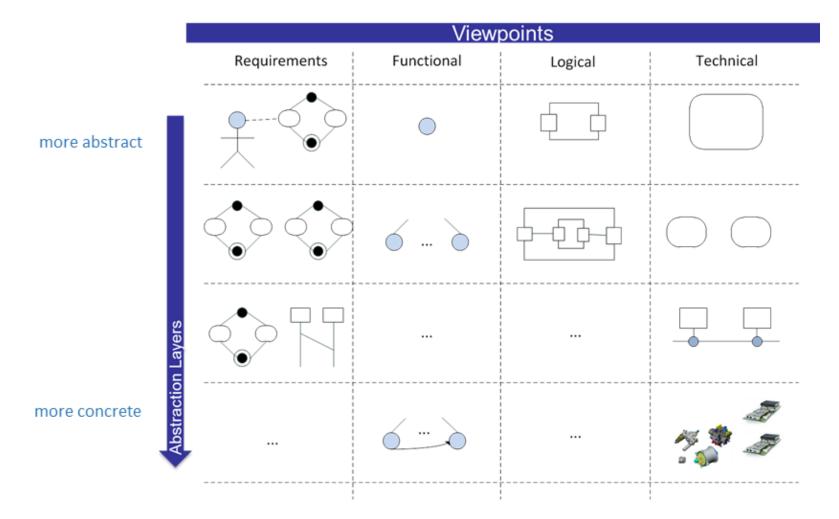

SYSTEMS ENGINEERING STUDY IN GERMANY PART 2 - BEST PRACTICES FOR SYSTEMS ENGINEERING

Dr. Martin Becker Fraunhofer IESE Kaiserslautern, Germany

IPA/SEC Special Seminar Tokyo (Oct 24, 2016) and Osaka (Oct 26, 2016)

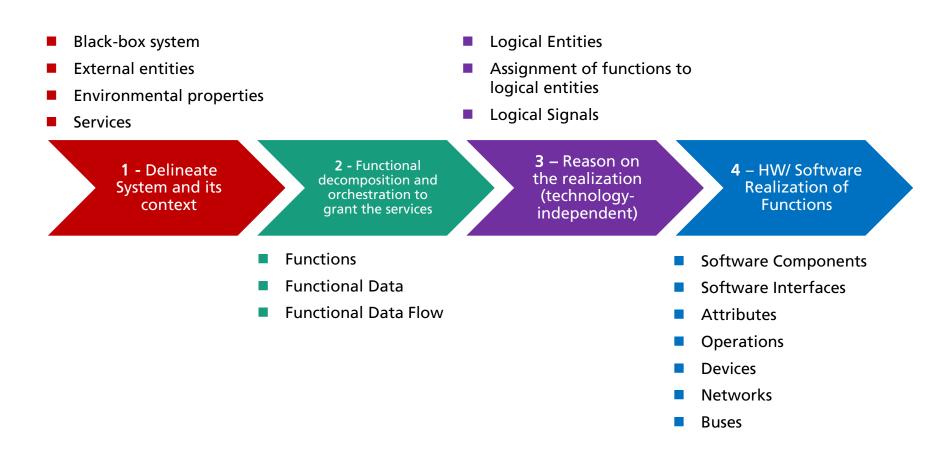
SYSTEMS ENGINEERING STUDY IN GERMANY PART 2 – BEST PRACTICES FOR SYSTEMS ENGINEERING

- Model-driven System Development
- System Requirements Engineering
- System Verification and Validation
- Integrated Tool Chains
- Virtual Engineering of Systems


Model-driven System Development **Definition**

Ideally Provides a set of integrated modeling techniques

- Model based requirements engineering
- Model based design
- Model driven implementation
- Model based certification (e.g. Fault Trees)
- Models are refined on different abstraction levels



Model-driven System Development The SPES Methodology

SPES Design Process

Model-driven System Development Practical Case

Cherenkov Telescope Array

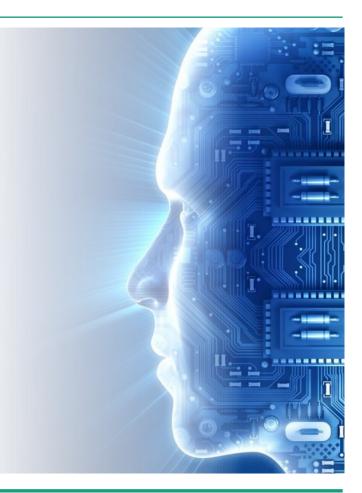
- Large scale telescope array (>100 Antennas)
- Array control and data acquisition
- Throughput ~ 70 GBytes/Second
- 1200 members, 200 institutes, 32 countries

