like deleting privacy

information when disposing the product are becoming required.

An extremely short development period that embedded system developers are forced to work with under severe

development pressure, however, tends to push the balance between security and cost toward the latter. The

developers, not just programmers, but also managers and management executives, need to tackle the issue and

find how to keep the good balance.

1.2. Purpose of This Guide

This guide provides the embedded system developers how to tackle the issue - what to do and the security level

for each effort - to enable the development of secure embedded systems in the following aspects: (1) management

of the development team, (2) planning and development of a embedded system, (3) operational requirements that

the developers must take care of when the embedded system is in use, (4) requirements when disposing the

embedded system. The guide targets the following people that work for the companies that develop embedded

systems.

・ System developers

・ Project managers

・ Decision makers for budget and resource allocation (management)

This guide aims to:

(1) Improve security awareness of embedded system developers

Helping the developers understand security required for embedded systems, realize the security level of the

current security measures adopted, and learn what to do to improve the security level.

4

(2) Encourage implementation of better security into embedded systems

Helping the developers assess the security level and implement more advanced security measures to improve

security of their embedded systems. Depending on the functionality their product offers, the developers can

set the target level at 3 or 4. By practicing secure implementation, they can not only protect their users from

falling victim but also protect the others that may suffer damage if the embedded systems are exploited to

attack others. This also helps to avoid the cost of responding to the security incidents and protect the

corporate brand from harm.

2. Terminologies

・ Embedded System

A specialized computer system to control the products. It consists of semiconductors and peripheral devices

and is embedded into another product, such as industrial equipments and information home appliances.

・ Product

Those controlled by embedded systems, such as industrial equipments and information home appliances.

・ Vulnerability

Security flaws in embedded systems that could be exploited by unauthorized access or computer viruses and

allow the degradation in functionality and capability of the product.

・ Security Rule

Security policy that concretely defines what must be done and what must not be done to make the

organization’s security effort systematic instead of ad-hoc.

・ Anti-Tamper

Tolerability against attacks that try to access the module’s internal data without proper authorization by

accessing it through the way other than the interface prepared by the module.

・ Privilege Escalation

Operation of changing the access control level of a system user to a higher one on the systems that have

multiple settings, such as user privilege and administrator privilege.

5

3. Security Level

3.1. Embedded Systems and Security

3.1.1. Internal Architecture of Embedded Systems

Embedded systems vary depending on the product it is to control, from a small system with one-chip

microcomputer to a large system with multiple microprocessors. In this guide, the internal architecture and

external interfaces of the embedded system are modeled as below (Figure 3-1) to analyze security measures.

Software

Hardware

(6) CPU

(5) Memory

(8) Peripheral

Devices

(1) OS / Drivers

Applications / Libraries

(3) Add-On Applications(2) Built-in
(4) Logical

Interfaces

(9) Physical

Interfaces

(7) Bus

Figure 3-1 Internal Architecture Model for Embedded System

An embedded system consists of software, which in turn consists of some OS and drivers ((1) in Figure 1),

built-in applications and libraries running on them (2), and arbitrary, add-on applications the user can install (3),

and hardware in which software is installed. Hardware consists of memory units (5) and CPU (6), peripheral

devices like TPM (Trusted Platform Module) (8), and buses to connect them (7).

In addition, an embedded system is connected to external systems, such as other systems and memory units like

a USB memory stick and SD card, through various connectors, ports, physical interfaces like a touch panel display

(9) and logical interfaces for various protocols (4).

6

3.1.2. Attacks against Embedded Systems and Countermeasures

Because of their ever-growing connection to the Internet during recent years, embedded systems have become

threatened by the same cybersecurity issues as PCs are. For the safe and secure use of the embedded systems, the

developers are required to implement countermeasures that assure at least the following three pillars of security.

・Confidentiality: to prevent the disclosure of the confidential information to unauthorized individuals

・Integrity: to prevent modification of data without being detected while data are being processed, transmitted or in storage.

・Availability: to assure that the system serves its purpose and the information is available to the authorized individuals when

needed.

Threats against embedded systems could be the attacks through physical or logical interfaces, or those through

the reverse engineering by an attacker who obtained the embedded systems. To implement the three pillars of

security above, the developers need to analyze potential threats the component modules described in 3.1.1 using

some systematic methods, such as the STRIDE Threat Model
1
, and consider countermeasures. Table 3-1 shows

the result of the analysis on the potential threats against the embedded system’s component modules and the

countermeasures against item.

Table 3-1 Threats against Embedded Systems and Countermeasures

 Confidentiality Integrity Availability

Threats Countermeasures Threats Countermeasures Threats Countermeasures

S
o

ftw
a

re

Logical

Interfaces

・ Spoofing during

transmission

・ User/server

authentication

・ Data modification

during transmission

・ Data signature ・ Denial of service

attack

・ Filtering

・ Data interception

during transmission

・ Communication

encryption

Add-on

Applications

・ Privilege escalation

・ Installation of

malicious programs

・ Vulnerability

countermeasures

・ Certificate

verification

・ Software

modification and

unauthorized use

・ Vulnerability

countermeasures

・ Logging

・ Denial of service

attack

・ Filtering

・ Vulnerability

countermeasures

・ Logging

Built-in

Applications/

Libraries

・ Privilege escalation

・ Analysis of

software

configuration

・ Vulnerability

countermeasures

・ Software

hardening

OS / Drivers ・ Privilege escalation ・ Vulnerability

countermeasures

・ Privilege escalation ・ Vulnerability

countermeasures

・ Logging

・ Denial of service

attack

・ Vulnerability

countermeasures

・ Logging

H
a

rd
w

a
re

Memory ・ Probing

・ Side channel attack

・ Data encryption

・ Anti-tamper

・ Data modification

・ Data destruction

・ Anti-tamper ・ Denial of service

attack due to loss

of integrity

・ Anti-tamper

CPU

Buses

Peripheral

Devices

・ Denial of service

attack due to

monopolization

of bandwidth

and/or processing

power

・ Filtering, logging,

prevention of

resource

monopolization

Physical

Interfaces

In addition, when a product with vulnerability is sold and used, it is possible that an attacker who discovered it

may blackmail its developer for money in return for keeping quiet about the vulnerability. To protect the users and

themselves, it is critical that the developers must make sure that the system is secure before shipment and be ready

to respond to a new vulnerability which may be found after shipment to keep the product safe and secure.

7

3.2. Lifecycle of Embedded Systems

3.2.1. Definition of Lifecycle

As mentioned in 3.1, it is required to implement the security measures, which are appropriate to the value of

information assets the components of the embedded system handle when they process and transmit data, into each

component. In doing so, it is effective to apply the analysis through the lifecycle of embedded systems
2,3

. This

guide divides the lifecycle into four phases - planning, development, operation and disposal -, and describes points

that the developers need to take care of throughout the lifecycle.

For example, in the case of an information home appliance, it is planned and developed by the product

manufacturer, sold to the users through the retailer, used by the user and disposed by the recycler. At the

operational phase, the user first sets it up and then starts using it after obtaining it. During the period the user uses

the appliance, the user may update the software applications, it may be broken and fixed by the manufacturer or

retailer, or it may be given or sold to another individual and set up again. The threats against embedded systems

exist not only in the operational phase but in every other phase as well. The developers must solve all of them

(Figure 3-2).

Planning Development Operation Disposal

Modification/Disclosure of

Information Assets

Reverse Engineering

Information Leak

Personal Information

Leaked
Project Plan Leaked

Mix of Security Issues

Resource Limitation

Vulnerability

Manufacturer

Retailers

Users

Recyclers

Management

Figure 3-2 Examples of Security Problems at Each Phase of the Lifecycle

First, let’s see the role and security issues of each phase of the lifecycle.

(1) Planning Phase

The planning phase is where an embedded system is planned and budget is discussed. It is this phase that the

security level that the coming product should achieve is considered and decided.

In this phase, the developers need to think over the security for throughout the lifecycle. Thus, the developers

must consider how much it will cost to achieve their target security level and how much budget should be

allocated to each phase.

(2) Development Phase

In the development phase, the hardware and software are designed on the required specification which

8

outlines the purpose of the product. Vulnerability is likely missed and created into the product especially

during the software design and coding phase. This guide provides the concrete vulnerability countermeasures

in those stages. The guide also covers the security issues the manufacturer should take up from software

development outsourcing, quality assurance, manufacturing at the factory and to shipment. The first priority

at the development phase is to protect information assets. Table 3-2 shows the examples.

Table 3-2 Examples of Information Assets Embedded System Should Protect

Information Assets Description

Contents

Multimedia data, such as sounds, images and movies (copyright management data when using

commercial contents and private contents), content access log (note: it is important to protect

content access log as well)

User Information
User’s personal information (name/address/telephone number/date of birth/credit card

numbers), credentials, access log, operation log

Product Information Information on the product (model, ID（Identification, serial number）, machine credentials

Software Status Data Software-specific status data (operational status, network usage status)

Software Configuration

Data

Software-specific configuration data (operational settings, network settings, privilege settings,

software versions)

Software OS (Operating System), middleware, applications (also known as firmware)

Design Data, Internal Logic Design data such as specifications developed at the planning/design phase

Besides information leak and data modification, security threats like the one where an embedded system is

turned into a bot or used as a stepping stone to attack others, or the attack where the very service the

embedded system provide is maliciously used (e.g. manipulation of home equipments) are also anticipated

and countermeasures against these risks should be considered as well.

(3) Operation Phase

Depending on the way the embedded system is used, the developers should analyze its operation phase

carefully. For example, an information home appliance is purchased by the users through the retailer. They

sets up the appliance with their personal information and continuously add the private contents, such as

sounds, music, images and movies into the appliance to enjoy them on a whim, ever expanding the

information assets the embedded system should protect. During the period of the use of the appliance, the

users may (1) set it up at home (the chance of other people directly operating it will be slim), (2) connect it to

the home network, (3) connect it to the mobile terminals, such as cell phone, and (4) keep using it for a long

period of time, like over a decade. These things should be also taken into account when considering the

security at each phase.

Moreover, to respond to vulnerability that may be discovered in the future, the developers should implement

a mechanism to update internal programs of the embedded system.

(4) Disposal Phase

The embedded system can be disposed at a timing when the users purchase a new one, stop using it or it is

broken. The developers need to make sure that the users know how to remove the confidential information,

such as personal information, when they dispose it. The same goes for when the memory unit built in the

embedded system is broken and the users need to replace it or the users dispose the external storage devices

(USB memory stick/SD memory card and HDD).

9

3.3. Security Levels

Up to this chapter, we have discussed threats and countermeasures to ensure the security of the embedded

system considering its internal architecture and lifecycle. This, however, does not tell what exactly the developers

need to do. One of the problems is the awareness gap between the management and the project team. For example,

the management tends to brush off security as it is something the project team has to deal with on its own and

does not give much policy guidance, and the project team, on the other hand, may put aside security issues due to

not enough budget and the short development period. With the considerable scale of embedded systems

commonly seen these days, however, it is quite difficult to assume that they are free of security risks, and the

problems neglected in the upper process will reemerge in the lower processes with the increased difficulty and

criticality. This can be solved only through the collaboration between the management and the project team where

both of them properly understand security threats against embedded systems and work together. To visualize the

current status of an organization’s approach, this guide classified the security approaches into four phases based

on the security policies the organization may employ (Table 3-3). IPA hopes this helps the project managers and

system developers check out the security measures at the security level most close to the organization’s target

level to reacknowledge their current status and clarify the issues they have to work out. In the following sections,

the possible management policies at each phase at each level are described. More concrete security measures

required under each policy at each phase are given in Chapter 4.

Table 3-3 Security Levels at Each Phase of Lifecycle

 Management Policy Planning Policy Development Policy Operation Policy Disposal Policy

Level 4 Security effort is

considered as an

organizational issue.

