(23)Title

Suggestion of Risk Management Framework by using STAMP/STPA.

Speaker, Authors

Information Services International-Dentsu, Ltd. Hoonhee KIM, Motoki ANO, Naohiko SAKAI

Abstract

In manufacturing industries including automobiles, FTA, FMEA, DRBFM, etc. are broadly used as a risk extraction and management tools. In this presentation, I would like to explain that by applying STAMP / STPA to a risk management method, we can extract and manage hazards and risks not only from mechanical point of view but also control point of view. In addition, here we suggest a framework which is enable us to manage not only technical risk but also schedule risk by visualizing the causes / measures / task progress / schedule of each risk and hazard together.

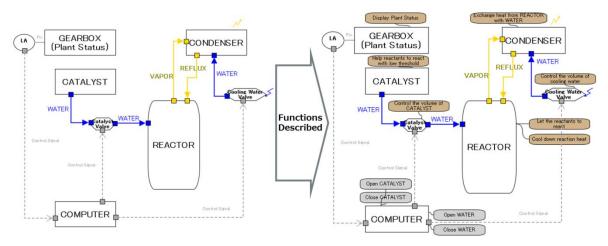


Figure 3 Function of each component is described on Control Structure Diagram

Figure 1 is a Control Structure Diagram introduced from "STAMP / STPA Intermediate Tutorial". In addition to the control command (Open / Close WATER / CATALYST) to the controller (COMPUTER), the function of each component is also specified.

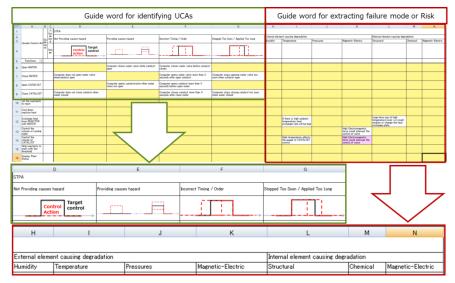


Figure 4 In reference to guide word, UCAs and risks are extracted from control command and function respectively.

In Figure 2, the UCA for each control command is extracted (green) using the guide word of STPA and the risk (red) of each function is extracted from the physical viewpoint (stress from the environment, component aging / deterioration). In Figure 3, the extracted UCAs are applied to the FMEA format, and the impact analysis (RPN), causes, measures, tasks are arranged.

Component			Function Control	UCA / Risk (Effect - RPN)			Cause∙ Countermeasure • Task					
	Component 💌 Function			Guide word	Unsafe Control Action / Ris Details		Hazard / Risk Causal Factor	Safe Constraint / Countermeasure 💌	Safe Constraint / Countermeasure Task details Person in charge Due date Progress			Progress -
1		GEARBOX (Plant Status)	Display Plant Status									
2		CATALYST	Help reactants to react with low threshold									
3		REACTOR	Let the reactants to react									
4			Cool down reaction heat									
5		CONDENSER	Exchange heat from REACTOR with WATER	Temperature	If there is high ambient temperature, heat exchange rate will be bad	200	Low heat exhaust	Generate blow to heated components to evacuate	Function Evaluation (Experiment or CAE)	Nakajima Myu	9/29	0 %
6		CONDENSER			Long-term use of high temperature (over xx) could weaken or change the heat exchange plate.	100						
7			Open WATER	Providing causes hazard	Conputer closes water valve while catalyst open	150	Because	Computermust not close water valve while catalyst valve open				
8				Incorrect Timing / Order	Computer closes water valve before catalyst closes	150	Because	Computermust not close water valve before catalyst valve closes				
9			Close WATER	Not Providing causes hazard	Computer does not open water valve whencatalyst open	120	Because	Computer must open water valve whenever catalyst valve is open				
10	System	computer		Incorrect Timing / Order	Computer opens water valve more than X seconds after open catalyst	100	Because	Computermust open water valve within X seconds of catalyst valve open				
11				Stopped Too Soon / Applied Too Long	Computer stops opening water valve too soon when catalyst open	80 -	Because	Computer must open catalyst valve after a certain time passed.				
12		COMPUTER	Open CATALYST	Providing causes hazard	Computer opens catalystvalve when water valve not open	60	Because	Computermust not open catalyst valve when water valve not open				
13				Incorrect Timing / Order	Computer opens catalyst more than X seconds before open water	20 -	Because					
14			Close CATALYST	Not Providing causes hazard	Computer does not close catalyst when water closed	20 -	Because					
15				Incorrect Timing / Order	Computer closes catalyst more than X seconds after close water	20 -	Because					
16				Stopped Too Soon / Applied Too Long	Computer stops closing catalyst too soon when water closed	20 -	Because					
17		LA										
18		Catalyst	Control the volume of CATALYST	Temperature	High temperature affects the gauge of CATALYST control.	250	to the external heat.	Block from external environment by placing air gap between gauge and environment	New Task	Nakajima Myu	9/22	0 %
19		Valve		Magnetic-Electric	High Electromagnetic force could interrupt the control of valve	400	There is no shield from external EM field.	Make the metal cabinet surrounding the valve	New Task	Nakajima Myu	9/26	0 %
20		Cooling Water Valve	Control the volume of cooling water	Magnetic-Electric	High Electromagnetic force could interrupt the control of valve	400	There is no shield from external EM field.	Make the metal cabinet surrounding the valve	New Task	Nakajima Myu	9/26	0 %

Figure 5 FMEA Table with STAMP/STPA applied

Countermeasures are taken against risks that are heavily influenced by the FMEA table and broken down to specific work tasks. By visualizing and managing the tasks with the person in charge, the deadline, and the progress (Figure 4), it is possible to manage risks "certainly" at the development site while balancing other schedules.

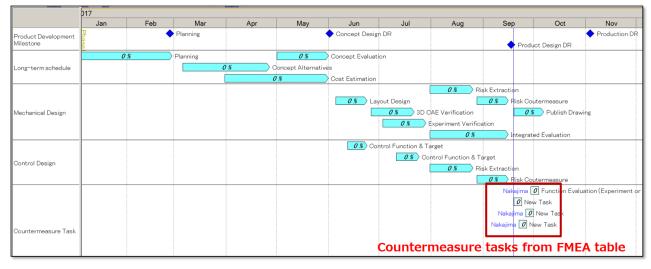


Figure 6 Visualizing of countermeasure tasks on the whole development schedule

Keywords

- (1) STAMP/STPA
- (2) FMEA
- (3) Risk Management
- (4) Block Diagram