Challenge

- Development and integration of large scale system
- Heterogeneous development Team
- Synchronization of developers

Model-driven System Development

- SPES Modeling Approach
- Document main decisions in defined models & views
- Document modules, interfaces, and expected behavior
- Synchronize developers across partners & countries
- Cost Estimation based on Models


Model-driven System Development Lessons Learned and Recommendations

- Approach needs tailoring
 - e.g. modeling elements for special software entities
- Functional Model: good communication medium for non-computer scientists (such as physicists or electrical engineers)
- Training is essential
- Cost Estimation still needs time, but models make it easier to reason about the system
- Documentation based on models perceived very helpful from developers

SYSTEMS ENGINEERING STUDY IN GERMANY PART 2 – BEST PRACTICES FOR SYSTEMS ENGINEERING

- Model-driven System Development
- System Requirements Engineering
- System Verification and Validation
- Integrated Tool Chains
- Virtual Engineering of Systems

System Requirements Engineering **Definition**

- Several institutions provide definitions of the term Requirements Engineering (RE)
 - IREB (International Requirements Engineering Board): Requirements engineering is the systematic and methodologically sound approach to requirements analysis and management
 - IEEE: Requirements Engineering is the branch of systems engineering concerned with managing desired properties and constraints of softwareintensive systems and with goals to be achieved in the environment. It is concerned with these aspects from the problem analysis stage to the implementation and maintenance stages of a system.
- Goal: Develop good requirements and manage them during development considering risks and quality
- RE bridges the entire life cycle and thus determines the success or failure of a product or project

System Requirements Engineering Example Approach (1)

- Processes used in RE vary widely, depending on
 - the application domain
 - the people involved
 - the organization developing the requirements
- Common generic activities can be found in all RE processes:
 - Requirements Elicitation: The process of discovering, reviewing, documenting, and understanding the user's needs and constraints for a system.
 - Requirements Analysis: The process of refining the user's needs and constraints.
 - Requirements Validation: The process of ensuring that the system requirements are complete, correct, consistent, and clear.
 - Requirements Specification: The process of documenting the user's needs and constraints clearly and precisely.
 - Requirements Management: The process of scheduling, coordinating, and documenting the requirements engineering activities (that is, elicitation, analysis, specification, and verification)

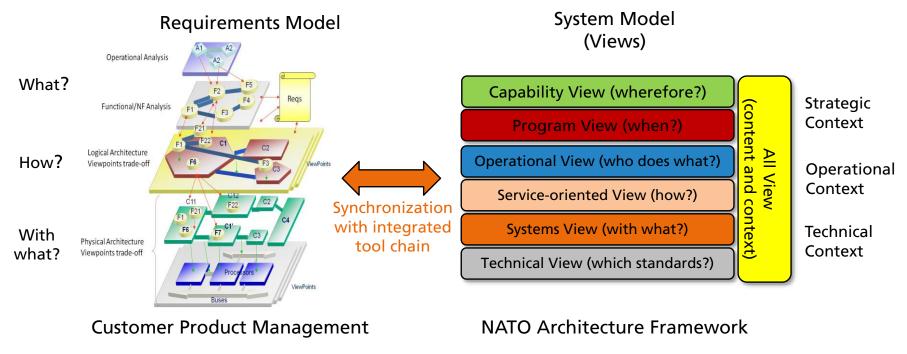
October 24 and 26, 2016

© Fraunhofer IESE

System Requirements Engineering Example Approach (2)

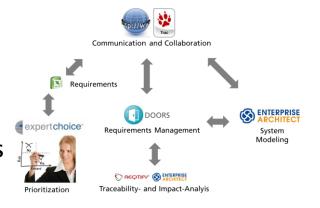
- Lots of different techniques can be applied to execute generic activities
- Example: Selection of appropriate requirements elicitation technique using selection matrix
- Model-based requirements engineering has been invented to overcome inadequacies of common techniques such as:
 - misunderstanding in communications
 - continuously changing requirements
 - Iow quality because of time pressure

