
C＋＋

C＋＋
Revised Edition

Embedded System development
Coding Reference guide

Written and edited by
Software Riliability Enhancement Center,

Technology Headquarters,
Information-technology Promotion Agency,Japan

[C++ Language Edition]

ii

ESCR C++

This document is the English edition of ESCR (Embedded System development Coding Reference) [C++

language edition] Version 2.0 published by IPA/SEC* in Japan. It is the revised English edition of ESCR

[C++ language edition] Version 1.0 made available in March 2013 in pdf format. Aimed at improving the

quality of the source code written in C++ language, ESCR collects the important points to be noted as

part of the know-how for coding and organizes them as practices and rules.

The purpose of this document is to be used as a reference guide for establishing coding conventions in

organizations and groups developing embedded software using C++ language, and for promoting the

standardization of coding styles and uniformity of source code quality.

October 2016

Software Reliability Enhancement Center, Technology Headquarters,

Information-technology Promotion Agency, Japan

Copyright © 2016, IPA/SEC
Permission to copy and distribute this document is hereby granted provided that this notice is retained on all copies, that

copies are not altered, and that IPA/SEC is credited when the material is used to form other copyright policies.

* Software Reliability Enhancement Center, Technology Headquarters, Information-technology Promotion Agency, Japan

iiiPreface

ESCR C++

Preface

On publication of ESCR [C++ language edition] Ver. 2.0

This document is the English edition of ESCR (Embedded System development Coding Reference)
[C++ language edition] Version 2.0 published by IPA/SEC* in Japan. Aimed at improving the quality of
the source code written in C++ language for software development, ESCR C++ has been organized as a
compilation of important points and tips to keep in mind throughout the coding process.

ESCR C++ Ver. 2.0 is the updated version of ESCR C++ Ver. 1.0 that was released in November 2010.
Since C++ is a language derived and extended from C language, ESCR C++ Ver. 1.0 follows the same
structure used for ESCR C, and is based on the structure of the latest version of ESCR C, which is Ver. 1.1
released in 2007.

ESCR C++ Ver. 1.0 complies with ISO/IEC14882:2003 (C++03), which was the most widely used C++
language standard at the time Ver. 1.0 was published. Since then, C++ language standard has evolved and
a number of updated versions have been introduced and are being used by increasing number of C++
language programs. Likewise, ESCR C that is used as the basis of ESCR C++ has also been updated in
conjunction with the introduction of updated versions of C language standard and MISRA C. To respond
to these developments, we have come to release ESCR C++ Ver. 2.0 with an intention of meeting the
following two objectives:

- Make the rules compliant with the updated versions of C++ language standard, C++11 and C++14,
and add new rules to make it easy for the programmers to use the new features supported by these
updated versions;

- Make ESCR C++ Ver. 2.0 consistent with ESCR C Ver. 2.0

To maintain the continuity from the previous version, ESCR C++ Ver. 2.0 follows the same structure
as Ver. 1.0. The practices and rules carried over from the previous version are also numbered the same
as in Ver. 1.0. To support the language specifications that have been extended in C++11 and C++14,
various descriptions have been added to Ver. 2.0, including the introduction of new rules, supplementary
explanatory texts, and additional compliant and non-compliant coding examples.

Our objective of publishing ESCR C++ Ver. 2.0 remains the same as the previous version. This document
is intended to serve as a source of reference for organizations and groups in need of establishing
coding rules to be strictly followed by their software developers for the purpose of standardizing and
maintaining uniform level of quality of their source code written in C++ language.

Lastly but not least, we would like to thank the members of Coding Practices Guide Revision Working
Group for their cooperation in reviewing ESCR C++ Ver. 1.0 closely based on the latest versions of C++
language standard, C++11/C++14 and the contents of ESCR C Ver. 2.0, and Honorary Professor Emeritus
Ikuo Nakata of Tsukuba University for his guidance in identifying the information that need to be added,
revised or deleted in or from this document to ensure that it is up to date at the time of its publication.

iv Preface

ESCR C++

We sincerely hope that the effective use of ESCR C++ Ver. 2.0 will lead to improved productivity of
embedded software and contribute to the attainment of high-quality software development.

October 2016

Yukihiro Mihara, Keisuke Toyama
Software Reliability Enhancement Center, Technology Headquarters,

Information-technology Promotion Agency, Japan

Fusako Mitsuhashi
Coding Practices Guide Revision Working Group

vTable of Contents

ESCR C++

Preface ... iii

Part	1 How to Read the Coding Practices Guide	 1
1 Overview.. 2

1.1 What are Coding Practices? .. 2

1.2 Purpose and Position of Coding Practices and Target Users .. 3

1.3 Characteristics of the Coding Practices ... 4

1.4 Notes on Using this Guide ... 5

2 Understanding Source Code Quality ... 9
2.1 Quality Characteristics ... 9

2.2 Quality Characteristics, and Coding Practices and Rules .. 12

3 How to Use this Guide ... 14
3.1 Scenarios for Using this Guide .. 14

3.2 Creating a New Coding Convention ... 15

3.3 Enhancing Existing Coding Conventions ... 17

3.4 Serving as a Learning Material for Programmers’ Training and Self-Study 18

Part	2 Coding Practices for Embedded Software: Practices Chart	 19
How to Read the Practices Chart ... 20

Difference from C Language Edition .. 23

Terminology Used in the Practices Chart ... 24

Coding Practices for Embedded Software ... 25

●Reliability .. 27
●Maintainability .. 99
●Portability ... 181
●Efficiency .. 195

Appendix List of practices and rules ... 205

Citations and References ... 213

Table	of	Contents

Part	1
How	to	Read	the

Coding	Practices	Guide

 1	 Overview

1.1 What are Coding Practices?
1.2 Purpose and Position of Coding Practices and Target Users
1.3 Characteristics of the Coding Practices
1.4 Notes on Using this Guide

 2	 Understanding	Source	Code	Quality

2.1 Quality Characteristics
2.2 Quality Characteristics, and Coding Practices and Rule

 3	 How	to	Use	this	Guide

3.1 Scenarios for Using this Guide
3.2 Creating a New Coding Convention
3.3 Enhancing Existing Coding Conventions
3.4 Serving as a Learning Material for Programmers’ Training and Self-Study

2 Part1 How to Read the Coding Practices Guide

ESCR C++

1		Overview

1.1	What	are	Coding	Practices?	

Creating source code (code implementation) is an inevitable task for developing embedded soft-
ware. Success or failure of this task greatly affects the quality of the resulting software. C and C++,
the two programming languages that are very commonly used for embedded software development,
are said to give the programmers a relatively extensive writing flexibility. The quality of programs
written in C or C++ thus tends to reflect quite clearly the difference in coding skill level between
seasoned and less-experienced programmers. It is undesirable to have source code varying largely
in quality, depending on the programmers’ individual coding skills and experience. To prevent this
risk from leading into serious quality issues, forward-thinking companies are working proactively
toward standardization of their source codes by establishing coding standards or conventions to be
followed organization-wide or group-wide.

	 Issues	Regarding	Coding	Conventions	

Coding convention is generally regarded as the organized set of “styles of (or rules in) writing code
that need to be followed to maintain quality.” However, it is becoming a common understanding that
various issues exist in the current usage of coding conventions, including those mentioned below.

1) The necessity of rules is not understood. The appropriate methods to deal with rule violations
are also not widely shared.

2) There are too many rules to learn. Yet, the existing rules are not comprehensive enough to cover
the entire scope of coding.

3) Since highly reliable tools that can thoroughly and accurately check whether the written code is
complying with the relevant rules or not are unavailable, the engineers have to review the code
manually through visual check, which is a heavy burden for them.

Due to such circumstances, there are, in fact, some coding conventions established at the organiza-
tion or department level that have lost their significance and are no longer strictly observed.

Nevertheless, organizations that have coding conventions, no matter what kind of format they pre-
pare them in, are at least better than those without any. There are still quite a few that cannot reach
a consensus of the coding convention to be followed internally, and are relying largely on the pro-

31●Overview

ESCR C++

grammers’ individual judgments to decide how the source code should be written.

	 What	are	Coding	Practices?	

This guide aims at solving on-site issues related to coding conventions, by providing a collection
of practical coding techniques considered important from the standpoint of software quality that
conform to the basic way of thinking (concept) to be followed in various coding situations. They
are referred to as “coding practices” in this guide, and are presented with detailed description and
specific examples of related coding conventions (or rules) for reference.

This guide is intended to enable the users to solve the above-mentioned issues in coding conventions
by “establishing a concrete and effective coding convention for their own organization”, using the
set of relevant information provided herein as their reference.

1.2	Purpose	and	Position	of	Coding	Practices	and	
Target	Users

	 Purpose	and	Position	of	Coding	Practices	

ESCR [C++ language edition] Ver. 2.0 is a guide on coding practices intended to help enable those
who create and/or operate the coding conventions to establish them in their companies or projects.
This book is characteristic for regarding coding conventions as “ways of writing code that should be
followed by all the programmers in a given project to maintain quality” and organizing the basic rule
concepts as practices. These practices are broken down into outline and details, based on the quality
concept that complies with “ISO/IEC 25010:2011 Systems and software engineering -- Systems and
software Quality Requirements and Evaluation (SQuaRE) -- System and software quality model”
They are respectively explained with corresponding C++ programming rules and the rationale for
using them. Through these practices and rules, ESCR [C++ language edition] Ver. 2.0 aims at en-
abling the users to easily establish their own “coding convention” that meets their practical needs
and also clearly explain why the included practices and rules are significant and necessary.

	 Target	Users	

This guide has been written on the assumption that it will be read by the following types of users:

4 Part1 How to Read the Coding Practices Guide

ESCR C++

Creators	of	the	Coding	Conventions	
This book can be used as a reference guide to create a new coding convention or to review and re-
organize existing coding conventions.

Programmers	and	Program	Reviewers	
Highly reliable and maintainable code can be produced with reasonable effort by learning and un-
derstanding the practices and rules provided in this guide.

	 Benefits	Gained	

The benefits that the users can expect to gain directly from using this guide are as mentioned above.
Moreover, as a result of these benefits, the users may also be able to expect the following positive
effects:

- Can remove the bottleneck in maintaining software quality caused by inconsistent performance
of implementation engineers;

- Can eliminate obvious errors in the source code at an early stage, such as, during the coding
phase or in subsequent reviews.

1.3	Characteristics	of	the	Coding	Practices
The coding practices in this guide have the following characteristics.

Systematically	Organized	Practices	and	Rules	
This guide considers that code quality can also be classified like software quality, according to
quality characteristics, such as, “reliability”, “maintainability” and “portability”, and organizes the
coding practices and rules systematically based on “ISO/IEC9126-1:2001 Software engineering -
Product quality”. The coding practices described in this guide are customs and ideas on implemen-
tation that have been developed to maintain source code quality, and they reflect the basic concepts
of individual coding rules. The coding rules included in this guide have been selected based on the
needs of the current conditions (actual situation with the language specifications and processing
systems) after closely examining the various coding conventions existing in the world, and are
presented in the form of established information that supports the corresponding practices. Classi-
fication of practices and rules according to quality characteristics makes it easy for the users of this
guide to understand their respective purpose of use in terms of which aspect of quality each of them
is primarily focused on maintaining.

51●Overview

ESCR C++

The coding conventions referenced in this guide range from local conventions used in companies
to which the writers and reviewers of this guide belong, to sets of coding rules established and used
widely in different industries, including “MISRA C++”. For details, refer to “Appendix: Bibliogra-
phy” at the end of this book.

Ready-to-use	Reference	Rules	
This guide presents specific rules for C++ language as reference information for creating coding
conventions. These rules can be used directly as coding conventions. By referring to “3. How to Use
this Guide”, the users of this guide can easily create their own coding conventions for C++ language
by choosing the rules that meet their respective needs and adding any other rules that they feel are
also necessary to cover the areas that are not sufficiently addressed.

Presenting	the	Necessity	of	Each	Rule
The coding rules covered in this guide are respectively described with explanation of corresponding
practices and examples of how the code should be written (to be compliant with the given rule) or
should not be written (because that would be non-compliant), to enable the users of this guide to un-
derstand clearly why each of them is necessary. Rules considered to be already well-known among
experienced programmers are so indicated in the “Preference guide” to help the users of this guide
determine whether they need to include these rules in their conventions or not.

Correspondence	with	Other	Coding	Conventions
In preparing this guide, a study was conducted to find the correspondence relationship between
each coding rule and coding conventions used widely in various industries. In particular, the rules
in “MISRA-C” and “MISRA-C++” that are referenced in this guide have all been extracted and or-
ganized in the form of a table titled “List of practices and rules”, which is available in the Appendix
section at the end of this book.

1.4	Notes	on	Using	this	Guide
Keep the following points in mind when using this guide.

	 Scope	of	the	Rules	

This guide conforms to C++ language specifications, but the rules related to any of the following are
considered out of scope of C++ language reference rules:

6 Part1 How to Read the Coding Practices Guide

ESCR C++

- Library functions;
- Metrics (numbers of lines in functions/complexity of functions, etc);
-	 Errors	in	writing	possibly	classified	as	coding	errors;
- Rules for creating templates.

In this guide, the descriptions under “Part 3 Typical Coding Errors in Embedded Software” in ESCR
[C language edition] have been entirely omitted. Those interested in knowing what was written in
there should refer to ESCR [C language edition]. Since many examples of coding errors described in
there can also be a good reference for C++ programmers, especially the beginners in C++ program-
ming are strongly advised to read them through.

	 Cited	or	Referenced	Standards	in	this	Guide

In this guide the following standards have been cited or referenced.

C90
This is the C language standard defined in “ISO/IEC 9899:1990 Programming Language C”. It is
often called C90, where “90” stands for the year ISO/IEC 9899:1990 was published. The C language
standard has been revised and is now C99, making C90 an older version.

C99
This is the C language standard defined in “ISO/IEC 9899:1999 Programming Language C”. It is
the current standard widely used. Since ISO/IEC 9899:1999 was published in 1999, it is often called
“C99”.

C11
This is the most recent C language standard defined in “ISO/IEC 9899:2011 Programming Language
C” and thereby is the current C language standard. Since ISO/IEC 9899:2011 was published in 2011,
it is often called “C11”.

C++03
This is the C++ language standard defined in “ISO/IEC 14882:2003 Programming language C++”.
It is often called “C++03”.

C++11
This is the C++ language standard defined in “ISO/IEC 14882:2011 Programming language C++”.
It is often called “C++11”.

71●Overview

ESCR C++

C++14
This is the C++ language standard defined in “ISO/IEC 14882:2014 Programming language C++”.
It is often called “C++14”. The changes from previous version are all minor.

MISRA	C,	MISRA	C++
MISRA C refers collectively to the coding guidelines for C language defined by The Motor Industry
Software Reliability Association (MISRA) in UK, which include MISRA C:1998, MISRA C:2004
and MISRA C:2012. MISRA C++ refers to the coding guidelines for C++ language defined by
MISRA in UK, which include MISRA C++:2008.

MISRA	C:	1998

The convention in Citations and References [9].

MISRA	C:	2004

The convention in Citations and References [10]. This is the revised version of MISRA C:1998.

MISRA	C2012

The convention in Citations and References [11]. This is the revised version of MISRA C:2004.

MISRA	C++:	2008

The convention in Citations and References [12].

	 Difference	from	Ver.	1.0

This document (Ver. 2.0) has been updated from the previous version (Ver. 1.1) primarily by adding
rules considered to be necessary when using the new features defined mainly in C++11, and by mod-
ifying some rules and descriptions considered necessary to do so in order to maintain consistency
with the revisions made in other published versions of ESCR. There are some descriptions that deal
with the same matters explained in Ver. 1.0, but have been rewritten in this document with more
clarity or in a way that would be easier to understand.
The rule number of each deleted rule is treated as missing number and kept vacant. The rules that
deal with the same topic in Ver. 1.0 are numbered the same in this document so that the users of old
ESCR C++ edition (Ver 1.0) can find it easy to track the rules.

The rules that have been newly added to this document are R3.6.3, R3.7.7, R3.10, R3.10.1, R3.11,
R3.11.1, R3.11.2, M2.3, M2.3.1, M4.7.7, P1.6, and P1.6.1. The rules in Ver. 1.0 that have been de-
leted in the document are M3.1.3 and M4.7.4.

8 Part1 How to Read the Coding Practices Guide

ESCR C++

C++ language specifications defined in C++03 have been expanded in many ways through the new
features introduced in C++11 and C++14. Many of these new features are intended to improve the
productivity and reliability of the program, and can enhance the quality of software developed in C++
language when used effectively. In this document, you can find coding rules that should be observed
when using some of these new features that contribute to the extended usage of C++ language. But
there are still many newly introduced features that require deep knowledge to utilize them properly,
including those that do not have clearly established coding rules yet. Therefore, the users of these new
features must keep in mind to always use them with utmost care.

Provided below are two examples of new features that need to be used very carefully.

(1) Type inference of a variable
In the conventional C++ language standard, the keyword auto referred to an automatic variable, but
was almost never used. In C++11, the specifications have been modified to make the compiler infer
the type of a variable from the type of the initial value when auto is written in lieu of the variable type
in the variable declaration where the initial value is specified. For example, if

auto x = f();
the type of variable x will be the same as the return value type of function f. Type inference by auto
is useful to prevent the code from becoming redundant in cases where complex types are used. But
auto also has a risk of making the compiler infer an unexpected type as the variable type when the
code is modified. Therefore, there is a need to use auto carefully to prevent incorrect inferences from
being made.

(2) Function declaration form
In the conventional form of function declaration, the return value type of a function was written be-
fore the function name. The language features expanded by C++11 also support the declaration form
of writing the return value after the parameter declaration. According to C++11, the conventional
function declaration,

int f(int);
can also be declared in the following form:

auto f(int) -> int;

The newly supported form of function declaration is useful for being able to infer the return value type
from the parameter type, such as, in template definition. But to prevent confusion among the members
of the software development project, it is highly recommended to set local rules to be followed by the
project members on how to use this additionally supported function declaration form and when it is
applicable.

Column: Points to be careful of when using the new features in C++

9

ESCR C++

2●Understanding Source Code Quality

2.	Understanding	Source	Code	Quality

2.1	Quality	Characteristics	
For many, speaking of software quality would remind them of “bugs.” However, in the field of
software engineering, the quality of software as a product is grasped in a broader perspective. This
concept of software product quality is defined in detail and organized systematically in ISO/IEC
25010:2011.

	 ISO/IEC	25010:2011	and	Source	Code	Quality	

ISO/IEC 25010:2011 defines the quality of software product by breaking it down into eight char-
acteristics (quality characteristics): “reliability”, “maintainability”, “portability”, “efficiency”,
“security”, “functionality”, “usability” and “compatibility”. Among them, “functionality”, “usability”
and “compatibility” are considered to be the three quality characteristics that should be addressed at
an early stage, preferably before moving on to the design phases in the upstream process. Whereas,
“reliability”, “maintainability”, “portability”, and “efficiency” are considered to be the quality char-
acteristics that have close relevance with the development of high-quality source code and should
therefore be examined in depth during the coding phase. “Security”, which has been defined as the
quality subcharacteristic of “functionality” in the previous standard, ISO/IEC 9126-1, is considered
basically as a quality characteristic that is relevant in the design phase, but coding such as for avoiding
stack overflow can also affect security. For more information on coding practices related to security,
please refer to CERT C Secure Coding Standard [2].

Based on the above broad categorization, this guide has adopted the latter four quality characteristics
- “reliability”, “maintainability”, “portability”, and “efficiency” - as the main focus, and gathered the
coding practices that are primarily concerned with any of these four. Table 1 shows the relationship
between the “quality characteristics” defined in ISO/IEC 25010 and the “code quality” proposed in
this guide, along with the “quality subcharacteristics”.

10 Part1 How to Read the Coding Practices Guide

ESCR C++

Table 1 Quality Characteristics of Software and Code Quality

Quality	characteristics	
(ISO/IEC	25010)

Quality	subcharacteristics
(ISO/IEC	25010)

Code	quality

R
eliability

Degree to which a
system, product or
component performs
specified functions
under specified con-
ditions for a specified
period of time

Maturity Degree to which a system meets needs for reli-
ability under normal operation

Low occurrence of
bugs through con-
tinued use

Availability Degree to which a system, product or com-
ponent is operational and accessible when
required for use

Fault Toler-
ance

Degree to which a system, product or compo-
nent operates as intended despite the presence
of hardware or software faults

Tolerance for bugs
and interface viola-
tions, etc

Recoverability Degree to which, in the event of an interruption
or a failure, a product or system can recover
the data directly affected and re-establish the
desiredM

aintainability

Degree of effective-
ness and efficiency
with which a product
or system can be
modified by the in-
tended maintainers

Modularity Degree to which a system or computer program
is composed of discrete components such that a
change to one component has minimal impact
on other components

Degree to which
the components
are composed such
that a change to one
component of the
code has minimal
impact on other
components

Reusability Degree to which an asset can be used in more
than one system, or in building other assets

Degree to which a
code can be used in
other programs

Analysability Degree of effectiveness and efficiency with
which it is possible to assess the impact on a
product or system of an intended change to one
or more of its parts, or to diagnose a product for
deficiencies or causes of failures, or to identify
parts to be modified

Easiness of under-
standing the code

Modifiability Degree to which a product or system can be
effectively and efficiently modified without
introducing defects or degrading existing prod-
uct quality

Easiness of modi-
fying the code, and
lowness of impact
from modifications

Testability Degree of effectiveness and efficiency with
which test criteria can be established for a
system, product or component and tests can be
performed to determine whether those criteria
have been met

Easiness of testing
and debugging the
modified code

11

ESCR C++

2●Understanding Source Code Quality

Quality	characteristics	
(ISO/IEC	25010)

Quality	subcharacteristics
(ISO/IEC	25010)

Code	quality

Portability	

Degree of effec-
tiveness and effi-
ciency with which a
system, product or
component can be
transferred from one
hardware, software
or other operational
or usage environment
to another

Adaptability Degree to which a product or system can effec-
tively and efficiently be adapted for different or
evolving hardware, software or other operation-
al or usage environments

Easiness of adapt-
ing to different
environments
*Including confor-
mance to standards

Installability Degree of effectiveness and efficiency with
which a product or system can be successfully
installed and/or uninstalled in a specified envi-
ronment

Replaceability Degree to which a product can be replaced by
another specified software product for the same
purpose in the same environmentPerform

ance	Efficiency	

Performance relative
to the amount of
resources used under
stated conditions

Time Be-
haviour

Degree to which the response and processing
times and throughput rates of a product or
system, when performing its functions, meet
requirements

Efficiency with
regard to process-
ing time

Resource Uti-
lization

Degree to which the amounts and types of re-
sources used by a product or system when per-
forming its functions meet requirements

Efficiency with
regard to resources

Capacity Degree to which the maximum limits of a prod-
uct or system parameter meet requirements

Security

Degree to which a
product or system
protects information
and data so that per-
sons or other prod-
ucts or systems have
the degree of data
access appropriate to
their types and levels
of authorization

Confidentiality Degree to which a product or system ensures
that data are accessible only to those authorized
to have access

Degree of certainty
that data are acces-
sible only to those
authorized to have
access

Integrity Degree to which a system, product or compo-
nent prevents unauthorized access to, or modifi-
cation of, computer programs or data

Degree of preven-
tion of unautho-
rized access to, or
modification of,
computer programs
or data

Nonrepudi-
ation

Degree to which actions or events can be prov-
en to have taken place, so that the events or
actions cannot be repudiated later

Accountability Degree to which the actions of an entity can be
traced uniquely to the entity

Authenticity Degree to which the identity of a subject or re-
source can be proved to be the one claimed

12 Part1 How to Read the Coding Practices Guide

ESCR C++

2.2		Quality	Characteristics,	and	Coding	Practices	
and	Rules	

	 Overall	Structure	

In this guide, the basic matters to be followed when creating source code are organized as “practices”.
For each “practice”, this guide introduces “rules” that are more specific reference information to
keep in mind at the time of coding.

These “practices” and “rules” provided in this guide are classified and arranged in order, according
to their association to any of the four quality characteristics described earlier in 2.1. The following
section defines what “practice” and “rule” actually mean in this guide (see also Figure 1):

Practice
A “practice” is a custom or a set of ideas on implementation to maintain source code quality. Each
practice reflects the basic concept of individual coding rule. These practices are broken down into
outline and details.

Rule
A “rule” is a specific agreement that must be followed and constitutes a part of coding convention.
This guide presents these rules as reference information. In this guide, a “rule” is also sometimes
used as a collective term that represents a group of relevant rules.

Correspondence	of	Practices	and	Rules
Most practices and rules are related to multiple quality characteristics, but in this guide, they are
respectively discussed in the section of the characteristic to which they are most strongly related.
Associating each practice with a particular quality characteristic makes it possible and easy for the
users of this guide to understand how each practice strongly affects which aspect of quality.

13

ESCR C++

2●Understanding Source Code Quality

Quality
Concepts

Practices:

Use the rules as reference to establish...

Added as
project-specific rule

Reliability Portability Efficiency

・・・

・・・

・・・

・・・

Maintainability

Specific way of
thinking
constantly
applied in
implementation
to improve
quality

Reference
information of
specific coding
rules that take
language
dependency
into
consideration.

Initialize areas and use them
by taking their sizes into
consideration.

Write in a style that is not
dependent on the compiler.

Write in a style that can
prevent modification errors. Write in a unified style.

Clarify the grouping of
structured data and blocks.

The body of if, else if, else, while,
do, for, and switch statements
shall be enclosed into blocks

Declare variables used only
in one function within that
function.

Functions called only from
the functions defined in the
identical file shall be static.

The number of lines per file
shall be within 1,000 lines.

Variables used only in one
function shall be declared within
the function.

Functions called from only the functions defined in the
same file shall be declared by either one of the
following methods so that they will not be called from
other files:
(1) By declaring these functions as static functions;
(2) By declaring these variables in unnamed

namespace.

Localize access ranges and
related data.

Write in a style that takes
account of resource and time
efficiencies.

Rules:

Coding conventions for each project

P
ractices in outline

Language-dependent
Language-independent
(with the exception of some that are partially dependent)

P
ractices

in details

Figure1.	Relationship	Between	Quality	Concepts,	Practices,	and	Rules

14 Part1 How to Read the Coding Practices Guide

ESCR C++

3.	How	to	Use	this	Guide

3.1	Scenarios	for	Using	this	Guide

	 Usage	Scenarios		

This guide intends to support the creation of coding conventions, and assumes that it will be used in
the following three scenarios:

1) Creating a new coding convention;
2) Enhancing existing coding conventions;
3) Serving as a learning material for programmers’ training and self-study.

Creating	a	New	Coding	Convention
Organizations or departments that have not been able to organize any coding conventions to be fol-
lowed internally can use this guide for reference to establish their own coding convention that suits
their respective needs.

Enhancing	Existing	Coding	Conventions
Even in organizations and departments that have already established their coding conventions, it is
effective to maintain them regularly. Using this guide as a reference will help them review the con-
tents of their existing coding conventions more efficiently.

Serving	as	a	Learning	Material	for	Programmers’	Training	and	Self-Study
There are many books published on C++ language. Unlike those existing ones, this guide focuses on
implementation quality, and provides an organized set of information on how to create source code
that can maintain and improve its quality. In this sense, this guide can also be an excellent material
for the users to learn about source code quality from a more practical point of view.

15

ESCR C++

3●How to Use this Guide

3.2	Creating	a	New	Coding	Convention
This section presents the procedure for creating a new coding convention by using this guide. It is
intended for projects that do not have any coding conventions of their own.

	 When	to	Create

Create the coding convention before proceeding to the program design stage. While a coding con-
vention is a group of rules that are referred to during coding, some rules, such as, the naming
convention applied to function names are associated with program design, and therefore need to be
decided before starting the program design.

	 How	to	Create

Projects creating a new coding convention of their own are recommended to follow the procedure
described below, step by step:

Step-1 Decide on the policy for creating a coding convention.
Step-2 Choose the rules based on the creation policy that has been decided.
Step-3	 Define	the	project-dependent	parts	of	the	rules.
Step-4 Determine the procedure for setting exceptions to the rules if necessary.

After following these steps in order, add any other rules as needed.

