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Classical Properties of hash functions
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More properties... n — the output
size of h
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Iterated Hash Functions

= A standard way to construct hash functions is
as follows:

m Start from an initial hash value h,
= Calculate h=f(hm) | fop>01 |
= QOutput the last hash value h,




Concatenated Hash Functions

m Concatenate the outputs of a humber of
independent hash functions LF,G;{O’l}*Q{O,l}n }

= H(M)=F(M)| |G(M) Ho1y>01

= Want to enlarge the output size - to protect
aaainst hirthday attacks

i O(2") the construction against discovery
—ort__ 1rTack in one of the hash functions

m Secure against collisions if F and G are
random oracles
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Joux Multicollisions in Iterated Hash
Functions

= Use iterated structure to create large
multicollisions

Time = O(t2"2) ]

m,0

m,1

m,0 m.0
m,! m

2 multicollision ]
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Attacking a concatenated construction

m Form a 2"2 multicollision in the first hash
function

m We expect to find a collision in the second
function among the 2"2 colliding messages

m The attack can be generalized to attack
O multiple concatenations
0 produce multi-preimages (in time 2")

Y [ H(M)=F(M)]|G(M) }
Y, H:{0,1}*>{0,1}"

=
-
L XX
©
=




Possible Countermeasures

m Larger internal state - Lucks' proposition of a
double width pipe

m Expansion - Using message blocks more than
once

M=m;m,..m; = M=m;ym,m;m:m,...mm,m:m,;...
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Problem Statement

m Given a hash function H - find a 2k
multicollision in H

m Iterated and Concatenated - solved by Joux

m Iterated, Concatenated and Expanded - a
special case solved by Nandi & Stinson

m I'terated, Concatenated and Expanded (by any
constant factor)-solved in this presentation

Slide - 9



Example of an ICE Hash function
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Some warm up examples

m Can have a fixed value for some message

blocks
m;,0 m, m.0
A,
m,1 m



Some warm up examples

m Can have consecutive stretches of the same
message block

m,0 m,0 m.0
/" h1 /\ /\
hy h
2 h
\/hl\/ \/ t
m,1 m,1 m
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Some warm up examples

m Can have consecutive stretches of the same
message block



Some warm up examples

= Message expansion takes a message M and
outputs M||M

= Find a 2% multicollision in the iterated hash
function based on the expanded message
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Example I

H(M)=F(M||M)=F(m;m,m,...mm,;m,...
1° myo m,0 m,° )
ho/\hl/\hzm/\ht<
\/ \/ \/ h
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Example I

H(M)=F(M]|M)=F(m,m,m...m;m;m,...m,)

? ?lll
m m m 0 0 I“l III2 IIIn/2
10 20 n/20 M*h/241 M%h/242
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Example I

H(M)=F(M]|M)=F(m,m,m...m;m;m,...m,)
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Example I

H(M)=F(M]|M)=F(m,m,m...m;m;m,...m,)

m;’m,?..m_,?
m,0 my0 M50

NN N TN
|VAAVARVERRNGZ

r)

mn/2 m17 mz?...mnlz'

Works for any f| 22 multicollision Jetitions
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Example IT - 2 successive permutations

m Message expansion adds a permutation of the
original message blocks

O E(M) = MMo.. MMy M2y My
= Use the same procedure as before

?

M_\° M_;\ ... M :
mlo m2 mn/ZO TE(l) TC(l) TE(I"I/Z)
VAVAAVARNNDZ AN
m

1 1

My My My Moy Moy’
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Previous results (Nandi & Stinson)

= If the message expansion contains each
message block at most twice, can find a 2k
multicollision in time 2/2C(n k) where C(n,k) is
polynomial in n, k
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Our results

= If the message expansion expands by a
constant factor e (by duplicating message
blocks) can find a 2k multicollision in time time
27/2C(n k,e) where C(n k,e) is polynomial in n, k
(but exponential in e)
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Example IIT - 3 successive copies

m,0 my0 mp,0
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Example IV - 3 successive permutations

u E(M) = my(M)ro(M)rs(M)

r)