Key:									Ð	
- 0 + ++	not recommended no influence => may be used recommended highly recommended	Brainstorming	Method 6-3-5	Change of perspective	Field observation	Apprenticing	Questionnaire	Interview	System archeology	Reuse
Human influences										
Stakeholders lack motivation (to participate actively)		-	-	-	+	-	0	+	++	++
Lack of communication skills		-	-	-	++	++	-	+	++	++
Abstract thinking ability deficient		-	-	-	++	++	0	+	++	++
Many different opinions		+	++	+	++	++	+	0	0	0
Imbalance in power between involved parties		-	+	-	0	0	0	0	0	0
Problematic group dynamics		-	+	+	0	0	0	0	0	0
Organizational influences										
Development for a complex market		++	+	+	-	-	++	0	+	0
Fixed, tight project budget		++	++	+	+	-	-	+	-	++
Stakeholders physically far apart from each other		-	0	-	0	0	++	0	0	0
Poor availability of the stakeholders		+	+	-	+	-	+	++	++	++
High number of stakeholders		+	-	+	0	-	++	0	0	0
Technical influences										
Highly critical system		0	0	+	++	-	+	+	++	+
System has a large scope		0	0	0	+	-	-	+	++	+
No previous experience in the domain		0	0	0	-	+	-	+	++	+
Trying to find rough requirements		++	++	+	+	0	+	++	-	0
Trying to find detailed requirements		+	+	+	+	++	-	+	++	+
Non-functional requirements wanted		0	0	0	0	+	-	+	+	+
Very complex system		0	0	0	+	-	-	+	+	+

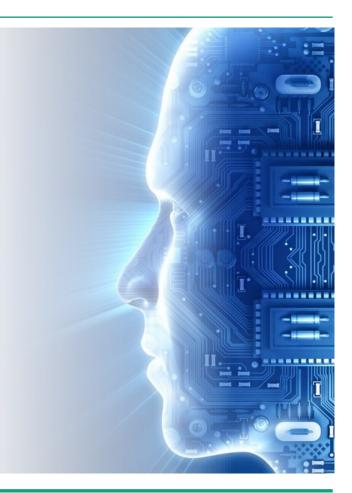


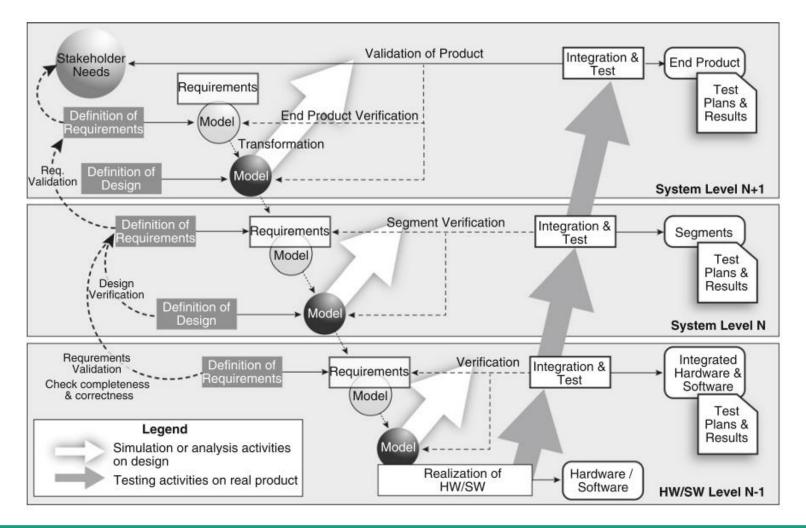
System Requirements Engineering Practical Case

German Ministry of Defense: Analysis phase for a new modular multipurpose combat ship class MKS 180