Step-1	Decide	on	the	policy	for	creating	a	coding	convention
In creating a coding convention, the first thing to do is to decide on its policy. A creation policy
defines how the code should be written for the project, based on, such as, the characteristics of the
software developed in the project and the members of the project. For example, should the priority
be placed on safety and write code that avoids using features that are not safe, even if they are con-
venient to use? Or, should the code be written in a way that makes careful use of such unsafe but
convenient features? These are some of the questions that need to be addressed in the creation poli-
cy. When deciding on the creation policy, each project should consider which quality characteristics
are particularly important for its software development, and examine what kind of coding practices
it should adopt from the following perspectives:

- Coding that takes account of fail-safe;
- Coding that improves the program readability;
- Coding that makes debugging easy, etc.

16 Part1 How to Read the Coding Practices Guide

ESCR C++

Step-2	Choose	the	rules	based	on	the	creation	policy	that	has	been	decided
The next step is to choose the suitable rules from the Practices Chart in Part 2, based on the creation
policy decided in Step-1. If the project decides on the policy that prioritizes on portability, for ex-
ample, efforts should be made to include many rules that address the portability issues in its coding
convention.

In “Part 2 - Coding Practices for Embedded Software” of this guide, some rules are marked with
either “○” or “●” as a guide to facilitate the selection process. (For more information, see the de-
scription under “Preference guide” in Part 2.) A rule marked with “○” indicates that it is regarded so
important for the particular quality characteristic it addresses, that if this rule is not adopted as a part
of the coding convention, that quality aspect may be seriously impaired. Whereas, “●” indicates that
it is a rule that is already so well-known among those who are very knowledgeable about C++ lan-
guage specifications that it may not necessarily be included in the coding convention. The simplest
way of creating a coding convention would therefore be to choose only the rules indicated with “○”,
which would result in a set of widely applied rules.

Step-3	Define	the	project-dependent	parts	of	the	rules
In this guide, the rules are treated as one of the following three types:

1) Rules that can be used as a part of the coding convention without making any changes (In the
“Rule	specification”	field,	these	rules	are	not	marked.)

2)	Rules	that	need	to	be	chosen	from	several	alternatives,	according	to	the	project	characteristics	
(In	the	“Rule	specification”	field,	these	rules	are	marked	as	“Choose”.)

3)	Rules	that	need	to	be	prescribed	more	specifically	 in	a	document	(In	the	“Rule	specification”	
field,	these	rules	are	marked	either	as	“Define”	or	“Document”.)

The rules treated either as type 2) or type 3) cannot be included in the coding convention as they are.
For rules treated as type 2) to be adopted as a part of the newly created coding convention, they must
be first chosen from the multiple alternatives presented in this guide. To adopt the rules treated as
type 3) as a part of the coding convention, they must be more fine-tuned so that they can address the
specific needs of each project. In doing so, the supplementary explanation provided to each practice
described in this guide should serve as a useful reference on rule definition.

Step-4	Determine	the	procedure	for	setting	exceptions	to	the	rules
The quality characteristics that should be focused at the time of coding may differ, depending on the
feature the project is intending to realize through implementation. (For example, “In this project, ef-
ficiency should be prioritized over maintainability…”). There may be cases when writing code that
is fully compliant with a certain rule included in the coding convention causes difficulty in achieving
the project-specific objective. To deal with such cases, it is necessary to have a procedure to allow

17

ESCR C++

3●How to Use this Guide

partial exceptions to this rule.

The important points to be covered in this procedure are as follows:

- Describe what problems may occur by writing code that is compliant with the rule;
- Have experts review the problems and possible solutions;
- Record the review result.

Be sure not to allow exceptions too easily. The substance of the rule will be lost when there are too
many exceptions.

The following is an example of the procedure for allowing exceptions.

[Example	procedure]

(1) Prepare a form describing the reason for the exception.
 (This form should, for example, contain the following items.)

- Rule number;
-	 Location	of	the	code	at	issue	(file	name,	line	number);
- Problem(s) caused by complying with the rule;
- Impact of deviation from the rule.

(2)	 Have	experts	 review	 the	problems	and	possible	solutions.	→	Enter	 the	 review	result	 in	 the	
form.

(3)	 Gain	approval	from	the	head	person	(manager,	project	leader,	etc)	responsible	of	the	coding	
process.	→	Record	the	approval	in	the	form.

3.3	Enhancing	Existing	Coding	Conventions
For projects where coding conventions already exist, this guide can be a useful reference to review
and enhance the contents of their coding conventions.

	 Preventing	Oversights	and	Omissions

By sorting the rules in existing coding conventions based on the concept of practices described in
this guide, the project members will be able to identify and supplement the elements that have been
overlooked or omitted, and see in a fresh light which tasks they have been placing importance on in
their project.

18 Part1 How to Read the Coding Practices Guide

ESCR C++

	 Clarifying	the	Necessity	of	Rules

For those who have been feeling compelled to follow some rules without knowing why, this guide
will serve as a useful tool to understand clearly why they are necessary by referring to the practices
and compliant examples showing how they should be used.

3.4	Serving	as	a	Learning	Material	for	Programmers’	
Training	and	Self-Study

This guide is a good learning material for programmers who have studied C++ language but are still
not used to or have little experience in practical coding.

	 Target	Users

This guide is targeted at the following group of programmers:

- Programmers who have studied and acquired the basic skills in C++ language
- Programmers who have experience in other programming languages but are beginners in C++

language

	 What	the	Users	Can	Learn

By reading this guide, which is organized from the standpoint of quality characteristics like reliabil-
ity, maintainability and portability, the users can learn:

- How to write code that can improve reliability;
- How to write code that can prevent bugs from being produced;
- How to write code that can facilitate debugging and testing;
- How to write code that is easy to read and why good readability is necessary

Part 2
Coding	Practices

for	Embedded	Software:
Practices	Chart

	 ■	How	to	Read	the	Practices	Chart

	 ■	Difference	from	C	Language	Edition

	 ■	Terminology	Used	in	the	Practices	Chart

	 ■	Coding	Practices	for	Embedded	Software

	●	Reliability
	●	Maintainability
	●	Portability
	●	Efficiency

20 Part 2　Coding Practices for Embedded Software: Practices Chart

ESCR C++

	 How	to	Read	the	Practices	Chart

	 Organizational	Structure	of	the	Practices

Coding practices shown in Part 2 are classified according to four software quality characteristics
(reliability, maintainability, portability, efficiency).

Practices	in	Outline
Practices closely related to each characteristic are largely divided into “practices in outline”. For
example, the practices closely related to maintainability are largely divided into five practices in out-
line from "Maintainability M1: Keep in mind that others will read the program" to "Maintainability
M5: Write in a style that makes testing easy".

Practices	in	Detail
Each practice in outline is broken down into more specific subsets called “practices in detail”. For
example, the practice in outline "Maintainability M3: Write programs simply" has five practices in
detail, which are:

Maintainability M3.1	 Do	structured	programming.
Maintainability M3.2	 Limit	the	number	of	side	effects	per	statement	to	one.
Maintainability M3.3	 Write	expressions	that	differ	in	purpose	separately.
Maintainability M3.4	 Do	not	use	complicated	pointer	operation.
Maintainability M3.5	 Do	not	use	complicated	class	structure.

	 Layout	of	the	Practices	Chart

For each practice, reference information on rules to be noted during actual coding is provided in
a chart form. The following diagram shows the layout of a sample chart, which is followed by the
description of each field composing the chart:

21How to Read the Practices Chart

ESCR C++

2928 Reliability R1● Initialize areas and use them by taking their sizes into consideration.Part 2　Coding Practices for Embedded Software: Practices Chart

	
	

R1

	
	

R1

ESCR C++ ESCR C++

R
eliability

R
eliability

Initialize areas and use them by
taking their sizes into consideration.

Reliability

R1
Various variables are used in programs written in C++ language. Without considering the
areas to be reserved in the computer and ensuring that these areas are already initialized
by the time these variables are used, unexpected malfunctions may occur.

Moreover, the pointers in C++ language need to be used carefully by being conscious of
the areas they point to. Since the misuse of pointers may cause serious problems to the
entire system, particular caution is necessary when using them.

Reliability R1.1 	 Use areas after initializing them.

Reliability R1.2 	 Describe initializations without excess or deficiency.

Reliability R1.3 	 Pay attention to the range of the area pointed by a pointer.

Reliability R1.4 	 Use the object after constructing it completely.

Reliability R1.5 	 Pay attention to object creation and destruction.

R1.1 Use areas after initializing them.

Automatic variables shall be initialized at the time of
declaration, or the initial values shall be assigned just
before using them.

R1.1.1 Preference
guide ●

Rule
specification

Compliant example

void func(){
 int var1 = 0; // Initialize at the time of

// declaration
 int i; // Do not initialize at the

// time of declaration
 ...
 var1++；
 // Assign the initial value just before
 // using it
 for (i = 0; i < 10; i++) {
 ...
 }
}

Non-compliant example

void func(){
 int var1;
 ...
 var1++；
 ...
}

If automatic variables are not initialized, their values become undefined and the operation results may
differ depending on behavior and environment. The initialization must be at the time of declaration or
the initial values must be assigned just before using them.

R1.2 Describe initializations without excess or deficiency.

Initialization of enumeration type (enum type) members
shall be by either: not specifying any constants; specifying
all the constants; or specifying only the first member.

R1.2.2 Preference
guide

Rule
specification

Compliant example

// A different value is assigned
// respectively from E1 to E4.
enum etag {E1 = 9, E2, E3, E4};
enum etag var1;
var1 = E3;
// E3 and E4 in var1 will never be equal.
if (var1 == E4)

Non-compliant example

// Both E3 and E4 become 11 unintentionally.
enum etag {E1, E2 = 10, E3, E4 = 11};
enum etag var1;
var1 = E3;
// It will be true despite the intention,
// because E3 and E4 are equal
if (var1 == E4)

*R1.1.2 and R1.2.1 are deleted in C++ Languageedition and are vacant. (see the table in Appendix)

①	Quality	concept
Quality concepts are related to the main quality characteristics defined in “ISO/IEC9126-1.” This
guide uses the following four quality concepts:

  Reliability   Maintainability   Portability   Efficiency

②	Practice
Describes the practice to be followed by programmers during coding

-	 In	outline	 ―		Defines	the	general	concept	of	the	practice.	It	 is	not	dependent	on	program-
ming languages.

-	 In	detail	 ―		Elaborates	the	general	concept	of	the	practice	with	more	specific	points	that	
should be noted. Like practice in outline, it is basically programming lan-
guage-independent,	but	some	are	stated	as	C++	language-specific.

③	Rule	number
Identification number of each rule

①Quality concept
②Practice in outline

⑤Preference guide

⑦Compliant example
⑧ Non-compliant

example

⑨Remarks

⑥Rule specification

②Practice in detail
③Rule number ④Rule

22 Part 2　Coding Practices for Embedded Software: Practices Chart

ESCR C++

④	Rule
Specific reference rule or rules for C++ language corresponding to the practice that must be followed

⑤		Preference	guide
Provides supportive information (marks) to indicate whether the corresponding rule described under
each practice should be chosen as a part of the newly created coding convention or not.

No	mark Rules	considered	to	be	appropriate	to	choose,	based	on	the	project	characteristics.

● Rules considered unnecessary to be included in the coding convention, when seen
from	the	eyes	of	those	who	are	very	knowledgeable	about	the	language	specification	
(i.e.: rules that are already too common and obvious to experienced programmers).

○ Rules	considered	to	significantly	impair	the	quality	characteristics	if	they	are	not	
followed.

⑥		Rule	specification
Provides supportive information (verbal indicators) to indicate which rule need to be defined more
specifically in detail or not, depending on the project policy, or should be prescribed in a document,
such as, when it is recommended to “record the behavior and usage of compiler-dependent language
specification as a document” (the latter is referred to as the “documentation rule” which can be used
as it is, but is strongly recommended to be documented in more detail for various reasons).

No	mark Rules	that	do	not	need	to	be	defined	further	in	depth	or	prescribed	in	a	document	
with	more	specific	details

Choose Rules required to be chosen from a list of multiple alternatives. Each alternative is
numbered, using a parenthesized numeral (e.g.: (1), (2), ...).

Define Specific	 rules	 that	need	 to	be	defined	 for	each	project.	The	part	 to	be	defined	 is	
enclosed by 《 》.

Document Rules that need to be prescribed in a document. The part to be documented is en-
closed by 《 》.

⑦	Compliant	example
Example of source code written in compliance with the rule

⑧	Non-compliant	example
Example of source code violating the rule

23Difference from C Language Edition

ESCR C++

⑨	Remarks
Provides notes pertaining to C++ language specifications, and explanation on why the particular rule
is necessary and what kind of problem(s) may be caused by violation of that rule, among others.

	 Difference	from	C	Language	Edition

ESCR [C language edition] is used as the base document for creating this guide for C++ language.
While the use of C++ language is beneficial for enhancing the reliability and maintainability of the
written code and improving the productivity of programming through the extensive application of
newly featured techniques like object-oriented programming and data abstraction, it is also consid-
ered desirable to mitigate the risks involved in the adoption of such new features by limiting the use
of exceptions, templates and other newly introduced techniques that are difficult to apply success-
fully. To respond to these technical issues, many practices and rules that are mainly concerned with
how classes, exceptions and templates written in C++ affect the program behavior have been added
to this guide.

It is highly conceivable that, depending on the programming needs in a given project, there are often
cases that require the flexible use of both C and C++ languages as the situation demands. This guide
takes account of those who are already using ESCR [C language edition], and lists the practices and
corresponding rules that are common to both C and C++ languages as much as possible in the same
way presented in C language edition, including the use of same identification numbers. However,
with respect to compliant and non-compliant examples, some have been changed to those that C++
programmers would feel more familiar. Furthermore, some rules that are based specifically on C++
language specifications that differ from C language specifications have been newly added, while
there are also some rules that are numbered the same as in the C language edition, but have been
revised to reflect the difference between C and C++ language specifications.

On the other hand, there are practice and rules that were provided in C language edition but have
been omitted from this guide, which are as follows:

Practice: R2.2
Rules: R1.1.2, R1.2.1, R2.2.1, R2.8.1, R3.1.3, R3.1.4, M1.3.3, M4.4.4, M4.4.5

24 Part 2　Coding Practices for Embedded Software: Practices Chart

ESCR C++

	 Terminology	Used	in	the	Practices	Chart

The meaning of the terms used in the chart is as respectively explained in the table below:

Term Meaning
Access Reference	to	variables	or	the	reference	with	modification.	

Type	specifier Specifies	a	data	type.	There	are	two	type	specifiers,	one	that	specifies	basic	
types such as char, int and float	and	the	other	that	specifies	types	uniquely	
defined	with	typedefs by the programmer for their own.

Type	qualifier	 Adds	specific	attributes	to	types.	There	are	two	type	qualifiers:	const and
volatile.

Class	type Type	defined	by	class, struct or union.

Storage	class	
specifier

Specifies	the	location	where	data	is	stored	or	the	range	where	data	is	applied.
	There	are	five	specifiers:	register, static, extern, mutable, and
thread_local.

Boundary	align-
ment	

For example, if int type is 4 bytes, be sure to allocate such data from an ad-
dress of the memory that is a multiple of four and never from an address that is
not a quadruple.

Trigraph	sequence Defined	sequences	of	three	characters	such	as	‘??=’,	‘??/’, ‘??(’ for the compil-
er to replace with single character.
‘??=’,	‘??/’, ‘??(’	are	interpreted	into	‘#’,	‘\’	,	‘[’ respectively.

Lifetime Duration that the access to a variable from the program is guaranteed after it is
generated.

Multibyte	char-
acter

A character expressed by data of two or more bytes. Chinese characters, Japa-
nese characters, and Unicode characters are included.

Null	pointer A pointer that is not equivalent to any pointers that point to data or functions.

Null	character A	character	that	expresses	the	end	of	a	string.	Expressed	with	‘\0’.

Scope The	range	in	the	program	within	which	the	identifier	(such	as,	variable	name)	
can be used.
File	scope	shall	be	the	scope	within	the	given	source	file.

Side	effect Processing that causes changes to the state of execution environment. Side
effect occurs when processing: reference and change to volatile data, change
to	data,	change	to	files,	and	function-calls	that	perform	these	operations.	

Block A	range	that	is	enclosed	with	braces	‘{’,	‘}’	in	data	declarations	and	programs,	
etc.

Enumeration	type Type declared by enum or enum class (enum struct). Constructed with several
enumerated members.

Enumerator Members of an enumerated type.

Polymorphic Programming	capability	to	operate	data	(objects)	of	various	types	using	a	
common interface.

25Coding Practices for Embedded Software

ESCR C++

	 Coding	Practices	for	Embedded	Software	

This part presents the coding practices for embedded software. As explained earlier, the practices
are categorized according to the perspective of four characteristics (quality concepts): “reliability”,
“maintainability”, “portability” and “efficiency”, which have been adopted from the software qual-
ity characteristics defined in ISO/IEC9126-1. Please note, however, that these practices have been
categorized in this way basically for the sake of convenience of the users of this guide, and that there
are actually some useful practices and corresponding rules that can be applied to improve more than
one characteristic (e.g.: both reliability and maintainability).

Moreover, the coding practices respectively related to these quality characteristics and the reference
rules that support the correct ways of executing these practices are also described in this part of the
guide.

Reliability R

Practices to improve the reliability of software that has been developed fall
under this category.
Main points taken into consideration include:
- Minimizing problems arising while using the software;
- Increasing tolerability against bugs and interface violation.

Maintainability M

Practices to create source code that is easy to modify and maintain fall under
this category. Main points taken into consideration include:
- Making the code easy to understand and modify;
-	Minimizing	the	impact	of	modifications	on	the	entire	code;	
-	Making	the	modified	code	easy	to	check.

Portability P
Practices to port the software program that has been created on the assumption
of being used to operate under a certain environment to another environment as
efficiently	as	possible	without	error	fall	under	this	category.	

Efficiency E

Practices to effectively utilize the performance and resources of the software
that has been developed fall under this category. Main points taken into consid-
eration include:
- Coding that is processing time-conscious;
- Coding that takes account of memory size.

Reliability
A	large	number	of	embedded	software	 is	 incorporated	 into	

products	and	used	to	support	our	daily	lives	in	various	situations.	

Consequently,	the	level	of	reliability	demanded	to	quite	a	number	

of	embedded	software	 is	extremely	high.	Software	reliability	

requires	 the	software	 to	be	capable	of	not	behaving	wrongly	

(not	causing	failure),	not	affecting	the	functionality	of	the	entire	

software	and	system	 in	case	of	malfunction,	 and	promptly	

restoring	its	normal	behavior	after	a	malfunction	occurs.

At	 the	source	code	 level,	 the	point	 to	be	noted	 in	regard	 to	

software	reliability	is	 the	need	of	contriving	methods	to	avoid	

coding	that	may	cause	such	malfunctions	as	much	as	possible.

●	Reliability	R1:		Initialize	areas	and	use	them	by	
taking	their	sizes	into	
consideration.

●	Reliability	R2:		Use	data	by	taking	their	ranges,	
sizes	and	internal	representations	
into	consideration.

●	Reliability	R3:		Write	in	a	way	that	ensures	
intended	behavior.

28 Part 2　Coding Practices for Embedded Software: Practices Chart

	
	

R1

ESCR C++

R
eliability

Initialize areas and use them by
taking their sizes into consideration.

Reliability

R1
Various variables are used in programs written in C++ language. Without considering the
areas to be reserved in the computer and ensuring that these areas are already initialized
by the time these variables are used, unexpected malfunctions may occur.

Moreover, the pointers in C++ language need to be used carefully by being conscious of
the areas they point to. Since the misuse of pointers may cause serious problems to the
entire system, particular caution is necessary when using them.

Reliability R1.1 	 Use areas after initializing them.

Reliability R1.2 	 Describe initializations without excess or deficiency.

Reliability R1.3 	 Pay attention to the range of the area pointed by a pointer.

Reliability R1.4 	 Use the object after constructing it completely.

Reliability R1.5 	 Pay attention to object creation and destruction.

29Reliability R1● Initialize areas and use them by taking their sizes into consideration.

	
	

R1

ESCR C++
R

eliability

R1.1 Use areas after initializing them.

Automatic variables shall be initialized at the time of
declaration, or the initial values shall be assigned just
before using them.

R1.1.1 Preference
guide ●

Rule
specification

Compliant example

void func(){
 int var1 = 0; // Initialize at the time of

// declaration
 int i; // Do not initialize at the

// time of declaration
 ...
 var1++；
 // Assign the initial value just before
 // using it
 for (i = 0; i < 10; i++) {
 ...
 }
}

Non-compliant example

void func(){
 int var1;
 ...
 var1++；
 ...
}

If automatic variables are not initialized, their values become undefined and the operation results may
differ depending on behavior and environment. The initialization must be at the time of declaration or
the initial values must be assigned just before using them.

R1.2 Describe initializations without excess or deficiency.

Initialization of enumeration type (enum type) members
shall be by either: not specifying any constants; specifying
all the constants; or specifying only the first member.

R1.2.2 Preference
guide

Rule
specification

Compliant example

// A different value is assigned
// respectively from E1 to E4.
enum etag {E1 = 9, E2, E3, E4};
enum etag var1;
var1 = E3;
// E3 and E4 in var1 will never be equal.
if (var1 == E4)

Non-compliant example

// Both E3 and E4 become 11 unintentionally.
enum etag {E1, E2 = 10, E3, E4 = 11};
enum etag var1;
var1 = E3;
// It will be true despite the intention,
// because E3 and E4 are equal
if (var1 == E4)

*R1.1.2 and R1.2.1 are deleted in C++ Language edition and are vacant. (see the table in Appendix)

30 Part 2　Coding Practices for Embedded Software: Practices Chart

	
	

R1

ESCR C++

R
eliability

If an initial value is not specified to a member of the enumeration type, the value of the immediately
preceding member plus 1 (the value of the first member is 0) will be specified to this member. If some
initial values are specified while others are not, the same value may unintentionally be assigned to
different members and may become the cause of unexpected behavior. To prevent the same value from
being assigned to different members, initialization of the members must be by either not specifying any
constants, specifying all the constants, or specifying only the first member, depending on the usage.

R1.3 Pay attention to the range of the area pointed by a pointer.

(1) Integer addition to or subtraction from (including ++ and --)
pointers shall not be made; Array format with [] shall be used for
references and assignments to the allocated area.

(2) Integer addition to or subtraction from (including ++ and --)
pointers shall be made only when the pointer points to the array
and the result must be pointing within the range of the array.

R1.3.1 Preference
guide ●

Rule
specification choose

Compliant example

#define N 10
int data[N];
int *p;
int i;
p = data;
i = 1;

Compliant example of (1) and (2)
data[i] = 10; // Compliant
data[i + 3] = 20; // Compliant

Compliant example of (2)
*(p + 1) = 10;

Non-compliant example

#define N 10
int data[N];
int *p;
p = data;

Non-compliant example of (1)
*(p + 1) = 10; // Non-compliant
p += 2; // Non-compliant

Non-compliant example of (2)
*(p + 20) = 10; // Non-compliant

31Reliability R1● Initialize areas and use them by taking their sizes into consideration.

	
	

R1

ESCR C++
R

eliability

Performing operations on pointers can blur the destinations pointed by the pointers. It raises the possi-
bility of implanting bugs that is likely to refer or write to unsecured areas. Rather, using an array name
that points to the beginning of the area and to access elements of the array with indices will make the
program safer. A dynamic memory area obtained by malloc should be treated as an array, and a pointer
to the starting address of the area should be handled as the array name.
For multi-dimensional array, this rule applies to each partial array.
Regarding rule (2), it is permissible to point to the area directly after the last element of the array as
long as the array element is not accessed. In other words, in the case where int data[N] and p=data, p+N
complies with the rule as long as it is not used for accessing the array elements, whereas, using, such as,
*(p+N) that accesses an array element is non-compliant.

Subtraction between pointers shall be used only when
both pointers are pointing at elements in the same array.

R1.3.2 Preference
guide ●

Rule
specification

Compliant example

int off, var1[10];
int *p1, *p2;
p1 = &var1[5];
p2 = &var1[2];
off = p1 - p2; // Compliant

Non-compliant example

int off, var1[10], var2[10];
int *p1, *p2;
p1 = &var1[5];
p2 = &var2[2];
off = p1 - p2; // Non-compliant

By subtracting from one pointer to another pointer, the number of elements existing between the two el-
ements pointed respectively by these pointers will be expressed. If each pointer used in the subtraction is
pointing at a different array, the way the variables laid out between the two is implementation-dependent
and the execution results are not guaranteed. This implies that subtraction between pointers is meaningful
only when both pointers are pointing at elements in the same array. Therefore, before subtracting from one
pointer to another pointer, the programmer must ensure that both pointers are pointing at the same array.

[Related	rule]	R1.3.3

32 Part 2　Coding Practices for Embedded Software: Practices Chart

	
	

R1

ESCR C++

R
eliability

Comparing which pointer is greater or less than the other pointer shall
be used only when two pointers are both pointing at either the elements
in the same array, the members with the same access control defined
in the same structure or class, or the members of the same structure.

R1.3.3 Preference
guide ●

Rule
specification

Compliant example

constexpr int N = 10;
char var1[N];
char* p = var1;

 ... // operations on p
if (p < var1+N) { ... } // Compliant

Non-compliant example

constexpr int N = 10;
char var1[N];
char var2[N];
char* p = var1;

 ... // operations on p
if (p < var2+N) { ... } // Non-Compliant

Comparing the addresses of different variables does not cause a compile error, but is meaningless be-
cause the address of the variable is implementation-dependent. In addition, the behavior of such com-
parison is not defined (undefined behavior).

[Related	rules]	R1.3.2 R2.7.3

33Reliability R1● Initialize areas and use them by taking their sizes into consideration.

	
	

R1

ESCR C++
R

eliability

R1.4 Use the object after constructing it completely.

All the data members of a class shall be initialized in its constructor. The
initialization procedure shall be as follows:
1. Initialization shall be written in the declaration of members that are always

initialized with the same value. The constructor initializer shall be used to
perform the initialization of other members. However, this shall not apply in
case of initializing multiple non-class type members with the same value.

2. The constructor initializer shall have the base class and data members written in the order
they are declared.

3. The constructor initializer shall not use any other data members of the same class for
initialization. Or, if there is a need to use any of these other members, they shall be limited
to only those declared before the specific data member targeted for initialization.

R1.4.1 Preference
guide ○

Rule
specification

Compliant example

class CLS
{ public:
 CLS(int x) : cls_i(x), cls_j(cls_i) {
 // Compliant: Initialized in the order of
 // declaration, starting from cls_i.
 // No members are used for initialization
 }
private:
 int cls_i;
 int cls_j;
};
class CLS {
public:
 CLS(int x) : cls_i(x), cls_j(cls_i) {
 // Compliant: Initialized in the order of
 // declaration, starting from cls_i.
 }
private:
// Same as above: Omitted.
};

class CLS {
public:
 CLS(int x) {
 cls_i = cls_j = x;
 }
private:
// Same as above: Omitted.
};
class CLS {
public:
 CLS(int x) : cls_j(x) {
 // Compliant: Constructor initializer is
 // used to initialize cls_j, since its
 // value is determined at the time an
 // object is created.
 ...
 }

Non-compliant example

class CLS {
public:
 CLS(int x) : cls_j(x), cls_i(cls_j) {
 // Non-compliant: Initialized from cls_j
 // without following
 // the order of declaration.
 // Because initialization is performed
 // from cls_i ,
 // cls_j is uninitialized at the time of
 // initialization of cls_i.
 }
private:
 int cls_i;
 int cls_j;
};

34 Part 2　Coding Practices for Embedded Software: Practices Chart

	
	

R1

ESCR C++

R
eliability

private:
 int cls_i = 0;
 // Compliant: Initialization is written
 // in member declaration, since cls_i
 // is always initialized with zero (0).
 int cls_j;
} ;

Explicit initialization of every member in the constructor (excluding static data members) can prevent
all the members that need to be initialized from being left uninitialized.
For initialization, write the initialization in the declaration of the member or use the constructor initial-
izer. (See also E1.1.6.) Writing the initialization in the declaration of the member is a method introduced
in C++11 as a new feature. This method of initialization is easy to understand. In addition, this method
has little risk of initialization errors when initializing the members of the same class type always with
the same value. But if there is a need to initialize multiple members of a different class with the same
value, initialize them through assignment in the constructor body. Doing so will improve the readability
and mitigate the risk of initialization errors.
Moreover, write the members in the constructor initializer in the order they are declared. The construc-
tor initializer initializes the members in the order they are declared in the class, and not in the order they
are written. By writing the members in the initializer in the order they are declared, description to use an
uninitialized variable, as shown in the non-compliant example above, can be prevented.
In C++11, the feature to describe the initialization in the data member declaration (with member ini-
tializer in the class) has been added. The use of this feature is recommended when the data member is
always initialized with the same value. It is easy to understand and therefore will not be mistaken easily.