A security policy is

drawn up and

enforced, and an

audit is also

conducted.

Based on the organization’s security policy,

the security rules that can be evaluated

objectively are established and enforced.

An vulnerability

policy is drawn up as

an organization and

made public.

A disposal

procedure that

mitigates the

security risks based

on objective

standards is

available.

Level 3 Security effort is

considered as an

organizational issue.

A security policy is

drawn up and

enforced.

Based on the organization’s security policy,

the security rules are established and

enforced.

A vulnerability

policy is drawn up as

an organization.

A disposal

procedure that

mitigates the

security risk is

available.

Level 2 Security effort is left

to the project

managers and

systems developers.

Issues are dealt with

separately at each

project.

The security rules are established and

managed by the project managers and

system developers.

A vulnerability

policy is drawn up

for each product.

A disposal

procedure is

specified and written

down in, for

example, the

specification

documents.

Level 1 No security effort is

done.

No security rules in place. No assurance criteria

for vulnerability.

No disposal

procedure in place.

10

3.3.1. Management Policy

A management policy is an attitude of the management toward the security. The main issues here are that how

well the management and the project team share their vision, draw up and enforce the policy. The security efforts

at each level are summarized below.

・ Level 1

At this level, no security effort is done. This could be applied to the case where there is an awareness gap

between the management and the project team, and as a result, the management tends to brush off security as

it is something the project team has to deal with on its own and does not give much policy guidance, and the

project team, on the other hand, may put aside security issues due to not enough budget and the short

development period. The quality of the product strongly depends on whether or not it is kind of products that

are susceptible to the security issues.

・ Level 2

At this level, security effort is relegated to the project managers and systems developers, and the security

issues are dealt with separately by each project. This could be applied to the case where the management and

the project team may consider that security is something both of them should work on together as an

organization, yet, they do not know how and the issues are left to the project team in reality. The quality of

the product differs per project and the know-how and experiences learnt in one project are unlikely shared

with other projects.

・ Level 3

At this level, security effort is considered as an organizational issue, and a security policy is drawn up and

enforced. This could be applied to the case where the management and the project team share the awareness

of the security issues and document the policies, provide security education to the project team and share

problems and issues faced by the project team. Since they have an organizational policy and effort,

improvement of the product quality can be expected. On another front, they still have challenges to address;

that they should review and make sure that the policy is adequate and the rules are properly followed based

on some objective evaluation process.

・ Level 4

At this level, security effort is considered as an organizational issue, and a security policy is drawn up and

enforced. In addition, an audit is also conducted. This could be applied to the case where the management

and the project team share the awareness of the social responsibility they should assume over manufacturing

and selling the product, implement the process to objectively evaluate their effort, and set up a new team and

improve floors and factories to promote their effort. To achieve this level, the management and the project

team must work together hard. Ultimately, this is the level this guide hopes that the organizations will aim

and achieve.

11

3.3.2. Planning and Development Policy

A planning and development policy is an attitude toward security regarding planning and developing a product.

The main issues here are that how well security rules are established and enforced in the development. The

security efforts at each level are summarized below.

・ Level 1

At this level, no security rules are established. This could be applied to the case where there is no security

standard and security risks are not discussed at the planning phase. The quality of the product strongly

depends on the specification documents and the security problems tend not to emerge until the testing or

operation phase. Moreover, they will be likely the types of the problems that have not been anticipated and

may take very long time to solve.

・ Level 2

At this level, the security rules are established and managed by the project managers and system developers.

This could be applied to the case where the project team is aware that the implementation of security

measures and some method to evaluate them are necessary to solve the problems like vulnerability, and the

possible security issues at the planning phase are well discussed. The quality of the product depends on the

skills and knowledge of the project team, but it can be possible to eliminate common security risks through

drawing up the specification documents.

・ Level 3

At this level, the security rules are established and enforced based on the organization’s security policy. This

could be applied to the case where the project team prioritizes what to protect based on the policy and

establish security rules. They need to prioritize because it is not feasible to take care of everything even if

there is some systematic method to look up vulnerability, implement and assess security. It is a given that the

project team has a good security education but it can be expected to eliminate most of the security risks in the

upper processes.

・ Level 4

At this level, the security rules that can be evaluated objectively are established and enforced based on the

organization’s security policy. This could be applied to the case where the project team has knowledge of the

frameworks, such as JISEC (Japan Information Technology Security Evaluation and Certification Scheme)

or JCMVP (Japan Cryptographic Module Validation Program) through their security education, establish the

security rules that will meet the industrial standards, check out vulnerability information and evaluate the

effectiveness of their security rules in collaboration with the expert. When something happens, with this level,

the developer can have a formal path to investigate and report the causes of the problem and quickly solve it.

Ultimately, this is the level this guide hopes that the organizations will aim and achieve.

12

3.3.3. Operation Policy

An operation policy is an attitude toward vulnerability response after the product is shipped. The main issue

here is that how the developers respond to vulnerability to keep the product safe. The security efforts at each level

are summarized below.

・ Level 1

At this level, no assurance criteria for vulnerability are established. This could be applied to the case where

the developers do not share vulnerability information within the organization, do not let the users know of the

voluntarily and wait till they do get complaint from the users. Then, they look into the matter and decide

whether to leave it as a feature or to fix it depending on its seriousness.

・ Level 2

At this level, a vulnerability policy is drawn up for each product by the project team. This could be applied to

the case where the project manager and system developers list up the vulnerabilities in the product and let the

users know when they are serious. The users with low vulnerability awareness may just ignore security

patches or software updates and keep using the vulnerable version, making the problem even worse. The

vulnerability information is not effectively shared within the organization and the same vulnerability may

show up again.

・ Level 3

At this level, a vulnerability policy is drawn up as an organization. This could be applied to the case where

the developers keep tabs on the vulnerabilities, decide when and how to respond and make sure to let know

the users if it is serious. On another front, they still have challenges to address; that they are not making use

of vulnerability information available outside their company, and as a result, a known vulnerability that has

been fixed in the products of other companies may show up in their product.

・ Level 4

At this level, a vulnerability policy is drawn up as an organization and made public as well. This could be

applied to the case where the developers report the found vulnerability to the relevant organizations, such as

JPCERT/CC, and utilize vulnerability information available outside their company. By reporting the

vulnerability, the company can assess the vulnerability on the open verification environments or expect to

have open source drivers and libraries fix. With this level, the developers can expect to improve the security

of the embedded system by implementing the countermeasures against the known vulnerabilities. Ultimately,

this is the level this guide hopes that the organizations will aim and achieve.

13

3.3.4. Disposal Policy

A disposal policy is an attitude toward security regarding how to protect the confidential information when

disposing the product. The main issue here is that whether or not a disposal policy and procedure are established.

The security efforts at each level are summarized below.

・ Level 1

At this level, no disposal procedure is specified. This could be applied to the case where whether the users

keep it or dispose it is up to the users and nothing about disposal is mentioned in the specification documents.

・ Level 2

At this level, a disposal procedure is specified and written down in, for example, the specification documents.

This could be applied to the case where the developers thinks it s mandatory to let the users know about the

security risks and the recommended procedure when disposing the product since it will come to the end of its

lifecycle eventually. Depending on the product, however, it may be infeasible if it requires a specialized tool

and such to remove the confidential information stored on it.

・ Level 3

At this level, a disposal procedure that mitigates the security risk is available. This could be applied to the

case where the product is equipped with a data destruction tool or the company offers a recycling system.

These solutions can be a paid service.

・ Level 4

At this level, a disposal procedure that mitigates the security risks based on the objective standards is

available. This could be applied to the case where the disposal is done in a way that NSA (National Security

Agency) of the United States has established, or banning the disposed embedded equipment to reconnect the

system by using a tracking technology. With this level, it is assured that the product will not contain any

personal information or confidential information. Ultimately, this is the level this guide hopes that the

organizations will aim and achieve.

14

4. Security Measures at Each Phase

4.1. Management

4.1.1. Security Rules

In providing embedded systems, the developers should not settle on ad-hoc security. The developers need to

establish a security policy and define the security rules, what must be done and what must not be done, as an

organization.

For example, the developers need to make the security rules regarding procurement when buying the modules

that consist of embedded systems from external vendors. If the developers develop the modules in-house, they

need to establish the security rules on how to implement security measures and features or how to establish a

project teams and developmental environment that ensure the reliability of the processes in during the

development and manufacturing. In addition, to provide a customer support service and protect the personal

information of the users, a policy to establish a security management system is mandatory. The developers can

consult ISMS (ISO/IEC27001) as a reference for the security rules. Meanwhile, below are examples of concrete

policies and rules organized in the way that shows which one corresponds to which phase of the lifecycle

presented in Figure 3-2.

【Common throughout the Lifecycle】

・ Information Security Policy

Draw up the organizational policy on information security, according to its business requirements, relevant

laws and regulations.

・ Information Security Management Policy

Establish the rules to appoint a chief information security officer and organize a system to promote and

manage security within the organization.

・ Human Resource Management Policy

Draw up a non disclosure contract and establish the rules on recruiting and security education to hire

appropriate personnel and protect the confidential information from disclosed. These rules must be applied to

temporary workers and contractors who are involved in development of embedded systems.

【Designing / Development】

・ Development Policy

Establish the rules, for example, to ban unauthorized physical access or to prevent malware from infecting

computers to ensure security of the development environment.

・ Design Policy

Establish the rules to decide the security mechanisms required to prevent, detect and recover from security

incidents when designing and implementing.

15

・ Procurement Policy

Establish the rules that make sure that the hardware and software purchased from external vendors have the

necessary security features and that they are implemented properly and reasonably certifiable in the eye of

the outside party.

【Operation】

・ Operation Policy

If vulnerability is found in the embedded systems already in hands of the users, the developers need to

prepare a security patch and let the users know about the vulnerability and patch. Establish a incident

response system and the procedure, and the rules to appropriately handle the users’ personal information,

such as contact information.

【Disposal】

・ Disposal Policy After Collecting Disused Products

If the products that may store personal information are also covered in the collection, establish the rules in

accordance with the Act on the Protection of Personal Information.

Level Description

Level 1 ・ No security rules are established.

Level 2
・ Security rules are established voluntarily by the developer.

・ Security rules are established by the project manager and system developers.

Level 3 ・ Security rules are established as an organization and documented.

Level 4
・ Security rules are established as an organization and documented. An audit to evaluate the compliance to

the rules is also in place.

16

4.1.2. Security Education

Embedded systems have evolved into a system that consists of advanced hardware and a collection of

sophisticated applications. This has increased the risk of security flaws (vulnerabilities) in the embedded systems

that may let the users do something they are not supposed to do, such as unauthorized operations and access to the

data. The vulnerability may exist in the source codes written by the developers themselves or outsourced vendors,

or basic hardware and software.

Attackers and researchers have been in fierce competition to find a way to exploit the vulnerabilities and new

techniques are found daily. It is good for the developers to provide security education on the following issues to

foster the system developers who are strong in the security area.

・ Known Vulnerabilities

A vulnerability found in the software is often a known one. For example, the JVN vulnerability

countermeasure information
4
 provide the case studies on a variety of vulnerabilities, such as cross-site

scripting, cross-site request forgery, directory traversal, SQL injection in a management GUI for the

embedded systems. The developers need to learn from the case studies available on the Internet and make

sure that they do not have the known vulnerabilities in their system.

・ Secure Programming

Sometimes security holes are created during the implementation. For example, if a library that provides

authentication or encryption is not properly implemented, an attacker may be able to bypass authentication or

break the encryption. Something that the system does not expect to handle, say, too long strings or

unsupported character sets may cause an undesirable behavior of the system as well. For more information

on secure programming, check out Secure Programming Course
5
 or guidance is also found on the

e-Learning Websites or books on the subject.