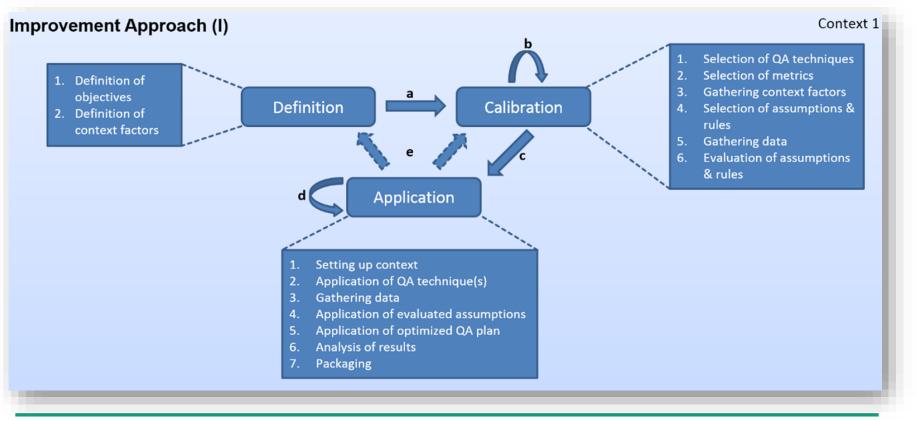

Integrated RE and System Architecture Model

System Requirements Engineering Lessons Learned and Recommendations

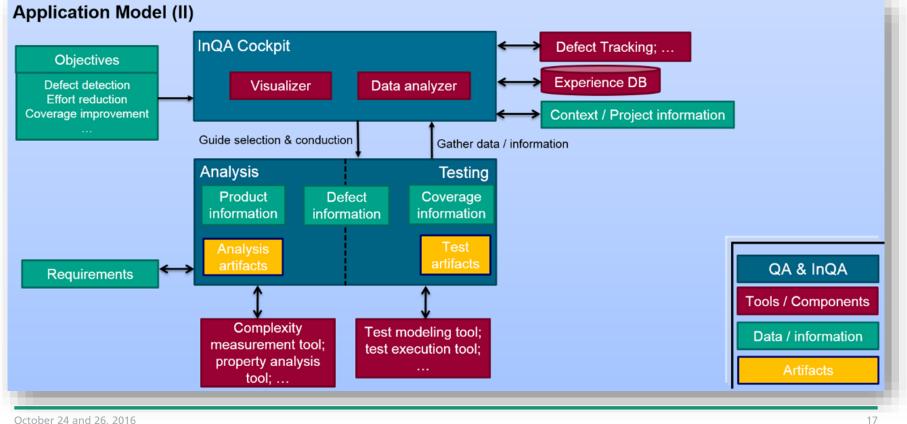

- Lessons learned
 - Selection of appropriate requirements elicitation techniques
 - Analyzing and refining users needs and constraints involves original stakeholders again
 Support by tool chain
 - Validation can be supported by standardized quality measures such as IEEE:830
 Support by tool chain
 - RE-tool should be customizable and extensible to fit into tool chain
 - Requirements change management with specific processes and tools ⇒ tool chain
 - Recommendation
 - Integrated tool chain facilitates project processes and RE/System modeling processes

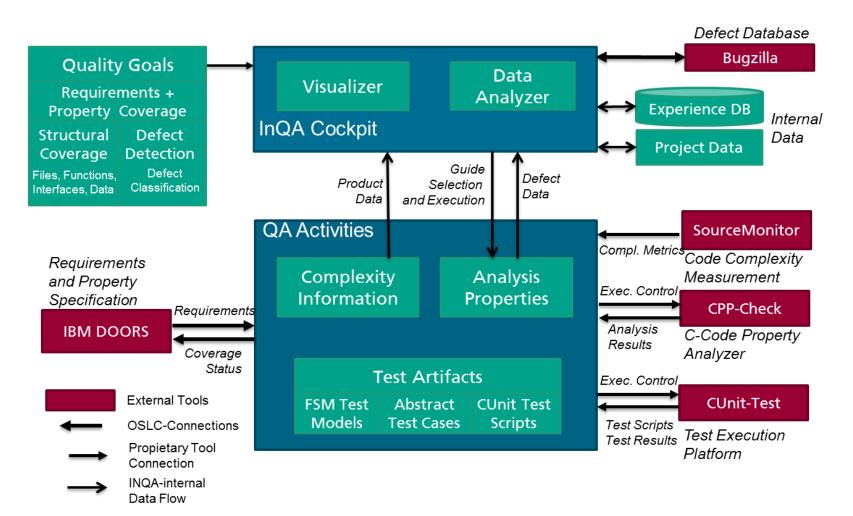

SYSTEMS ENGINEERING STUDY IN GERMANY PART 2 – BEST PRACTICES FOR SYSTEMS ENGINEERING

- Model-driven System Development
- System Requirements Engineering
- System Verification and Validation
- Integrated Tool Chains
- Virtual Engineering of Systems


System Verification and Validation **Definition**

System Verification and Validation Example Approach


Approach: Integrated Quality Assurance approach (InQA)