[Related	rules]	R1.4.3 R1.4.4 R1.4.5 M2.3.1 E1.1.6

35Reliability R1● Initialize areas and use them by taking their sizes into consideration.

	
	

R1

ESCR C++
R

eliability

Non-static data members shall be all copied whenever a
copy constructor or copy assignment operator is used.

R1.4.2 Preference
guide ○

Rule
specification

Compliant example

class Base {
public:
 Base() : base_i(0) { }
 Base(int x) : base_i(x) { }
 Base(const Base &r) : base_i(r.base_i) { }
 // Compliant: All the data members are
// initialized.

private:
 int base_i;
};

class Derived : public Base {
public:
 Derived(int x, int y) :
 Base(x), derive_j(y) { }
 Derived(const Derive &r) :
 Base(r), // Compliant: The copy

//constructor of the base
// class is called.

 derive_j(r.derive_j){ } // Compliant: Data
//members of the
//derived class are
//initialized.

private:
 int derive_j;
};

Non-compliant example

class Base {
public:
 Base() : base_i(0) { }
 Base(int x) : base_i(x) { }
 Base(const Base &r) : base_i(0){ }
 // Non-compliant: A value unrelated to

// r is assigned.
private:
 int base_i;
};

class Derived : public Base {
public:
 Derived(int x, int y) :
 Base(x), derive_j(y) { }
 Derived(const Derive &r) :
 // Non-compliant: Forgot to copy the

// base class.
 // Base part is initialized.
 derive_j(r.derive_j){ }
private:
 int derive_j;
};

When the copy constructor or copy assignment operator is automatically generated by the compiler, all
the data members (excluding the static data members) are copied. All these data members must also be
copied if user-defined copy constructor or copy assignment operator is going to be used. When there
are any data members that are not copied, the value of each data member that is not copied will become
undefined and may become the cause of unintended behavior.
In case of derived class, all the data members in the base class must also be copied. Therefore, when a
copy constructor is used, be sure to include and call the copy constructor of the base class. Likewise,
when a copy assignment operator is used, be sure to include and call the copy assignment operator of
the base class.

36 Part 2　Coding Practices for Embedded Software: Practices Chart

	
	

R1

ESCR C++

R
eliability

Useful information Functions generated automatically by the compiler

The compiler will generate the following functions automatically when they are not declared
in the class:

- Default constructor (only when there is no constructor declaration);
- Copy constructor;
- Copy assignment operator;
- Destructor.

In C++11, the following functions are also generated automatically:
- Move constructor
- Move assignment operator

Example:
class C {
public:
 int m;
};

The above means the same as the description below:

class C {
public:
 int m;
 C() = default; // Default constructor
 ~C() { } = default; // Destructor
 C(const C &) = default; // Copy constructor
 C &operator = (const C &) = default; // Copy assignment operator
 C(C&&) = default; // Move constructor
 C& operator = (C&&) = default; // Move assignment operator
};

【Reference materials for those wanting to know more in detail about this rule】
• The C++ Programming Language [Fourth Edition] 17.6
• Effective Modern C++ Item 11 Item 17 Item 22

37Reliability R1● Initialize areas and use them by taking their sizes into consideration.

	
	

R1

ESCR C++
R

eliability

Member function for only reading data members shall be called
after the constructor initializes the object completely and before the
destructor starts destroying the object.

R1.4.3 Preference
guide ●

Rule
specification

Compliant example

(1)
class CLS {
public:
 CLS() {
 init(); // Compliant: Performs only

// write access.
 }
private:
 time_t cls_time;
 void init() { // Initialization of the

// class is processed
 cls_time = time(0);
 }
};

(2)
class CLS {
public:
 CLS() {
 init();
 show(); // Compliant: Display after

// completing the
 // initialization of the class
 }
 void show() { // Display is processed.
 cout << "Current date and time:"
 << ctime(&cls_time) << endl;
 }
private:
 time_t cls_time;
 void init() { // Initialization of the

// class is processed.
 cls_time = time(0);
 }
};

Non-compliant example

class CLS {
public:
 CLS() {
 show(); // Non-compliant: Display before

// completing
 // the initialization of the

// class.
 init();
 }
 void show() { // Display is processed.
 cout << "Current date and time:"
 << ctime(&cls_time) << endl;
 }
private:
 time_t cls_time;
 void init() { // Initialization of the

// class is processed.
 cls_time = time(0);
 }
};

When the member function for reading and referencing data members is called from the constructor or
destructor, uninitialized or destroyed data member may be referenced.

[Related	rules]	R1.4.1 R1.4.5 R1.4.6

38 Part 2　Coding Practices for Embedded Software: Practices Chart

	
	

R1

ESCR C++

R
eliability

Virtual function shall not be called from the constructor
and destructor.

R1.4.4 Preference
guide ●

Rule
specification

Compliant example

class Base {
public:
 Base(int x = 1) : base_i(x) { }
 // Compliant: Virtual

// function is
// not called

 int getI() {return base_i;}
private:
 int base_i;
};

class Derived : public Base {
public:
 Derived(int x) : Base(10), derive_j(x) { }
 // Base class is initialized with 10.
private:
 int derive_j;
};

Non-compliant example

class Base {
public:
 Base() {
 base_i = getInitValue();
 // Non-compliant: Virtual
 //function (1) is called
 }
 virtual int getInitValue() {
 // (1) Constructor of the base class
 // always executes this function
 return 1;
 };
 int getI() {return base_i;}
private:
 int base_i;
};

class Derived : public Base {
public:
 Derived(int x) : Base(), derive_j(x) { }
 virtual int getInitValue() override {
 // getInitValue is a virtual function but
// is not

 // called from the constructor of the base
// class.

 return 10;
 }
private:
 int derive_j;
};

Virtual function call from the constructor or destructor will not behave polymorphically. For example,
even when the virtual function is called from the constructor of the base class, the function overridden
in the derived class will not be called.

[Related	rules]	R1.4.1 R1.4.5 R1.4.6

39Reliability R1● Initialize areas and use them by taking their sizes into consideration.

	
	

R1

ESCR C++
R

eliability

The constructor and copy assignment operator shall
respond to unsuccessful object construction.

R1.4.5 Preference
guide ●

Rule
specification

Compliant example

class CLS {
public:
 CLS(int i) : cls_pi(0) {
 if (i == 0) {
 throw 0; // Compliant: Checks and

// throws exception
 // before memory allocation.
 }
 try {
 cls_pi = new int[i];
 ... // Constructor performs its steps for
 //construction. Some kind of

//exception may arise.
 } catch(...) {
 if (!cls_pi) {
 delete cls_pi;
 // Compliant: Throws exception
 // after freeing the memory.
 }
 throw;
 }
 }
 …
private:
 int *cls_pi;
};

Non-compliant example

class CLS {
public:
 CLS(int i) : cls_pi(new int[i]) {
 … // Constructor performs its steps for

// construction.
 // When exception arises, cls_pi is

// not destroyed.
 if (i == 0) {
 throw 0; // Non-compliant: cls_pi that

// has been created is not
// destroyed.

 }
 }
 …
private:
 int *cls_pi;
};

When an exception is thrown by the constructor or copy assignment operator, the object will be in an
incomplete state with data members that are not all fully initialized yet. In addition, the destructor will
not be called.
As a result, if there are some data members that have been initialized successfully and already have
memory allocated, memory leak will occur, because the memory that is supposed to be freed by the
destructor is not freed.
To prevent such problem from occurring, make the constructor or copy assignment operator catch the
exception and free the memory that has been allocated.

[Related	rules]	R1.4.1 R1.4.3 R1.4.4

	
R
eliability	

R1

40 Part 2　Coding Practices for Embedded Software: Practices Chart

	
	

R1

ESCR C++

R
eliability

Catch handler described in the constructor or destructor
shall not reference data members of that class.

R1.4.6 Preference
guide ●

Rule
specification

Compliant example

class CLS {
public:
 CLS(int i) : cls_pi(0) {
 try {
 … // Constructor performs its steps

// for construction.
 if (flag == 0) {throw;}
 cls_pi = new int[i];
 for (int j = 0; j < i; j++) {
 cls_pi[j] = j; // Value is set.
 }
 } catch(...) {
 // Compliant: Non-static data members

// are not referenced in the catch
// block of the destructor.

 }
 }
 ~CLS() {
 try {
 delete[] cls_pi;
 cls_pi = 0;
 } catch(...) {
 // Compliant: Non-static data members

// are not referenced in the catch
// block of the destructor.

 }
 }
private:
 int *cls_pi;
 bool flag;
};

Non-compliant example

class CLS {
public:
 CLS(int i) : cls_pi(0) {
 try {
 … // Constructor performs its steps

// for construction.
 if (flag == 0) {throw;}
 cls_pi = new int[i];
 for (int j = 0; j < i; j++) {
 cls_pi[j] = j; // Value is set.
 }
 } catch(...) {
 if (cls_pi[0] == 0) {
 // Non-compliant: Possible
 // that the value of
 // cls_pi is not set.
 return;
 }
 }
 }
 ~CLS() {
 try {
 delete[] cls_pi;
 } catch(...) {
 if (cls_pi[0] == 0) {
 // Non-compliant: cls_pi
 // is already destroyed.
 return;
 }
 }
 }
private:
 int *cls_pi;
 bool flag;
};

When data members are referenced by a catch handler described in the constructor or destructor, the
catch handler may reference uninitialized or destroyed data member.

[Related	rules]	R1.4.3 R1.4.4

41Reliability R1● Initialize areas and use them by taking their sizes into consideration.

	
	

R1

ESCR C++
R

eliability

R1.5 Pay attention to object creation and destruction.

The same form (whether with or without []) shall be
used for new and corresponding delete.

R1.5.1 Preference
guide ●

Rule
specification

Compliant example

int *p1 = new CLS[10] : // CLS is class type.
int *p2 = new CLS;
…
delete[] p1; // Compliant: Freed in same

// form as new.
delete p2; // Compliant: Freed in same

// form as new.

Non-compliant example

int *p1 = new CLS[10] : // CLS is class type.
int *p2 = new CLS;
…
delete p1; // Non-compliant: Freed in

// different form from new.
delete[] p2; // Non-compliant: Freed in

// different form from new

The behavior is undefined when memory allocated with new[] is freed with delete. For example, prob-
lems like not all the allocated memory being freed, and destructor not being called for the number of
elements in the allocated array may occur. Likewise, the behavior is undefined when memory allocated
with new is freed with delete[].
Therefore, to free the memory allocated with new[], be sure to free it with delete[]. Likewise, to free
the memory allocated with new, be sure to free it with delete.

42 Part 2　Coding Practices for Embedded Software: Practices Chart

ESCR C++

R
eliability

	
	

R2

R
eliability

Use data by taking their ranges, sizes and
internal representations into consideration.

Reliability

R2
The data used in programs vary in how they are represented internally and in the range
they can be operated, depending on their types. When using these different types of data
for operation, they must be written carefully by paying attention to various aspects, in-
cluding precision and size. Otherwise, unexpected malfunctions may occur when they are
processed in, such as, arithmetic operations. Therefore, there is a need to handle data
with care, by taking their ranges, sizes and internal representations, among others, into
consideration.

Reliability R2.1 	 Make comparisons that do not depend on internal representations.

Reliability R2.3 	 Use the same data type to perform operations or comparisons.

Reliability R2.4 	 Describe code by taking operation precision into consideration.

Reliability R2.5 	 Do not use operations that have the risk of information loss.

Reliability R2.6 	 Use types that can represent the target data.

Reliability R2.7 	 Pay attention to pointer types.

Reliability R2.8 	
Write in a way that will enable the compiler to check that there are
no conflicting declarations, usages and definitions.

*		Reliability	R2.2	defined	in	C	Language	Edition	has	been	omitted	in	C++	Language	Edition,	
based	on	the	judgment	that	it	is	not	necessary	to	be	defined	as	a	coding	practice	for	C++.	

43

ESCR C++
R

eliability

Reliability R2● Use data by taking their ranges, sizes and internal representations into consideration

	
	

R2

R
eliability

R2.1 Make comparisons that do not depend on internal representations.

Floating-point expressions shall not be used to perform
equality or inequality comparisons.

R2.1.1 Preference
guide ●

Rule
specification

Compliant example

#define LIMIT 1.0e-4
void func(double d1, double d2) {
 double diff = d1 - d2;
 if ((-LIMIT <= diff) && (diff <= LIMIT)) {
 …
Or
void func(double d1, double d2) {
 if (fabs (d1 - d2) <=
 std::numeric limits<double>::
 epsilon()) {
 …

Non-compliant example

void func(double d1, double d2) {
 if (d1 == d2) {
 …

In case of a floating-point type, values written in the source code do not exactly match with those ac-
tually implemented. Therefore, the comparison results must be judged by taking account of tolerance.

[Related	rule]	R2.1.2

Floating-point variable shall not be used as a loop
counter.

R2.1.2 Preference
guide ●

Rule
specification

Compliant example

void func() {
 int i;
 for (i = 0; i < 10; i++) {
 …

Non-compliant example

void func() {
 double d;
 for (d = 0.0; d < 1.0; d += 0.1) {
 …

If operations are repeatedly performed to a floating-point variable used as a loop counter, the intended
result may not be achieved due to accumulated calculation errors. Therefore, for loop counter, use in-
teger type variable.

[Related	rule]	R2.1.1

*R2.2 and R2.2.1 are deleted in C++ Language edition and are vacant. (see the table in Appendix)

44 Part 2　Coding Practices for Embedded Software: Practices Chart

ESCR C++

R
eliability

	
	

R2

R
eliability

memcmp shall not be used to compare class-type objects.
R2.1.3 Preference

guide ●

Rule
specification

Compliant example

struct TAG {
 char c;
 long l;
};
TAG var1, var2;
void func() {
 if ((var1.c == var2.c) &&
 (var1.l == var2.l)) { // Compliant
 …
}
c1ass CLS {
private;
 char c;
 long l;
public:
 …
 friend boo1 operator ==
 (const CLS &1hs， const CLS &rhs) const;
 friend boo1 operator !=
 (const CLS &1hs， const CLS &rhs) const;
};
CLS var3, var4;
boo1 operator ==
 (const CLS &1hs， const CLS &rhs) const {
 return (1hs.c == rhs.c) && (1hs.1 == rhs.1);
}
boo1 operator !=
 (const CLS &1hs， const CLS &rhs) const {
 return !(1hs == rhs);
}
void func2() {
 if (var3 == var4) // Compliant
 …
}

Non-compliant example

struct TAG {
 char c;
 long l;
};
TAG var1, var2;
void func() {
 if (memcmp(&var1, &var2, sizeof(var1))
 == 0) { // Non-compliant
 …
}
c1ass CLS {
private;
 char c;
 long l;
public:
 …
};
CLS var3, var4;
void func2() {
 if (memcmp(&var3, &var4, sizeof(var3))
 == 0) { // Non-compliant
 …
}

Class-type objects may include unused areas. Since it is not clear what may be in any of these unused
areas, do not use memcmp for comparison of class-type objects.
When making comparisons, thoroughly compare the members corresponding with each other by using
operator overload.

[Related	rules]	R1.6.2

45

ESCR C++
R

eliability

Reliability R2● Use data by taking their ranges, sizes and internal representations into consideration

	
	

R2

R
eliability

R2.3 Use the same data type to perform operations and comparisons.

Unsigned integer constant expressions shall be
described within the range that can be represented with
the result type.

R2.3.1 Preference
guide

Rule
specification

Compliant example

#defne M OxffffUL
if ((M + 1) > M)
// If long is 32 bits, there is no problem
// even when the number of bits of int is
// not 32.

Non-compliant example

#define M 0xffffU
if ((M + 1) > M)
// The result varies depending on whether the
// int is 16 bits or 32 bits.
// If int is16 bits, the operation result
// will wrap around and the comparison result
// will be false.
// If int is 32 bits, the operation result
// will be within the range of int and the
// comparison result will be true.

Unsigned integer operations in C++ language wrap around without overflow (the result will be the
remainder of the maximum representable value). Because the overflow is not flagged, there is a risk of
not noticing when the operation result differs from the intended result. For example, when there are two
environments that differ in the number of bits of int, the same constant expression produces different
operation results, depending on whether they exceed the representable value range or not.

When using conditional operator (?: operator), the logical
expression shall be enclosed in parentheses () and both
return values shall be the same type.

R2.3.2 Preference
guide

Rule
specification

Compliant example

void func(int i1， int i2， long e1) {
 i1 = (i1 > 10) ? i2 : static_cast<int>(e1);

Non-compliant example

void func(int i1, int i2, long e1) {
 i1 = (i1 > 10) ? i2 : e1;

When writing code using different types, perform a cast to explicitly state the intended type.

[Related	rule]	R1.4.1

46 Part 2　Coding Practices for Embedded Software: Practices Chart

ESCR C++

R
eliability

	
	

R2

R
eliability

Loop counters and variables used for comparison of loop
iteration conditions shall be the same type.

R2.3.3 Preference
guide ●

Rule
specification

Compliant example

void func(int arg) {
 int i;
 for (i = 0; i < arg; i++) {

Non-compliant example

void func(int arg) {
 unsigned char i;
 for (i = 0; i < arg; i++) {

Using comparison between variables with different ranges of representable values as a loop iteration
condition may produce unintended results and end up in an infinite loop.

R2.4 Describe code by taking operation precision into consideration.

When the type of an operation and the type of the destination
to which the operation result is assigned (assignment
destination) are different, the operation shall be performed
after casting them to the type of expected operation precision.

R2.4.1 Preference
guide ●

Rule
specification

Compliant example

int i1, i2;
long l;
double d;
void func() {
 d = static_cast<doub1e>(il) /
 static_cast<doub1e>(i2); // Divide using

// floating-
// point type.

 l = static_cast<long>(il) << i2; // Shift
// using
// long.

Non-compliant example

int i1, i2;
long l;
double d;
void func() {
 d = i1 / i2; // Divide using integer type.
 l = i1 << i2; // Shift using int.

47

ESCR C++
R

eliability

Reliability R2● Use data by taking their ranges, sizes and internal representations into consideration

	
	

R2

R
eliability

The type used in operation is determined by the type of the expression (operand) used for the operation,
and the type of the assignment destination is not taken into consideration at compile time. Therefore,
do not expect the operation to output its result in the type of the assignment destination if the operating
type differs from the destination type. When there is a need to execute an operation in the type that
differs from the operand type, perform a cast to convert the type of operand to the intended type before
operation.

[Related	rule]	R2.5.1

When performing arithmetic operations or comparisons
of expressions mixed with signed and unsigned, an
explicit cast to the expected type shall be performed.

R2.4.2 Preference
guide

Rule
specification

Compliant example

long l;
unsigned int ui;
void func() {
 l = 1 / static_cast<1ong>(ui);
 Or
 l = static_cast<unsigned int>(l) / ui;
 if (l < static_cast<long>(ui)) {
 Or
 if (static_cast<unsigned int>(l)< ui) {

Non-compliant example

long l;
unsigned int ui;
void func() {
 l = l / ui;
 if (l < ui) {
 …

Some operations, such as, size comparison, multiplication and division output different results, depend-
ing on whether they are performed with signed or unsigned. If an operation is written for a mixture of
signedness, unsigned operation is not always executed because it is the compiler that determines which
type to execute the operation in (whether with signed or unsigned) by taking account of the respective
data sizes. Therefore, when performing an arithmetic operation of mixed signedness, there is a need
to check whether the intended operation is with signed or unsigned, and perform an explicit cast to
change the operating type to the desired type before operation so that the intended operation result can
be expected.
Note:		If there are data types that may have to be changed for use in intended operation, it is often better

to change them rather than performing a cast mechanically. Therefore, in such a situation, first
consider changing the data type.

48 Part 2　Coding Practices for Embedded Software: Practices Chart

ESCR C++

R
eliability

	
	

R2

R
eliability

R2.5 Do not use operations that have the risk of information loss.

When performing assignments (=operation, actual arguments
passing of function calls, function return) or operations to data
types that may cause information loss, they shall be first confirmed
that there are no problems, and a cast shall be described to explicitly
state that they are problem-free.

R2.5.1 Preference
guide ○

Rule
specification

Compliant example

Assignment example
short s; // 16 bits
long l; // 32 bits
void func() {
 s = static_cast<short>(l);
 s = static_cast<short>(s + 1);
}
Operation example
unsigned int var1, var2; // int size is 16

// bits
var1 = 0x8000;
var2 = 0x8000;
if (static_cast<long>(var1) + var2 > 0xffff){
// The result is true.

Non-compliant example

Assignment example
short s; // 16 bits
long l; // 32 bits
void func() {
 s = l;
 s = s + 1;
}
Operation example
unsigned int var1, var2; // int size is 16

// bits
var1 = 0x8000;
var2 = 0x8000;
if (var1 + var2 > 0xffff) {
// The result is false

When a value is assigned to a variable that differs in type, the value may change (i.e. information may be
lost). The assignment destination, therefore, should be the same type whenever possible. When a value
is assigned to a different type intentionally in cases, such as, where there is no risk of information loss
or no impact even if information is lost, perform a cast to explicitly state the intention.
In case of operations where the result exceeds the representable value range of the type used, the result
may become an unintended value. Therefore, for safety, verify that the operation result is within the
representable value range of the type used, or convert it to the type that could adequately accommodate
larger values before operation.
Note: If there are data types that may have to be changed for use in intended operation, it is often better

to change them rather than performing a cast mechanically. Therefore, in such a situation, first
consider changing the data type.

[Related	rule]	R2.4.1

49

ESCR C++
R

eliability

Reliability R2● Use data by taking their ranges, sizes and internal representations into consideration

	
	

R2

R
eliability

Unary operator ’-’ shall not be used in unsigned
expressions.

R2.5.2 Preference
guide ●

Rule
specification

Compliant example

int i;
void func() {
 i = -i;

Non-compliant example

unsigned int ui;
void func() {
 ui = -ui;

If a unary operator ’-’ is used in unsigned expression and the operation result falls out of representable
value range of the original unsigned type, unintended behavior may occur.
For example, writing ”if (-ui<0)” in the non-compliant example will not make this ”if” true.

When one’s complement (~) or left shift (<<) is applied to
unsigned char or unsigned short type data, an explicit
cast to the type of the operation result shall be performed.

R2.5.3 Preference
guide ○

Rule
specification

Compliant example

unsigned char uc;
void func() {
 uc = static_cast<unsigned char>(~uc) >> 1;

Non-compliant example

unsigned char uc;
void func() {
 uc = (~uc) >> 1;

The result of operation using unsigned char or unsigned short type will be signed int type. When the sign
bit turns on due to operation, the intended result may not be achieved. This is why casting to the type of
the intended operation is necessary.

[Related	rule]	R2.5.4

50 Part 2　Coding Practices for Embedded Software: Practices Chart

ESCR C++

R
eliability

	
	

R2

R
eliability

The right-hand side of a shift operator shall be zero or
more, and less than the bit width of the left-hand side.

R2.5.4 Preference
guide ●

Rule
specification

Compliant example

unsigned char a; // 8 bits
unsigned short b; // 16 bits
b = static_cast<uns igned short>(a) << 12;
 // Clearly indicated that the

// operation is 16 bits.

Non-compliant example

unsigned char a; // 8 bits.
unsigned short b; // 16 bits.
b = a << 12; // There may be an error

// in the shift count.

The behavior of a shift operator whose right-hand side (shift count) specifies a negative value or a value
equal to or larger than the bit width* at the left-hand side (value to be shifted) is not defined in C++
language standard and will vary depending on the compiler used. (* This bit width will be that of int
type if the size is smaller than int.)
The intention of specifying a value up to the bit width of int type as the shift count, in case the left-hand
side (value to be shifted) is of a type that is smaller in size than int is not comprehended easily by others,
even though its behavior is defined in the language standard.

[Related	rule]	R2.5.3

51

ESCR C++
R

eliability

Reliability R2● Use data by taking their ranges, sizes and internal representations into consideration

	
	

R2

R
eliability

R2.6 Use types that can represent the target data.

(1) The types used for bit field shall only be signed int or unsigned
int. If a bit field of 1 bit width is required, unsigned int type
shall be used, and not the signed int type.

(2) Bool type, integer type that specified the signedness (signed or
unsigned) or signedness-specified enum type shall be used for
bit field. If a bit field of 1 bit width is required, the integer type
that specified unsigned or bool type shall be specified.

(3) Integer type that specified the signedness (signed or unsigned),
bool type or enum type shall be used for bit field. If a bit field of 1
bit width is required, the integer type that specified unsigned or
bool type shall be specified.

R2.6.1 Preference
guide

Rule
specification Choose

Compliant example

Compliant example of (1)
struct S {
 signed int m1:2; //Compliant : (1)(2)(3)
 unsigned int m2:1 //Compliant : (1)(2)(3)
 unsigned int m3:4; //Compliant : (1)(2)(3)
};

Compliant example of (2)
struct S {
 unsigned char m1:2; //Compliant : (2)(3)
 enum class ec { EcA, EcB, EcC } m2:2;
 //Compliant : (2)(3)
 bool m3:1; //Compliant : (2)(3)
};

Compliant example of (3)
struct S {
 enum e { EA, EB, EC } m1:2; //OK : (3)
};

Non-compliant example

Non-compliant example of (1)
struct S {
 int m1:2; //Non-compliant: (1)(2)(3)
 //int type that does not specify

//the signedness is used.
 signed int m2:1; //Non-compliant: (1)(2)(3)
 //signed int type of 1 bit

//width is used.
 unsigned char m3:4; //Non-compliant: (1)
 //char type is used.
 enum e { EA, EB, EC } m4:2;
 //Non-compliant: (1)(2)
 //enum type that has not defined the

//handling of signedness is used.
 bool m5:1; //Non-compliant: (1)
 //bool type is used.
};

Non-compliant example of (2)
struct S {
 int m1:2; //Non-compliant: (1)(2)(3)
 //int type that does not specify

//the signedness is used.
 signed int m2:1; //Non-compliant: (1)(2)(3)
 //signed int type of 1 bit

//width is used.
 enum e { EA, EB, EC } m3:2;
 //Non-compliant: (1)(2)
 //enum type that has not defined the

//handling of signedness is used.
};
Non-compliant example of (3)
struct S {
 int m1:2; //Non-compliant: (1)(2)(3)
 //int type that does not specify

//the signedness is used.
 signed int m2:1; //Non-compliant: (1)(2)(3)
 //signed int type of 1 bit

//width is used.
};

52 Part 2　Coding Practices for Embedded Software: Practices Chart

ESCR C++

R
eliability

	
	

R2

R
eliability

(1) To be compatible with C90, use only the int type defined in C90, which is the “int type that has
specified the signedness to either signed or unsigned”. Do not use the “signedness-unspecified int
type” that may become signed or unsigned, depending on the compiler used.

(2) Use either one of the following types defined in C++ language:
- Signedness-specified integer type
- bool type
- Enumeration types added in C++11 (enum class, enum struct, or enum tag_name: type)

Do not use the “signedness-unspecified integer type” that may become signed or unsigned, de-
pending on the compiler used. Also, do not use the enumeration type that has not defined the han-
dling of signedness.

(3) Do not use the “signedness-unspecified integer type” that may become signed or unsigned, de-
pending on the compiler used.
- Signedness-specified integer type
- bool type
- Enumeration type

In C++ language, types like char and short can also be used for bit field. But note that their use is pro-
hibited in (1). This rule is assumed to be applied in projects where both C language and C++ language
are commonly used. In C90, int is the only type that can be specified as the bit field, and the signedness
of the bit field of “signedness-unspecified int type” is implementation-dependent.