・ Security Testing

It is critical to perform security testing at the design and implementation process to make sure that the

security mechanisms are properly implemented. To be specific, the following must be done. (1) To review

the design documents to make sure that necessary security measures are put in place, (2) to review the source

codes to make sure that they do not have vulnerability, (3) to perform system tests on the developed system

to make sure that they indeed do not have vulnerability. More information on security testing can be found

on the e-Learning Websites or books.

For security verification of source codes, there are specialized tools for that purpose. There is also a

verification tool that systematically analyzes an embedded system with a network connectivity for the known

TCP/IP vulnerabilities
6
. The embedded systems may use commonly attacked Internet protocols (such as http,

sip and dns). In that case, the developers had better be aware of verification tools for the vulnerabilities in

these protocols as well. For example, IPA offers a verification tool for SIP
7
, a protocol used to offer IP phone

services. As for the commercial tools, there are Nessus
8
 (vulnerability scanning tool), nmap

9
 (port scanning

tool), Metasploit
10

 (vulnerability scanning tool using attacking code), nikto2
11

 (Web server security

17

assessment tool). In addition, the use of a fuzzing tool, which analyses and looks for the system’s unexpected

response caused by the erroneous input, such as Protos
12

, can be also effective. Having knowledge on these

tools is also encouraged.

Level Description

Level 1 ・ No security education is done.

Level 2
・ A voluntary working session is held.

・ The project manager and system developers acquire the knowledge or organize study sessions as needed.

Level 3
・ Security education is provided as part of daily work.

・ Attending security seminars and taking security training are encouraged.

Level 4
・ Security education is provided as part of daily work.

・ Taking security training with an expert is required.

---Coffee Break---

Terms related to vulnerability are mostly foreign-made. In addition to their difficulty to understand, the range of the

hardware and software components vulnerabilities exist is overwhelmingly wide. We, however, now come to the point

where we must face and understand them. We used to be safe when we were expected to achieved some limited

functions using limited resources for the limited usage environments. As systems have been more and more networked,

sophisticated, serviceable and large-scale, however, we have no choice but use the hardware and software components

developed by someone else. We must accept and deal with the vulnerabilities we have no control over.

If vulnerability exists in the product and is exploitable, the product we have developed is a sitting duck for an attacker.

Even if the product has developed for specific use and contains no confidential information, that does not change the

situation at all. The attacker may not be interested in our product itself, but the attacker can exploit the vulnerability and

use its processing power to attack other targets, possibly making our product an accomplice in a crime.

Even the best security system cannot solve every security problem. Let’s see TPM (Trusted Platform Module) as an

example. TPM is versatile where it can do things, such as detect software modification, check the authenticity of

devices and provide encryption. TPM, however, is just a system itself. At a security conference BLACK HAT 2007, a

presentation called “TPMkit: Breaking the Legend of Trusted Computing (TC [TPM]) and Vista (BitLocker)” was

scheduled but cancelled. No reason was given. Despite its intriguing claims, the tool has only 4 hits on Google Japan.

What does it mean? It is important to have critical eye.

First, we should understand what are used in our product, and then, see if they have vulnerabilities and how the

vulnerabilities have been exploited. Do not limit the search within Japan but look overseas as well. We will see there

are more risks than we anticipate. We may not be able to understand what we find in our research much, let alone judge

if the vulnerability indeed affects our products.

That is exactly why we need to learn and acquire knowledge.

18

4.1.3. Collecting Security Information

To develop and sell an embedded system, it is necessary to collect and respond to security information related

to embedded systems throughout the system’s lifecycle. Especially for open source software, the developers must

realize they themselves are solely responsible to collect the necessary security information. At the development

phase, the developers should make sure that the hardware and software they are going to use have no security

problem. The information the developers should collect are as follows.

・ Vulnerability Information

For example, when using a popular software used in Japan, such as Linux, to develop an embedded system, it

is critical for the developers to know all the latest vulnerability information on OS and middleware provided

by their development communities. The developers can also collect the information on vulnerability found

and officially reported by searching a vulnerability countermeasure information database JVN iPedia
13

. In

addition, there is MyJVN
14

, a filtered vulnerability countermeasure information tool, which provides the

features to filter and auto-recollect the vulnerability information, and a checklist of vulnerability

countermeasures to enable the users to collect the vulnerability information only relevant to them.

JPCERT/CC is a designated organization to collect and distribute computer security information in Japan and

support security incident response. It works under the Framework for Vulnerability Information Handling”
15

where JPCERT/CC provides the vulnerability information yet disclosed to the public to the information

system developers on a need-to-know basis to avoid misuse of the vulnerability information and minimize

the possibility of causing harm. To be among the first to obtain the vulnerability information, it is useful to

participate in the framework.

Online news sites also cover the security issues about IT products. For example, SecurityFocus
16

 gives the

information on vulnerability, attacking methods, countermeasures and security tools.

As for open source software, the developers should check out the product’s update information released by

the original developer.

・ Trends in Encryption Standards Used in Authentication and Data Protection

Every day, researchers and crackers worldwide are trying to crack the encryption and authentication

technology. In Japan, CRYPTREC (Cryptography Research and Evaluation Committees) works on a project

to conduct a research and create a list of encryption technologies that are safe and well implemented based on

the objective evaluation. When developing an embedded system using encryption technologies for

authentication and data protection in Japan, the developers should refer to the report
17

 from CRYPTREC. In

other countries, since each country has its own rule, the developers need to refer to the encryption standards

set in the country.

Level Description

Level 1 ・ No security information is collected.

Level 2 ・ Security information is collected by the project manager and system developers as needed.

Level 3
・ There exists a system where security information is collected as an organization and disseminated to those

involved in system development.

Level 4 ・ Is participating in the Vulnerability Information Handling and utilizing vulnerability information.

19

4.2. Planning Phase

4.2.1. Budgeting

The developers need to ensure budget for security throughout the embedded system’s lifecycle (planning,

development, operation and disposal). Especially, security relevant software (such as OS and encryption libraries)

requires continuous budget for updating in addition to the initial cost at the development phase.

Since security problems are difficult to predict in advance and often come out into the open sometime after the

product release, it is desirable for the developers to have an organization-wide, continuous budget to avoid the

risks besides the security budget to develop the product. To carry out thorough security awareness throughout the

organization including the management, the budget for the following issues should be included in the project

approval and financial documents based on the project’s development plan.

・ At the time of development

 Research cost (books, seminars, trainings)

 Procurement cost (hardware, software, certificates for testing and operation phase)

 Quality control management cost (cost to build a revision management system)

 Cost to build test environments

・ At the time of operation

 Research cost (check and update hardware, software and certificates used in the product)

 Maintenance cost (maintain and update the test environments, hardware, software and certificates)

 Operation cost of the revision management system
18

 Expenditure to respond to any security problems that might emerge (it can be per product or for all

products as a whole. Consider to provide the users and administrators some options to update the

product easily depending on their use environment, such as update through the Internet or some media.

Level Description

Level 1 ・ No budget for security issues is ensured.

Level 2
・ Budget is ensured when the project manager requires.

・ Budget is considered when the project manager and system developers require.

Level 3
・ There exists a system where a certain amount of budget is allocated to ensure security as part of the

development process.

Level 4 ・ Budget is allocated to set up a specialized security team and put it on work.

20

4.2.2. Selecting Development Platform

Here, the development platform is the base hardware and software that compose a product to be developed.

When developing an embedded system, the developers select the hardware components, such as CPU and

memory, and OS and various software applications to control them to implement the planned functions and

capability. The basic development technique is to select all components from scratch and build a customized

development platform.

In these days, however, a development technique, in which the developers use a reference board (motherboard)

shipped by the chipset makers who provide CPU and other devices as a base and add their own customization to it,

has become common to shorten the development period and reduce cost. These reference boards make debugging

during development easier and have a good scalability, but security issues are often not much concerned. When

designing the hardware, the developers may use the devices and circuit design as they are to maintain the

performance reliability, but it is quite dangerous from the security perspective. For example, a physical attack has

been reported where the confidential information was stolen through probing when the information was

transmitted in plain text on the data bus on the motherboard. If the developers use a reference board as reference

when designing, they must take into account such physical attacks and implement countermeasures.

When selecting the hardware, the developers need to keep the possible physical attacks and countermeasures

against them in mind as follows.

・ When the confidential information is to be transmitted on the data bus on the motherboard, make the circuit

architecture difficult for an attacker to intercept the data. When deciding the system architecture using a

reference board, check if the circuit architecture can be used as it is.

・ For a device that is to handle confidential information, choose a BGA (ball grid array) package device or

something that could make probing difficult.

Next, let’s think about the software. The software for an embedded system is selected based on the hardware

architecture. A real-time OS and control driver software are selected depending on CPU and the devices. Besides

OS and the drivers, off-the-shelf, software packages that provide a specific function are also available. In recent

years, as embedded systems have become multifunctional and high-capacity, more developers tend to adopt open

source software, such as Linux.

Previously, embedded systems with a network connectivity are equipped with the protocol stack for only IPv4,

but those to be developed in the future will need to support IPv6 as well.

In each case, it is important to check out the security policy of the vendors whose embedded software package

the developers planned to use for their product in advance. Here, the security policy means the level of support

that can be judged from the software update cycle or the length of support period, whether the vendor provides a

security patch or update in response to vulnerability information, in addition to the ordinary bug fixing and

version ups. For those that have not been time-proven, such as the protocol stack for IPv6, the developers should

check and double check to be sure.

Threat information is available from a vulnerability countermeasure information database JVN iPedia
13

, as it is

mentioned in 4.1.3 Collecting Security Information. To determine how an embedded software package vendor has

21

been responding to published vulnerability information could be one of benchmarks. The developers may find out

how secure the software package is from other company’s case study.

When building a unique development platform without using embedded software packages, the developers need

to pay great attention to vulnerability information as pointed out in the above section. It is critical to monitor what

is going on with all hardware and software components and provide a security patch or update timely.

When selecting the software, be careful with the following points.

・ When using an embedded software package, check out the vendor’s vulnerability support system in

advance.

・ When building a unique development platform, do not forget that the developers need to collect

vulnerability information and implement countermeasures on their own.

Level Description

Level 1 ・ Platform is selected based on cost and delivery period. Security is not considered much.

Level 2

・ Known vulnerabilities at the time of development are taken care of.

・ After shipment, nothing is done.

・ There is no unit or person in charge that selects the development platform.

・ The level of vulnerability awareness differs depending on each project manager and system developer,

thus no unified effort as an organization exists.

Level 3

・ When using embedded software packages, monitor information on security patches for them and update

released by their vendor.

・ Security patches and updates are provided after shipment as well.

・ Vulnerability awareness is high in the units that manage the same product and unified effort is being done.

Level 4

・ Vulnerability countermeasures are done across the organization.

・ Security patches and updates are provided after shipment as well.

・ A vulnerability support system of the vendors is checked out in advance.

・ Devices and circuit architecture are selected considering security as well.

・ To improve security of products, efforts like building a unique platform or requesting the vendors for

improvement are being done.

---Coffee Break---

IPv6’s 128 bit address provides an enormous number of total IP addresses (340 undecillion addresses) and promises

flexible end-to-end communication by allocating an IP address to every single embedded system. It also has various

advantages, such as helping automation of complicated IP settings and standard support for cryptographic

communication and mobility by expanding the header functions. A huge address space of IPv6 means that an attacking

method like exhaustive IP address scanning will become very difficult to perform.

On the other hand, it is possible that these characteristics of IPv6 may turn out to be the source of new risks, and

become the disadvantages compared to the current situation with IPv4. Many coming embedded systems will support

IPv6. The developers should realize that security requirements for embedded systems, which are not used to be attacked

via the Internet except some networked ones, will become higher in the future.