System Verification and Validation Example Approach

Approach: Integrated Quality Assurance approach (InQA)

System Verification and Validation Practical Case

October 24 and 26, 2016

© Fraunhofer IESE

18

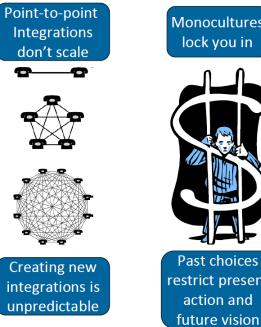
System Verification and Validation Practical Case

- Applied in European research project MBAT (model-based analysis and testing)
- 39 organizations, 8 countries
- Goal: improve quality assurance process by combining analysis, verification, and testing techniques
- 13 industrial use cases
 - Domains: automotive, avionics, and rail systems
 - Different contexts, settings, problems, quality properties, QA stages
 - Examples:
 - Daimler (light control subsystem)
 - Volvo (brake-by-wire subsystem)

System Verification and Validation Lessons Learned and Recommendations

- Large scale industrial evaluation (13 case studies)
- Only aggregated evaluation data was published
- Detailed use case-specific data was classified as confidential and not published outside the project.
- Significant cost reduction
 - Costs for application of verification and validation techniques could be significantly reduced by 32%
 - Costs caused by remaining defects in subsequent development stages could be also reduced by an average of 27%
- System quality was also improved
 - e.g. test coverage and post-release defects were improved by at least 8%

SYSTEMS ENGINEERING STUDY IN GERMANY PART 2 – BEST PRACTICES FOR SYSTEMS ENGINEERING

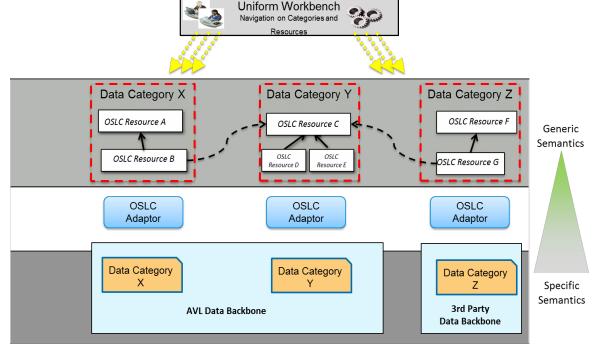

- Model-driven System Development
- System Requirements Engineering
- System Verification and Validation
- Integrated Tool Chains
- Virtual Engineering of Systems

Integrated Tool Chains Definition

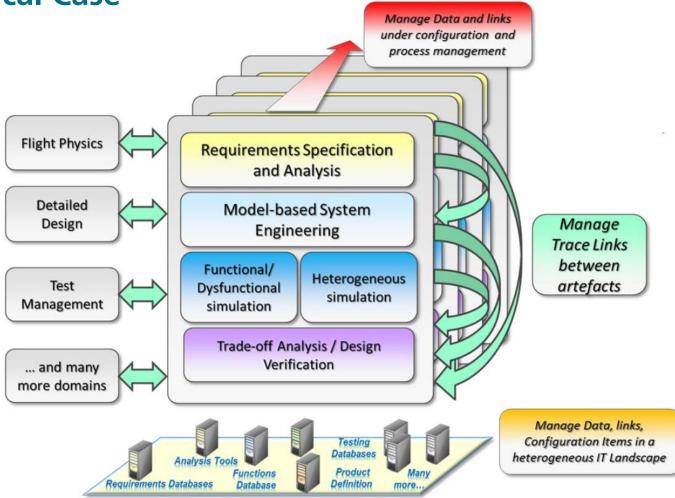
- Broad heterogeneity of engineering methods, tools, and data involved
- Bridge the gap between development platforms and operational ones
- Distributed and multitier nature of development teams

[Source: http://www.crystal-artemis.eu]