In C++ language, the signedness of the bit field of “signedness-unspecified int type” is implementa-
tion-dependent. Therefore, when integer type is used for bit field, the signedness must be specified.
Moreover, while the signedness of enumeration types added in C++11 are specified (enum class, enum
struct, or enum tag_name: type), the signedness of enumeration types defined in C++03 is implemen-
tation-dependent. Therefore, in (2), the use of enumeration type defined in C++03 is prohibited.
For the integer type bit field of 1 bit width, be sure to specify unsigned, since the only values that can
be represented by signed integer type of 1 bit are ‘-1’ and ‘0’.

[Related	rule]	P1.3.3

53

ESCR C++
R

eliability

Reliability R2● Use data by taking their ranges, sizes and internal representations into consideration

	
	

R2

R
eliability

Data used as bit sequences shall be defined with
unsigned type, and not with the signed type.

R2.6.2 Preference
guide

Rule
specification

Compliant example

unsigned int flags;
void set_x_on() {
 flags |= 0x01;

Non-compliant example

signed int flags;
void set_x_on() {
 flags |= 0x01;

The result of bitwise operation (~ , << , >> , & , ^ , |) to signed type may vary, depending on the
compiler used.

54 Part 2　Coding Practices for Embedded Software: Practices Chart

ESCR C++

R
eliability

	
	

R2

R
eliability

R2.7 Pay attention to pointer types.

(1) Pointer type shall not be converted to other pointer type or to integer type,
and vice versa, with the exception of the following cases:
- Conversion from pointer to data type to void* type;
- Conversion between pointers to class type with base-derived relationship.

(2) Pointer type shall not be converted to other pointer type or to integer type
with less data width than that of the pointer type, with the exception of the
following cases:
- Mutual conversion between void* types in pointer to data type;
- Conversion between pointers to class type with base-derived relationship.

(3) Pointer to data type can be converted to pointer to other data type or to
void* type, but pointer to function type shall not be converted to pointer to
other function type or to pointer to data type. In case of converting pointer
type to integer type, such conversion shall not be performed if the data
width of the integer type is less than that of the pointer type.

R2.7.1 Preference
guide ○

Rule
specification Choose

Compliant example

int *ip;
int (*fp)(void) ;
char *cp;
int i;
void *vp;

Compliant example of (1)
ip = static_cast<int*>(vp);

Compliant example of (2)
i = reinterpret_cast<int>(ip);

Compliant example of (3)
i = reinterpret_cast<int>(fp);
cp = reinterpret_cast<char*>(ip);

Non-compliant example

int *ip;
int (*fp)(void) ;
char c;
char *cp;

Non-compliant example of (1)
ip = reinterpret_cast<int*>(cp);

Non-compliant example of (2)
c = reinterpret_cast<char>(ip);

Non-compliant example of (3)
ip = reinterpret_cast<int*>(fp);

55

ESCR C++
R

eliability

Reliability R2● Use data by taking their ranges, sizes and internal representations into consideration

	
	

R2

R
eliability

If a pointer type variable is casted or assigned to another pointer type, it is difficult to identify what
kind of data is contained in the area pointed by the pointer. With some MPUs, runtime errors occur if
the destination of a pointer that is not at word boundary is accessed as int type; thus changing pointer
types involves the risk of causing unexpected bugs. It is safer not to cast or assign pointer type vari-
ables to other pointer types. Converting pointer types to integral types is also risky, involving the same
problem stated above. Such conversions, therefore, should be reviewed with experts, whenever deemed
necessary. Moreover, attention must also be given to the value ranges of int type and pointer type. Be
sure to check the specifications of the compiler beforehand, because there may be cases where the size
of the pointer type is 64 bits even though the size of int type is 32 bits.
However, for conversion between pointers to class type with base-derived relationship, choose one of
the rules described under R2.7.4 (and also refer to the summary below).

<cstdint> defines intptr_t and uintptr_t, which respectively represents signed and unsigned in-
teger types with data width capable of holding a value converted from a pointer type and be converted
back to that type with a value that equals to the original pointer. These types should be used when con-
verting between pointer type and integer type.

[Related	rules]	R2.7.4 M4.1.2

	 Rules	on	pointer	conversion

As explained in rules R2.7.1 and R2.7.4, conversion (assignment) of pointer type variables to other
pointer types may output unintended result. Therefore, it is a risk to use such description more than
is necessary. See below for the summary of rules on pointer conversion organized in tabular form.

In these tables, the columns show the pointer types converted (assigned) from, and the rows show
the pointer types converted (assigned) to.

 ○ : Acceptable conversion

 △ : Conversion is acceptable when converting from derived class to its base class, or from base
class using dynamic_cast operator to its derived class.

 × : Unacceptable conversion

56 Part 2　Coding Practices for Embedded Software: Practices Chart

ESCR C++

R
eliability

	
	

R2

R
eliability

R2.7.1 Rule (1)

Converted to

 Converted from

Pointer to data
Pointer to
function

Pointer to
void

Integer typePointer to
class type

Pointer to other
than class type

Pointer
to data

Pointer to
class type

With
base-derived
relationship

△

×
× ○ ×

Without
base-derived
relationship

×

Pointer to
other than
class type

× ×

Pointer to function × × × ×
Pointer to void × × — ×

R2.7.1 Rule (2)

Converted to

 Converted from

Pointer to data

Pointer
to

function

Pointer
to void

Integer type

Pointer to
class type

Pointer to
other than
class type

Whose size
is less than
the data
width of the
pointer type

Whose size
is equal to
or more than
the data
width of the
pointer type

Pointer
to data

Pointer to
class type

With
base-derived
relationship

△

×
× ○ × ○

Without
base-derived
relationship

×

Pointer to
other than
class type

× ×

Pointer to function × × × × ○

Pointer to void ○ × — × ○

57

ESCR C++
R

eliability

Reliability R2● Use data by taking their ranges, sizes and internal representations into consideration

	
	

R2

R
eliability

R2.7.1 Rule (3)

Converted to

 Converted from

Pointer to data

Pointer
to

function

Pointer
to void

Integer type

Pointer to
class type

Pointer to
other than
class type

Whose size
is less than
the data
width of the
pointer type

Whose size
is equal to
or more than
the data
width of the
pointer type

Pointer
to data

Pointer to
class type

With
base-derived
relationship

○

○

× ○ × ○
Without

base-derived
relationship

○

Pointer to
other than
class type

○ ○

Pointer to function × × × × ○

Pointer to void ○ × — × ○

A cast shall not be performed that removes any const
or volatile qualification from the type addressed by a
pointer.

R2.7.2 Preference
guide ○

Rule
specification Choose

Compliant example

void func(const char *);
const char *str;
void x() {
 func(str);
 …
}

Non-compliant example

void func(char *);
const char *str;
void x() {
 func(const_cast<char*>(str));
 …
}

Be careful when accessing the areas qualified by const or volatile, because they are only for refer-
ence and must not be optimized. If a cast that removes any const or volatile qualification from the
type addressed by a pointer is performed, the compiler will not be able to check and detect error descrip-
tions in the program even if there are any, or may perform an unintended optimization.

58 Part 2　Coding Practices for Embedded Software: Practices Chart

ESCR C++

R
eliability

	
	

R2

R
eliability

Comparison to check whether a pointer is negative or
not shall not be performed.

R2.7.3 Preference
guide ●

Rule
specification

Compliant example

̶

Non-compliant example

int *func1() {
 …
 return reinterpret_cast<int*>(-1);
}

int func2() {
 …
 if (func1() < 0) {
 // Comparison intended to check whether

// the pointer is negative or not.
 …
 }
 return 0;
}

It is meaningless to compare whether a pointer is larger or smaller than 0.
When the subject of comparison is a pointer, the compiler will convert 0 into a null pointer. Therefore,
even when the comparison of pointer against 0 is intended, the comparison will actually be between two
pointers, and the intended behavior may not be achieved.

[Related	rule]	R1.3.3

59

ESCR C++
R

eliability

Reliability R2● Use data by taking their ranges, sizes and internal representations into consideration

	
	

R2

R
eliability

(1) A pointer to a derived class may be converted to a pointer to
its base class. However, a pointer to the base class may not be
converted to a pointer to its derived class.

(2) A pointer to a derived class may be converted to a pointer to
its base class. Moreover, if dynamic_cast operator is used, a
pointer to a base class may also be converted to a pointer to its
derived class.

R2.7.4 Preference
guide ○

Rule
specification Choose

Compliant example

class Base { … };
class Derive1 : public Base { … };
Derive1 d;

Compliant example of (l)
// Compliant: Pointer to a derived class is
// converted to pointer to its base class.
Base *bp =&d;

Non-compliant example of (2)
Derive1 *dp;
// Compliant: dynamic_cast is used to cast
// to the pointer of the class with
// inheritance relationship
dp = dynamic_cast<Derive1*>(bp);

Non-compliant example

class Base { … };
class Derive1 : public Base { … };
class Derive2 : public Base { … };

Non-compliant example of (l) (2)
Derive1 *bp;
Derive2 *dp;
dp = dynamic_cast<Derive2*>(bp);
// dynamic_cast is used to cast, but because
// the object pointed by bp is Derive1 type,
// runtime error occurs
// when it is converted to Derive2 type
// pointer.

This rule pertains to conversion between pointers to class type with base/derived relationship.
The behavior is undefined when the type conversion from base class to derived class is performed with-
out using dynamic_cast operator. Therefore, when it is unavoidable to convert a pointer to a base class
to a pointer to its derived class, be sure to perform the conversion by using dynamic_cast operator, and
check that the conversion has been successful.

[Related	rules]	R2.7.1 M4.1.2

*R2.8.1 is deleted in C++ Language edition and are vacant. (see the table in Appendix)

60 Part 2　Coding Practices for Embedded Software: Practices Chart

ESCR C++

R
eliability

	
	

R2

R
eliability

R2.8 Write in a way that will enable the compiler to check that
there are no conflicting declarations, usages and definitions.

(1) Functions shall not be defined with a variable number
of arguments.

(2) When using functions with a variable number of
arguments,《they shall be used after documenting
the intended behaviors based on the compiler used》.

R2.8.2 Preference
guide

Rule
specification

Choose /
Document

Compliant example

Compliant example of (1)
int func(int a, char b);

Non-compliant example

Non-compliant example of (1)
int func(int a, char b, ...);

Without understanding the behavior of functions with a variable number of arguments in the processing
system, their use may cause stack overflow or other unexpected results.
In addition, when the number of arguments is variable, the number and the types of the arguments are
not explicitly specified, and it will lower the readability of the code.

[Related	rule]	R2.8.3

61

ESCR C++
R

eliability

Reliability R2● Use data by taking their ranges, sizes and internal representations into consideration

	
	

R2

R
eliability

One prototype declaration shall be made at one location,
so that it will be referenced by both its function calls and
function definition.

R2.8.3 Preference
guide ○

Rule
specification

Compliant example

-- file1.h --
float f(int i); // Compliant: Described in

// one location

-- file1.cpp --
#include "file1.h"
float f(int i) {
 …
}

-- file2.cpp --
#include "file1.h"
void g(void) {
 float x = f(1);
 …
}

Non-compliant example

-- file1.cpp --
float f(int i); // Non-compliant: Declared

// in multiple files.
float f(int i) {
 …
}

-- file2.cpp --
float f(int i); // Non-compliant: Declared

// in multiple files
 // Mistaken with float f(int i);.
void g(void) {
 float x = f(1);
 …
}

This rule is for preventing the prototype declaration and function definition from being inconsistent.
In case of overloading in C++ language, declaring a different return value type to a different file will
not cause a compile error even when the description of the argument is the same, as shown in the above
non-compliant example. That is because the return type will be ignored. However, such declaration may
lead to unintended behaviors.

[Related	rules]	R2.8.2

62 Part 2　Coding Practices for Embedded Software: Practices Chart

ESCR C++

R
eliability

	
	

R3

R
eliability

Write in a way that ensures intended
behavior.

Reliability

R3
It is essential to be thorough with describing how to handle all the potential errors, by also
taking account of unexpected events that may occur in cases that are even conceived as
highly	 unlikely	 from	 the	 standpoint	 of	 program	specifications.	Moreover,	writing	 code	 in	
ways	that	do	not	rely	on	 language	specifications,	such	as,	explicit	 indication	of	operator	
precedence can also improve safety. To achieve high reliability, it is desirable to make ev-
ery effort to avoid coding that leads to malfunction and write in a way that ensures intended
behavior and safety as much as possible.

Reliability R3.1 	 Write in a way that is conscious of area size.

Reliability R3.2 	 Prevent operations that may cause runtime error from falling into
error cases.

Reliability R3.3 	 Check the interface restrictions when a function is called.

Reliability R3.4 	 Do not perform recursive calls.

Reliability R3.5 	 Pay attention to branch conditions and describe how to handle
cases that do not follow the predefined conditions when they occur.

Reliability R3.6 	 Pay attention to the order of evaluation.

Reliability R3.7 	 Pay attention to the behavior of classes.

Reliability R3.8 	 Pay attention to the behavior of exceptions.

Reliability R3.9 	 Pay attention to the behavior of templates.

Reliability R3.10 	 Pay attention to the behavior of lambda expressions.

Reliability R3.11 	 Be careful with how to access the shared data in programs that use
threads or signals.

63

ESCR C++
R

eliability

Reliability R3● Write in a way that ensures intended behavior

	
	

R3

R
eliability

R3.1 Write in a way that is conscious of area size.

(1) In an extern declaration of an array, the number of elements
shall always be specified.

(2) In an extern declaration of an array, the number of elements shall
always be specified, except for extern declarations of arrays that
correspond to the array definition that includes initialization and
has omitted the number of elements.

R3.1.1 Preference
guide ○

Rule
specification Choose

Compliant example

Compliant example of (1)
extern char *mes[3];
…
char *mes[] = {"abc", "def", nullptr};

Compliant example of (2)
extern char *mes[];
…
char *mes[] = {"abc", "def", nullptr};

Compliant example of (1), (2)
extern int var1[MAX];
…
int var1[MAX];

Non-compliant example

Non-compliant example of (1)
extern char *mes[];
…
char *mes[] = {"abc", "def", nullptr};

Non-compliant example of (1), (2)
extern int var1[];
…
int var1[MAX];

Making an extern declaration without specifying the size of the array will not cause error. However,
omission of the size may cause problems in checking outside of the array range. Therefore, make it a
rule to always specify the array size in the declaration.
However, there are exceptional cases where the array size can be omitted in the declaration, such as,
when the array size is underspecified until it is determined by the number of initial values.
In C++11, a library for handling arrays and pointers safely is defined as standard specification. For ex-
ample, in std::array class, using member function at to reference the array elements makes it possible
to detect whether the reference is out of scope or not. The use of such library is recommended when the
use of exceptions does not go against the project policy.

[Related	rule]	R3.1.2

64 Part 2　Coding Practices for Embedded Software: Practices Chart

ESCR C++

R
eliability

	
	

R3

R
eliability

For a loop to sequentially access array elements, its iteration
conditions shall include the judgment on whether the access is within
the range of the array or not. However, for a loop to sequentially
access array elements from the beginning of the array, range-based
for loop shall be used.

R3.1.2 Preference
guide

Rule
specification

Compliant example

char v1[MAX];
for (int i = FIRST; i < MAX && v1[i] != 0; i++){
// Compliant: Even if 0s are not specified in
// the var1 array, there is no risk of
// accessing outside the array range.
 …

//Judgement is made by using size().
vector<char> v2;
for (int i = FIRST; i < v2.size() && v2[i]!=0; i++) {
// Compliant: Judge the range by size().
 …

// When using range-based for loop
int array[5] = { 1, 2, 3, 4, 5 };
for (char x : v1)
 std::cout << x << std::endl;
// Compliant: 1 2 3 4 5 will be displayed
// in standard output.

Non-compliant example

char v1[MAX];
for (int i = 0; v1[i] != 0; i++) {
// Non-Compliant: If 0s are not specified in
// the var1 array, there is a risk of
// accessing outside the array range.
 …

vector<char> v2;
for (int i = 0; v2[i] != 0; i++) {
// Non-Compliant: No Judgment made on the
// range
 …

This rule is to prevent accessing outside the array range, which is a bug that frequently occurs in C and
C++ languages and can often lead to a serious problem. By using the range-based for statement intro-
duced in C++11, access to outside the array range can be prevented.
The C++ Programming Language, Fourth Edition also advises that the use of range-based for statement
should be prioritized over for statement, if available. (Chapter 9)

[Related	rule]	R3.1.1

*R3.1.3 and R3.1.4 are deleted in C++ Language edition and are vacant. (see the table in Appendix)

65

ESCR C++
R

eliability

Reliability R3● Write in a way that ensures intended behavior

	
	

R3

R
eliability

R3.2 Prevent operations that may cause runtime error from falling
into error cases.

Operations shall be performed after confirming that
the right-hand side expression of division or remainder
operation is not 0.

R3.2.1 Preference
guide

Rule
specification

Compliant example

if (y != 0)
 ans = x / y;

Non-compliant example

ans = x / y;

Apart from when the value is obviously not 0, the right-hand side expression of division or remainder
operation must be confirmed that it is not 0 before performing the operation. Otherwise, division by zero
error may occur at runtime.

[Related	rules]	R3.2.2 R3.3.1

Destination pointed by a pointer shall be referenced after
checking that the pointer is not the null pointer.

R3.2.2 Preference
guide

Rule
specification

Compliant example

if (p != nullptr)
 *p = 1;

Non-compliant example

*p = 1;

[Related	rules]	R3.2.1 R3.3.1

66 Part 2　Coding Practices for Embedded Software: Practices Chart

ESCR C++

R
eliability

	
	

R3

R
eliability

R3.3 Check the interface restrictions when a function is called.

If a function returns error information, then that error
information shall be tested.

R3.3.1 Preference
guide

Rule
specification

Compliant example

p = malloc(BUFFERSIZE);
if (p == nullptr)
 // Error handling
else
 *p = '\0';

Non-compliant example

p = malloc(BUFFERSIZE);
*p = '\0';

When a function returns a value, the code that does not use that return value may cause an error. If it is
not necessary to reference the return value, consider setting a project-specific rule to clearly indicate the
unnecessity of referencing, such as, by casting to void.

[Related	rules]	R3.2.1 R3.2.2 R3.5.1 R3.5.2

The restrictions of the parameters shall be checked before
starting the function processing.

R3.3.2 Preference
guide

Rule
specification

Compliant example

int func(int para) {
 if (!((MIN <= para) && (para <= MAX)))
 return range_error;
 // Normal processing.
 …
}

Non-compliant example

int func(int para) {
 // Normal processing.
 …
}

67

ESCR C++
R

eliability

Reliability R3● Write in a way that ensures intended behavior

	
	

R3

R
eliability

Whether to check the restrictions of the parameters at the caller or callee side or at the called side depends on how

the interface is designed. Nevertheless, to avoid forgetting to check the parameter restrictions, make it a rule to

perform the same check to all the parameters at once at the side to which the function is called.

In case the function to be called cannot be modified, such as, when the function is called from the library, create

a wrapper function.

Example of a wrapper function:

int func_with_check(int arg) {

 // Return range_error if arg is violating the parameter restrictions.

 // If not, call func and return the result.

// Make a function call by using a wrapper function.

if (func_with_check(para) == range_error) {

 // Error processing.

}

R3.4 Do not perform recursive calls.

Functions shall not call themselves, either directly or
indirectly.

R3.4.1 Preference
guide

Rule
specification

Compliant example

̶

Non-compliant example

unsigned int calc(unsigned int n) {
 if (n <= 1) {
 return 1;
 }
 return n * calc(n - 1);
 }

Since the stack size used at runtime for recursive calls cannot be predicted, there is a risk of stack
overflow.

68 Part 2　Coding Practices for Embedded Software: Practices Chart

ESCR C++

R
eliability

	
	

R3

R
eliability

R3.5 Pay attention to branch conditions and describe how to handle
cases that do not follow the predefined conditions when they occur.

The else clause shall be written at the end of an if-else if statement.
If it is known that the else condition does not normally occur, the
description of the else clause shall be either one of the following:

《 (i) Unexpected condition handling process shall be written in the
else clause.

(ii) A comment specified by the project shall be written in the else clause. 》

R3.5.1 Preference
guide ○

Rule
specification Define

Compliant example

// else clause of an if-else if statement
// in case where the else condition does not
// normally occur.
if (var1 == 0) {
 …
} else if (0 < var1) {
 …
} else {
 // Write an unexpected condition
 …// handling process.
}
…
if (var1 == 0) {
 …
} else if (0 < var1) {
 …
} else {
 // NOT REACHED
}

Non-compliant example

// if-else if statement without the else
// clause
if (var1 == 0) {
 …
} else if (0 < var1) {
 …
}

If there is no else clause in an if-else if statement, it is not clear whether the programmer has forgot-
ten to write the else clause or deliberately left out the else clause because the else condition does not
occur. Even if it is known that the else condition does not normally occur, the behavior of the program
when an unexpected condition occurs can be specified by writing the else clause as follows:
(i) Write in the else condition, the behavior taken when an unexpected condition occurs. (Predefine

the behavior of the program if by any chance the else condition occurs).
(ii) Write a project-specific comment like // NOT REACHED that clearly indicates that the else condi-

tion does not occur to express that the else clause was not written because it was forgotten. Such
comment will improve the readability of the program.

[Related	rules]	R3.3.1 R3.5.2

69

ESCR C++
R

eliability

Reliability R3● Write in a way that ensures intended behavior

	
	

R3

R
eliability

The default clause shall be written at the end of a switch statement.
If it is known that the default condition does not normally occur, the
description of the default clause shall be either one of the following:

《 (i) Unexpected condition handling process shall be written in the
default clause.

(ii) A comment specified by the project shall be written in the default clause. 》

R3.5.2 Preference
guide ○

Rule
specification Define

Compliant example

// default clause of a switch statement in
// case where the default condition does not
// normally occur.
switch(var1) {
case 0:
 …
 break;
case 1:
 …
 break;
default:
 // Write an unexpected condition
 // handling process.
 break;
}
…
switch(var1) {
case 0:
 …
 break;
case 1:
 …
 break;
default:
 // NOT REACHED
 break;
}

Non-compliant example

// switch statement without the default
// clause
switch(var1) {
case 0:
 …
 break;
case 1:
 …
 break;
}

If there is no default clause in a switch statement, it is not clear whether the programmer has forgotten
to write the default clause or deliberately left out the default clause because the default condition
does not occur. Even if it is known that the default condition does not normally occur, the behavior of the
program when an unexpected condition occurs can be specified by writing the default clause as follows:
(i) Write the behavior under unexpected conditions in the default condition (Predefine the behavior

of the program if by any chance the default condition occurs).
(ii) Write a project-specific comment like // NOT REACHED that clearly indicates that the default con-

dition does not occur to express that the default clause was not written because it was forgotten.
Such comment will improve the readability of the program.

[Related	rules]	R3.3.1 R3.5.1 M3.1.4

70 Part 2　Coding Practices for Embedded Software: Practices Chart

ESCR C++

R
eliability

	
	

R3

R
eliability

Equality operators (== !=) shall not be used for comparison
of loop counters.

R3.5.3 Preference
guide

Rule
specification

Compliant example

void func() {
 int i;
 for (i = 0; i < 9; i += 2) {
 …

Non-compliant example

void func() {
 int i;
 for (i = 0; i != 9; i += 2) {
 …

If the amount of change of the loop counter is not 1, an infinite loop may occur. Therefore, for compar-
ison to determine the number of loop iterations, do not use the equality operators (== !=). (Instead use
<= >= < >.)

Note) This rule does not apply to iterators.
 for (itr = v.begin(); itr != v.end(); ++itr)

R3.6 Pay attention to the order of evaluation.

Variables whose values are changed shall not be referred
to or modified in the same expression.

R3.6.1 Preference
guide ●

Rule
specification

Compliant example

f(x , x);
x++;
 Or
f(x + 1, x);
x++;

Non-compliant example

f(x, x++);

71

ESCR C++
R

eliability

Reliability R3● Write in a way that ensures intended behavior

	
	

R3

R
eliability

Compilers do not guarantee the order of execution (evaluation) of each actual argument in functions
with multiple parameters. The arguments may be executed from the right or from the left. In addi-
tion, compilers do not guarantee the order of execution of the left-hand and right-hand sides of binary
operations like + operation. Therefore, if the same object is updated and referenced in a sequence of
arguments or binary operation expressions, the execution result is not guaranteed. A case where the
execution result is not guaranteed is called a side effect problem. Do not write code that causes such
side effect problems.
This rule, however, does not prohibit descriptions, such as, those shown below which do not cause the
side effect problem.

x = x + 1;

x = f(x);

[Related	rules]	R3.6.2 M1.8.1

Function calls with side effects and volatile variables
shall not be described more than once in a sequence of
actual arguments or binary operation expressions.

R3.6.2 Preference
guide ○

Rule
specification

Compliant example

Compliant example of (1)
extern int G_a;
x = func1();
x += func2();
…
int func1(void) {
 G_a += 10;
 …
}
int func2(void) {
 G_a -= 10;
 …
}

Compliant example of (2)
volatile int v;
y = v;
f(y, v);

Non-compliant example

Non-compliant example of (1)
extern int G_a;
x = func1() + func2(); // With side effect

//problem
…
int func1(void) {
 G_a += 10;
 …
}
int func2(void) {
 G_a -= 10;
 …
}

Non-compliant example of (2)
volatile int v;
f(v, v);

72 Part 2　Coding Practices for Embedded Software: Practices Chart

ESCR C++

R
eliability

	
	

R3

R
eliability

Compilers do not guarantee the order of execution (evaluation) of each actual argument in functions
with multiple parameters. The arguments may be executed from the right or from the left. In addition,
compilers do not guarantee the order of execution of the left-hand and right-hand sides of binary opera-
tions like + operation. Therefore, the execution results of two or more function calls with side effects and
volatile variables in a sequence of arguments or binary operation expressions may not be guaranteed.
Such unsafe descriptions must be avoided.

[Related	rules]	R3.6.1 M1.8.1

sizeof operator shall not be used in expressions that
have side effect.

R3.6.3 Preference
guide ●

Rule
specification

Compliant example

x = sizeof(i);
i++;

Non-compliant example

x = sizeof(i++);

The expression in parenthesis of sizeof operator is used only for finding the size of the expression
type, and is not executed. Therefore, even when ++ operator like sizeof(i++) is described, i is not
incremented.

73

ESCR C++
R

eliability

Reliability R3● Write in a way that ensures intended behavior

	
	

R3

R
eliability

R3.7 Pay attention to the behavior of classes.

In the class that manages resources, copy constructor,
copy assignment operator and destructor shall be
defined.

R3.7.1 Preference
guide ○

Rule
specification

Compliant example

Compliant example of (1)
class CLS {
private:
 int *cls_px; // Resources managed by CLS

class.
public:
 CLS() : cls_px(new int(0)) { }
 ~CLS() {delete cls_px;}
 // Compliant: copy constructor and copy
// assignment operator are provided.

 CLS(const CLS &cls):
 cls_px(new int (*(cls.cls_px))) { }
 // Memory is allocated.
 CLS &operator = (const CLS &cls) {
 cls_px = new int(*(cls.cls_px));
 // Memory is allocated.
 }
};\

Compliant example of (2)
class CLS {
public:
 CLS() : cls_px(new int(0)) { }
 ~CLS() {delete cls_px;}
private:
 // Compliant: Copy constructor and copy
// assignment operator are declared
// private to prevent them being used.

 CLS(const CLS &cls);
 CLS &operator = (const CLS &cls);
 int *cls_px;
};

Compliant example of (3)
class CLS {
public:
 CLS() : cls_px(new int(0)) { }
 ~CLS() {delete cls_px;}
 // Compliant: Copy constructor and copy
 // assignment operator are declared as
 // =delete to prevent them from
 // being generated.
 CLS(const CLS &cls) = delete;
 CLS &operator = (const CLS &cls);
 int *cls_px = delete;
};

Non-compliant example

class CLS {
private:
 int *cls_px; // Resources managed by CLS

// class.
public:
 CLS() : cls_px(new int(0)) { }
 ~CLS() {delete cls_px;}
 // Non-compliant: This class manages
// resources (cls_px) , but copy constructor
// and copy assignment operator are not
// described. As a result, the following
// default copy constructor and copy
// assignment operator are generated
// automatically by the compiler.