22

4.3. Development Phase

4.3.1. Designing

In a general process of an embedded system, there is a design process in its early development phase in which

functional specifications and capabilities are decided. The hardware and software architecture to support the

functional specifications are also decided at this phase and then each function is discussed in detail. It could be

possibly rare that security effort described in this guide is actually performed in real development proceedings.

In recent years, however, an increased number of embedded systems have a network connectivity and the

developers must realize that the threats of becoming a target by attackers are real. If a product is shipped with

vulnerability and it causes a problem later, it will cost the developers a big money to recall and fix the problem. In

the case of a cell phone incident reported a few years ago, it was said that the total cost was over 10 billion yen.

To avoid such situation, it is important to examine the security requirements for a planned embedded system in

the design process during the so-called upper process and consider what kind of security countermeasures should

be implemented.

Based on the internal architecture of an embedded system described in 3.1.1, some examples of security

requirements that should be discussed in the design process are listed below. Some of them may not be considered

as a security requirement depending on how the product is used. In that case, the developers should select only

what they need based on the purpose and expected user base of the planned embedded system.

Also, it is necessary to implement the ways that support the users to safely use the system. For example, the

security features mentioned in this section (like encryption of transmission or countermeasures against attacks) are

enabled when the user uses the system at the default settings or follow the procedures suggested in the manual,or

issuing a warnings when the security features are disabled.

・ Protection of Confidential Information

When an embedded system with a network connectivity is attacked, it is necessary to prevent the confidential

information stored in the system, such as personal information, from being disclosed. The confidential

information includes information assets that may harm the user. (*for more details on information assets,

refer to Table 3-2 Examples of Information Assets Embedded System Should Protect) Depending on the

level of the confidentiality of the information assets, the logical or physical location of data, encryption

method, strength of encryption are decided.

Countermeasures:

 To prevent spoofing when transmission takes place, fortify user and server authentication (use password

or biometric authentication for within the embedded system and for authentication via network, employ

those that is not vulnerable to replay attacks).

 To prevent data leak via network, bus and memory units, select the encryption algorithms appropriate

for the confidentiality level.

 Consider using encrypted memory and hard disk.

 Enable the use of USB memory stick and IC card and do not allow the internal non-volatile memory to

store sensitive information.

 Implement an import/export feature for personal information to prevent information leak in casethe

23

embedded system is sent for repair to an external party.

 Consider implementing a way to manage the user information on the server via network.

・ System Failure Recovery

When an embedded system becomes under denial of service (DoS) attacks, it is necessary to prevent system

failure, such as freezing and rebooting, caused by the attacks.

Countermeasures:

 Implement a mechanism to monitor itself and detect failure, recover and shut down.

 Implement a mechanism to alert the user about failure, on display or via network.

・ Alerting

In the case where an embedded system is attacked, for example, data is modified or destroyed, privilege is

escalated, or it is under DoS attacks, it is necessary to have a mechanism to warn the user about the attack. A

mechanism to let the user know when the user performs erroneous operation or configure incorrect settings

should be also implemented.

Countermeasures:

 Implement a user interface to send an alert to the user when the system is attacked.

 Clearly specify emergency response procedures, such as cutting off from the network, in the alert

message.

 Clearly specify the detailed explanation on each alert message in the manual and user’s guides.

 Require password to change the system settings.

 Consider to put restrictions on changing port numbers and port usage.

 Implement a user interface to send an alert to the user when the user configures network settings that

may put the system in danger.

・ Logging

In the case where an embedded system is attacked, for example, data is modified or destroyed, privilege is

escalated, or it is under DoS attacks via network, it is necessary to have a mechanism to log suspicious login

attempts and events within the system.

Countermeasure:

 Determine whether a logging feature for data transmitted and received is necessary. Log may include

the source IP address, destination IP address, port number, data size, date/time.

 Determine whether a logging feature for users’ login records. Log may include user ID, number of

logins, number of login errors, date/time.

 Determine how long to keep each log and decide the data size and memory configuration.

 When managing logs online, decide what protocol and data format should be used.

・ Services

It is necessary to prevent an attacker from accessing the embedded system and obtainig the system

information, such as software configuration, through the special-purpose features that are normally off-limit

24

to the user, for example, the testing function used in the factory, a maintenance feature for service crews, and

a sales demo tool. In addition, unauthorized access through the debug connectors used during development or

communication connectors used by service crews should be prevented as well.

Countermeasures:

 Require a set of procedures to access each special-purpose feature, making it difficult for the user to use

it.

 Remove all features and function that are unnecessary before shipment.

 Make sure that how to access the special-purpose features is not disclosed on the Internet.

 Do not implement a debug connector for mass production hardware or remove the connection pattern.

 Customize the shape and way to implement for the communication connectors used by service crews,

making it difficult to access.

 Communication connectors used by service crews can be used to read and update the information stored

within the embedded system. Secure the communicate with the microcomputer by requiring a set of

procedures to proceed.

 Make it harder to analyze the software.

・ Physical Countermeasures for Embedded System Hardware

It is necessary to implement anti-tamper techniques to prevent malicious attempts, such as, opening the

computer case forcefully, unauthorized access to the devices on the motherboard, probing and modification

of data in volatile memory.

Countermeasures:

 Implement a mechanism to automatically delete the confidential information when the system detects

the case has been opened forcefully or hard disks or memory is removed.

 Implement a mechanism to send an alert online when the system detects the case has been opened

forcefully and hard disks or memory is removed.

 For those that handle the confidential information, choose a BGA (ball grid array) package device or

something that could make probing difficult.

 After mounting the devices, coat chips and devices physically or chemically to prevent probing.

・ Disposal

When the product is given over from one user to another or disposed, the confidential information stored in

the hardware may be disclosed. To prevent this, it is necessary to consider to maintain data on the network

instead of storing in the product. For the data that must be stored in the product, provide a way to initialize or

destroy the confidential data.

Countermeasures:

 Make the hardware configuration supportive to categorize the data into two, confidential data and other

data, and store them separately to enable partial removal of the data when needed.

 Implement a user interface that allows the user to easily remove and initialize the data.

 Consider a mechanism to physically remove sectors on the hard disk.

25

 Enable the use of USB memory stick and IC card and do not allow the internal non-volatile memory to

store the confidential information.

・ Countermeasures against Being Used as a Stepping Stone

It is necessary to prevent the embedded system with a network connectivity from being attacked and

compromised to attack others. It is also possible that an attacker tries to harm others by invoking the

embedded system’s abnormal behaviors via network to overflow the traffic and that should be prevented.

Countermeasures:

 Fix vulnerabilities so that an attacker cannot exploit them.

 Implement a mechanism to detect attacks via network and disable them. Below are some benchmarks

useful to detect attacks.

・ Receiving too many packets in a certain period of time

・ Too many failed login attempts in a certain period of time

・ Receiving unexpectedly large packet data

・ Access to unused ports

・ Countermeasure against Side Channel Attack

Recently, an attacking method called side channel attack has come to light. A side channel attack is an attack

based on the information obtained from the physical implementation of encryption algorithms, such as timing

information, power consumption and error messages, and exploit them to break into the target system.

Typical side channel attacks are as follows.

Table 4-1 Examples of Typical Side Channel Attacks

Attacking Method Description

Probe Attack Open the LSI package and insert ping into the chip’s data bus to monitor and analyze the change in

data on the buses.

Power Monitoring

Attack

Similar to timing attacks, analyze power consumption by the hardware during computation to make an

educated guess on the confidential information. There are some variations such as simple power

analysis (SPA) and differential power analysis (DPA).

Electromagnetic

Attack

Observe leaked electromagnetic radiation to analyze the hardware’s operation. Like power

consumption, it will provide extra source of information.

Differential Fault

Analysis

Intentionally introduce a failure to the module, have the module operate and analyze the erroneous

outcome to gain an idea on the confidential information. To make the module fail, an attacker may

subject the embedded system to unsupported supply voltage or current, overclocking, strong

electromagnetic fields, radiation or strong light.

Timing Attack Analyze the time taken to execute cryptographic algorithms to gain idea on the sensitive information.

For example, when performing a Montgomery multiplication, it may or may not perform modulo

operations at the end of calculation depending on the value of the interim outcome of the operation.

By repeatedly performing Montgomery multiplications with different input values and measuring the

time taken to process the calculation, an attacker may obtain the information that may provide hints to

assume the confidential information.

Countermeasures:

The countermeasures against each attacking method are summarized below.

 For the LSI that processes the confidential information, use those that have a protective layer to block

26

observation from the outside to prevent probe attacks. The other options will be to surround the circuit

with a metallic layer, monitor the current on it and destroy confidential information when the system

detects tampering, or destroy the chip when a protective layer is removed (anti-tampering mechanism).

 To prevent power monitoring and electromagnetic attacks, make sure that there will be no difference in

the measurements regardless of the content of the calculation operation, just like to prevent timing

attacks.

 Implement a mechanism to detect a failure and destroy the confidential information when detecting it to

prevent differential fault attacks.

 Insert dummy routines to the algorithms so that there will be no difference in the measurements

regardless of the content of the calculation operation to prevent timing attacks.

As information home appliances become more advanced and popular, the applications and contents that used to

be for the PCs only are now also available the for information home appliances. Some information home

appliances have a capability to upload the contents to the Internet or share files like a server. This has introduced a

risk of being attacked through the Internet and need for implementing the countermeasures to the information

home appliances as well. Below are some examples of the features that may be needed for the information home

appliances that support common Internet applications.

・ Countermeasure against Malicious Programs

Depending on the functions the embedded system provides and risks posed by the services it uses, it is

necessary to implement a mechanism to detect, remove or correct malicious programs and modification

attempts hidden in the files, the memory and transmission data, and a way to update the pattern file for the

detecting mechanism.

Countermeasures:

 Implement a mechanism to detect malicious programs on the embedded system or utilize an equivalent

service provided on the Internet.

 When implementing a mechanism to detect malicious programs on the embedded system, make sure

that it has a way to update the detecting mechanism and pattern files.

 Implement a mechanism to send an alert to the user when a malicious program or modification attempt

is detected.

Level Description

Level 1 ・ No security is taken into account at the design phase and it is not included in the specification documents.

Level 2
・ Consideration on security at the design phase is up to the project manager and system developers.

・ No organizational policy is established and an audit is not done nor addressed.

Level 3

・ An organizational security policy that should be followed at the design phase established.

・ The design process is preceded following the policy.

・ An audit is not done.

Level 4

・ An organizational security policy that should be followed at the design phase established.

・ The design process is preceded following the policy and there is an audit process to review the security

measures.

27

---Coffee Break---

In one of researches on differential power analysis (DPA), the researchers are studying on circuit configurations and

algorithms that will consume the same power regardless of the content of cryptographic operations to nullify the

correlation between the confidential information and power consumption. However, the countermeasures recommended

at the academic conferences are too expensive or infeasible with the current LSI designs. In reality, there is no

established, working solution for the mass produced LSI design yet. Even if there is no countermeasure against power

monitoring attacks, it can be possible to reduce the power consumption to quite low by using nanometer chip.

Consequently, it will make power monitoring attacks harder.

Also, it will be effective for mitigating power monitoring attacks to design a separate circuit dedicated to cryptographic

operations since it is easier for an attacker to analyze power consumption when CPU is used for cryptographic

operation, or to change the cryptographic key often.

What is important here is to realize that when a planned embedded system is to perform cryptographic operation, it will

be nonsense to worry about side channel attacks too much and unnecessarily increase the cost but do not down play and

find a good balance between the effectiveness of available security measures and feasibility of implementation and put

it into the design.