My’ Moy Moy’

VAVARVARANG G

r)

m.1 m,1 1 ? ? ;
1 2 My My1y” My My

h2t

Slide - 23



Example IV - 3 successive permutations

u E(M) = my(M)ro(M)rs(M)

1 (M) u u ﬁz(M) n3(M)
[E—— | —
12345678..... 12345678..... 1n/2n3n/2..2n/2+1 n+l.....
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Proof of the 3-permutations case:
Getting started

m Lemma 1.

Let B and C be two permuted sequences of [L].
Divide B into k consecutive groups B,,...,.B, and C
intfo Cy,...,C, of size n/k.

Then for x>0 and L k3x there exists a perfect
matching of B;'s and C;'s such that |[B,NC; | ¢ x
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Lemma 1

2 7@16 1511131417 512 13 10@18: 12@1 11@17 13 21014518 8315 7@16
! ! ! !

B, B, B, Cy C, Cs

Given large sets - we expect the intersection between
them to be large
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Lemma 1
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Lemma 1

B C
tk#k QA C, (t-1) Lk
B, | @
R (K-t+1)tx
L=k3x V _—
o!
Bk - ‘Jck




Lemma 1

m,(M) - B | (M) - C

2 9(8[7 p(A6) 1511)3 1 141751213 10 4 121 9(11)6(17) 15 210 143 13@4@
| | | |

B ” \3/ - g
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3 consecutive permutations

® Find a matching for x=n?/4 in the last two
permutations

m Set all non active message blocks to O

m Build the multi-collision in 3 stages using
larger blocks in each stage

m Requires a message of length O(k3n?)
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3 successive permutations

m(M) (M)

—_— e — — — — —

- —
- o

-----



Many successive permutations

= E(M) = m;(M)rp(M)...n (M)

nq-l(M) nq(M)
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q consecutive permutations

m Find a matching for x=0(n34-3)*2) in the last
two permutations

m Set all non active message blocks to O

m Find a matching for x=0(n3(4-6>*2) in the two
second to last permutations

m Build the multi-collision in q stages using
larger blocks in each stage

= Requires a message of length O(k3n3(-3)+2)
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Reduction from the general case

= So far proved for any constant number of
permutations

m Reduction from general case to succesive
permutations:

(1 Choose a set of active message indices such that
the resulting sequence is in successive
permutations form
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Case of expansion factor 2

m At least half the indices appear at most twice

m Given a sequence in which each index appears
at most twice either

[0 There exists a subset of variables which ‘appears’
once

1 There exists a subset of variables which are in
successive permutation form
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Case of expansion factor 2

= Lemma: for any 2-sequence over 1..| where
I=MN either

1 There exists a subset of M variables which
‘appears’ once

1 There exists a subset of N variables which are in
successive permutation form
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Case of expansion factor 2

Case 2 : N elements appear in concatenated
permutation form

= Proof: by induction on [=MN

AN
(M-1)N N\

e
{@4 98 5)4(23(13...
N
Y 7 does not appear now!

If each element appears at
most once we are done!!
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General Case

m At least half the indices appear at most twice
the expansion rate e

m Given a sequence in which each index appears
at most 2e either

01 There exists a subset of variables which ‘appears’
once

1 There exists a subset of variables which are in
successive permutation form

= We already solved the successive permutation
case
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General Case

m If the message expansion expands by a
constant factor e (by duplicating message
blocks) can find a 2k multicollision in time
27/2C(n k,e) where C(n k,e) is polynomial in n, k
but exponential in e)
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Example of an Tree Based Hash function

m, m, m, v, m, 1V,

S Gmy, IVy), f (g, 1V)))

h - The output of
the hash function
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Further research

m Other message expansion procedures

1 Linear combinations
O LFSRs
0.

= Keyed hash functions
m Tree based hash functions
m Other uses of multicollisions
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