 CLS(const CLS &c) : cls_px(c.cls_px){ }
 // address is copied.
 CLS &operator = (const CLS &cls) {
 cls_px = cls.cls_px;
 // address is copied.
 }
};

74 Part 2　Coding Practices for Embedded Software: Practices Chart

ESCR C++

R
eliability

	
	

R3

R
eliability

In the class that manages resources, such as, memory and files, it is common that the constructor is de-
fined to allocate resources, destructor to release them, and copy constructor or copy assignment operator
to copy them.
Therefore, if any of them are not defined, there is a risk of problems being caused by forgetting to write
the code to execute the required resource management. In case of a program that has been written not to
execute copying, declaring the copy constructor and copy assignment operator as private will prevent
the compiler from generating them automatically and enable it to output an error when unintended copy
is detected while compiling. (See Compliant example of (2).) According to C++11, the generation of
copy constructor and copy assignment operator can be prevented declaring copy constructor and copy
assignment operator as =delete to specify that the function is deleted. (See Compliant example of (3).)

[Related	rule]	E1.1.3

Virtual destructor shall be declared in the base class.
R3.7.2 Preference

guide ○

Rule
specification

Compliant example

class Base {
public:
 virtual ~Base() { }; // Compliant
 virtual void show()
 {cout << "Base" << endl;}
};
class Derived : public Base {
public:
 virtual ~Derived() { }
 virtual void show () override
 {cout << "Derived" << endl;}
};
Base *bp = new Derived;
bp -> show();
delete bp; // Derived::~Derived() is called.

Non-compliant example

class Base {
public:
 ~Base() {}; // Not a virtual destructor.
 virtual void show()
 {cout << "Base" << endl;}
};
class Derived : public Base {
public:
 ~Derived() {}
 virtual void show() override
 {cout << "Derived" << endl;}
};
Base *bp = new Derived;
bp -> show();
delete bp; // Undefined behavior.

75

ESCR C++
R

eliability

Reliability R3● Write in a way that ensures intended behavior

	
	

R3

R
eliability

In case the destructor of the base class is not virtual, the behavior to delete the object of the derived class
via the pointer to the base class is undefined. No behavioral problem will occur even when the destructor
of the base class is not virtual, if the object of the derived class is not deleted via the pointer to the base
class. This rule takes account of cases when the code is modified.

Reference Declaring the destructor of the base class as protected when the destructor of the virtual
class is not declared will enable the compiler to detect the deletion of objects of the derived class via the
pointer to the bass class as error at compile time.

76 Part 2　Coding Practices for Embedded Software: Practices Chart

ESCR C++

R
eliability

	
	

R3

R
eliability

Copy assignment operator and move assignment operator shall be
defined to comply with the following rules that state that:
1. Copy assignment operator and move assignment operator shall return

a self-reference.
2. Copy assignment operator shall declare in the form of either “T&operator=(constT&)”

or “T&operator=(T)”. Move assignment operator shall declare in the form of
“T&operator=(T &&)”. Their return type shall not be const-qualified.

3. Copy assignment operator shall be capable of self-assignment.

R3.7.3 Preference
guide ○

Rule
specification

Compliant example

Compliant example of (1)
class C0 {
public:
 C0 &operator = (const C0 &rhs) {
 …;
 return(*this);}
}

C0 c00, c01, c02;
c00 = c01 = c02; // Compliant

Compliant example of (2)
class C1 {
public:

 C1 &operator = (const C1 &rhs) { … }
 // Compliant
};
void func(C1 &ref) { … }

C1 c10, c11;
func(c10 = c11); // Compliant

Compliant example of (3)
class C2 {
private:

 char *data;
public:

 C2(char *str) {data = strdup(str);}
 C2 &operator = (const C2 &rhs) {

 if (&rhs == this) return; // Self-
// assignment
// is checked

 free(data);
 data = strdup(rhs.data);
 }
};

C2 c20("C++");
c20 = c20; // Compliant

Non-compliant example

Non-compliant example of (1)
class C0 {
public:
 void operator = (const C0 &rhs) { … }
 // Non-compliant: Return

// value type is not C0 &.
}

C0 c00, c01, c02;
c00 = c01 = c02; // Non-compliant: Compile

// error.

Non-compliant example of (2)
class C1 {
public:
 const C1 &operator = (const C1 &rhs) { … }
 // Non-compliant: Return

// value type is not C1 &.
};
void func(C1 &ref) { … }

C1 c10, c11;
func(c10 = c11); // Non-compliant: Compile

// error.

Non-compliant example of (3)
class C2 {
private:

 char *data;
public:

 C2(char *str) {data = strdup(str);}
 C2 &operator = (const C2 &rhs) {
 // Non-compliant: Self-

// assignment is not
// checked.

 free(data);
 data = strdup(rhs.data);
 }
};

C2 c20("C++");
c20 = c20; // Non-compliant: Invalid

// memory is referenced.

77

ESCR C++
R

eliability

Reliability R3● Write in a way that ensures intended behavior

	
	

R3

R
eliability

1. If the copy assignment operator does not return a self-reference, the behavior of multiple assign-
ments (e.g.: a = b = c) will not be the same as the behavior of the assignment operator to intrinsic
type (like char and int).

2. When the return type of copy assignment operator is const-qualified, the behavior of multiple as-
signments (e.g.: a = b = c) will not be the same as the behavior of the assignment operator to
intrinsic type (like char and int). The type resulting from assignment operator’s behavior with
intrinsic type is T, and not const T. Moreover, T-type object will not be able to be stored in the
container provided by the standard library (because it does not meet the container requirements).

 In C++11, rvalue reference has been introduced as a new feature to reduce the copy overhead of a
temporary object, If reducing the copy overhead of a temporary object is important, move assign-
ment operator may be used to take rvalue reference as an argument.

3. Unexpected error may occur when the copy assignment operator is not assuming that self-assign-
ment may occur. Suppose the memory pointed by a member is deleted within the copy assignment
operator. When self-assignment occurs in this situation, deleted memory may be referenced.

【Reference materials for those wanting to know more in detail about this rule】
• Effective Modern C++ Chapter 5

78 Part 2　Coding Practices for Embedded Software: Practices Chart

ESCR C++

R
eliability

	
	

R3

R
eliability

Default parameter values shall not be changed when
overriding virtual functions.

R3.7.4 Preference
guide ○

Rule
specification

Compliant example

class Base {
private:
 string color;
public:
 virtual void set_color(string c = "black")
 {color = c;}
 string get_color() { return color; }
};
class Derived : public Base {
public:
 virtual void set_color(string c = "black")
 override{
 // Compliant
 Base::set_color(c);
 }
};
Derived d;
Base *bp = &d; // Static type is Base *.
bp->set_color(); // Derived::
 // set_color("black")
 // is called.
cout << bp->get_color() << endl;
 // "black” is displayed.
Derived *dp = &d; // Static type is Derived *.
dp->set_color(); // Derived::
 // set_color("black")
 // is called.
cout << dp->get_color() << endl;
 // "black” is displayed.

Non-compliant example

class Base {
private:
 string color;
public:
 virtual void set_color(string c = "black")
 {color = c;}
 string get_color() {return color;}
};
class Derived : public Base {
public:
 virtual void set_color(string c = "white")
 override{
 // Non-compliant: Default parameter value
// is changed.

 Base::set_color(c);
 }
};
Derived d;
Base *bp = &d; // Static type is Base *.
bp->set_color(); // Derived::
 // set_color("black")
 // is called.
cout << bp->get_color() << endl;
 // "black” is displayed.
Derived *dp = &d; // Static type is Derived *.
dp->set_color(); // Derived::
 // set_color("white")
 // is called.
cout << dp->get_color() << endl;
 // "white” is displayed.

The default parameter value of a virtual function is not the value of the default parameter of the function
that is actually called, but is the value of the default parameter of the function that is determined by the
static type (see the above examples). That is why the value of the default parameter of the virtual func-
tion that is called differs from the value of the default parameter of the called function.

79

ESCR C++
R

eliability

Reliability R3● Write in a way that ensures intended behavior

	
	

R3

R
eliability

Non-virtual function shall not be redefined in the derived
class.

R3.7.5 Preference
guide ●

Rule
specification

Compliant example

class Base {
public:
 virtual void disp() { … }
 …
};
class Derived : public Base {
public:
 virtual void disp() override { … }
 // Compliant
};

Derived d;
Base *bp = &d;
bp->disp(); // Derived::disp() is called.

Non-compliant example

class Base {
public:
 void disp() { … }
 …
};
class Derived : public Base {
public:
 void disp() { … } // Non-compliant
};

Derived d;
Base *bp = &d;
bp->disp(); // Base::disp() is called.

Even when the non-virtual function is redefined in the derived class, the behavior will not become
polymorphic.
bp->disp() written in the non-compliant example shown above calls disp() of the base class even
when a pointer to an object of the derived class is set as pointer bp, because disp() is not a virtual
function.

Reference Difference between pure virtual function, virtual function and non-virtual function Pure
virtual function: Declares the interface. (Always defined in the derived class.)
Virtual function: Defines the default behavior. (Redefined when the default behavior is changed in the
derived class.)
Non-virtual function: Defines the behavior that remains the same between the base class and derived
class. (Not redefined in the derived class.)

[Related	rule]	R3.7.7

80 Part 2　Coding Practices for Embedded Software: Practices Chart

ESCR C++

R
eliability

	
	

R3

R
eliability

Pass by reference or pass by pointer shall be used to
set an object for polymorphic behavior as the function
argument.

R3.7.6 Preference
guide ●

Rule
specification

Compliant example

class Base {
public:
 virtual void show(void) const;
 …
}
class Derived : public Base {
public:
 virtual void show(void) const override;
 …
};
void calc(const Base &bar) { // Compliant:

// Pass by
// reference.

 bar.show(); // show() to be called is
// determined by the dynamic
// type of bar.

}

Non-compliant example

class Base {
public:
 virtual void show(void) const;
 …
}
class Derived : public Base {
public:
 virtual void show(void) const override;
 …
};
void calc(Base bar) { // Non-compliant:

// Pass by value.
 bar.show(); // Base::show() is always

// called.
}

When a derived class object is received as the function argument of base class type through pass by
value, object slicing occurs. This is a problem where the additional attributes of the derived class object
are sliced or ignored. Due to this problem, the received function cannot make the object behave poly-
morphically.

[Related	rule]	R3.8.7

81

ESCR C++
R

eliability

Reliability R3● Write in a way that ensures intended behavior

	
	

R3

R
eliability

Override keyword shall be written for overriding of virtual
function to occur.

R3.7.7 Preference
guide ○

Rule
specification

Compliant example

class Base {
public:
 virtual void vfunc1(float);
 virtual void vfunc2(void) const;
 …
};
class Derived : public Base {
public:
 virtual void vfunc1(int) override;
 // Compliant: The programmer will

// be able to know for sure that
// overriding did not occur because
// the compiler will output an error.

 virtual void vfunc2(void) override;
 // Compliant: The programmer will be

// able to know for sure that
// overriding did not occur because
// the compiler will output an error.

 …
};

Non-compliant example

class Base {
public:
 virtual void vfunc1(float);
 virtual void vfunc2(void) const;
 …
};
class Derived : public Base {
public:
 virtual void vfunc1(int);
 // Non-compliant: The compiler may

// not always output an error.
 virtual void vfunc2(void);
 // Non-compliant: The compiler may

// not always output an error.
 …
};

82 Part 2　Coding Practices for Embedded Software: Practices Chart

ESCR C++

R
eliability

	
	

R3

R
eliability

In the non-compliant example, vfunc1 function was written, expecting that overriding would occur. But
it will not occur due to the difference in argument type. Since the compiler may not always output a
warning, there is a risk of unintended behavior when the compiler leaves the error unnoticed.
When there is a need for overriding, write the override keyword as shown in the compliant example to
make sure that the compiler will output an error when overriding does not occur.

Below is an example where the programmer forgot to write the virtual keyword to the member func-
tion in the base class. Even in this case, writing the override keyword to the member function in the
inheritance class inherited class will ensure that the compiler will output an error and enable the pro-
grammer to notice that the virtual keyword was not written.

class Base {

 void vfunc(void); //virtual is missing from the description.

//The correct description should be

//virtual void vfunc(void).

};

class Derived : public Base {

 void vfunc(void) override; //override keyboard is written.

};

【Reference materials for those wanting to know more in detail about this rule】
• Effective Modern C++ Item 12

[Related	rule]	R3.7.5

83

ESCR C++
R

eliability

Reliability R3● Write in a way that ensures intended behavior

	
	

R3

R
eliability

R3.8 Pay attention to the behavior of exceptions.

(1) Exception handling shall not be used.
(2) When using exception handling,《its method of use in

the project shall be specifically defined》.

R3.8.1 Preference
guide

Rule
specification

Choose
/ Define

Compliant example

Compliant example of (1)
int *p = new(nothrow) int(10);
 // Compliant: Even when failing

// in new, exception is not
// thrown and NULL is returned.

if (p == NULL) {
 return ERROR; // Compliant: Handled without

// throwing exception.
}
…

Non-compliant example

Non-compliant example of (1)
try {
 int *p = new int(10);
 // Non-compliant: When

// failing in new, exception
// is thrown.

 …
}
catch(bad_alloc) {
 …
}

Exception handling is normally used for error notification, and especially for notifying the error be-
tween functions. By using exception handling, the code for error handling can be separated. As a result,
the readability of the written code will improve. The problem with exception handling in general is that
its behavioral complexity may have an adverse effect on efficiency, among others. Therefore, a rule
specifying when to allow the use of exception handling should be defined in each project.

Example rule:
Exception handling shall be used only for error notification. Moreover, the list of exceptions that are
allowed to be handled shall be created, and any exceptions other than those listed shall not be handled.

【Reference materials for those wanting to know more in detail about this rule】
• C++ Coding Standard Item 72
• Effective C++ Item 29
• More Effective C++ Item 15

[Related	rules]	R3.8.2 R3.8.3 R3.8.4 R3.8.5 R3.8.6 R3.8.7 R3.8.8 R3.8.9

84 Part 2　Coding Practices for Embedded Software: Practices Chart

ESCR C++

R
eliability

	
	

R3

R
eliability

Exception specification shall not be described.
R3.8.2 Preference

guide

Rule
specification

Compliant example

void func(int x,int y){
 // Exception specification is not

// escribed. There is no limitation to
// the exception that is thrown.

 if （…）{throw 1；}
 …
 if （…）{throw "ERROR"；}
 …
}

void func2(){
 try {
 func1();
 }
 catch(...){
 // Since exception specification is not

// described in func1(), any exception
// thrown by func() can be caught here,
// regardless of whether the exception
// thrown is an int or char* type. This
// behavior is easy to understand and
// also to deal with.

Non-compliant example

void func1() throw(int){
 // Exception specification isdescribed.

// Exceptions other than the int type
// will not be thrown.

 if (…){throw 1；}
 …
 if (…){
 throw "ERROR"；
 // "ERROR" is not an int type but will

// not be detected as a compile error.
// As a result, "ERROR" will not be
// thrown, unexpected() will be called,
// and the program will terminate by
// default. Such behavior is misleading
// and difficult to deal with.

 }
 …
}

void func2(){
 try{
 func1();
 }
 catch(...){
 // Since char* type is not described

// as exception specification in
// function func1(), unexpected() will
// be called when char* type "ERROR"
// is thrown by func1. As a result,
// this exception cannot be caught
// here.

85

ESCR C++
R

eliability

Reliability R3● Write in a way that ensures intended behavior

	
	

R3

R
eliability

Under C++ language specification, compile error will not occur even when a function throws an excep-
tion that is not described in the exception specification. What will happen is that std::unexpected will
be called, and catch(…) in the function that called the exception throwing function will not be able to
catch the thrown exception.
The default of unexpected() is std::terminate, and normally, abort() will be called.
This behavior is misleading to programmers, and makes it difficult for them to deal with it correctly.
C++11 does not recommend the use of the keyword throw for exception specification. Instead, it allows
the use of the keyword noexcept to specify that the function will not throw exceptions. However, since
this check is also made at the time of execution, the same problem described in the preceding paragraph
above must be taken into consideration.

【Reference materials for those wanting to know more in detail about this rule】
• C++ Coding Standard Item 45

[Related	rule]	R3.8.1

NULL shall not be thrown.
R3.8.3 Preference

guide ●

Rule
specification

Compliant example

try {
 throw 0; // Compliant
 …
}
catch(char *e) {
 // 0 is not caught here.
}
catch(int e) {
 // 0 is caught here.
}

Non-compliant example

try {
 throw NULL; // Non-compliant
 …
}
catch(char *e) {
 // NULL is not caught here.
}
catch(int e) {
 // NULL is caught here.
}

throw NULL is the same as throw 0 and is not caught by the pointer type handler.
The purpose of this rule is to prevent writing a description to catch NULL with a pointer type handler.
In C++11, nullptr is introduced as null pointer constant. The type of nullptr is nullptr_t which
differs with any pointer type, and cannot be captured by pointer type handler.

[Related	rules]	R3.8.1 R3.8.4

86 Part 2　Coding Practices for Embedded Software: Practices Chart

ESCR C++

R
eliability

	
	

R3

R
eliability

Pointer shall not be thrown as an exception.
R3.8.4 Preference

guide ●

Rule
specification

Compliant example

void func() {
 C obj;
 throw obj; // Compliant: Throw by value.
}

try {
func();
}
catch(C &ref) { // Catch by reference.
 …
}

Non-compliant example

void func1() {
 …
 throw new C(); // Non-compliant: Throw by

// pointer.
}

try {
 func1();
}
catch(C *ptr) {
 … // Cannot determine whether there is a

// need to delete the object or not.
}

void func2() {
 C obj;
 throw &obj; // Non-compliant: Throw by

// pointer.
}

try {
 func2();
}
catch(C *ptr) {
 … // Vanished object is

// referenced.
}

When a pointer to an object is thrown, the block that catches it has to determine whether there is a need
to delete the object or not, and the operation to delete the object may easily be forgotten. Moreover,
when a pointer to an object on the stack is thrown as an exception, the block that catches it may refer-
ence the object that has already vanished.

[Related	rules]	R3.8.1 R3.8.3 R3.8.7

87

ESCR C++
R

eliability

Reliability R3● Write in a way that ensures intended behavior

	
	

R3

R
eliability

Destructor shall not throw exceptions.
R3.8.5 Preference

guide ●

Rule
specification

Compliant example

C::~C() { // Compliant: Exception is not
// thrown.

 try {
 func1(); // Function that may throw

// exceptions
 }
 catch(...) {
 // Code that deals with an

// exception.
 }
}

void func2(){
 C obj; …
} // Destructor (C::~C) is called.

Non-compliant example

C::~C() { // Non-compliant: Exceptions may
// be thrown.

 func1(); // Function that may throw
// exceptions

}

void func2(){
 C obj;
 …
} // Destructor (C::~C) is called.

There are cases when an exception is thrown from the destructor, such as:
- When a throw expression is used to throw the exception
- When a function that has a possibility of throwing exceptions is called.

The function that is called when an exception is thrown from a destructor may be terminate function.
The behavior when the program is forced to terminate by terminate function will be either calling
abort() function by default or calling the process specified by set_terminate function. Therefore, any
exception thrown by the destructor must all be caught in the destructor. In other words, no exception
shall be thrown out of the destructor.

[Related	rule]	R3.8.1

88 Part 2　Coding Practices for Embedded Software: Practices Chart

ESCR C++

R
eliability

	
	

R3

R
eliability

No argument shall be written in the throw expression
when rethrowing an exception.

R3.8.6 Preference
guide ●

Rule
specification

適合例

void func() {
 try {
 …
 }
 catch(MyError) {
 …
 throw;
 }
}

Non-compliant example

void func() {
 try {
 …
}
 catch(MyError) {
 …
 throw MyError;
 }
}

When an exception thrown from the derived class is caught by its base class, and if the exception object
of that base class is written in a throw expression when that exception is rethrown, the exception object
of the base class will be thrown and polymorphic behavior will be lost.
Therefore, to rethrow an object of a derived class, do not write the argument in the throw expression.

[Related	rule]	R3.8.1

89

ESCR C++
R

eliability

Reliability R3● Write in a way that ensures intended behavior

	
	

R3

R
eliability

Exception object shall be caught by reference.
R3.8.7 Preference

guide ●

Rule
specification

Compliant example

class BaseError {
 …
 virtual void vfunc() { … }
};

class DerivedError : public BaseError {
 …
 virtual void vfunc() override { … }
};

void func1(){
 DerivedError obj;
 throw obj; // DerivedError is thrown.
}
 try {
 func1();
 }
 catch(BaseError &ref) {
 ref.vfunc(); // Compliant:

// DerivedError::func is
// called.

 }

Non-compliant example

class BaseError {
 …
 virtual void vfunc() { … }
};

class DerivedError : public BaseError {
 …
 virtual void vfunc() { … }
};

void func1(){
 DerivedError obj;
 throw obj; // DerivedError is thrown.
}
 try {
 func1();
 }
 catch(BaseError e) {
 e.vfunc(); // Non-compliant:

// BaseError::func is called.
 }

When an exception is caught by value, the exception object is copied and converted to an object of its
base class. As a result, the behavior of the object may change. When an exception is caught by pointer,
there is a need to confirm that the memory pointed by the pointer is freed after completing the exception
handling. To prevent these problems, throw the exception by value and catch it by reference.
The pass and receive of an exception object in exception handling is similar to pass and receive of a
parameter in a function call, but in exception handling, the object is copied even when it is caught by
reference (whereas, in function call, the object is not copied when it is passed by reference).Therefore,
for example, even when an object in stack memory is caught by reference, it will not cause such prob-
lems as referencing invalid memory.

[Related	rules]	R3.7.6 R3.8.1 R3.8.4

90 Part 2　Coding Practices for Embedded Software: Practices Chart

ESCR C++

R
eliability

	
	

R3

R
eliability

Exception handlers shall be written in the order of
derived class, base class and “...” (that catches all the
exceptions).

R3.8.8 Preference
guide ●

Rule
specification

Compliant example

class BaseError { … };
class DerivedError : public BaseError { … };

void func() {
 try {
 …
 }
 catch(DerivedError) {
 // Compliant: In the order of derived

// class → base class
 …
 }
 catch(BaseError) {
 …
 }
 catch(Exception) {
 …
 }
 catch(...) { // Compliant: "..."

// is the end.
 …
 }
}

Non-compliant example

class BaseError { … };
class DerivedError : public BaseError { … };

void func() {
 try {
 …
 }
 catch(BaseError) {
 // Non-compliant: In the order of
 // base class → derived class
 …
 }
 catch(DerivedError) {
 … // DerivedError is the derived

// class of BaseError, so this
// handler is not executed.

 }
 catch(...) { // Non-compliant: "..."

// is not the end.
 …
 }
 catch(Exception) {
 … // "catch(...)" catches all the

// exception, so this handler is not
// executed.

 }
}

Handlers for catching exceptions are checked in the order they are written. For example, when an object
of a derived class is thrown, it will be caught by the handler of the base class, if this handler is written
before the handler of the derived class. Moreover, if “...”, which catches all the exceptions, is used as a
handler, be sure to write “...” as the last handler.

[Related	rule]	R3.8.1

91

ESCR C++
R

eliability

Reliability R3● Write in a way that ensures intended behavior

	
	

R3

R
eliability

All the exceptions shall be caught without any omission
in the main function and thread start function.

R3.8.9 Preference
guide ●

Rule
specification

Compliant example

int func1(); // Function that throws
// exceptions

int func2() {
 try {
 return func1();
 }
 catch(...) { // Compliant:All The

// exceptions are caught.
 …
 return 0;
 }
}
void func3() {
 …
 int x = func2();
 …
}

int y = func2(); // Compliant: Exceptions
// are not thrown.

int main() {
 try {
 …
 std::thread th(func3);
 // Compliant: Exceptions are not

// thrown.
 …
 }
 catch(Error) {
 …
 }
 catch(...) { // Compliant: All the

// exceptions are caught.
 …
 }
}

Non-compliant example

int func1(); // Function that throws
// exceptions

void func3() {
 try {
 …
 int x = func1();
 …
 }
 catch(...) { // All the exceptions are

// caught.
 …
 }
}

int y = func1(); // Non-compliant:
// Exceptions are not
// caught.

int main() {
 try {
 …
 std::thread th(func3);
 // Non-compliant: Not all

// exceptions are caught.
 …
 }
 catch(Error) { // Non-compliant: Not all

// exceptions are caught.
 …
 }
}

92 Part 2　Coding Practices for Embedded Software: Practices Chart

ESCR C++

R
eliability

	
	

R3

R
eliability

When any exception catch clause is missing in the main function, terminate function will be called. As
explained earlier in R3.8.5, the behavior when the program is forced to terminate by terminate function
will be either calling abort() function by default or calling the process specified by set_terminate
function. Therefore, the backward compatibility can be secured by writing catch(...) in the main
function so that the program can be properly terminated.
Since exceptions thrown when initializing the global variables within the definition cannot be caught,
there is a need to be careful not to create any exceptions when global variables are initialized.

[Related	rule]	R3.8.1

R3.9 Pay attention to the behavior of templates.

In case the template formal parameter is referenced by
pointer, template specialization shall be prepared.

R3.9.1 Preference
guide ●

Rule
specification

Compliant example

template <class T> class TCLS {
public:
 bool tfunc(T t1, T t2) {
 return t1 == t2;
 }
};
template <class T> class TCLS<T*> {
public:
 bool tfunc(T *t1, T *t2) {
 return *t1 == *t2;
 }
};

void f(int *px, int *py) {
 TCLS<int*> tc;
 tc.tfunc(px, py);

Non-compliant example

template <class T> class TCLS {
public:
 bool tfunc(T t1, T t2) {
 return t1 == t2;
 }
};

// Specialization for the pointer is not
// prepared.
void f(int *px, int *py) {
 TCLS<int*> tc;
 tc.tfunc(px, py);
 // Non-compliant: The addresses are

// compared instead of comparing the
// value as intended

When a template whose formal parameter is not considered to be referenced by pointer is used as a
pointer by the template argument, it will not be determined as a compile error and may cause an unin-
tended behavior.

[Related	rule]	M1.2.6

93

ESCR C++
R

eliability

Reliability R3● Write in a way that ensures intended behavior

	
	

R3

R
eliability

R3.10 Pay attention to the behavior of lambda expressions.

In lambda expressions, default capture mode shall not
be used, and all the local names used shall be written
explicitly.

R3.10.1 Preference
guide

Rule
specification

Compliant example

void f1() {
 …
 auto func = [] (int x, int y) {return x > y; };
 // Compliant: Local names are not used.
 …
}

void f2() {
 int y = ...;
 …
 auto func = [y] (int x) { return x > y; } ;
 // Compliant: Local name (auto variable)

// is used and is explicit.
 …
}

Non-compliant example

void f() {
 int y = ...;
 …
 auto func = [=] (int x) { return x > y; } ;
 // Non-compliant: Local name (auto

// variable) is used but is not explicit.
 …
}

Lambda expression introduced in C++11 helps define functions easily. Unlike ordinary functions, lamb-
da expression makes it possible to write within the function. By specifying the lambda capture ([] in
the beginning of the lambda expression), the local names of the function (automatic variable, parameter,
etc.) can be accessed. However, lambda expressions need to be used carefully. For example, if the lamb-
da expression is going to exist longer than the function (in which it is written), such as, when it is used
after saving it in a global variable, the space for a captured automatic variable is gone by the thime it is
accessed as a referance, resulting in access violation. (The behavior would be the same as the bug that is
used outside the function after the function returns the reference and pointer to the automatic variable.)

 void addDivisorFilter() {

 ...

 auto divisor = ...

 filters.emplace_back([&](int value) { return value % devisor == 0; });

 // The function defined by lambda expression is registered in

 // filters, but it uses the divisor of auto variable as the reference.

 // This space extinguishes after passing addDivisorFilter

 // function. The filtering process using filters is executed outside

 // addDivisorFilter function. As a result, the space that has

 // already extinguished is referenced.

 }

94 Part 2　Coding Practices for Embedded Software: Practices Chart

ESCR C++

R
eliability

	
	

R3

R
eliability

This is a rule concerning the method of lambda capture specification. Among the three ways of speci-
fying the lambda capture listed below as 1), 2) and 3), this rule is aimed at minimizing coding errors by
encouraging the users to use 3) and write out all the names used so that they can be easily checked at
the time of review, instead of using 1) or 2), which are both default capture modes (access by reference
or access by value, respectively).