28

4.3.2. Software Implementation

The security problems in software programs can be a bug that arises spontaneously during operation or one that

the behaviors specific to an embedded system are analyzed through direct or indirect attacks and turned into a

vulnerability. To counter direct and indirect attacks, it is recommended that the developers adopt anti-tamper

implementation and secure programming when coding the software. Anti-tamper technology aims to protect the

software and data from attacks that try to directly analyze an embedded system through the data in the memory,

source code itself, or data transmitted on the bus. Examples of the countermeasure are software hardening and bus

data encryption. On the other hand, secure programming aims to protect the software and data from attacks that

try to indirectly analyze an embedded system’s responses to unsupported packets or commands. Examples of the

countermeasure are packet filtering or a countermeasure against buffer overflow.

When implementing security, the developers should note that there are tradeoffs between security and those

such as software’s capability or debugging efficiency.

The software implementation processes have two general phases: source coding and its review. There are

various coding methods and review techniques to improve the quality of software. It is also possible to enhance

the efficiency and accuracy of reviews by utilizing tools for analyzing source code. Because what is most

appropriate differs depending on the size of software, it is difficult to suggest the best technique and method. Here,

some researches on vulnerability countermeasures during software implementation are introduced. The developers

should evaluate the security level of their organization carefully based on the description introduced later in this

guide and pick up the advices accordingly to their operation. Meanwhile, they should know that learning coding

methods and review technique require expertise, and the organization must work on it as an organization through

security education or other efforts.

Study Report 1:

Secure Programming Course
19

 on IPA Website can be of help to counter buffer overflow or format string attacks.

Its contents are not specialized for embedded systems, but Chapter for C/C++ is especially useful for embedded

system software development.

Study Report 2:

IPA’s research project ”Toward Establishment of Methods to Comprehend and Review Software Source Code
20

”

can be of help. It is still an ongoing project but a draft version is available for the public. It introduces

methodologies and techniques to analyze, evaluate and review software code. It is distinctive where an expert is

assigned as the technical manager to each software programming language or OS, and source code analysis is the

main focus.

29

Level Description

Level 1

・ No security coding is done.

・ No source code review is done.

・ Source code reviews are done but security is out of scope.

Level 2

・ Coding policy and review technique to prevent vulnerability depend on the voluntary effort by system

developers or some project members.

・ No uniformed effort is done even in the same department.

・ Because it is done based on the knowledge and experiences of the project manager and system developers,

there are no clear criteria.

Level 3

・ There is an organizational policy and rules about coding and reviews that should be followed in software

implementation to prevent vulnerability.

・ System developers write source code following the rules.

・ An audit of the compliance with the rules within or across the departments is included in the development

process.

Level 4

・ In addition to the efforts at the level 3, there is a specialized security team in the organization and it gives

supports for secure cording and reviews.

・ The security team is also involved with the rule making and keeps revising the rules based on the

information available on bugs, vulnerabilities, incidents and countermeasures.

---Coffee Break---

What is it that you do satisfy all the requirements yet write codes with security holes? Let’s take a program with a

cryptographic function as an example and look into the issue.

Many software now support encryption to protect data. From the attacker’s perspective, encryption gives a clue that the

data that requires encryption mean they are valuable information, and it is possible for the attacker to fish out sensitive

information from hundreds megabytes of data by analyzing memory access when cryptographic operation is performed.

It may be even possible to recover data encryption keys during the act.

How does the attacker find out where the encryption engine resides? One method is to focus attention on a

characteristics that AES or DES repeats a particular process for predefined times and to analyze the source code looking

for loops. It may not be able to pinpoint where the encryption engine is but does shorten the time it takes to analyze.

Should we call it simply a bug when sensitive information is disclosed due to such an attack? Is there any way to stop

this from happening?

Unfortunately, all we can do now is to make it a little harder for an attacker to pull it off. How much harder an

embedded system should be? As the case now stands, they must judge on their own depending on how valuable the data

they need to protect are and how much money they could spend to protect them.

30

4.3.3. Outsourcing

Due to the ever-growing scale of embedded systems and cost to develop them, some projects are outsourced to

external parties. What the developers need to do to prevent vulnerabilities has been descried up to this section, and

the developers must require the same security effort from the outsourcees. In reality, however, it would be

difficult to apply the same level of awareness and rules due to the difference in organizational climate and culture.

In addition, in a large-scale development environment where a number of people involve, possible communication

barrier should be taken care of.

Especially when software development is outsourced, the risk of vulnerability becomes higher since the

development process is not always visible and controllable. There is also the risks that the rules on coding and

reviews are not enforced strictly and human errors can be missed The developers must take into consideration that

someone who is not well skilled may be assigned to design the system depending on the outsourcee’s resource.

There are various cases of outsourcing. Depending on the product’s architecture and cost they can allocate for,

the developers may manufacture hardware in-house and outsource only software development, outsource only part

of software development, or employ some other style. Practicing the countermeasure introduced in this guide will

be effective against vulnerabilities and the developers should employ accordingly to their outsourcing policy.

Outsourcees will get involved with the development in various ways. It is necessary to require security effort

from the external parties based on the developers’ internal security policy. Below are some pointes to keep in

mind when outsourcing.

・ When outsourcing the design of the basis of hardware or software, provide the design rules and criteria to

the outsourcee and clarify each other’s role and responsibility in the project not leaving all decision making

to the outsourcee.

・ When outsourcing software implementation, clarify the coding rules and review method in advance and

include them in terms and conditions of quotation.

・ To make sure the security effort is properly performed as required, hold a joint review and require to

submit the design documents. By reviewing the documents and auditing the processes, establish a system to

check and ask for improvement.

・ Discuss a security assessment and debugging method in advance, and the cost for assessment tools and

manpower.

・ Define the acceptance conditions regarding security and require to submit a security specific document.

・ Consider a communication method and environment with the outsourcee and enable feasible enforcement

of security rules.

・ Make clear the scope of responsibilities over the security matters and clearly written in the contract.

31

Level Description

Level 1
・ No vulnerability countermeasure is taken into account when outsourcing.

・ Even if the project has security features, the same outsourcing policy is applied.

Level 2

・ Vulnerability countermeasure in the case of outsourcing is up to the voluntary effort by system developers

or some project members.

・ No uniformed effort is done even in the same department.

・ Because it is done based on the knowledge and experiences of the project manager and system developers,

there are no clear criteria.

Level 3

・ A contract for software development outsourcing requires an organizational security effort within the

outsourced party to prevent vulnerability.

・ An audit of the compliance with the contract condition within or across the departments is included in the

development process.

Level 4
・ In addition to the efforts at the level 3, there is a security team in the organization and it gives advice to

the outsourced entity.

32

4.3.4. Security Assessment Test and Debugging

The attacks to disclose, modify or destroy data to be protected in an embedded system are executed via logical

or physical interfaces to the information assets. Examples of attacks against logical interfaces are buffer overflow

attacks that send the data the targeted software does not expect and support, or injection attacks that send a

specially-crafted data embedded with malicious command and induce erratic software behavior.

Examples of attacks against physical interfaces are reverse engineering attack that analyze the software by

connecting a debugger to the debug connector or side channel attacks that measure the changes in the system’s

physical quantity during operation, such as power consumption, and analyze the measurements to find out

sensitive information like an encryption key. Security assessment test involves performing a security assessment

based on the security requirements defined in 4.3.1 Designing and checking if the software is indeed safe against

the various attacks mentioned above. When performing a test, it will be effective to use the security assessment

tools introduced in 4.1.2 Security Education. Major attacking methods and advice on what should be checked for

each attack are summarized below.

・ Injection Attack

Injection attack exploits control codes and inserts an unexpected command when the software builds a

command string for the DB server or shell to execute. It is important to make sure that control codes in the

command strings sent to the DB server and shell are appropriately escaped. .If the software offers a Web

interface for management purpose, use the injection detection tool
21

 provided by IPA.

・ Buffer Overflow Attack

Buffer overflow attack involves sending a maliciously-crafted program and executing it in the memory

(including stack). To check if the software is indeed protected from buffer overflow attacks, look up the

event where a data larger than the buffer size had been inputted and see if the software processed it properly

as it was supposed to.

・ DoS Attack

DoS attack renders the server software within embedded systems incapable of providing their services. A

DoS condition occurs when the server programs abnormally end, go into infinite loops or deplete recourses.

Make sure that the software is capable to detect and avoid such conditions. As for known vulnerabilities in

TCP/IP, use the vulnerability assessment tool
6
 provided by IPA.

・ Reverse Engineering Attack

Reverse engineering attack involves analyzing hardware or software and studying about the products, such as

its architecture, manufacturing technology and operating principles. In the software field, reverse engineering

generally suggests a technique where an attacker statically analyzes binary executable files and finds out the

product’s design and implementation with a disassembler or dynamically with a debugger. Reverse

engineering is one of the techniques to find vulnerability and very useful in that regard, but it also poses a

risk that an attacker finds and exploits vulnerability unknown to the public and executes attacks if given a

33

chance to perform reverse engineering. By adopting software hardening technology, it is possible to make it

harder for an attacker to discover vulnerability.

・ Abuse of Service Ports

An attacker may connect a debugger to embedded systems and analyzed the behavior of the systems. Make

sure that a connector used in debugging or maintenance mode for developers or service clues is off-limit for

the users.

・ Side Channel Attack

Side channel attack involves observing and analyzing the behavior of an embedded system to assume or find

out sensitive information. Make sure that important, sensitive information is not easily analyzed.

・ Format String Attack

Format string attack involves sending malicious data that the targeted software does not expect and support,

in terms of the type or size of the data, and having the software execute arbitrary command. Check input data

and see if the software stops processing it when the input contains unexpected, suspicious data.

Level Description

Level 1 ・ No security testing is done.

Level 2
・ Security test is planned based on the knowledge and experience of system developers

・ The quality of the security testing depends on system developers’ knowledge.

Level 3
・ There is an organizational security test plan and evaluation is done based on the organization’s criteria.

・ If other device is connected, test the connectivity with the device,

Level 4
・ Following the security the test plan drawn up as an organization, the internal security team reviews it.

・ In something is added, updated or delete after shipment, check the connectivity with the new device.

34

4.3.5. User Guide

Vulnerability may be found after an embedded system is in the hands of the user. The developers need to

provide what to do when it is found beforehand, for example, putting that information in the user guide. What

information should be given in the user guide is listed below.

・ Guidance to use the product securely

In the case that the embedded system has a network capability, it is desired to give instructions on how to

protect data stored inside the system from an attacker (for example, how to set a password). It is also good to

let the user know of possible consequences if he or she does not put up security measures (for example, files

on the system may be deleted thorough unauthorized access).

・ Trouble Shooting

The information on what to do when the user faces some kind of trouble in using an embedded system (such

as, shutting it down and rebooting it) should be provided. In the case that the developers provide software

update or customer support to solve the trouble, the procedures to receive those services need to be provided

as well. If the embedded system has a password protection feature, what to do when the user forgets the

password and the possible impact of initializing the password had better be mentioned (for example, some

contents may become inaccessible, the settings may be lost, services may become unavailable due to deletion

of the certificate, a theft may initialize the password and hijack the system).

In addition, an embedded system’s security setting at the time of shipment and its default setting when it is

initialized should be available in the user guide.

・ Legal Disclaimer

Exclusion clauses that limit the liability of the developers in the event that something goes wrong with an

embedded system and the user suffers the damage must be listed.

・ Supported Security Standard
22

To let the user know that the product is reliable, it is recommended to include the security standards it

supports in the manual. Below are some examples of the security standards.

 Cryptographic algorithms (for example, AES, DES, RC4, RSA)

 Hash algorithms (for example, SHA-1, SHA-256, MD5)

 Secure transmission protocols (for example, SSL (TLS), SSH, IPsec)

・ Repair Service Information

The procedure on what the user needs to do when asking for the repair should be provided.