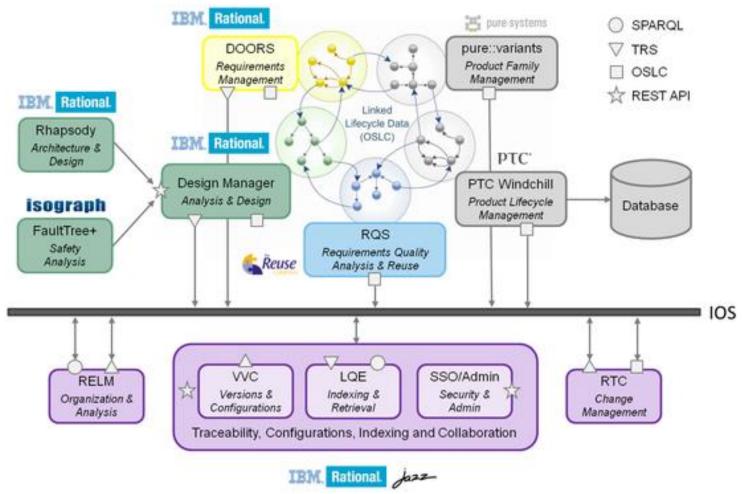
Maintenance, management, and change costs go up over time


Ongoing and unexpected costs drain resources

Need to interoperate seamlessly in today's (still fragmented) tool landscapes


Integrated Tool Chains Example Approach

- OSLC (Open Services for Lifecycle Collaboration)
- OSLC defines a set of specifications focusing on the support of life cycle activities


Integrated Tool Chains Practical Case

[Source: http://www.crystal-artemis.eu/fileadmin/user_upload/Deliverables/CRYSTAL_D_208_903_v3.03.pdf]

Integrated Tool Chains Practical Case

[Source: http://www.crystal-artemis.eu/application-domains/aerospace/work-package-203.html]

Integrated Tool Chains Lessons Learned

Lifecycle Tool

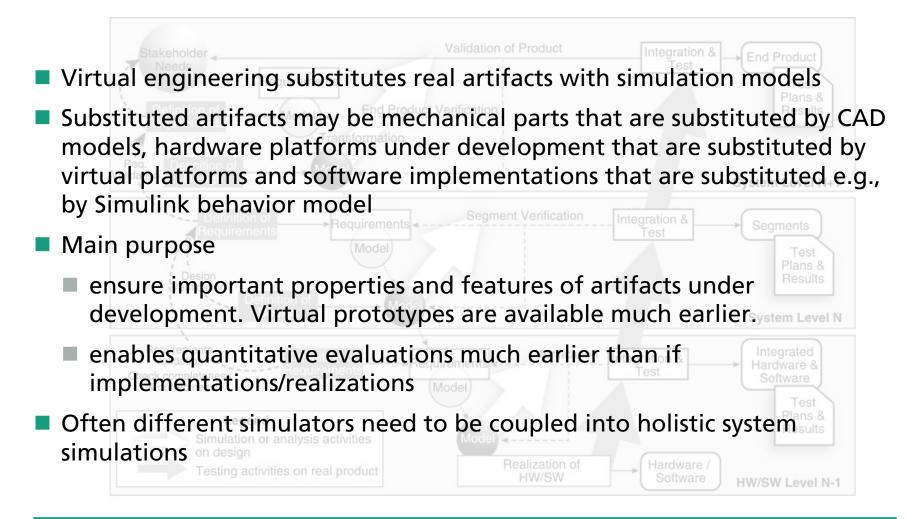
Tool interoperability can be improved substantially based on OSLC, and has advanced significantly in recent years

Lifecycle Tool

- An increasing number of tool providers such as IBM, PTC, PureSystems, Siemens, etc., are providing standardized interfaces to interoperate with other tools and have shown compelling tool interoperation scenarios among tools from different tool providers
- Certain complexities regarding the setup and maintenance of the tool adapters and data also became apparent in the use cases
- Link management: OSLC does not really specify where links should be managed and how – this is completely up to the developer of the interfaces
- It is quite challenging to implement an OSLC interface for an existing tool because the availability of the source code is a prerequisite