1) [&]: It makes all the local names available as “reference”.
2) [=]: It make all the local names available as “value”.
3) [capture_list]: It makes only the local names written in this name list available. If & is placed

immediately before the name, that name will be available as “reference”. If nothing is placed
before the name, that name will be available as “value”.

In 1), the variable is accessed as reference by default. Therefore, unintended reference access may occur
as mentioned above. In 2), the variable is accessed as value by default, but in the case with member
function, this will be accessible by default. What this means is that reference access to the data members
of a class will be possible through this, and unintended reference access may occur. Those interested in
learning more about this problem should read the explanation provided in Item 31 of Effective Modern
C++.
Since the specifications of lambda expressions are difficult to understand, lamba should be used only
after gaining a good knowledge about its specifications through reliable reference materials, such as,
the ones listed below.

【Reference materials for those wanting to know more in detail about this rule】
• Effective Modern C++ Item 31 Item 32 Item 33 Item 34
• Google C++ style guide Lambda expressions

95

ESCR C++
R

eliability

Reliability R3● Write in a way that ensures intended behavior

	
	

R3

R
eliability

R3.11 Be careful with how to access the shared data in programs
that use threads or signals.

std::atomic shall be used for concurrent processing
instead of volatile.

R3.11.1 Preference
guide

Rule
specification

Compliant example

std::atomic<int> v(0); // Compliant
…
v++; // Processed indivisibly.
…

Non-compliant example

volatile int v = 0; // Non-compliant
…
v++; // Not processed indivisibly.
…

For concurrent processing or asynchronous signal processing, there is a need to properly reflect the
result of updated data to other threads. The memory model assumed in C++11 does not guarantee the
indivisibility and visibility of data refreshed by other threads. Using volatile to guarantee them is a
mistake. volatile is used for preventing the compiler from optimizing the data and does not guarantee
indivisibility, etc., in concurrent processing. C++11 support the use of std::atomic to guarantee the
indivisibility of a single data. It also supports the use of mutex, etc., when there is a need to process
more complex data indivisibly.

96 Part 2　Coding Practices for Embedded Software: Practices Chart

ESCR C++

R
eliability

	
	

R3

R
eliability

The bit fields that may be allocated in the same memory
space shall not be accessed by multiple threads or shall
be exclusively controlled properly.

R3.11.2 Preference
guide

Rule
specification

Compliant example

(1)
struct {
 unsigned int flag0 : 1;
 :0,
 unsigned int flag1 : 1;
} s; // Compliant: flag0 and flag1 are in two

// different memory spaces.
void fun0() {
 s.flag0 = 1;
}
void fun1() {
 s.flag1 = 1;
}
…
 // fun0 and fun1 are executed by different
// threads.

 std::thread t0(fun0);
 std::thread t1(fun1);
…

(2)
struct {
 unsigned int flag0 : 1;
 unsigned int flag1 : 1;
} s; // flag0 and flag1 are in the same

// memory space.
std::mutex lock; // mutex is used for

// exclusive control
// Compliant: Exclusively controlled
// properly.
void fun0() {
 std::unique_lock<std::mutex> ul(lock);
 // mutex is locked (and unlocked when

// the function ends).
 s.flag0 = 1;
}
void fun1() {
 std::unique_lock<std::mutex> ul(lock);
 // mutex is locked (and unlocked when

// the function ends).
 s.flag1 = 1;
}
…
 // fun0 and fun1 are executed by different
// threads.

 std::thread t0(fun0);
 std::thread t1(fun1);
…

Non-compliant example

struct {
 unsigned int flag0 : 1;
 unsigned int flag1 : 1;
} s; // Non-compliant: flag0 and flag1 are

// in the same memory space, and are
// not exclusively controlled
// properly.

void fun0() {
 s.flag0 = 1;
}
void fun1() {
 s.flag1 = 1;
}
…
 // fun0 and fun1 are executed by different
// threads.

 std::thread t0(fun0);
 std::thread t1(fun1);
…

97

ESCR C++
R

eliability

Reliability R3● Write in a way that ensures intended behavior

	
	

R3

R
eliability

C++11 defines 1 byte as the smallest memory space to access data. Therefore, if multiple threads access
bit fields allocated in the same memory space, the result of data referenced or refreshed in the adjacent
bit fields may become incorrect. To avoid this problem, bit field of length zero (0) should be used to
allocate the data separately in different memory spaces or the access to bit fields shall be exclusively
controlled properly.

【Reference materials for those wanting to know more in detail about this rule】
• CERT C CON32-C

[Related	rule]	P1.3.3

Maintainability
Many	embedded	software	developments	require	maintenance	
tasks,	 including	 the	modification	of	 the	software	 that	has	
already	been	developed.
There	are	various	 reasons	 for	maintenance.	For	example,	
maintenance	becomes	necessary:	
●	When	a	bug	is	found	in	one	part	of	the	released	software	and	

must	be	modified;
●	When	 a	 new	 function	 is	 added	 to	 existing	 software	 in	

response	to	the	market	demand	toward	the	product.
When	any	kind	of	additional	work	is	carried	out	on	the	already	
developed	software	as	in	the	above	examples,	it	is	important	to	
perform	such	work	as	accurately	and	efficiently	as	possible	to	
maintain	the	quality	of	the	software.	
This	 is	 called	 “maintainability”	 in	 the	 field	 of	 system	
development.	This	section	clarifies	the	practices	to	keep	and	
improve	the	maintainability	of	embedded	software	source	code.

●	Maintainability	M1 : 	Keep	in	mind	that	others	will	
read	the	program.

●	Maintainability	M2 : 	Write	in	a	style	that	can	
prevent	modification	errors.

●	Maintainability	M3 : 	Write	programs	simply.
●	Maintainability	M4 : 	Write	in	a	unified	style.
●	Maintainability	M5 : 	Write	in	a	style	that	makes	

testing	easy.

100 Part 2　Coding Practices for Embedded Software: Practices Chart

ESCR C++

	
	

M1

M
aintainability

Keep in mind that others will read the
program.

Maintainability

M1
It is easily conceivable that source code is reused and maintained by engineers who
are not the original creators. Therefore, it is necessary to write source code that is easy
to understand by taking account of others who will read it later.

Maintainability M1.1 	 Do not leave unused descriptions.

Maintainability M1.2 	 Do not write confusingly.

Maintainability M1.3 	 Do not write in an unconventional style.

Maintainability M1.4 	
Write in a style that clearly specifies the order of evaluation of
operations.

Maintainability M1.5 	
Explicitly describe the operations that are likely to cause
misunderstanding when they are omitted.

Maintainability M1.6 	 Use one area for one purpose.

Maintainability M1.7 	 Do not reuse names.

Maintainability M1.8 	
Do not use language specifications that are likely to cause
misunderstanding.

Maintainability M1.9 	
When writing in an unconventional style, explicitly state its
intention.

Maintainability M1.10 	 Do not embed magic numbers.

Maintainability M1.11 	 Explicitly state the area attributes.

Maintainability M1.12 	
Correctly describe the statements even if they are not
compiled.

101

ESCR C++

Maintainability M1● Keep in mind that others will read the program

	
	

M1

M
aintainability

M1.1 Do not leave unused descriptions.

Unused functions, variables, parameters, typedefs, tags,
labels or macros shall not be declared (defined).

M1.1.1 Preference
guide ○

Rule
specification

Compliant example

void func(void) {
 …
}
When necessary in case of callback function
int cbfunc1(int arg1, int arg2);
int cbfunc2(int arg1, int);
 // There is no need of using the second
 // parameter (arg2) if the signature of
 // callback function is fixed to int(*)
(int,int).

When necessary in case of virtual function
class Base {
public:
 virtual void func(int arg1, int arg2) = 0:
 …
};
class Derived1 : public Base {
public:
 virtual void func(int arg1, int arg2)

override {
 // The second parameter (arg2) is used.
 }
 …
};
class Derived2 : public Base {
public:
 virtual void func(int arg1, int) override {
 // The second parameter (arg2) is
 // necessary to be consistent with the
 // signature.
 }
 …
};

Non-compliant example

void func(int arg) {
 // arg is not used.
 ...
}

Declaration (definition) of unused functions, variables, parameters or labels impairs maintainability
because it makes it difficult to determine whether the programmer has forgotten to delete them or has
made a description error.
However, declaration (definition) of unused parameters in a function is necessary to be consistent with
the function signature in case of:
 ● Callback function;
 ● Virtual function.
In such cases, make it clear that these parameters are unused by not writing their names.

102 Part 2　Coding Practices for Embedded Software: Practices Chart

ESCR C++

	
	

M1

M
aintainability

Reference	material	for	those	seeking	for	more	details
● MISRA C++ R0-1-11, R0-1-12

[Related	rules]	M1.9.1 M4.5.1 M4.7.2

(1) Sections of code should not be “commented out”.
(2) For commenting out sections of code,《the coding rule

shall be specified.》

M1.1.2 Preference
guide ○

Rule
specification

Choose
Define

Compliant example

Compliant example of (2)
 …
// i = i * i;
 j = j * I;
 …

Non-compliant example

Non-compliant example of (1)

 …
// i = i * i;
 j = j * I;
 …

Normally, invalidated sections of the code should not be left in the code as it may impair the code
readability.
However, if there is a need to invalidate certain sections of the code by commenting them out, set a rule,
for example, to use only // comment for commenting out. Any section of the code can also be invalidated
without using comment out by specifying that section in between #if 0 and endif#.

[Related	rules]	M1.12.1 M4.7.2

103

ESCR C++

Maintainability M1● Keep in mind that others will read the program

	
	

M1

M
aintainability

M1.2 Do not write confusingly.

(1) Only one variable shall be declared in one declaration statement
(avoid multiple declarations.)

(2) Automatic variables of the same type used for the similar purpos-
es may be declared in one declaration statement, but variables
with initialization and variables without initialization shall not be
mixed.

M1.2.1 Preference
guide

Rule
specification Choose

Compliant example

Compliant example of (1)
int i;
int j;

Compliant example of (2)
int i, j;
int k = 0;

int *p;
int i;

Non-compliant example

Non-compliant example of (1)
int i, j;

Non-compliant example of (2)
int i, j, k = 0; // Non-compliant:

// A variable with
// initialization and
// variables without
// initialization are mixed

int *p, i; // Non-compliant:Variables
// of different types are
// mixed

If the declaration is int *p;, the type of p is int*. However, if the declaration is int *p, q;, the type
of q becomes int instead of int*.

[Related	rule]	M1.6.1

Suffixes shall be added to constant descriptions that can use
them to indicate appropriate types. Only an uppercase letter “L”
shall be used for a suffix indicating a long type integer constant.

M1.2.2 Preference
guide

Rule
specification

Compliant example

void func(long int);
…
float f;
long int l;
unsigned int ui;

f = f + 1.0F; // Explicitly state that it is
// a float operation

func(1L); // Description of L should be
// an uppercase letter

if (ui < 0x8000U) { // Explicitly state
// that it is an
// unsigned comparison.

Non-compliant example

void func(long int);
...
float f;
long int l;
unsigned int ui;
f = f + 1.0;
func(1l); // 1l（numeral “1” and alphabet

// letter “l”）can get easily
// confused with 11 (numeral “1”
// and numeral “1”).

if (ui < 0x8000) {
 ...

104 Part 2　Coding Practices for Embedded Software: Practices Chart

ESCR C++

	
	

M1

M
aintainability

Basically, when there is no suffix, an integer constant will be an int type and a floating constant will be
a double type. However, when an integer constant value that cannot be expressed with an int type is
described, its type will be the one that can express that value. Therefore, 0x8000 will be unsigned int
if int is 16 bits, and signed int if int is 32 bits.
To use it as unsigned, it is necessary to explicitly describe “U” as the suffix. In addition, in case of a
target system where the operation speed differs between floating point number of float type and that of
double type, it should be noted that the operation will be a double type when performing operations
between a float type variable and a floating constant without a suffix “F”.
For floating constants, writing at least one digit on both sides of the decimal point will make them easily
recognizable as floating constants.

[Related	rule]	M1.8.5

When expressing a long string literal, successive string liter-
als shall be concatenated without using newlines within the
string literal.

M1.2.3 Preference
guide

Rule
specification

Compliant example

char abc[] = "aaaaaaaa\n"
"bbbbbbbb\n"
"ccccccc\n";

Non-compliant example

char abc[] = "aaaaaaaa\n\
 bbbbbbbb\n\
 ccccccc\n";

In C++11, a new feature called raw string literal has been introduced. Raw string literal can be used in
markup and regular expressions, and make it possible to write literal expressions without using escape
characters. If raw string literal is used to write the non-compliant example of this rule, the code will
look like the following:

char abc[] = R"(aaaaaaaa

bbbbbbbb

cccccccc)";

105

ESCR C++

Maintainability M1● Keep in mind that others will read the program

	
	

M1

M
aintainability

A rule specifying how to use the namespace shall be defined.
M1.2.4 Preference

guide

Rule
specification Choose

Define a rule on how to reference the name in the namespace by taking account of readability and ease
of coding. For example, consider establishing the following usage as the project-specific rule.

● The name in the namespace shall be referenced directly by using declaration or scope resolution
operator (::), instead of using the using directive. See below for the compliant and non-compliant
examples of this rule:

 using NS1 :: x ; // Compliant: using declaration
 using NS1 ; // Non-compliant : using directive

● Up to five names in the namespace shall be referenced directly by using declaration or scope reso-
lution operator (::), and six or more names in the namespace shall be referenced by using the using
directive.

106 Part 2　Coding Practices for Embedded Software: Practices Chart

ESCR C++

	
	

M1

M
aintainability

Namespace definition shall not be nested.
M1.2.5 Preference

guide

Rule
specification

Compliant example

namespace NS1 {
 int x;
}
namespace NS2 { // Compliant:Namespace that

is not nested.
 int y;
}

Non-compliant example

namespace NS1 {
 int x;
 namespace NS2 { // Non-compliant:Namespace

that is nested.
 int x;
 int y;
 }
}

Nested namespace definition deep down in the hierarchy impairs readability. Therefore, do not nest
namespace definition.
“Namespaces will not be nested more than two levels deep.” is the rule defined in JOINT STRIKE
FIGHTER AIR VEHICLE C++ CODING STANDARDS FOR THE SYSTEM DEVELOPMENT AND
DEMONSTRATION PROGRAM [19] and this can be adopted.

Function template shall not be explicitly specialized.
M1.2.6 Preference

guide

Rule
specification

Compliant example

template <typename T>
 void func(T) { … } // #1
template <typename T>
 void func(T *) { … } // #2

void func(int *) { … } // Compliant:#3: Non-
// template function

int main() {
 int x;
 func(&x); // #3 is called. (Normal function

// is selected as a priority
// over template.)

}

Non-compliant example

template <typename T>
 void func(T) { … } // #1
template <typename T>
 void func(T *) { … } // #2

template <> void func(int *) { … }
 // Non-compliant:#3: Function

// template is explicitly
// specialized. (Specialization
// of #1 [T = int *]).

int main() {
 int x;
 func(&x); // #2 is called rather than

// #3 (because #2 is more
// restricted than #1).

}

By explicitly specializing a function template, a function definition that applies specifically for a partic-
ular group of template parameters can be provided. However, unintended function may be called, since
overload resolution takes place after selecting the specialized function.

[Related	rule]	R3.9.1

107

ESCR C++

Maintainability M1● Keep in mind that others will read the program

	
	

M1

M
aintainability

If the declaration of a constructor becomes the same as the
declaration of a default copy constructor when all the param-
eters specified with a default value are excluded, such con-
structor shall not be defined.

M1.2.7 Preference
guide ●

Rule
specification

Compliant example

class C {
public:
 C() { … }
 C(C &x, int i) { // Compliant:Not the

// same declaration as
// copy constructor.

 …
 }
 …
};

void func(void) {
 C x;
 C y = x; // Copy constructor is called.
 C z(y, 1); //“C::C(C &, int)”is called.
 …
}

Non-compliant example

class C {
public:
 C() { … }
 C(C &x, int i = 0) { // Non-compliant:Same

// declaration as
// copy constructor.

 …
 }
 …
};

void func(void) {
 C x;
 C y = x; // “C::C(C &, int)” is called.
 …
}

If the declaration of a constructor becomes identical to the declaration of a default copy constructor after
excluding all of its parameters specified with a default value, that constructor will be handled as a default
copy constructor. Unless this point is understood clearly, there is a risk of defining a constructor that may
result in unintended calls.

【Reference material for those wanting to know more in detail about this rule】
● JOINT STRIKE FIGHTER AIR VEHICLE C++ CODING STANDARDS FOR THE SYSTEM

DEVELOPMENT AND DEMONSTRATION PROGRAM Item 77

108 Part 2　Coding Practices for Embedded Software: Practices Chart

ESCR C++

	
	

M1

M
aintainability

M1.3 Do not write in an unconventional style.

Expressions evaluating to true or false shall not be described
in switch (expression).

M1.3.1 Preference
guide ●

Rule
specification

Compliant example

－

Non-compliant example

switch (i_var1 == 0) {
case 0:
 i_var2 = 1;
 break;
default:
 i_var2 = 0;
 break;
}

When an expression evaluating to true or false is used in a switch statement, the number of branch
directions will be two, and the necessity of using the switch statement as a multiway branch command
becomes low. Compared to if statements, switch statements have a higher possibility of errors, such as,
writing the default clause wrongly or missing break statements. Therefore, if statements shall be used
when there will be two branch directions. The non-compliant example is written with if statement as
follows:

if (i_var1 == 0) {
 i_var2 = 0;
} else {
 i_var2 = 1;
}

109

ESCR C++

Maintainability M1● Keep in mind that others will read the program

	
	

M1

M
aintainability

The case labels and default label in a switch statement shall
be described only in the compound statement (excluding
nested compound statements) within the body of the switch
statement.

M1.3.2 Preference
guide

Rule
specification

Compliant example

switch (x) {
case 1:
 {
 …
 }
 …
 break;
case 2:
 …
 break;
default:
 …
 break;
}

Non-compliant example

switch (x) { // Compound statement in switch
statement body
case 1 :
 { // Nested compound statement
case 2 : // Do not describe case label in

// nested compound statement.
 …
 }
 …
 break;
default:
 …
 break;
}

*M1.3.3 is deleted in C++ Language edition and is vacant. (see the table in Appendix)

110 Part 2　Coding Practices for Embedded Software: Practices Chart

ESCR C++

	
	

M1

M
aintainability

M1.4 Write in a style that clearly specifies the order of evaluation of operations.

Expressions described at the right hand and left hand of && and ||
operations shall be either expressions that do not include binary
operation or expressions enclosed with (). However, if only && op-
erations or only || operations are successively combined, it is not
necessary to enclose each && and || expression with ().

M1.4.1 Preference
guide

Rule
specification

Compliant example

if ((x > 0) && (x < 10))
if (!x || y)
if (flag_tb[i] && status)
if ((x != 1) && (x != 4) && (x != 10))

Non-compliant example

if (x > 0 && x < 10)
if (x != 1 && x != 4 && x != 10)

The objective of this rule is to write an expression that prevents confusion in understanding the order
of precedence of each operand in && or ||. Its aim is to highlight the operation of each operand in &&
or || to improve the readability by enclosing the expression that contains an operator other than unary,
postfix and cast operators with (). Another rule that may be considered is to enclose ! operation with
() because the order of precedence may be confusing to beginners.

[Related	rules]	R2.3.2 M1.5.2

《Usage of parentheses to explicitly indicate operator prece-
dence shall be defined.》

M1.4.2 Preference
guide

Rule
specification Define

Compliant example

a = (b << 1) + c;
 or
a = b << (1 + c);

Non-compliant example

a = b << 1 + c; // There is a possibility
// that operator precedence
// is misunderstood.

Operator precedence is difficult to capture. Therefore, set a rule as exemplified below to improve its
readability.
If an expression contains multiple binary operators that differs in the order of operation priority, paren-
theses () shall be used to explicitly indicate the operator precedence, provided that the parentheses ()
may be omitted in four arithmetic operations.
To learn more about the operator precedence and its interpretation, refer to Chapter 10: Expressions of
The C++ Programming Language C, Fourth Edition.

[Related	rule]	M1.5.1

111

ESCR C++

Maintainability M1● Keep in mind that others will read the program

	
	

M1

M
aintainability

M1.5
 Explicitly describe the operations that are likely to cause
misunderstanding when they are omitted.

A function identifier (function name) shall only be used with
either a preceding “&” or with a parenthesized parameter list,
which may be empty.

M1.5.1 Preference
guide

Rule
specification

Compliant example

void func(void);
void (*fp)(void) = &func;

if (func()) {

Non-compliant example

void func(void);
void (*fp)(void) = func; // Non-compliant:No
&.

if (func) { // Non-compliant:Address is
// obtained rather than calling
// the function.

 // It might be mistakenly
// written as a function call
// without arguments.

If a function name is written alone, it will be used to obtain the function address, and not for function
call. This means that, for obtaining the function address, there is no need of placing & in front of the
function name. However, the function name without a preceding &, in some cases, may be misunder-
stood that it is for a function call (for example, when using languages like Ada that write only the name
to call a subprogram without arguments). By following the rule to add & when obtaining the function
address, it will become easier to detect mistakes in function names written as they are with neither &
nor ().
(for example, when using languages like Ada and Ruby that write only the name to call a subprogram
without arguments).

[Related	rule]	M1.4.2

112 Part 2　Coding Practices for Embedded Software: Practices Chart

ESCR C++

	
	

M1

M
aintainability

The conditional expression in an if statement or loop shall
explicitly state that the type is bool.

M1.5.2 Preference
guide

Rule
specification

Compliant example

int x = 5;

if (x != 0) {
 …
}

class C {
 …
 bool isEmpty() const { // Function that

// returns bool
// type value.

 return …;
 }
 …
};

C obj;
…
if (!obj.isEmpty()) { // Compliant:Use a

// function that
// returns bool type
// value.

 …
}

Non-compliant example

int x = 5;

if (x) {
 …
}

class C {
 …
 operator bool() const { // Implicit

// conversion
// function.

 return …;
 }
 …
};

C obj;
…
if (obj) { // Non-compliant:Implicit type

// conversion.
 …
}

The value in a conditional expression that is not bool type is implicitly converted into a bool value.
Such implicit type conversion may cause unintended behaviors. Therefore, to clarify the intention of the
program, the comparison shall not be omitted. Other preventive measures include the use of a function
that returns an appropriate bool type value.

[Related	rule]	M1.4.1

113

ESCR C++

Maintainability M1● Keep in mind that others will read the program

	
	

M1

M
aintainability

M1.6 Use one area for one purpose.

Variables shall be prepared for each purpose.
M1.6.1 Preference

guide

Rule
specification

Compliant example

// Counter variable and work variable for
// replacement are different.
for (i = 0; i < MAX; i++) {
 data[i] = i;
}
if (min > max) {
 wk = max;
 max = min;
 min = wk;
}

Non-compliant example

// Same variable is used as counter variable
// and work variable for replacement.
for (i = 0; i < MAX; i++) {
 data[i] = i;
}
if (min > max) {
 i = max;
 max = min;
 min = i;
}

Reusing variables shall be avoided as it impairs readability and increases the risk of modification errors.

[Related	rule]	M1.2.1

114 Part 2　Coding Practices for Embedded Software: Practices Chart

ESCR C++

	
	

M1

M
aintainability

(1) unions shall not be used.
(2) If unions are used, the same members that are assigned

values shall be referenced.

M1.6.2 Preference
guide

Rule
specification Choose

Compliant example

Compliant example of (2)
// If type is INT→i_var, CHAR→c_var[4],
struct stag {
int type;
union utag {
 char c_var[4];
 int i_var;
 } u_var;
};

struct stag s_var;
…
int i;
…
if (s_var.type == INT) {
s_var.u_var.i_var = 1;
}
…
i = s_var.u_var.i_var;

Non-compliant example

Non-compliant example of (2)
// If type is INT→i_var, CHAR→c_var[4],
struct stag {
 int type;
 union utag {
 char c_var[4];
 int i_var;
 } u_var;
};

struct stag s_var;

…
int i;
…
if (s_var.type == INT) {
s_var.u_var.c_var[0] = 0;
s_var.u_var.c_var[1] = 0;
s_var.u_var.c_var[2] = 0;
s_var.u_var.c_var[3] = 1;
}
…
i = s_var.u_var.i_var;

union allows the same memory space to be declared with areas of different sizes. However, unexpected
behavior may occur, depending on the compiler that differs in the way the bits overlap among members.
If union is going to be used, follow rule (2).

[Related	rule]	R2.1.3

115

ESCR C++

Maintainability M1● Keep in mind that others will read the program

	
	

M1

M
aintainability

M1.7 Do not reuse names.

The following rules shall be followed to ensure name uniqueness:
1. An identifier declared in an inner scope shall not hide an indentifier

declared in an outer scope.
2. A typedef name (including qualification, if any) shall be a unique

identifier.
3. A tag name, union name or enumeration name (including qualifi-

cation, if any) shall all be a unique identifier.
4. No object or function identifier with static storage duration should

be reused.
5. No identifier in one category should have the same spelling as an

identifier in another category.

M1.7.1 Preference
guide ○

Rule
specification

The program will become easier to read by using unique names within the program, except for cases
like automatic variables where the scope is limited and cases like polymorphism where the name is
redefined.
In C++ language, in addition to the scope defined by file and block, names are classified into the fol-
lowing three categories:
1. Label
2. Class name, union name, enumeration name
3. Other identifiers
Note, however, that for rule 2 above, there is a restriction that all type names must be different, except
for cases where the same type is defined. See below for examples:
(Excerpts from Annex C, C.1.6, ISO/IEC 14882:2011.)

 typedef struct name1 { /*…*/ } name1; // valid C and C++

 struct name { /*…*/ };

 typedef int name; // valid C, invalid C++

The language specification allows assigning the same name to identifiers in different categories, but
the objective of the above rules is to improve the readability of the program by restricting the reuse of
same names.

[Related	rule]	M4.3.1

116 Part 2　Coding Practices for Embedded Software: Practices Chart

ESCR C++

	
	

M1

M
aintainability

Names of functions, variables and macros in the standard li-
brary shall not be redefined or reused. In addition, these mac-
ro names shall not be undefined.

M1.7.2 Preference
guide ○

Rule
specification

Compliant example

#include <string.h>
void *my_memcpy(void *arg1, const void

*arg2, size_t size) {
 …
}

Non-compliant example

#undef NULL
#define NULL ((void *)0)

#include <string.h>
void *memcpy(void *arg1, const void *arg2,

size_t size) {
 …
}

Redefining the names of functions, variables and macros defined in the standard library degrades the
readability of the program.

[Related	rules]	M1.7.3 M4.3.1

Names (variables) that start with an underscore shall not be
defined.

M1.7.3 Preference
guide ○

Rule
specification

Compliant example

̶

Non-compliant example

int _Max1; // Reserved.
int __max2; // Reserved.
int _max3; // Reserved.

struct S {
 int _mem1; // Not reserved, but shall not

// be used.
};

In the language standard, the following names are defined as reserved:
(1) Name that starts with an underscore and is followed by either an upper case letter or another un-

derscore;
Examples: _Abc, __abc

(2) All names that start with an underscore;
These names are reserved for variables and functions with file scope as well as for tags.

117

ESCR C++

Maintainability M1● Keep in mind that others will read the program

	
	

M1

M
aintainability

When the reserved names are redefined, the behavior of the compiler will not be guaranteed.
Names that start with an underscore and are followed by a lower case letter are actually not reserved
for use outside the file scope. But to set a rule that is easy to remember, the current rule is defined
to restrict the use of all names starting with an underscore.

[Related	rules]	M1.7.2 M4.3.1

M1.8
 Do not use language specifications that are likely to cause
misunderstanding.

The right-hand operand of a logical && or || operator shall not
contain side effects.