 Contact information to ask for help and repair

 Data protection procedures the user should take before sending the product to repair

35

・ Disposal Procedure

Below should be clearly stated as to what the user should do to remove any sensitive information.

 That the users are solely responsible for removing all data stored in the product.

 How to start the data removal program

 How to use the data removal program (especially how to specify sensitive information)

 How to confirm that the specified data are indeed removed

Level Description

Level 1 ・ There is a user guide but no security is mentioned in it.

Level 2

・ Security issues are covered in the user guide.

・ Trouble shooting and legal disclaimer are included in the user guide.

・ Security requirements (risks and warranty scope) are included in the user guide.

Level 3

・ An organizational procedure to examine whether its security policy and rules are reflected in the user

guide is established.

・ Trouble shooting and legal disclaimer are included in the user guide.

・ Security requirements (risks and warranty scope) are included in the user guide.

Level 4

・ An organizational procedure to examine whether its security policy and rules are reflected in the user

guide is established.

・ The security guide is regularly updated to include new security risks.

・ Trouble shooting and legal disclaimer are included in the user guide.

36

---Coffee Break---

Have you ever heard of the “transition to next-generation cryptographic algorithms” or the ”Year 2010 issues on

cryptographic algorithms”. Behind this is a concern over the deterioration of security of the standard encryption

algorithms that have been widely used around the world since late 1990s. Governments have been calling for safe

transition to new, more secure encryption algorithms by around 2010-2013. This “calls” are called the “transition to

next-generation cryptographic algorithms” or the “Year 2010 issues on cryptographic algorithms”. In Japan, National

Information Security Center has led the effort and published a policy that aims to transit to new algorithms by around

2013.

Deterioration of security of cryptographic algorithms is caused by both the advance of cryptoanalysis techniques and

computing power. This means that an algorithm can be safe at some point of time but may become unsafe as time

passes. Especially, computing power is rapidly growing each year and has a great impact on the safety of encryption

algorithms. Based on the prediction of computing power, such as Moore’s Law, it is possible to assume when an

algorithm may become breakable. For example, CRYPTREC (Cryptography Research and Evaluation Committees)

assumes that the time that takes to breaks the 1024-bit RSA encryption will become just a year by around 2010-2020

(depending on the computing environment).

Unfortunately, the cryptographic community and the IT vendors do not share the same concern over the security of

encryption algorithms. This is because the cryptographic community tends to recommend that we should do something

because it is theoretically possible that harm may be done when the encryption algorithm is broken but the IT vendors

tend not to jump into the discussion on who should cover the cost against the risks that may theoretically emerge in the

future and settle on sitting back for the time being. Their position is polar opposite, but their logic is understandable.

What to do (or not to do) needs to be considered and judged based on the balance between the “possible risk of harm in

the future” and the “cost to mitigate the risk at the moment”.

What this suggests is that the “transition to next-generation cryptographic algorithms” should be recognized as one of

the higher management issues. We hope that the powers that be will not underestimate the “possible risk of harm in the

future”. They should also realize that the biggest concern in the “transition to next-generation cryptographic

algorithms” is that it will take time (probably decades) to complete the transition unless someone wield the authority to

achieve it and that we will be using the old and new systems with different security levels for a long time till the

completion. Especially, it may take 20 or even 30 years, instead of 10, to complete the transition for the embedded

systems and this strongly suggests that it is necessary to take into account the “transition to next-generation

cryptographic algorithms” from the early design phase.

If you are at the planning phase, select a safe algorithm considering the product and system lifecycle. For example, if

the expected system lifecycle is 20 years, you should adopt an encryption algorithm that will be still secure in 2030,

such as 128-bit secret key encryption (AES and Camellia), RSA with 2048-bit or longer key or the ellipse curve

cryptography with 256-bit or longer key for public key encryption, and SHA-256 for hash function.

37

4.3.6. Factory Production Control

Embedded system software is usually installed during assembly at the factory. The developers need to make

sure that malware does not sneak into the embedded software through the assembly equipments. In addition to the

software, it is also necessary to care about the information that identifies the product, such as a sticker printed

with the serial number unique to each product and the documents to be enclosed with the product. Depending on

how the product is used, these may reveal the user’s personal information or financial information. The product

with a rewritable capability, such as IC cards, may be installed with personal information after the shipment. This

means security at the manufacturing process is also important. For security practices, ISMS (ISO/IEC 27001)

provides a good reference. Here, let’s pick up a few concrete examples.

・ Physical Segmentation

Depending on the required security levels, segment the space inside the factory with physical barriers and

implement access control with IC cards or other means at the doorway where people and goods go in and go

out, and monitor their comings and goings with cameras.

・ Network Segmentation

In addition to physical segmentation, it is recommended to segment the network with firewalls and layer 2

switches putting up logical barriers for filtering.

・ Log Management of Network and Factory Equipments

In addition to the access control, it is desirable to collect and manage logs on the networks, production

equipments, users and operations in a way that cannot be tampered.

・ Commodity Management

It is necessary to have a system to keep tabs on materials, intermediate products, semi finished products and

defective products, and detect if one is smuggled out without permission.

・ Intermediate Product Management and Disposal

If data (including paper documents) in the product check sheets contain sensitive information, be careful how

to handle the data. Draw up the procedure in advance in case when the sensitive information must be shared

among relevant departments to solve the problem.

・ Design Data Management

Depending on the nature of the products, it is necessary to protect the product’s design and other sensitive

data from disclosure.

38

Level Description

Level 1 No consideration is done.

Level 2 As needed, the following controls and managements, such as the use of checklists, are required at the segments

where security-related parts are processed.

・Registry management of operators to control access to production equipments (partitioning).

・Access control of operators to limit the access to the manufacturing area (authentication).

・Operators’ labor hour management with strict access control and oversight over what can be bring in and out

of the manufacturing area. (labor hour management)

Level 3

Level 4

---Coffee Break---

Unlike the office environment, computer equipments at the factory are often running on the special applications or

those like Windows Embedded. In some case, security patches cannot be applied to these computers and equipments

because the patches may cause a problem with the operation of the special applications, or they have to stick to the old

OS that the vendor no longer supports since the special applications do not support the latest OS. Likewise, the use of

anti-virus software may be out of option because it may interfere in the operation of the special applications. If part of

the computers or equipments is infected with a virus in such environment, infection could spread to all the devices on

the factory’s local network and it will cost a lot to investigate the cause and recover. Production line may also halted till

full recovery. Moreover, depending on the products, the infection of the manufacturing computers and equipments may

cause the virus to sneak into the products and harm the user. Until recently, it was mitigated by network-centric

countermeasures, such as physically separating the factory network from the organization’s intranet or the Internet,

putting the firewalls and perform filtering if it is necessary to connect to the Internet, or using a UTM (Unified Threat

Management) device with an anti-virus capability.

Lately, however, network is no longer sole likely route of virus infection and the risks through other channels have

become higher. Infection via external media, such as USB memory sticks is noteworthy and requires special attention.

Often there is no other choice but to use an external media when maintaining the system or installing new data. For the

countermeasure, check out virus information
23

 and the Report on USB-distributed Malware
24

. In addition, the

countermeasures like disabling the auto-run and auto-play feature using the Autorun.inf file or using a removable

storage media with an anti-virus capability can be employed. It will be also effective to enforce an operational rule for

the use of a USB memory stick that one must check the USB memory stick for viruses on the computer installed with

anti-virus software.

It is important to regularly review the security measures and operational rules at the factory accordingly to the

computers’ and equipments’ operational environment and virus trends, and to define what to do when the virus

infection is detected.

39

4.3.7. Support of New Technology

For an embedded system with a network connetivity, it is becoming an critical issue to support IPv6, a new

networking technology, and Web technology used as an element of the new age of user interface. As for IPv6, the

developers check out the information provided by IPv6 Promotion Council, which works on the validation of

interconnectivity and protocols, and IPv6 Technology Council, which works on security and interoperability of

IPv6, and consider the following issues.

・ Protection of Global IP Address

Even for a home network, a global address will be assigned to each user’s each embedded system instead of

per connection. This means the possibility of a direct attack against the embedded system through its IP

address that has been protected by NAPT (Network Address Port Translation) in the past will increase.

Countermeasures:

 Vulnerability posed by upper applications and middleware are common to both IPv4 and IPv6, thus

implement the same level of security measures (such as fortifying the embedded system, implementing

vulnerability countermeasures and a method to update firmware when vulnerability is found) and

testing.

 Perform security assessment with tools that support vulnerability in IPv6, such as a vulnerability

assessment tool for TCP/IP
6
 provided by IPA. The developers must be careful in selecting the

assessment tools or analyzing the result since some assessment tools do not support IPv6 nor have

enough capability.

・ Countermeasure against the Increasing Risk of Attacks Exploiting the Way IPv6 Assigns IP Address

It is assumed that it will be common for IPv6 to assign a unique IP address. This suggests that once an IP

address is found out by an attacker, it may became a target of attacks. If a single IP address is used

continuously, the risk of the disclosure of privacy information, such as action history and likes and taste, will

increase by analyzing the IP address posted on the bulletin boards or access log of Web servers.

In some cases, the information unique to a product vendor is included into the IP address when an IPv6

address is configured automatically for a device. An attacker may use this information for reference to

exploit vulnerability of a specific device. Moreover, the automatic address configuration of IPv6 will enable

the external communication without the user’s intention and this can be exploited by an attacker.

Countermeasures:

 Especially for embedded systems that require communication via the Internet, use an IP address that

does not give away the information about the device or change the address per communication as

needed when implementing the automatic address configuration.

・ Protection against New Features

IPv6 newly supports a variety of communication methods using the extension headers and tunneling, such as

a standard support of IPsec. On the other hand, this will also give an attacker more options of channels for

unauthorized access, and may be exploited to bypass the filtering features such as .firewalls and access

40

control lists.

Countermeasures:

 Not only the vulnerabilities common to both IPv4 and IPv6 but also those that are unique to IPv6 have

been reported
25

. Use every caution when implementing IPv6 and testing it.

 Pay close attention to the latest trend regarding IPv6, for example, an issue on the Type 0 Routing

Header that has been removed from RFC from the security aspect.

・ Countermeasures to Protect Web Server (Applications)

When a management interface for the embedded system is implemented using a Web server, there is a

possibility that a remote attacker may send maliciously crafted strings to trigger malfunctions.

Countermeasures:

 Harden Web applications (such as applying the latest patch, disabling unused services and ports) and

implement vulnerability countermeasures (such as cross-site scripting, cross-site request forgery,

injection attack).

 Implement filtering to block unnecessary to use the necessary services and access control using

authentication.

 Enable the embedded system to implement anti-virus and anti-tamper measures, or to use the equivalent

services available via network.

・ Countermeasures to Protect Web Browser

When an embedded system uses a Web browser to access the Internet, there is a possibility that information

assets in the embedded system may be disclosed through the vulnerabilities of the Web browser.

Countermeasures:

 Make sure that the embedded system has the common features to protect Web browsers (such as

displaying URLs, checking server certificates, blocking pop-ups and avoiding weak encryption

algorithms).

 Make it possible for the user to disable the features that are often exploited by an attacker (such as

scripts, viewers and cookies) at the user’s discretion.

 Enable the embedded system to implement anti-virus measure and WWW filtering, or to use the

equivalent services available via network.

・ Countermeasures to Protect Email Client

When an embedded system uses an email client, there is a possibility that information assets in the embedded

system may be disclosed through the vulnerabilities of the email client.

Countermeasures:

 Make sure that the embedded system has the common features to protect the email client (such as

anti-virus measure, anti-spam measure, anti-phishing measure and cryptography support), and make it

also possible for the user to disable the features that are often exploited by an attacker (such as html

display and file attachment) at the user’s discretion.