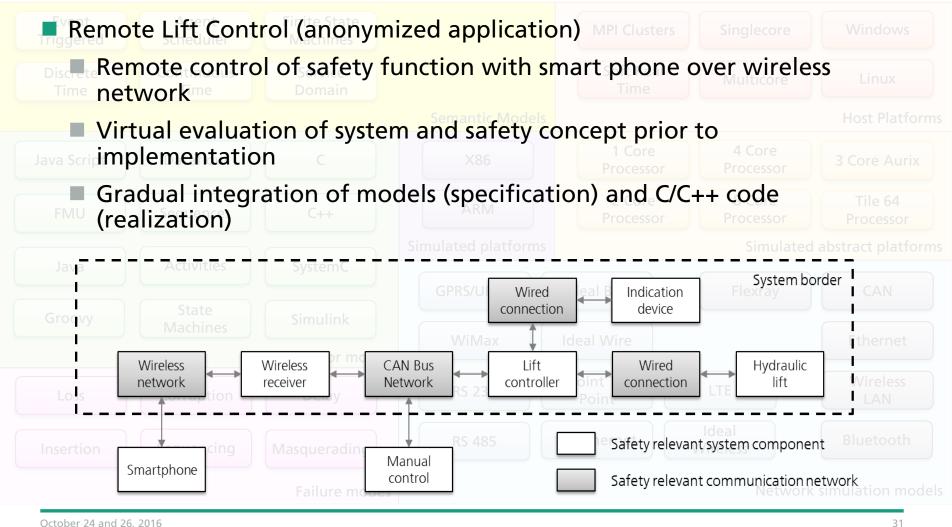
Integrated Tool Chains Recommendations

- Tool interoperability still remains an issue to be investigated in detail on a tool-by-tool basis in a concrete setting. The generalization of meta models and tool interfaces for the typical interoperation scenarios is work in progress and it's unclear whether this will be achieved at all
- Following a use-case-driven approach to improve tool interoperation is a good practice to identify shortcomings and value-adding improvements in the tool chains in a systematic and measurable way
- Beyond tool interoperation, open data formats can also help to archive important data without facing the challenge of having to reinstall complicated tool infrastructures in order to access the data of past projects


SYSTEMS ENGINEERING STUDY IN GERMANY PART 2 – BEST PRACTICES FOR SYSTEMS ENGINEERING

- Model-driven System Development
- System Requirements Engineering
- System Verification and Validation
- Integrated Tool Chains
- Virtual Engineering of Systems

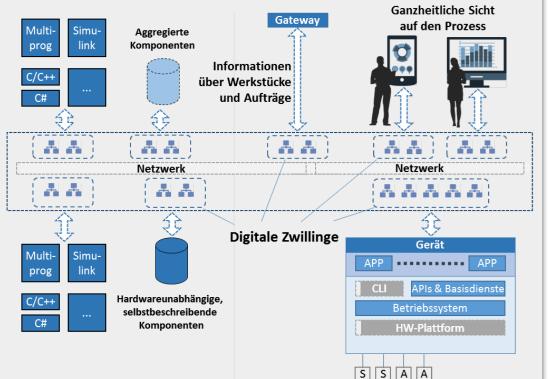
Virtual Engineering of Systems **Definition**



Virtual Engineering of Systems Example Approach

- Simulator coupling is difficult because the models of computation and communication (MOCCs) of simulation models often differ
- Three common MOCCs are Discrete Time, Discrete Event, and Continuous Time models.
- Common application in industry is the virtual evaluation of Electrical/Electronic (E/E) architectures. E/E architectures consist of hardware control units that are connected by networks.
 - Task deployment on a processors
 - Network communication
 - Safety mechanisms

Virtual Engineering of Systems Practical Case



© Fraunhofer IESE

Virtual Engineering of Systems Virtual Deployments

Virtual Development of Software Architectures

- System Architecture Prototype
 - High-Level models similar to UML/SysML
 - Executable and unambiguous
 - Synchronize developers
- Development Team Agreement
 - High-Level & Implementation interfaces
 - Data flows in system
 - Main features
- Refinement and integration
 - Change impact analysis
 - Change management support

Virtual Engineering of Systems Lessons Learned and Recommendations

- Develop revolutionary concepts that are not an evolution of existing approaches, but rather realize new ideas
- Ability to evaluate critical aspects early and without risks in simulation in conjunction with the increasing speed and accuracy of simulation models continuously increases the importance and applicability of virtual engineering techniques
- Considering the increasing system complexity and architecture, integration testing should start as soon as possible in the development process. Virtual Hardware-in-the-Loop testbeds, created by coupling existing simulators, should be considered as an efficient approach

Thanks!

どうもありがとう Dōmo arigatō

Dr. Martin Becker

Department Head Embedded Systems Engineering

Fraunhofer IESE Fraunhofer-Platz 1 67663 Kaiserslautern Germany

Phone: +49 (0) 631-6800-2246 Fax: +49 (0) 631-6800-9-2246

martin.becker@iese.fraunhofer.de

© Japanese Garden in Kaiserslautern, 2015 Partner City of Bunkyo-ku, Tokyo

Picture from http://www.japanischergarten.de]