M1.8.1 Preference
guide

Rule
specification

Compliant example

a = *p;
p++;
// p has been counted up regardless of the
// content pointed by p.
if ((MIN < a) && (a < MAX)) {
 ...
}

volatile int *io_port = ... ; // Address for
// memory mapped
// I/O

int io_result = *io_port;
 // I/O is processed, regardless of the
// conditions of the if statement.
if ((x != 0) && (io_result > 0)) {
 ...
}

Non-compliant example

// Whether p is counted up or not depends on
// whether the content pointed by p is
// smaller than MIN or greater than or equal
// to MIN.
if ((MIN < *p) && (*p++ < MAX)) {
 ...
}

volatile int *io_port = ... ; // Address for
// memory
// mapped I/O

 // Whether I/O is processed or not varies,
// depending on the conditions of the if
// statement.
if ((x != 0) && (*io_port > 0)) {
 ...
}

The right-hand side of && or || operators may not be executed, depending on the result of the condition
of their left-hand side. Take, for example, an expression with a side effect of incrementing. It this ex-
pression is written on the right-hand side, whether the increment is executed or not will be difficult to
understand, because it depends on the condition of the left-hand side. Therefore, expressions with side
effects shall not be described on the right-hand side of && or || operators.

[Related	rules]	R3.6.1 R3.6.2

118 Part 2　Coding Practices for Embedded Software: Practices Chart

ESCR C++

	
	

M1

M
aintainability

(1) Macros shall only expand to a braced initializer, a constant, a pa-
renthesized expression, a type qualifier, a storage class specifier,
or a do-while-zero construct.

(2) Macros shall only expand to a guard for prevention of redundant
inclusion of the header file, a type qualifier, or a storage class
specifier.

M1.8.2 Preference
guide

Rule
specification Choose

Compliant example

Compliant example of (1)
#define START 0x0410
#define STOP 0x0401

Compliant example of (2)
#ifndef MYHEADER_H
#define MYHEADER_H

Non-compliant example

#define BIGIN {
#define END }
#define LOOP_STAT for (; ;) {
#define LOOP_END }

Macro definitions can be leveraged to make the code look like it is written in a language other than C++,
or greatly reduce the amount of code. However, using macros for such purposes will degrade readability.
The use of macros, therefore, should be limited to only where coding and modification errors can be
prevented.
For do-while-zero, see MISRA C:2004.

#line shall not be used, unless it is automatically generated
by a tool.

M1.8.3 Preference
guide

Rule
specification

#line serves as the means to intentionally modify file names or line numbers of warning or error mes-
sages output from the compiler. It is provided under the assumption that code is generated by tools, and
is not intended to be used directly by the programmers.

119

ESCR C++

Maintainability M1● Keep in mind that others will read the program

	
	

M1

M
aintainability

s Sequences of three or more characters starting with ?? and
alternative tokens shall not be used.

M1.8.4 Preference
guide

Rule
specification

Compliant example

s = "abc\?\?(x)";

Non-compliant example

s = "abc??(x)"; // Compilers that can process
// trigraph sequences
// interpret this as “abc(x)”.

C++ language standard defines trigraph sequences and alternative tokens, assuming that there may be
cases where some characters cannot be used for coding, depending on the environment used for devel-
opment.
The following nine three-character patterns, known as trigraph sequences:
??= ??(??/ ??) ??’ ??< ??! ??> ??-
can be replaced respectively with the following corresponding single-character counterparts at the be-
ginning of the preprocessor:
[\] ˆ { | } ~
The following character patterns that are defined as alternative tokens:
<% %> <: :> %: %:%: and bitor or xor compl
bitand and_eq or_eq xor_eq not not_eq
are treated respectively as equivalent of the following corresponding character patterns:
{ } [] # ## && | || ˆ ~
& &= |= ˆ= ! !=
Since trigraph sequences and alternative tokens are not frequently used, many compilers support them
as an optional feature.

A sequence starting with zero (0) that is two or more digits
long shall not be used as a constant.

M1.8.5 Preference
guide

Rule
specification

Compliant example

a = 0;
b = 8;
c = 100;

Non-compliant example

a = 000;
b = 010;
c = 100;

Constants starting with zero (0) are interpreted as octal. No zero (0) can be added in front of decimal
numbers to align their digits for the purpose of appearance (i.e.: zero padding is not allowed).

[Related	rule]	M1.2.2

120 Part 2　Coding Practices for Embedded Software: Practices Chart

ESCR C++

	
	

M1

M
aintainability

s && || , (comma) and & operators shall not be overloaded.
M1.8.6 Preference

guide ●

Rule
specification

Compliant example

class C {
public:
 bool and_cc(C const &, C const &);
 // Compliant:
 …
};

C c;
and_cc(c, func()); // func is always called.

Non-compliant example

class C {
public:
 bool operator &&(C const &, C const &);
 // Non-compliant:
 …
};

C c;
c && func(); // There are times when func

// is not called.

When overloading an operator, be sure to maintain the meaning of the operator defined in the program-
ming language (== operator is for equality, + operator is for addition, and so on).
C++ language specification defines that short-circuit evaluation shall be executed on the right-hand side
of && and || (meaning that it may not be executed depending on the left-hand value) and that for , , the
operands shall be evaluated in the order of left-hand to right-hand side. But because the behavior of the
overloaded operator is defined as a function, it is difficult to meet the requirement to evaluate in left-to-
right order. At the same time, if & which is an operator that seeks for the object address is overloaded,
the function that will be called will vary, depending on whether the type is undefined or not.

【Reference material for those wanting to know more in detail about this rule】
● C++ Coding Standards Item 30

121

ESCR C++

Maintainability M1● Keep in mind that others will read the program

	
	

M1

M
aintainability

s explicit specifier shall be used for conversion function.
M1.8.7 Preference

guide ●

Rule
specification

Compliant example

class C {
public:
 explict operator int() { ... } // Compliant:
 … // explicit specifier
 // is used.
};
C c:
int x = c; // Compile error willoccur.
int y = int(c); // Compile error will not

// occur.

Non-compliant example

class C {
public:
 operator int() { ... } // Non-compliant:
 … // explicit specifier
 // is not used.
};
C c:
int x = c; // Conversion function (operator

// int) is called implicitly.

Conversion function may be called implicitly in the code where type conversion is necessary. By using
explicit specifier that has been additionally introduced in C++11 in the code where conversion function
is implicitly called, error can be processed when the code is compiled. Since the type conversion will
be explicitly written, the readability of the code will improve. explicit specifier cannot be used if the
compiler in use does not support C++11. In that case, there would be a need to define the conversion
function and call it explicitly to prevent the implicit conversion when type conversion is written.

Example: class C {

 public:

 int as_int() {…} // Function that performs conversion

 }

 C c;

 int x = C.as_int();

【Reference materials for those wanting to know more in detail about this rule】
● More Effective C++ Item 5 (In case of using C++03)

[Related	rules]	M1.8.8 E1.1.7

122 Part 2　Coding Practices for Embedded Software: Practices Chart

ESCR C++

	
	

M1

M
aintainability

s Single-parameter constructor shall have an explicit specifier.
M1.8.8 Preference

guide ○

Rule
specification

Compliant example

class C {
public:
 explicit C(int n) { // Compliant:explicit

// specifier
 …
 }
 …
};

void func1(const X &x) { … }
void func2(void) {
 C x(0);
 func1(x); // Compile OK
 func1(0); // Compile error
}

Non-compliant example

class C {
public:
 C(int n) { // Non-compliant:Single-

// parameter constructor
// without specifier

 …
 }
 …
};

void func1(const X &x) { … }
void func2(void) {
 func1(0); // Constructor "C::C(int)" is

// implicitly called.

}

Single-parameter constructor may be called implicitly at where type conversion is necessary. When the
constructor has an explicit specifier, the description to call the constructor implicitly can be handled
as a compile error. And since the constructor call is explicitly described, the readability will improve.

【Reference material for those wanting to know more in detail about this rule】
● More Effective C++ Item 5

[Related	rules]	M1.8.7 E1.1.7

123

ESCR C++

Maintainability M1● Keep in mind that others will read the program

	
	

M1

M
aintainability

M1.9 When writing in an unconventional style, explicitly state its intention.

If statements that do nothing need to be intentionally de-
scribed, comments or empty macros shall be used to make
them noticeable.

M1.9.1 Preference
guide ○

Rule
specification

Compliant example

for (;;) {
 // Waiting for interrupt.
}

#define NO_STATEMENT
i = COUNT;
while ((--i) > 0) {
 NO_STATEMENT;
}

Non-compliant example

for (;;) {
}

i = COUNT;
while ((--i) > 0);

[Related	rule]	M1.1.1

《The unified style of writing infinite loops shall be defined.》
M1.9.2 Preference

guide ○

Rule
specification Define

Define the unified style of writing infinite loops by selecting from one of the following:
● Write the infinite loops uniformly as for(;;);.
● Write the infinite loops uniformly as while(1);.
● Use the macro defined for the infinite loop.

124 Part 2　Coding Practices for Embedded Software: Practices Chart

ESCR C++

	
	

M1

M
aintainability

M1.10 Do not embed magic numbers.

A meaningful constant shall be used after defining it as a con-
stant with a name.

M1.10.1 Preference
guide ○

Rule
specification

Compliant example

(1)Compliant example when const is used
const int MAXCNT = 8;
if (cnt == MAXCNT) { // Compliant: const

// qualifier is used.

(2)Compliant example when constexpr is used
constexpr int MAXCNT = 8;
if (cnt == MAXCNT) { // Compliant: constexpr

// qualifier is used.

Non-compliant example

if (cnt == 8) { // Non-compliant: Literal is
// used.

 …

The meaning of the constant can be stated explicitly by defining it as a constant with a name. In addition,
when modifying a program where the same constant is used in multiple places, modification errors can
be prevented much more easily if this same constant is defined with a name, because then, there will
only be a need to modify the definition of one constant. The constant with a name is defined by using
const qualifier or enumeration type (enum). Macro can also provide the same effect as constant with
a name, but it is better to use constant with a name rather than macro. For one reason, constant with a
name can have a scope, whereas macro cannot. Furthermore, constant with a name defined by const or
enum can be referenced at the time of symbolic debugging unlike the macro name, and therefore makes
debugging easier.
C++11 and later versions of C++ language standards allow the constant to be defined by constexpr
qualifier when the code is compiled. Therefore, use constexpr qualifier to define the constant with a
name when using a compiler that supports C++11 and later versions of C++ language standards.
However, for referencing the data size, use sizeof instead of constant with a name.

[Related	rule]	M2.2.4

125

ESCR C++

Maintainability M1● Keep in mind that others will read the program

	
	

M1

M
aintainability

M1.11 Explicitly state the area attributes.

Read-only areas shall be declared as const type.
M1.11.1 Preference

guide ○

Rule
specification

Compliant example

const volatile int read_only_mem;
 // Read-only memory.
const int constant_data = 10;
 // Read-only data that does not require

// memory allocation.
void func(const char *arg, int n) {
 // Only reads the contents pointed by arg.
 int i;
 for (i = 0; i < n; i++) {
 put(*arg++);
 }
}
void CLS::func(const char *arg, int n) const {
 // Data members are not updated.
 …
}

Non-compliant example

int read_only_mem; // Read-only memory.
int constant_data = 10; // Read-only data

// that does not
// require memory
// allocation.

void func(char *arg, int n) { // Only reads
// the contents
// pointed by
// arg.

 int i;
 for (i = 0; i < n; i++) {
 put(*arg++);
 }
}
void CLS::func(char *arg, int n) {
 // Data members are not updated.
 …
}

Variables that are only referenced and not modified can be indicated clearly that they must not be mod-
ified by declaring them with const type. In addition, the object code size may become smaller through
optimization by the compiler. Therefore, read-only variables should be declared with const type. Mem-
ories that are only referenced by a particular program and modified by other execution units should be
declared with const volatile type, so that the compiler can detect the error caused by this program when
it updates them by mistake.
Furthermore, declaration with const allows the function interfaces to be explicitly stated, when the area
indicated by the parameter is only referenced in function processing, or when member function only
reference the data members.

126 Part 2　Coding Practices for Embedded Software: Practices Chart

ESCR C++

	
	

M1

M
aintainability

Areas that may be updated by other execution units shall be
declared as volatile.

M1.11.2 Preference
guide ○

Rule
specification

Compliant example

volatile int x = 1;
while (x == 1) {
 // x is not modified within the loop and is
// modified by other execution units.

}

Non-compliant example

int x = 1;
while (x == 1) {
 // x is not modified within the loop and is
// modified by other execution units.

}

Areas qualified as volatile prohibit the compiler from optimizing them. Prohibition of optimization
means that executable object is generated strictly to every description, including even those considered
logically as unnecessary of processing. Suppose there is a description x; that has no meaning logically
except for only referencing variable x. If it is not qualified as volatile, the compiler will normally
ignore such statement and will not generate an executable object. Whereas, if it is qualified as vol-
atile, the compiler will generate an executable object that only references variable x (loads it to the
register). This description can be assumed to have meaning in indicating the interface to IO registers
(mapped to the memory) that are reset when the memory is read. Embedded software has IO registers
for controlling hardware, that should be qualified as volatile when considered appropriate, based on
their characteristics.

《Rules for variable declaration and definition for ROMization
shall be defined.》

M1.11.3 Preference
guide

Rule
specification Define

Compliant example

constexpr int x = 100; // Allocate to ROM.

Non-compliant example

int x = 100;

Variables qualified as constexpr can be allocated to ROMization target areas. For example, when de-
veloping a program where ROMization is applied, qualify the read-only variables as constexpr, and
specify the name of the section to which these variables are allocated by, such as, #pragma.
In case of using C++03, const qualification shall be used.

127

ESCR C++

Maintainability M1● Keep in mind that others will read the program

	
	

M1

M
aintainability

M1.12 Correctly describe the statements even if they are not compiled.

Correct code shall be described even if it is going to be delet-
ed by the preprocessor.

M1.12.1 Preference
guide

Rule
specification

Compliant example

#if 0
 //
endif

#if 0
 …
#else
 int var;
#endif

#if 0
 // I don't know
#endif

Non-compliant example

#if 0
 /*
endif

#if 0
 …
#else1
 int var;
#endif

#if 0
 I don't know
#endif

[Related	rule]	M1.1.2

128 Part 2　Coding Practices for Embedded Software: Practices Chart

ESCR C++

	
	

M2

M
aintainability

Write in a style that can prevent
modification errors.

Maintainability

M2
One of the patterns that allows bugs to slip into a program easily is when other bugs
are	created	by	mistake	while	fixing	detected	bugs.	Especially	 if	 it	has	been	a	while	
since	the	source	code	was	written	or	if	an	engineer	other	than	the	creator	modifies	the	
source code, unexpected misunderstanding may occur.
Efforts	to	reduce	such	modification	errors	as	much	as	possible	are	strongly	desired.

Maintainability M2.1 	 Clarify the grouping of structured data and blocks.

Maintainability M2.2 	 Localize access ranges and related data.

Maintainability M2.3 	 Commonalize the code used to do the same process.

129

ESCR C++

Maintainability M2● Write in a style that can prevent modification errors

	
	

M2

M
aintainability

M2.1 Clarify the grouping of structured data and blocks.

If arrays and structures are initialized with values other than 0, their
structural form shall be indicated by using braces ‘{ }’. Data shall
be described without any omission, except when all values are 0.

M2.1.1 Preference
guide ○

Rule
specification

Compliant example

int arr1[2][3] = {{0, 1, 2}, {3, 4, 5}};
int arr2[3] = {1, 1, 0};

Non-compliant example

int arr1[2][3] = {0, 1, 2, 3, 4, 5};
int arr2[3] = {1, 1};

In initialization of arrays and structures, at least a pair of braces ‘{ }’ is required, but in this case, it is
difficult to see how the initial values are assigned. Therefore, create blocks according to the structure,
and fully describe the initial values without omitting any.

[Related	rule]	M4.5.3

The body of if, else if, else, while, do, for, and switch
statements shall be enclosed into blocks.

M2.1.2 Preference
guide

Rule
specification

適合例

if (x == 1) {
func();

}

Non-compliant example

if (x == 1)
func();

If there is only one statement that is controlled by, such as, an if statement, there is no need to enclose
this statement into a block. However, when the program is modified and this single statement is changed
into multiple statements, there is a possibility of forgetting to enclose these multiple statements into a
block. To prevent such modification errors, enclose the body of each controlled statement into a block.

130 Part 2　Coding Practices for Embedded Software: Practices Chart

ESCR C++

	
	

M2

M
aintainability

M2.2 Localize access ranges and related data.

Variables used only in one function shall be declared within
the function.

M2.2.1 Preference
guide ●

Rule
specification

Compliant example

void func1(void) {
 static int x = 0;
 if (x != 0) { // Refer to the value in the

// immediately preceding
// call.

 x++;
 }
 …
}
void func2(void) {
 int y = 0; // Initialize each time.
 …
}

Non-compliant example

int x = 0; // x is accessed only from
func1.
int y = 0; // y is accessed only from
func2.
void func1(void) {
 if (x != 0) { // Refer to the value in the

// immediately preceding
// call.

 x++;
 }
 …
}
void func2(void) {
 y = 0; // Initialize each time.
 …
}

To declare variables in functions, it is sometimes effective to declare them with static storage class
specifiers. The following positive effects can be expected by using static storage class specifiers:

● Static memory space is reserved and this space remains valid until the end of the program. (Gen-
erally without the static storage class specifier, stack memory is used and remains valid until the
end of the function.)

● Initialization occurs only once after starting the program, and when a function is called more than
once, the value assigned in the immediately preceding call is retained.

Therefore, among the variables accessed only within a function, the variables with values that are re-
tained even after the function terminates should be declared with static storage class specifiers.
In addition, declaring a large memory space for an automatic variable may cause stack overflow. When
there is such risk, one preventive measure is to use the static storage class specifier to reserve static
memory space even if the values do not need to be retained after the function terminates. However,
when using the static storage class specifier for such purpose, its intention should be explicitly stated
by, such as, comments (to prevent potential misunderstanding that the static storage class specifier has
been used by mistake).

[Related	rule]	M2.2.2

131

ESCR C++

Maintainability M2● Write in a style that can prevent modification errors

	
	

M2

M
aintainability

Variables accessed by several functions defined in the same file shall
be declared by either one of the following methods so that they will
become inaccessible from other files:
(1) By declaring these variables outside of function, using the static

storage class specifiers;
(2) By declaring these variables in unnamed namespace.

M2.2.2 Preference
guide ○

Rule
specification Choose

Compliant example

Compliant example of (1)
// x is not accessed from other files.
static int x;
void func1() {
 …
 x = 0;
 …
}
void func2() {
 …
 if (x == 0) {
 x++;
 }
 …
}

Compliant example of (2)
// x is not accessed from other files.
namespace {
 int x; // Compliant: It cannot be accessed

// from other files because it is
// declared by using the unnamed
// namespace.

}
void func1() {
 …
 x = 0;
 …
}

void func2() {
 …
 if (x == 0) {
 x++;
 }
 …
}

Non-compliant example

// x is not accessed from other files.
int x; // Non-compliant:x can be accessed

// from other files.
void func1() {
 …
 x = 0;
 …
}
void func2() {
 …
 if (x == 0) {
 x++;
 }
 …
}

The fewer the global variables, the higher the readability of the entire program becomes. To prevent the
number of global variables from increasing, either declare the local variables with static storage class
specifiers or declare them in unnamed namespace.

[Related	rules]	M2.2.1 M2.2.3

132 Part 2　Coding Practices for Embedded Software: Practices Chart

ESCR C++

	
	

M2

M
aintainability

Functions called from only the functions defined in the same file
shall be declared by either one of the following methods so that they
will not be called from other files:
(1) By declaring these functions as static functions;
(2) By declaring these functions in unnamed namespace.

M2.2.3 Preference
guide ○

Rule
specification Choose

Compliant example

Compliant example of (1)
 // func1 is not called from functions in
// other files.
static void func1(void) {
 …
}
void func2() {
 func1();
}

Compliant example of (2)
 // func1 is not called from functions in
// other files.
namespace {
 void func1 (void);
 // Compliant: It cannot be accessed from
// other files because it is declared by
// using the unnamed namespace.
}
void func2() {
 …
 func1();
 …
}

Non-compliant example

 // func1 is not called from functions in
// other files.
void func1(void) {
 // Non-compliant: func1 can be called from
// functions in other files.
 …
}
void func2() {
 …
 func1();
 …
}

The fewer the global functions, the higher the readability of the entire program becomes. To prevent the
number of global functions from increasing, either declare the local functions with static storage class
specifiers or declare them in unnamed namespace.

[Related	rule]	M2.2.2

133

ESCR C++

Maintainability M2● Write in a style that can prevent modification errors

	
	

M2

M
aintainability

enum shall be used when defining related constants.
M2.2.4 Preference

guide

Rule
specification

Compliant example

enum ecounty {
 ENGLAND, FRANCE, …
};
enum eweek {
 SUNDAY, MONDAY, …
};

enum ecounty country;
enum eweek day;
…

if (country == ENGLAND) {
if (day == MONDAY) {
if (country == SUNDAY) { // Can be checked

// with tool.
// country = SUNDAY; will be a compile error.

Non-compliant example

const int ENGLAND = 0;
const int FRANCE = 1;
const int SUNDAY = 0;
const int MONDAY = 1;
int country, day;
…
if (country == ENGLAND) {
if (day == MONDAY) {
if (country == SUNDAY) {

// Cannot be checked with tool.
country = SUNDAY ; // country = SUNDAY; will

// not be a compile error.

To define the constants that are related like a set, use the enumeration type. By defining related constants
as enum type, and using this type instead of #define, const qualifier or constexpr qualifier, the use of
incorrect values can be prevented.
Moreover, enum constants defined by enum declaration will be the names processed by the compiler. The
names processed by the compiler are easier to debug, because they can be referenced during symbolic
debugging.
By using enum class or enum struct that have been added in C++11, name conflict can be prevented
since the enumerator will be included in the scope of enum class (struct). Mistakes can also be pre-
vented because the compiler will process the comparison of enumerators with different enum type as an
error.

[Related	rules]	M1.10.1 P1.3.2

134 Part 2　Coding Practices for Embedded Software: Practices Chart

ESCR C++

	
	

M2

M
aintainability

Data members shall be private.
M2.2.5 Preference

guide ○

Rule
specification

Compliant example

class CLS {
public:
 CLS() : i(10) { }

 void setValue(int x) {i = x;}
 int getValue() {return i:}
 …
private:
 int i; // Compliant:Data members are

// private.
;

int main() {
 CLS c;
 c.setValue(30); // Data members cannot be

// accessed directly from
// outside.

}

Non-compliant example

class CLS {
public:
 CLS() : i (10) { }

 int i; // Non-compliant:Data members are
// public.

};

int main() {
 CLS c;
 c.i = 30; // Data members can be accessed

// directly from outside.

}

Specify the data members as private to prevent them from being changed directly from outside. By
doing so, when the class is expanded or changes are made to the class, the scope of impact of such
expansion or changes can be limited to within the class, and the maintainability of the code can be im-
proved. For the same reason, do not make the pointer of a data member specified as private, the return
value of the member function, without const-qualifying it.
As an exception, design the program carefully if the resources are going to be open to the public, due to
such reasons as compatibility with other systems.

【Reference material for those wanting to know more in detail about this rule】
● C++ Coding Standards Item 42

135

ESCR C++

Maintainability M2● Write in a style that can prevent modification errors

	
	

M2

M
aintainability

M2.3 Commonalize the code used to do the same process.

A constructor shall be used for object initialization processed
in the same way.

M2.3.1 Preference
guide ○

Rule
specification

Compliant example

class C {
private:
 int x;
public:
 // Compliant: One constructor is used to

// do the same processes.
 C() : C(0) {}
 C(int v) {
 x = f(v);
 }
 …
};

Non-compliant example

class C {
private:
 int x;
public:
 // Non-compliant: Multiple constructors

// are used to do the same processes.
 C() {
 x = f(0);
 }
 C(int v) {
 x = f(v);
 }
 …
};

When a code used to do the same process exists in multiple locations and there is a need to correct the
process of that code, there is a risk of inconsistency being caused by correcting the process of that code
in only some locations and failing to correct the process of that code in other locations. This problem
can be prevented by commonalzing the code used to do the same process. In C++11, a feature to call
a different constructor from a constructor (delegating constructor) has been added. By using this new
feature, the same initialization process can be grouped together without preparing a separate initializa-
tion function.

[Related	rule]	R1.4.1

136 Part 2　Coding Practices for Embedded Software: Practices Chart

ESCR C++

	
	

M3

M
aintainability

Write programs simply.
Maintainability

M3
From	the	standpoint	of	software	maintainability,	there	is	 just	no	better	software	than	
those created from simply written programs.

C++ language enables the structuring of software by, such as, dividing the program
into	separate	source	files	and	functions.	Structured	programming	that	represents	pro-
gram structure through three forms: sequence, selection and repetition, is also one of
the applicable techniques to write simple software programs. Writing simple software
descriptions through effective use of software structuring is strongly desired. Moreover,
particular attention should also be given to writing styles applied to describe, such as,
iteration processing, assignment and operations, as some may make the program
difficult	to	maintain.

Maintainability M3.1 	 Do structured programming.

Maintainability M3.2 	 Limit the number of side effects per statement to one.

Maintainability M3.3 	 Write expressions that differ in purpose separately.

Maintainability M3.4 	 Do not use complicated pointer operation.

Maintainability M3.5 	 Do not use complicated class structure.

137

ESCR C++

Maintainability M3● Write programs simply

	
	

M3

M
aintainability

M3.1 Do structured programming.

For any iteration statement, there shall be at most one break
statement or goto statement used for loop termination.

M3.1.1 Preference
guide

Rule
specification

Compliant example

Compliant example of (1)
for (i = 0; Loop iteration condition; i++) {
 Iterated processing 1;
 if (Termination condition 1 || Termination

condition 2) {
 break;
 }
 Iterated processing 2;
}

Compliant example of (2)
end = 0;
for (i = 0; Loop iteration condition &&
!end; i++) {
 Iterated processing 1;
 if (Termination condition 1 || Termination

condition 2) {
 end = 1;
 } else {
 Iterated processing 2;
 }
}

Non-compliant example

for (i = 0; Loop iteration condition; i++) {
 Iterated processing 1;
 if (Termination condition 1) {
 break;
 }
 if (Termination condition 2) {
 break;
 }
 Iterated processing 2;
}

These rules are to help improve the readability of the logical structure of the program. When a flag be-
comes necessary only for eliminating the break statement, sometimes it is better not to prepare the flag,
but rather to use a break statement. (Be careful, however, when using an end flag like in the case shown
above as Compliant example of (2), because it may impair the readability of the program.)

138 Part 2　Coding Practices for Embedded Software: Practices Chart

ESCR C++

	
	

M3

M
aintainability

(1) The goto statement shall not be used.
(2) When using a goto statement, the destination to jump to shall be

the label declared after the goto statement that is within the block
enclosing the goto statement.

M3.1.2 Preference
guide

Rule
specification Choose

Compliant example

Compliant example of (1), (2)
for (i = 0; Loop iteration condition; i++) {
 Iterated processing; // goto is not

// included.
}

Compliant example of (2)
{
 if (err != 0) {
 goto ERR_RET;
 }
…
ERR_RET:
 end_proc();
 return err;
}

Non-compliant example

Non-compliant example of (1), (2)
 i = 0;
LOOP:
 Iterated processing ;
 i++;
 if (Loop iteration condition) {
 goto LOOP;
 }

These rules are to help improve the readability of the logical structure of the program. The purpose is not to
eliminate all the goto statements. The important point is to eliminate unnecessary goto statements to prevent
the readability of the program from being impaired (i.e., not being able to read it straightforwardly from top to
bottom). In some cases, the readability can actually be improved by writing goto statements. Therefore, when
programming, keep in mind how simply the logic can be expressed.
For example, goto statement can be useful to make the program simple, such as, when it is used to jump
to error processing or exit from multiple loops.

*M3.1.3 is deleted and vacant. (see the table in Appendix)

139

ESCR C++

Maintainability M3● Write programs simply

	
	

M3

M
aintainability

(1) Each case clause and default clause in a switch statement
shall always end with a break statement.

(2) If a case clause or default clause in a switch statement is not
going to be ended with a break statement, 《a project-specific
comment shall be defined》and that comment shall instead be
inserted.