41

Level Description

Level 1
・ New technology is not taken into account at the design phase and it is not included in the specification

documents.

Level 2
・ Consideration on new technology at the design phase is up to the project manager and system developers.

・ No organizational policy is established and an audit is not done or addressed.

Level 3

・ An organizational policy on support for new technology that should be followed at the design phase is

established.

・ The design process is preceded following the policy, but the audit is not done.

Level 4

・ An organizational policy on support for new technology that should be followed at the design phase is

established.

・ The design process is preceded following the policy and the security department conducts the audit to

review it.

42

4.4. Operation Phase

4.4.1. Handling Security Issues

Security issues of embedded systems are mostly discovered by users and security researchers through the use

and study of the product, and reported to the vulnerability handling entities, such as the product developers,

distributers and IPA. If the security issues are not handled adequately, it may result in information disclosure or

malfunction causing damage to the users, or end up harming the brand image of the product developer or in a

lawsuit. Unfortunately, not all vulnerabilities are reported in good faith. Someone may report vulnerability with

ulterior motive or it may be used for blackmail or financial gain.

When a security issue (vulnerability) is found in an embedded system, its developer needs to react swiftly to

solve the problem. To do that, the developers should set down the following things as an organization.

・ Set up a contact point for the users and entities that distribute vulnerability information to accept reports

and receive information.

・ Draw up the response flow and procedures to prepare a security patch to fix vulnerability.

・ Establish the relationship and contact procedure
26

 with the relevant organizations (such as JPCERT/CC,

other software vendors who may be affected by the found vulnerability).

As for the contact point in particular, the developer should set up a specialized contact point for the purpose and

assign someone that could handle the acquired information to swiftly disseminate information to the system

developers. To convey the vulnerability information quickly to the system developers, it is advisable to keep tabs

on information about the software applications used in the product regardless of whether or not the product is

developed in-house, and plan in advance how to make sure that the system developers get the necessary

information accurately. Consider to perform a regular exercise to see if the flow and procedure work as planned

assuming that a security issue is discovered.

Level Description

Level 1 ・ No effort to respond to security issues (vulnerabilities)

Level 2

・ Vulnerability information obtained through some means is forwarded to those involved in system

development.

・ Vulnerability countermeasure is usually implemented by the system developers.

Level 3

・ Vulnerability information obtained through some means is forwarded to those involved in system

development.

・ Based on the organization’s handling policy, the system developers implement vulnerability

countermeasures or decide whether it should be released to the public.

Level 4

・ A specialized contact point and system for vulnerability handling (CSIRT: Computer Security Incident

Response Team) and the handling flow are established. In addition, vulnerability information reported

from the users or collected from relevant organization is managed by the specialized security team.

・ The time-line and procedure to handle a reported vulnerability is established and the vulnerability

information is released to the public through the reporting to IPA or JPCERT/CC.

43

4.4.2. User Notification and Fixing Vulnerability

If vulnerability of an embedded system is found and a security patch is made and to be distributed, the

developer needs to notify the users of the affected product about how to apply the security patch, or how to send it

back for recall or repair in some cases. If the affected embedded system is special one and sold to only particular

companies, the developer knows to whom it has sold the product and it is possible to make sure that the

vulnerability is fixed by notifying the contact person at the client company. On the other hand, if the embedded

system is sold in a general market, it is difficult for the developer and distributers to keep tabs on the users and

necessary to establish some kind of a user notification system to promote the vulnerability countermeasure to the

users as much as possible. If the embedded system has a network capability, it is effective to implement the

feature that regularly looks up the information on the security updates. However, it may not be an option since

some embedded systems are designed based on the assumption that it does not connect to any network due to the

nature of the embedded system. It will be also effective to encourage user registration through the Internet or a

registration postcard and provide vulnerability information to those registered.

In the case of digital TV, there is a mechanism to download the security patch through airwave during the time

of the day when the most users do not watch TV, such as late in the night or early in the morning. By

implementing such mechanism or a network-based update download mechanism into the embedded system, it is

possible to support distribution of security patch. There may some cases where the power plug is not connected

because of an economical or environmental reason and a security patch cannot be downloaded through airwave. In

such cases, it is necessary to call for the users to use it appropriately through the user guide.

When notifying the users, it is necessary to clearly explain that unlike bugs or version ups, leaving vulnerability

unfixed will increase the chance of malicious attacks and result in harm for the users. With a little scare tactic, it is

hoped that the users acknowledge the difference between a security patch and a version up for additional features

and act swiftly to avoid harm. It is necessary to make sure that the update or notification mechanism is not

exploited (such as modification of firmware and removal of sensitive information) and the protective measures are

implemented (such as server certificate, communication and data encryption, confirmation of data integrity if

distributed via the Internet). Below are some examples of the method of user notification.

・ By mail

・ Through the developer’s Website, TV commercials and announcement on the news paper

・ Vulnerability Countermeasure Information Database (JVN)

By reporting vulnerability information to IPA or JPCERT/CC, it is uploaded to the Vulnerability

Countermeasure Information Database (JVN iPedia) or the Vulnerability Countermeasure Information Portal

(JVN). The Vulnerability Countermeasure Information Database is created to collect and store a multitude of

vulnerability information and the Vulnerability Countermeasure Information Portal comes with all kind of efforts

to publish vulnerability information in a timely manner. If the developers wonder what kind of information or how

much information should be made public, use the Vulnerability Information Disclosure Manual for Software

Developer
27

 provided by IPA as reference.

44

Level Description

Level 1 ・ No notification to the users is done.

Level 2
・ A way for the users to actively obtain vulnerability information is provided, such as through the Website

of the developer or distributers.

Level 3 ・ A direct way for the users to obtain vulnerability information is provided, such as e-mail or letter.

Level 4 ・ There is an automatic user notification and a surely-updating mechanism in place..

45

4.4.3. Leveraging Vulnerability Information

The vulnerability information reported from the users and relevant organizations should be appropriately

administered to prevent reemerging or affecting similar products and to leverage the information when the same

vulnerability does reoccur. If vulnerability is found all too often, it will damage the corporate brand image and

may affect management. To fully leverage vulnerability information, it is necessary to address not only the way to

organize a vulnerability response framework and distribute the information and patches but also the root cause of

how the vulnerability was created and missed in the first place. Below are some examples of vulnerability of

embedded systems reported to IPA in the past.

・Cross-site request forgery vulnerability

・Cross-site scripting vulnerability

・Certificate-related vulnerability

・Vulnerability in the default settings of embedded systems

As for the ways to leverage vulnerability information, the developers could build a database of vulnerability

and countermeasure information, establish a work flow to collect and administer vulnerability and countermeasure

information and develop an environment where relevant people can browse.

Here are some ways to leverage vulnerability information.

・ Turning the information into the upper process to prevent reoccurrence (for example, reviewing test and

debug requirements）

・ Checking the similar products for the vulnerability

Level Description

Level 1 ・ Vulnerability information is not administered.

Level 2 ・ Vulnerability information is administered by the system developers.

Level 3 ・ A workflow management system to leverage vulnerability information as an organization is established.

Level 4

・ A workflow management system to leverage vulnerability information and countermeasures as an

organization is established and a database for vulnerability related information that is updated through the

product development management is built.

・ The database is available for embedded system developers.

---Coffee Break---

Base hardware and software of embedded systems have evolved over the years. For example, the Linux kernel has

become major with its version 2.2 released in 1999, and after that, the version 2.4 was released in 2001 and the

version 2.6 in 2003. As of 2010, the latest version is 2.6.34 with several minor version-ups since 2003.

The Linux distributions that come with the kernel and various components go through more frequent version-ups.

For example, Ubuntu, a popular Linux distribution for client, is upgraded twice a year.

On the other hand, some embedded systems have been in operation more than a decade. Note that the latest

software at the time of development may be a legacy that is no longer used nor supported for maintenance.

46

4.5. Disposal Phase

4.5.1. Promoting User Preparation for Disposal

The data to be disposed are the sensitive information (such as personal information and private contents) that

the users stored after acquiring the product. When such sensitive information is stored in the embedded system, it

is advisable to enables the users to remove the data with simple operation following the instruction given in the

user guide or on the developer’s Website. The information that should be provided in the user guide or on the

Web site is as follows.

・ That the users are solely responsible for removing all data stored in the product.

・ How to start the data erasure program

・ How to use the data erasure program (especially how to specify sensitive information)

・ How to confirm that the specified data are indeed erased

Therefore, it is necessary to implement a standard feature that enables the users to remove the sensitive data

when disposing the product. For that, a technical mechanism that identifies the way to identify the sensitive data

and securely remove them must be implemented. To be specific, the sensitive data should be stored in a memory

space separated from non-sensitive data to identify them and a mechanism to physically remove the data from the

storage media need to be implemented. Some user guides and Websites describe a data removal program as

“initializing (restoring the factory status)”, but it is preferred to make the users acknowledge that they should

prepare the product ready for disposal.

For example, in the case of cell phone recycling, the efforts shown below are made to promote removal of

personal information before disposal. Below are excerpts from the Policy for Removal of Sensitive Data from Cell

Phone by the Telecommunications Carriers Association
28

. To see the specific case studies, check out the

information provided by individual telecom carriers
29

.

1. There is a feature available that enables the users to remove personal information stored in the cell phone

on their own when disposing it.

2. How to remove the personal information is shown in the user manual in an easy-to-follow way or the shop

staff will help the customer remove the personal information.

3. There is a service available that takes a backup of the precious data stored in the cell phone to CD-ROM

when disposing it. The service may not be available for some models. Please ask the shop staff.

4. If needed, it is also possible to physically destroy the cell phone in front of the customer to make sure that

it is not longer usable.

47

Level Description

Level 1 ・ No consideration on disposal is done.

Level 2
・ Information about disposal and data removal is proved to the users through the user guide and the

Website.

Level 3

・ Information about disposal, data removal and recycling is defined as an organization and proved to the

users through the user guide and the Website.

・ How to release the information to the users is established as an organization.

Level 4

・ Information about disposal, data removal and recycling is defined as an organization and proved to the

users through the user guide and the Website.

・ The products are being tracked and there is a framework to work as an organization when disposing them.

・ Investment to promote the activity is actively made.

48

1 A threat model developed by the U.S. Microsoft’s Security Engineering and Communications that divides the threats into six

groups: Spoofing, Tampering, Repudiation, Information Disclosure, Denial of Service and Elevation of Privilege.

2 Security Technology Map on Threats & Countermeasure of Embedded Software, Research Report

(http://www.ipa.go.jp/security/fy18/reports/embedded/index.html)(Japanese)

3 Security in Combined Use of Multiple Embedded Systems, Research Report

(http://www.ipa.go.jp/security/fy19/reports/embedded/index.html)(Japanese)

4 JVN Vulnerability Countermeasure Information (http://www.ipa.go.jp/security/vuln/documents/index.html)(Japanese)

5 Purpose of New Edition of Secure Programming Course

(http://www.ipa.go.jp/security/awareness/vendor/programmingv2/index.html)(Japanese)

6 TCP/IP Vulnerability Assessment Tool (http://www.ipa.go.jp/security/vuln/vuln_TCPIP_Check.html)(Japanese)

7 SIP Vulnerability Assessment Tool (http://www.ipa.go.jp/security/vuln/vuln_SIP_Check.html)(Japanese)

8 Nessus (http://www.nessus.org/)

9 nmap (http://nmap.org/)

10 Metasploit (http://www.metasploit.com/)

11 nikto2 (http://cirt.net/nikto2)

12 Protos (http://www.ee.oulu.fi/research/ouspg/protos/)

13 JVN iPedia (http://jvndb.jvn.jp/en/)

14 MyJVN (http://jvndb.jvn.jp/apis/myjvn/)(Japanese)

15 Vulnerability Handling (http://www.jpcert.or.jp/vh/)(Japanese)

16 SecurityFocus (http://www.securityfocus.com/)

17 CRYPTREC (http://www.cryptrec.go.jp//english/report.html)

18 A system that keeps tracks on the versions of software and drivers that need to be revisioned to make sure to apply the

appropriate version to the products.

