

Breaking the ICE Multicollisions in Iterated Concatenated and Expanded (ICE) Hash Functions

Adi Shamir

Joint work with Ya'akov Hoch

IPA - 5/10/06

Classical Properties of hash functions

More properties... • K(multi)computa $h(x_1) = ... =$ • K(multi)infeasib

 $O(2^{n(k-1)/k})$

Iterated Hash Functions

- A standard way to construct hash functions is as follows:
- Start from an initial hash value h₀
- Calculate $h_i = f(h_{i-1}, m_i)$ $f:\{0,1\}^{2n} \to \{0,1\}^n$
- Output the last hash value h_t

Concatenated Hash Functions

- Concatenate the outputs of a number of independent hash functions $F,G:\{0,1\}^n \rightarrow \{0,1\}^n$
- \blacksquare H(M)=F(M)||G(M)
- Want to enlarge the output size to protect against birthday attacks
- O(2ⁿ) the construction against discovery of a littack in one of the hash functions
- Secure against collisions if F and G are random oracles

 $H:\{0,1\}^* \rightarrow \{0,1\}^{2n}$

Joux Multicollisions in Iterated Hash Functions

 Use iterated structure to create large multicollisions

Attacking a concatenated construction

- Form a $2^{n/2}$ multicollision in the first hash function
- We expect to find a collision in the second function among the 2^{n/2} colliding messages
- The attack can be generalized to attack
 - □ multiple concatenations
 - □ produce multi-preimages (in time 2ⁿ)

M_{i}	F(M _i)	G(M _i)
M_1	X	Y ₁
M_2	X	Y_2
•••	•••	•••

H(M)=F(M)||G(M) $H:\{0,1\}^* \rightarrow \{0,1\}^{2n}$

Possible Countermeasures

- Larger internal state Lucks' proposition of a double width pipe
- Expansion Using message blocks more than once

$$M=m_1m_2...m_t$$
 \longrightarrow $M=m_1m_2m_1m_5m_1...m_tm_2m_5m_{t-1}...$

Problem Statement

- Given a hash function H find a 2^k multicollision in H
- Iterated and Concatenated solved by Joux
- Iterated, Concatenated and Expanded a special case solved by Nandi & Stinson
- Iterated, Concatenated and Expanded (by any constant factor)-solved in this presentation

Example of an ICE Hash function

Can have a fixed value for some message blocks

Can have consecutive stretches of the same message block

 Can have consecutive stretches of the same message block

- Message expansion takes a message M and outputs M||M
- Find a 2^k multicollision in the iterated hash function based on the expanded message

$$H(M) = F(M||M) = F(m_1m_2m_3...m_tm_1m_2...m_t)$$

$$H(M)=F(M||M)=F(m_1m_2m_3...m_tm_1m_2...m_t)$$

$$H(M)=F(M||M)=F(m_1m_2m_3...m_tm_1m_2...m_t)$$

$$h_0 = \begin{pmatrix} m_1^0 & m_2^0 & m_{n/2}^0 & m_{n/2+1}^0 & m_{n/2+2}^0 & m_1^2 & m_2^2 & \dots & m_{n/2}^2 \\ h_0 & h_1 & h_2 & \dots & h_{n/2} & h_{n/2+1} & \dots & h_t & \dots & h_{t+n/2} \\ m_1^1 & m_2^1 & m_{n/2}^1 & m_{n/2+1}^1 & m_{n/2+2}^1 & m_1^2 & m_2^2 & \dots & m_{n/2}^2 \end{pmatrix}$$

$$H(M)=F(M||M)=F(m_1m_2m_3...m_tm_1m_2...m_t)$$

Works for any f 22t/n multicollision etitions

Example II - 2 successive permutations

- Message expansion adds a permutation of the original message blocks
- \blacksquare E(M) = $m_1 m_2 ... m_t m_{\pi(1)} m_{\pi(2)} ... m_{\pi(t)}$
- Use the same procedure as before

Previous results (Nandi & Stinson)

■ If the message expansion contains each message block at most twice, can find a 2^k multicollision in time $2^{n/2}C(n,k)$ where C(n,k) is polynomial in n, k

Our results

■ If the message expansion expands by a constant factor e (by duplicating message blocks) can find a 2^k multicollision in time time 2^{n/2}C(n,k,e) where C(n,k,e) is polynomial in n, k (but exponential in e)

Example III - 3 successive copies

Example IV - 3 successive permutations

E(M) = π_1 (M) π_2 (M) π_3 (M)

Example IV - 3 successive permutations

E(M) =
$$\pi_1$$
(M) π_2 (M) π_3 (M)

Proof of the 3-permutations case: Getting started

Lemma 1:

Let B and C be two permuted sequences of [L]. Divide B into k consecutive groups $B_1,...,B_k$ and C into $C_1,...,C_k$ of size n/k.

Then for x>0 and L¿ k^3x there exists a perfect matching of B_i 's and C_j 's such that $|B_i \cap C_j|$ ¿ x

3 consecutive permutations

- Find a matching for $x=n^2/4$ in the last two permutations
- Set all non active message blocks to 0
- Build the multi-collision in 3 stages using larger blocks in each stage
- Requires a message of length O(k³n²)

3 successive permutations

Many successive permutations

■ E(M) =
$$\pi_1$$
(M) π_2 (M)... π_q (M)

...
$$\pi_{q-1}(M)$$
 $\pi_q(M)$

q consecutive permutations

- Find a matching for $x=O(n^{3(q-3)+2})$ in the last two permutations
- Set all non active message blocks to 0
- Find a matching for $x=O(n^{3(q-6)+2})$ in the two second to last permutations
- **...**
- Build the multi-collision in q stages using larger blocks in each stage
- Requires a message of length O(k³n³(q-3)+2)

Reduction from the general case

- So far proved for any constant number of permutations
- Reduction from general case to succesive permutations:
 - Choose a set of active message indices such that the resulting sequence is in successive permutations form

Case of expansion factor 2

- At least half the indices appear at most twice
- Given a sequence in which each index appears at most twice either
 - There exists a subset of variables which 'appears' once
 - There exists a subset of variables which are in successive permutation form

Case of expansion factor 2

- Lemma: for any 2-sequence over 1... where I=MN either
 - □ There exists a subset of M variables which 'appears' once
 - There exists a subset of N variables which are in successive permutation form

Case of expansion factor 2

Case 2 : N elements appear in concatenated permutation form

Proof: by induction on I=MN

If each element appears at most once we are done!!

General Case

- At least half the indices appear at most twice the expansion rate e
- Given a sequence in which each index appears at most 2e either
 - There exists a subset of variables which 'appears' once
 - There exists a subset of variables which are in successive permutation form
- We already solved the successive permutation case

General Case

■ If the message expansion expands by a constant factor e (by duplicating message blocks) can find a 2^k multicollision in time $2^{n/2}C(n,k,e)$ where C(n,k,e) is polynomial in n, k but exponential in e)

Example of an Tree Based Hash function

Further research

- Other message expansion procedures
 - □ Linear combinations
 - □ LFSRs
 - □ ...
- Keyed hash functions
- Tree based hash functions
- Other uses of multicollisions