19 Purpose of New Edition of Secure Programming Course

(http://www.ipa.go.jp/security/awareness/vendor/programmingv2/index.html)(Japanese)

20 Toward Establishment of Methods to Comprehend and Review Software Source Code

(http://www.ipa.go.jp/security/fy17/lab/codeblog.html)(Japanese)

21 Injection Detection Tool (http://www.ipa.go.jp/security/vuln/iLogScanner/index.html)(Japanese)

22 It is advisable to pay close attention to the latest trend for the safety of encryption algorithms will deteriorate as time passes.

23 IPA Virus Information (http://www.ipa.go.jp/security/isg/virus.html)(Japanese)

24 JPCERT/CC, Report on USB-distributed Malware (https://www.jpcert.or.jp/research/2009/usbmalware_20090619.pdf)(Japanese)

25 There is a case study where because IPv6’s Neighbor Discovery Protocol (NDP) was not properly implemented, communications

were intercepted or a denial of service (DoS) condition was created. The information is available in the JPCERT/CC report

(http://www.jpcert.or.jp/wr/2008/wr083901.html#1)(Japanese). For more information, JPCERT/CC provides information on Ipv6

specific vulnerability for the system developers.

26 See the IPA Vulnerability Countermeasure Information Handling Guideline

(http://www.ipa.go.jp/security/ciadr/partnership_guide.html(2009))(Japanese)

27 See the Vulnerability Information Disclosure Manual for Software Developer

(http://www.ipa.go.jp/security/ciadr/vuln_announce_manual.pdf)(Japanese)

28 The Policy for Removal of Sensitive Data from Cell Phone, Telecommunications Carriers Association

(http://www.mobile-recycle.net/privacy/index.html)(Japanese)

29 The shops have specialized tools at hand to enforce the physical removal

(http://www.nttdocomo.co.jp/corporate/csr/activity/hokkaido/natural_env/)(Japanese)

49

Appendix

Lifecycle

(incl. management)

Level

Phase Security-related Items to Consider Level 1 Level 2 Level 3 Level 4

Management 1-1. Security Rules

(P.15)
・ No security rules are

established.
・ Security rules are established voluntarily

by the developer.

・ Security rules are established by the

project manager and system developers.

・ Security rules are established as an
organization and documented.

・ Security rules are established as an organization
and documented. An audit to evaluate the

compliance to the rules is also in place.

 1-2. Security Education

(P.17)
・ No security education is done. ・ A voluntary working session is held.

・ The project manager and system

developers acquire the knowledge or

organize study sessions as needed.

・ Security education is provided as part of
daily work.

・ Attending security seminars and taking

security training are encouraged.

・ Security education is provided as part of daily
work.

・ Taking security training with an expert is

required.

 1-3. Collecting Security

Information

(P.18)

・ No security information is
collected.

・ Security information is collected by the
project manager and system developers as

needed.

・ There exists a system where security
information is collected as an organization

and disseminated to those involved in

system development.

・ Is participating in the Vulnerability Information
Handling and utilizing vulnerability information.

Planning 2-1. Budgeting

(P.19)
・ No budget for security issues

is ensured.

・ Budget is ensured when the project

manager requires.

・ Budget is considered when the project

manager and system developers require.

・ There exists a system where a certain

amount of budget is allocated to ensure
security as part of the development

process.

・ Budget is allocated to set up a specialized security

team and put it on work.

 2-2. Selecting Development

Platform

(P.21)

・ Platform is selected based on
cost and delivery period.

Security is not considered

much.

・ Known vulnerabilities at the time of
development are taken care of.

・ After shipment, nothing is done.

・ There is no unit or person in charge that
selects the development platform.

・ The level of vulnerability awareness

differs depending on each project manager

and system developer, thus no unified
effort as an organization exists.

・ When using embedded software packages,
monitor information on security patches

and update for them released by their

vendor.

・ Security patches and updates are provided

after shipment as well.

・ Vulnerability awareness is high in the units

that manage the same product and unified

effort is being done.

・ Vulnerability countermeasures are done across the
organization.

・ Security patches and updates are provided after

shipment as well.

・ A vulnerability support system of the vendors is
checked out in advance.

・ Devices and circuit architecture are selected

considering security as well.

・ To improve security of products, efforts like

building a unique platform or requesting the

vendors for improvement are being done.

Development 3-1. Designing

(P.26)
・ No security is taken into

account at the design phase

and it is not included in the

specification documents.

・ Consideration on security at the design
phase is up to the project manager and

system developers.

・ No organizational policy is established and

an audit is not done nor addressed.

・ An organizational security policy that
should be followed at the design phase is

established.

・ The design process is preceded following

the policy.

・ An audit is not done.

・ An organizational security policy that should be
followed at the design phase is established.

・ The design process is preceded following the

policy and there is an audit process to review the

security measures.

 3-2. Software Implementation

(P.29)
・ No security coding is done.

・ No source code review is
done.

・ Source code reviews are done
but security is out of scope.

・ Coding policy and review technique to

prevent vulnerability depend on the
voluntary effort by system developers or

some project members.

・ No uniformed effort is done even in the

same department.

・ Because it is done based on the knowledge
and experiences of the project manager and

system developers, there are no clear

criteria.

・ There is an organizational policy and rules

about coding and reviews that should be
followed in software implementation to

prevent vulnerability.

・ System developers write source code

following the rules.

・ An audit of the compliance with the rules
within or across the departments is

included in the development process.

・ In addition to the efforts at the level 3, there is a

specialized security team in the organization and
it gives supports for secure cording and reviews.

・ The security team is also involved with the rule

making and keeps revising the rules based on the

information available on bugs, vulnerabilities,

incidents and countermeasures

 3-3. Outsourcing

(P.30)
・ No vulnerability

countermeasure is taken into

account when outsourcing.

・ Even if the project has
security features, the same

outsourcing policy is applied.

・ Vulnerability countermeasure in the case
of outsourcing is up to the voluntary effort

by system developers or some project

members.

・ No uniformed effort is done even in the
same department.

・ Because it is done based on the knowledge

and experiences of the project manager and

system developers, there are no clear
criteria.

・ A contract for software development
outsourcing requires an organizational

security effort within the outsourced party

to prevent vulnerability.

・ An audit of the compliance with the
contract conditions within or across the

departments is included in the

development process.

・ In addition to the efforts at the level 3, there is a
security team in the organization and it gives

advice to the outsourced entity.

 3-4. Security Assessment Test and

Debugging

(P.33)

・ No security testing is done. ・ Security test is planned based on the

knowledge and experience of system

developers.

・ The quality of the security testing depends
on system developers’ knowledge.

・ There is an organizational security test

plan and evaluation is done based on the

organization’s criteria.

・ If other device is connected, test the
connectivity with the device.

・ Following the security the test plan drawn up as

an organization, the internal security team reviews

the result.

・ If something is added, updated or delete after
shipment, check the connectivity with the new

device.

 3-5. User Guide

(P.35)
・ There is a user guide but no

security is mentioned in it.
・ Security issues are covered in the user

guide.

・ Trouble shooting and legal disclaimer are

included in the user guide.

・ Security requirements (risks and warranty
scope) are included in the user guide.

・ An organizational procedure to examine
whether its security policy and rules are

reflected in the user guide is established.

・ Trouble shooting and legal disclaimer are

included in the user guide.

・ Security requirements (risks and warranty
scope) are included in the user guide.

・ An organizational procedure to examine whether
its security policy and rules are reflected in the

user guide is established.

・ The security guide is regularly updated to include

new security risks.

・ Trouble shooting and legal disclaimer are
included in the user guide.

 3-6. Factory Production Control

(P.37)

No consideration is done. As needed, the following controls and managements, such as the use of checklists, are required at the segments where security-related parts are

processed

・ Registry management of operators to control access to production equipments (partitioning).

・ Access control of operators to limit the access to the manufacturing area (authentication).

・ Operators’ labor hour management with strict access control and oversight over what can be bring in and out of the manufacturing area. (labor
hour management)

 3-7. Support of New Technologies

（P.41）

・ New technology is not taken

into account at the design

phase and it is not included in

the specification documents.

・ Consideration on new technology at the

design phase is up to the project manager and

system developers

・ No organizational policy is established and
an audit is not done or addressed.

・ An organizational policy on support

for new technology that should be

followed at the design phase is

established.

・ The design process is preceded

following the policy, but the audit is

not done.

・ An organizational policy on support for new

technology that should be followed at the design

phase is established.

・ The design process is preceded following the policy
and the security department conducts the audit to

review it.

Operation 4-1. Handling Security Issues

(P.42)
・ No effort to respond to

security issues

(vulnerabilities).

・ Vulnerability information obtained through
some means is forwarded to those involve in

system development.

・ Vulnerability countermeasure is usually
implemented by the system developers.

・ Vulnerability information obtained
through some means is forwarded to

those involved in system

development.

・ Based on the organization’s handling
policy, the system developers

implement vulnerability

countermeasures or decide whether it

should be released to the public.

・ A specialized contact point and system for
vulnerability handling (CSIRT: Computer Security

Incident Response Team) and the handling flow are

established. In addition, vulnerability information

reported from the users or collected from relevant

organization is managed by the specialized security

team.

・ The time-line and procedure to handle a reported

vulnerability is established and the vulnerability

information is released to the public through the

reporting to IPA or JPCERT/CC.

 4-2. User Notification and Fixing
Vulnerability

(P.43)

・ No notification to the users is
done.

・ A way for the users to actively obtain
vulnerability information is provided, such as

through the Website of the developer or

distributers.

・ A direct way for the users to obtain
vulnerability information is provided,

such as e-mail or letter.

・ There is an automatic user notification and a
surely-updating mechanism in place.

 4-3. Leveraging Vulnerability
Information

(P.45)

・ Vulnerability information is
not administered.

・ Vulnerability information is administered by
the system developers

・ A workflow management system to
leverage vulnerability information as

an organization is established.

・ A workflow management system to leverage
vulnerability information and countermeasures as an

organization is established and a database for

vulnerability related information that is updated

through the product development management is

built.

・ The database is available for embedded system

developers.

Disposal 5-1. Promoting User Preparation

for Disposal

 (P.46)

・ No consideration on
disposal is done.

・ Information about disposal and data
removal is proved to the users through the

user guide and the Website.

・ Information about disposal, data
removal and recycling is defined as

an organization and proved to the

users through the user guide and the

Website.

・ How to release the information to
the users is established as an

organization.

・ Information about disposal, data removal and
recycling is defined as an organization and proved

to the users through the user guide and the

Website.

・ The products are being tracked and there is a

framework to work as an organization when
disposing them.

・ Investment to promote the activity is actively

made.

This page intentionally left blank.

For more information:

IT Security Center, Information-technology Promotion Agency of Japan

Bunkyo Green Court Center Office, 16th Floor,

2-28-8 Hon-Komagome, Bunkyo-ku, Tokyo, 113-6591, Japan

TEL: +81-3-5678-7527 FAX: +81-3-5978-7518

E-mail：vuln-inq@ipa.go.jp URL：http://www.ipa.go.jp/security/english/

This guide is available for download at:

http://www.ipa.go.jp/security/fy22/reports/emb_app2010/emb_guide_fy22_eng.pdf

2009/6/24 First Edition

2010/9/7 Revised Edition

2011/2/22 English Edition