M3.1.4 Preference
guide ○

Rule
specification

Choose/
Define

Compliant example

Compliant example of (1), (2)
switch (week) {
case A :
 code = MON;
 break;
case B :
 code = TUE;
 break;
case C :
 code = WED;
 break;
default:
 code = ELSE;
 break;
}

Compliant example of (2)
dd = 0;
switch (status) {
case A :
 dd++;
 // FALL THROUGH
case B :

Non-compliant example

Non-compliant example of (1), (2)
 // No matter what the value of week is, the
// code will be ELSE.
// ==> Bug
switch (week) {
case A :
 code = MON;
case B :
 code = TUE;
case C :
 code = WED;
default:
 code = ELSE;
}
 // This is a case where processing of case B
// can be continued after dd++, but it is
// non-compliant not only to (1) but also to
// (2) because there is no comment.
dd = 0;
switch (status) {
case A :
 dd++;
case B :

One of the typical examples of coding error is caused by forgetting to write the break statement in a
switch statement. To prevent it, avoid writing a case statement without the break statement unnec-
essarily. If the code is intended to continue processing to the next case without the break statement,
always insert a comment to explicitly indicate that the absence of the break statement is not a problem.
Define what kind of comment to insert in such case in the coding convention. As one example, // FALL
THROUGH is a comment that is frequently used.

[Related	rule]	R3.5.2

(1) A function shall end with one return statement.
(2) A return statement to return in the middle of processing shall be

written only in case of recovery from abnormality.

M3.1.5 Preference
guide

Rule
specification Choose

These rules are to help improve the readability of the program logic. When a program has many entry
or exit points, they will not only impair the readability of the program, but also increase the number of
break points for debugging.

140 Part 2　Coding Practices for Embedded Software: Practices Chart

ESCR C++

	
	

M3

M
aintainability

M3.2 Limit the number of side effects per statement to one.

(1) Comma expressions shall not be used.
(2) Comma expressions shall not be used, other than in expressions

for initializing or updating in for statements.

M3.2.1 Preference
guide

Rule
specification Choose

Compliant example

Compliant example of (1), (2)
a = 1;
b = 1;

j = 10;
for (i = 0; i < 10; i++) {
 …
 j--;
}

Compliant example of (2)
for (i = 0, j = 10; i < 10; i++, j--) {
 …
}

Non-compliant example

Non-compliant example of (1), (2)
a = 1, b = 1;

Non-compliant example of (1)
for (i = 0, j = 10; i < 10; i++, j--) {
 …
}

In general, the use of comma expressions impairs readability. However, the readability may sometimes
improve by using comma expressions to bind all the pre-loop operations as one set and all the loop-end
operations as another set, and placing them respectively in expressions for initializing and updating in
for statements.

[Related	rule]	M3.3.1

141

ESCR C++

Maintainability M3● Write programs simply

	
	

M3

M
aintainability

Multiple assignments shall not be written in one statement,
except when the same value is assigned to multiple variables.

M3.2.2 Preference
guide ○

Rule
specification

Compliant example

x = y = 0;

Non-compliant example

y = (x += 1) + 2;
y = (a++) + (b++);

Assignments include the compound assignments (+= -=, etc) beside the simple assignment (=). Multiple
assignments may be written in one statement, but since they impair readability, one statement should contain
only one assignment.
However, “commonly used conventional descriptions” shown below do not impair readability in many
cases. They may be treated as exceptions of this rule.
c = *p++;
*p++ = *q++;

M3.3 Write expressions that differ in purpose separately.

The three expressions of a for statement shall be concerned
only with loop control.

M3.3.1 Preference
guide

Rule
specification

Compliant example

for (i = 0; i < MAX; i++) {
 …
 j++;
}

Non-compliant example

for (i = 0; i < MAX; i++, j++) {
 …
}

[Related	rules]	M3.2.1 M3.3.2

142 Part 2　Coding Practices for Embedded Software: Practices Chart

ESCR C++

	
	

M3

M
aintainability

Numeric variables being used within a for loop for iteration
counting shall not be modified in the body of the loop.

M3.3.2 Preference
guide

Rule
specification

Compliant example

for (i = 0; i < MAX; i++) {
 …
}

Non-compliant example

for (i = 0; i < MAX;) {
 …
 i++;
}

[Related	rule]	M3.3.1

(1) Assignment operators shall not be used in expressions to exam-
ine true or false.

(2) Assignment operators shall not be used in expressions to exam-
ine true or false, except for conventionally used notations.

M3.3.3 Preference
guide

Rule
specification Choose

Compliant example

Compliant example of (1), (2)
p = top_p;
if (p != NULL) {
 …
}

Compliant example of (1)
c = *p++;
while (c != '\0') {
 …
 c = *p++;
}

Non-compliant example

Non-compliant example of (1), (2)
if (p = top_p) {
 …
}

Non-compliant example of (1)
while (c = *p++) {
 …
}
Since this is an expression used
conventionally, it is compliant to (2).
(However, be careful of its usage, because
its readability depends on the programmer’s
coding skills.)

The expressions for evaluating true or false are as follows:
if (expression) for (; expression ;) while (expression)

(expression) ? : expression && expression expression || expression

143

ESCR C++

Maintainability M3● Write programs simply

	
	

M3

M
aintainability

M3.4 Do not use complicated pointer operation.

Three or more pointer indirections shall not be used.
M3.4.1 Preference

guide

Rule
specification

Compliant example

int **p;
typedef char **strptr_t;
strptr_t q;

Non-compliant example

int ***p;
typedef char **strptr_t;
strptr_t *q;

Since it is difficult to understand the changes in the pointer values in three or more levels, multiple
pointer indirections impair maintainability.

M3.5 Do not use complicated class structure.

Virtual inheritance and non-virtual inheritance shall not be
mixed in an accessible base class in the same hierarchical
structure.

M3.5.1 Preference
guide ○

Rule
specification

Compliant example

class Base { … };
class D1 : public virtual Base { … };
class D2 : public virtual Base { … };
class D3 : public virtual Base { … };
class DD : D1, D2, D3 { … }
 // Compliant:D1, D2, D3 are all

// virtually inherited from Base.

Non-compliant example

class Base { … };
class D1 : public virtual Base { … };
class D2 : public virtual Base { … };
class D3 : public Base { … };
 // Non-virtual inheritance.
class DD : public D1, D2, D3 { … }
 // Non-compliant:D1 and D2 are virtually

// inherited, but D3 is non-virtually
// inherited.

When virtual inheritance and non-virtual inheritance are mixed in a declaration, the behavior will be
based on non-virtual inheritance. For example, if classes D1, D2 and D3 are inherited from the same
base class, where inheritance of classes D1 and D2 are virtual while the inheritance of class D3 is
non-virtual, D1 and D2 will contain the data members of the same base class, whereas D3 will contain
the data members of a different base class. Avoid creating such complicated structure that is difficult to
understand.

Base

D1 D2

DD

D3

Base

[Related	rule]	E1.1.9

144 Part 2　Coding Practices for Embedded Software: Practices Chart

ESCR C++

	
	

M4

M
aintainability

Write in a unified style.
Maintainability

M4
Recently, developing programs under the shared efforts of multiple programmers has
become	a	widely	accepted	approach	in	software	projects.	If	these	programmers	apply	
different coding styles to write their assigned portion of the source code, the reviewers
or	other	programmers	may	later	face	difficulty	checking	what	each	programmer	has	
written.	Moreover,	if	the	naming	of	variables,	information	to	be	described	in	a	file,	and	
the order to describe the information, among others, are not uniform, unexpected mis-
understanding or errors may arise from such inconsistencies. This is why writing the
source	code	as	much	as	possible	according	to	a	unified	coding	style	in	a	single	project	
or within the organization is often said to be desirable.

Maintainability M4.1 	 Unify the coding styles.

Maintainability M4.2 	 Unify the style of writing comments.

Maintainability M4.3 	 Unify the naming convention.

Maintainability M4.4 	 Unify the contents to be described in a file and the order of
describing them.

Maintainability M4.5 	 Unify the style of writing declarations.

Maintainability M4.6 	 Unify the style of writing null pointers.

Maintainability M4.7 	 Unify the style of writing preprocessor directives.

Maintainability M4.8 	 Unify the style of writing overloads.

145

ESCR C++

Maintainability M4● Write in a unified style

	
	

M4

M
aintainability

M4.1 Unify the coding styles.

《Conventions regarding the style of using, such as, the brac-
es‘{ }’, indentation and space shall be defined.》

M4.1.1 Preference
guide ○

Preference
guide Define

To make the code easier to read, it is important to unify the coding style applied in the project.
When defining a new style convention to be followed in the project, the recommended approach would
be to select from already existing coding styles. Existing coding styles have been developed from var-
ious schools, and many programmers create their programs based on any one or more of these pre-es-
tablished styles. One of the benefits of selecting from these existing coding styles is that the format can
be easily specified by the format commands available in editors and other tools. If no coding style is
clearly specified in the existing project, the recommendation would be to define a coding convention
that matches most closely with the current source code.
What is most important in deciding on the style convention is not in “deciding what kind of style” to
define, but is in “defining a unified style to be followed”.
Explained below are the set of style-related items to be defined:

1)	Position	of	braces	‘{	}’
Unify the position to place the braces ‘{ }’ so that the beginning and end of a block will become easier
to read (see Representative	styles).

2)	Indentation
Indentation makes a group of declarations and operations easier to read. For unified use of indentation,
define the following:

● Whether to use space or tab for indentation;
● If space is used, how many space characters are used for one indent? If tab is used, how many

characters are set for each tab?

3)	How	to	use	spacing
Spacing makes the code easier to read. For example, define the following rules:

● Add a space before and after a binary or ternary operator, except for the following operators:
 [], ->, . (period), , (comma operator):
● Do not add a space between a unary operator and its operand.

By applying these rules, coding errors that are attributable to compound assignment operators will be-
come easier to detect.

146 Part 2　Coding Practices for Embedded Software: Practices Chart

ESCR C++

	
	

M4

M
aintainability

 [Examples]

 x=-1; // Intended to write x-=1, but made a mistake => difficult to distinguish

 x =- 1; // Intended to write x-=1, but made a mistake => easy to distinguish

Besides those stated above, the following rules are also defined in some cases:
● Add a space after a comma (except for commas for parameters in macro definitions)
● Add a space before the left parenthesis ‘(’ enclosing control expressions in, such as, if and for. Do

not add a space before the left parenthesis ‘(’ of a function call.
This rule makes it easier to identify function calls.

Until C++98, nested template that ended with consecutive ‘>’ had to be differentiated from right-shift
operator by inserting a blank space in between ‘>’. The use of spacing in this manner is no longer man-
datory from C++11. Whether to enter a blank space in between ‘>’ should therefore be discussed in each
project and set as a local coding rule. Setting such local coding rule is also preferable in case there is a
need to consider the compatibility with the language specifications defined in C++03.

 [Example]

 list<list<int>> list0; // No blank space ⇒ Not compatible with C++03

 list<list<int> > list1; // With a blank space ⇒ Compatible with C++03

4)	Position	to	place	a	new	line	character	for	line	continuation
When an expression becomes lengthy and extends beyond the length of an easily readable line, a new
line character shall be placed at an appropriate position. In placing a new line character, the recom-
mended approach is to apply either one of the following two methods. What is important is to write the
continuation line after indenting.

 [Method	1]	Write	an	operator	at	the	end	of	the	line.
 Example:
 x = var1 + var2 + var3 + var4 +
 var5 + var6 + var7 + var8 + var9;
 if (var1 == var2 &&
 var3 == var4)

 [Method	2]	Write	an	operator	at	the	beginning	of	the	continuation	line.
 Example:
 x = var1 + var2 + var3 + var4
 + var5 + var6 + var7 + var8 + var9;
 if (var1 == var2
 && var3 == var4)

147

ESCR C++

Maintainability M4● Write in a unified style

	
	

M4

M
aintainability

●Representative	styles

1)	K&R	style
This is a coding style used in “The C Programming Language” (widely known as K&R). “K&R” used
as the acronym of this book derives from the initials of the two authors. In the K&R style, the braces
‘{ }’ and indentation are placed in the positions described below:

●Position	of	braces:	 Place the braces ‘{ }’ for function definitions at the beginning of a new line
indented to the same column as the preceding line above. Place the braces
‘{ }’ for others (including structures and control statements, such as, if, for
and while) on the same line without continuing to a new line (see Example
of K&R style).

●Indentation:														1 tab. In the first edition of “The C Programming Language”, the width of a tab
was set to 5 spaces, but in the second edition (ANSI compliant), the number of
spaces is set to 4.

2)	BSD	style
This is a description style adopted by Eric Allman who wrote many BSD utilities. It is also called the
Allman style. In the BSD style, the braces ‘{ }’ and indentation are placed in the positions described
below:

●Position	of	braces:	 Start all the function definitions, if, for and while, etc, from a newline and
place the braces ‘{ }’ at the column aligned with the beginning of the pre-
vious line (see Example of BSD style).

●Indentation:													8 spaces. 4 spaces are also common.

3)	GNU	style
This is a coding style for writing GNU packages. It is defined in “GNU Coding Standards” written by
Richard Stallman and volunteers of the GNU project. In the GNU style, the braces ‘{ }’ and indentation
are placed in the positions described below:

●Position	of	braces:	 Start all the function definitions, if, for and while, etc, from a new line. Place
the braces ‘{ }’ for function definitions at column 0, and braces ‘{ }’ for oth-
ers after indenting 2 spaces (see Example of GNU style).

●Indentation:													2 spaces. Indent 2 spaces for both the braces ‘{ }’ and their body.

148 Part 2　Coding Practices for Embedded Software: Practices Chart

ESCR C++

	
	

M4

M
aintainability

4)	Stroustrup	style		(The C++ Programming Language, 3rd ed.)
●Position	of	braces:	 Start the braces ‘{ }’ for all the function definitions from a new line, and place

them at the column aligned with the previous line. However, if the body of the
member function can be written in one line, place the braces ‘{ }’ also on the
same line without continuing to a new line. For others (including struct, class,
if, for, while, try, and catch), place the braces ‘{ }’ on the same line without
continuing to a new line.

●Indentation:	 													1 tab (4 columns). Do not indent when writing access specifiers (private, protected,
public).

(1) Example of K&R style:
void func(int arg1)
{ // Write the { of a function on a new
// line.

 // Indent is 1 tab.
 if （arg1） {
 …
 }
 …
}

(2) Example of BSD style:
void
func(int arg1)
{ // Write the { of a function on a new
// line.

 if (arg1)
 {
 …
 }
 …
}

(3) Example of GNU style:
void
func(int arg1)
{ // Write the { of a function on a new
// line at column 0.

 if (arg1)
 {
 …
 }
 …
}

(4)Example of Stroustrip style:
void func(int arg1)
{ // Write the { of a function on a new

// line.
 if (arg1) {
 …
 }
}
class CLS {
private:
 int m1;
 int m2;
public:
 CLS() { … }
 CLS(int a, int b)
 : m1(a),
 m2(b)
 { … }
 virtual void show(void) const{ … }
};

149

ESCR C++

Maintainability M4● Write in a unified style

	
	

M4

M
aintainability

C++ style casting shall be used, provided that casting to void
shall be allowed.

M4.1.2 Preference
guide

Rule
specification

Compliant example

int show(char *str);
…
double d = 3.14;
int i = static_cast<int>(d);
 // Compliant: C++ style casting.
const int *cip = &i;
int *ip = const_cast<int *>(cip);
 // Compliant: C++ style casting.
long l = reinterpret_cast<long>(ip);
 // Compliant: C++ style casting.
(void) show("abc"); // Compliant

Non-compliant example

int show(char *str);
…
double d = 3.14;
int i = (int)d;
 // Non-compliant: C style casting.
const int *cip = &i;
int *ip = (int *)cip;
 // Non-compliant: C style casting.
long l = (long)ip;
 // Non-compliant: C style casting.

C++ style casting is better for readability than C style casting because C++ style expresses the intention
of cast more clearly than C style.
However, casting to void can be used because it can state explicitly that the return value of function call
is to be ignored.

[Related	rules]	R2.7.1 R2.7.4

150 Part 2　Coding Practices for Embedded Software: Practices Chart

ESCR C++

	
	

M4

M
aintainability

M4.2 Unify the style of writing comments.

《Convention regarding the style of writing file header com-
ments, function header comments, end of line comments,
block comments and copyright shall be defined.》

M4.2.1 Preference
guide ○

Rule
specification Define

Writing good comments makes the program easier to read. To improve the readability further, a unified
style of writing is necessary.
There are document generation tools that create documents for maintenance and examination from
the source code. When utilizing such tools, they can be most effectively used by writing in a style that
conforms to their specifications. In general, when the explanation of the variables and functions are
described according to certain comment conventions, the document generation tools enable these de-
scriptions to be extracted from the source code and reflected in the generated documents. Therefore, it is
important to examine the specifications of these tools and define the comment conventions accordingly.
Presented below are some established styles of writing comments that have been extracted from existing
coding conventions and related literature.

●	Representative	styles	of	writing	comments
1)	Indian	Hill	coding	conventions
The following comment rules are described in Indian Hill C Style and Coding Standards [14]:

●	Block	comments
Comments that describe data structures, algorithms, etc., should be in block comment form with
the opening / in column 1, a * in column 2 before each line of comment text, and the closing */ in
columns 2-3.
(Note that grep ^ . \ * will catch all block comments in the file.)

 Example:
 /* Write a comment
 * Write a comment
 */

●	Position	of	comments
- Block comments inside a function

Should be tabbed over to the same tab setting as the code that they describe.
- End-of-line comments

Very short comments may appear on the same line as the code they describe, but should be tabbed
over far enough to separate them from the statements. If more than one short comment appears in
a block of code they should all be tabbed to the same tab setting.

151

ESCR C++

Maintainability M4● Write in a unified style

	
	

M4

M
aintainability

2)	GNU	coding	standards
The following comment rules are described in the GNU Coding Standards [24]:
			●	Language English.
			●	Position	and	contents

- At the beginning of the program
Write a comment that briefly explains what the program does at the beginning of every program.

- Function
Write comments that provide the following information for each function.
What the function does, explanation of parameters (values, meaning, usage), return value

- #endif
Except for short conditions that are not nested, add comments to explicitly state the conditions at
the end of line of every #endif.

- Notation for tools
Place two spaces at the end of each comment sentence.

3)	“The	Practices	of	Programming”
The following comment rules are described in “The Practices of Programming” [16], co-authored by
Brian W. Kernighan and Rob Pike:
			●	Position	 Describe comments for functions and global data.
			●	Other practices
 - Don’t belabor the obvious.
 - Don’t contradict the code.
 - Clarify, don’t confuse

4)	Others
			●	Set a policy on using /**/ comments and // comments.

Example 1: Use // for end-of-line comments and /**/ for block comments.
Example 2: Use only //, because with /**/, there is a risk of forgetting to close /* with */ at the

end of comment.
Example 3: Do not use /* or // in a comment, provided that // may be used in a // comment.

 ●	Describe the copyright notice in the comment.

152 Part 2　Coding Practices for Embedded Software: Practices Chart

ESCR C++

	
	

M4

M
aintainability

 ●	Define the comment for the case clauses without break.
 Example:
 switch (status) {
 case CASE1:
 Processing;
 // FALL THROUGH
 case CASE2:
 …

 ●	Define the comment for no processing (in case the else condition does not occur).
 Example:
 if (Condition 1) {
 Processing;
 } else if (Condition 2) {
 Processing;
 } else {
 // NOT REACHED
 }

 ●	Line-splicing shall not be used in // comments. (MISRA C:2012 R3.2)

153

ESCR C++

Maintainability M4● Write in a unified style

	
	

M4

M
aintainability

M4.3 Unify the naming convention.

《Convention for naming external variables and internal vari-
ables shall be defined.》

M4.3.1 Preference
guide ○

Rule
specification Define

See	Rules	on	naming	convention	below.

[Related	rules]	M1.7.1 M1.7.2 M1.7.3 M4.3.2 P1.2.1

《Convention for naming files shall be defined.》
M4.3.2 Preference

guide ○

Rule
specification Define

See	Rules	on	naming	convention	below.

[Related	rules]		M4.3.1 P1.2.1

● Rules	on	naming	convention
Readability of programs is greatly affected by naming. There are various methods of naming, but the
important points are to be consistent and to make the names easy to understand.
For naming, the following items shall be defined:
 ● Guideline for names in general;
 ● How to name files (including folders and directories);
 ● How to name globally and locally
 ● How to name macros, etc.
Presented below are some naming guidelines and rules introduced in existing coding conventions and
related literature. They are useful as reference when creating a project-specific naming convention new-
ly. If no naming convention is explicitly defined in the existing project, a naming convention that is
closest to the current source code shall be defined.

154 Part 2　Coding Practices for Embedded Software: Practices Chart

ESCR C++

	
	

M4

M
aintainability

●Representative	naming	conventions
1)	Indian	Hill	coding	conventions
 ● Names with leading and trailing underscores are reserved for system purposes and should not be used.
 ● #define constant names should be all in CAPS.
 ● enum member names should either have the initial character or all the characters capitalized.
 ● It is best to avoid names that differ only in case, like foo and FOO.
 ● Global names should have a common prefix for identifying the module they belong to.
 ● A file name should be eight characters or less (excluding the extension), starting with an alphabetic

character and followed by alphanumeric characters.
 ● File names that are the same as library header filenames should be avoided.

Overall
●	Names with leading and trailing underscores should not be used.
●	It is best to avoid names that differ only in case.
 Example: foo and Foo

Variable	
names,	
function	
names

Global A	prefix	for	identifying	the	module	should	be	added.

Local Nothing in particular

Others

●	Macro names should be all in CAPS.
 Example: #define MACRO
●	 enum member names should either have the initial character or all the

characters capitalized.

2)	GNU	coding	standards
 ● Don’t choose terse names―instead, look for names that give useful information about the meaning

of the variable or function. Names should be English.
 ● Use underscores to separate words in a name.
 ● Stick to lower case; reserve upper case for macros and enum constants, and for name-prefixes that

follow a uniform convention.

Overall

●	Use underscores to separate words in a name.
 Example: get_name
●	 Stick to lower case; reserve upper case for macros and enum con-
stants,	and	for	name-prefixes	that	follow	a	uniform	convention.

Variable	
names,	
function	
names

Global
Don’t	choose	terse	names―instead,	look	for	names	that	give	useful	in-
formation about their meaning in English.

Local Nothing in particular

Others
●	Macro names should be all in CAPS.
 Example: #define MACRO
●	enum member names should be all in CAPS.

155

ESCR C++

Maintainability M4● Write in a unified style

	
	

M4

M
aintainability

3)	The	Practice	of	Programming
● Use descriptive names for globals, short names for locals.
● Give related things related names that show their relationship and highlight their difference.
● Function names should be based on active verbs, perhaps followed by nouns.

Overall Give related things related names that show their relationship

Variable	
names,	
function	
names

Global Use descriptive names.

Local Use short names.

Others
Function names should be based on active verbs, perhaps followed by
nouns.

4)		JOINT	STRIKE	FIGHTER	AIR	VEHICLE	C++	CODING	STANDARDS	FOR	THE	SYSTEM	
DEVELOPMENT	AND	DEMONSTRATION	PROGRAM	[19]		

● All words in an identifier will be separated by the ‘_’ character.
● User-specified identifiers (internal and external) will not rely on significance of more than 64 char-

acters.
● Identifiers will not begin with the underscore character ‘_’.
● Identifiers will not differ by:
 - Only a mixture of case
 - The presence/absence of the underscore character
 - The interchange of the letter ‘O’, with the number ‘0’ or the letter ‘D’
 - The interchange of the letter ‘I’, with the number ‘1’ or the letter ‘l’
 - The interchange of the letter ‘S’ with the number ‘5’
 - The interchange of the letter ‘Z’ with the number ‘2’
 - The interchange of the letter ‘n’ with the letter ‘h’.
● All acronyms in an identifier will be composed of uppercase letters. Example: RGB_colors
● The first word of the name of a class, structure, namespace, enumeration, or type created with ty-

pedef will begin with an uppercase letter. All others letters will be lowercase.
 Example: class Base { … } ; enum RGB_colors { red, green, blue } ;
● All letters contained in function and variable names will be composed entirely of lowercase letters.
 Example: example_function_name
● Identifiers for constant and enumerator values shall be lowercase.
 Example: const int max_colors = 255 ; enum RGB_colors { red, green, blue } ;
● Header files will always have a file name extension of ".h". Implementation files will always have

a file name extension of ".cpp".

156 Part 2　Coding Practices for Embedded Software: Practices Chart

ESCR C++

	
	

M4

M
aintainability

5)	Others
●	How	to	separate	a	name: A name that consists of multiple words should be either separated with

underscore or delimited by capitalizing the first letter of the separate
word. Determine which style to adopt.

●	Hungarian	notation: There is a notation called Hungarian notation that explicitly indicates
the type of variable.

●	How	to	name	files: Give a name with a prefix, for example, that expresses the subsystem.

[Related	rules]	M4.3.1 P1.2.1

157

ESCR C++

Maintainability M4● Write in a unified style

	
	

M4

M
aintainability

M4.4 Unify the contents to be described in a file and the order of describing them.

《The descriptive contents of header files (declarations, defini-
tions, etc) and the order they are described in shall be defined.》

M4.4.1 Preference
guide ○

Rule
specification Define

Items commonly used in a program shall be described in header files to prevent the risk of modification
errors when they are scattered in different places. Header files should contain macro definitions, decla-
rations of const constants, definitions of class, template class, structure, union and enumeration types,
typedef declarations, external variable declarations, function prototype declarations and template func-
tion definition that are commonly used in multiple source files.
For example, they should be described in the following order:

Example	1:		Header	file	used	for	class	definition:	
1) File header comment
2) Inclusion of system headers (in the order of C libraries, C++ libraries, others)
3) Inclusion of user-defined headers
4) Class definition

Example	2:		Header	file	used	for	purposes	other	than	class	definition:	
1) File header comment
2) Inclusion of system headers (in the order of C libraries, C++ libraries, others)
3) Inclusion of user-defined headers
4) Declarations of const constants
5) enum definitions
6) typedef definitions (type definition of basic types, such as, int and char)
7) extern variable declarations
8) Function prototype declarations
9) Template function definitions
10) inline functions

158 Part 2　Coding Practices for Embedded Software: Practices Chart

ESCR C++

	
	

M4

M
aintainability

《The descriptive contents of source files (declarations, defini-
tions, etc) and the order they are described in shall be defined.》

M4.4.2 Preference
guide ○

Rule
specification Define

In a source file, definitions of variables, functions and template functions, definitions or declarations
of macros, const constants, classes, template classes, structures, unions and enumerations, and types
(typedef types) used only in the individual source file should be described.
For example, they should be described in the following order:

Example	1:		Source	file	used	for	defining	member	functions
1) File header comment
2) Inclusion of system headers
3) Inclusion of user-defined headers
4) Member function definitions

*Regarding 2) and 3), do not include unnecessary items.
*Regarding 4), define all the member functions of a class in the same file.

Example	2:		Source	file	used	for	defining	other	than	member	functions
1) File header comment
2) Inclusion of system headers
3) Inclusion of user-defined headers
4) #define macros used only in this file
5) Declarations of const constants that are used only in this file
6) #define function macros used only in this file
7) typedef definitions used only in this file
8) enum tag definitions used only in this file
9) struct/union tag definitions used only in this file
10) Class definition (including template class) used only in this file
11) Declarations of static variables shared in this file
12) static function declarations
13) Variable definitions
14) Template function definitions
15) Function definitions

*Regarding 2) and 3), do not include unnecessary items.
*Avoid describing 4) through 10) as much as possible.

159

ESCR C++

Maintainability M4● Write in a unified style

	
	

M4

M
aintainability

To use or define external variables or functions (except for
functions used only in the file), the header file describing their
declarations shall be included.

M4.4.3 Preference
guide ○

Rule
specification

Compliant example

Compliant example
--- my_inc.h ---
extern int x;
int func(int);

#include "my_inc.h"
int x;
int func(int in) {
 …

Non-compliant example

 // Declarations of variable x and function
// func are missing.
int x;
int func(int in) {
 …

To ensure that declarations and definitions are consistent, the declarations should be described in the
header file, and that header file should be included.

Header files shall be descriptively capable of handling redun-
dant inclusions.《The descriptive method to achieve this ca-
pability shall be defined.》

M4.4.6 Preference
guide ○

Rule
specification Define

Compliant example

--- myheader.h ---
#ifndef MYHEADER_H
#define MYHEADER_H
Contents of the header file
#endif // MYHEADER_H

Non-compliant example

--- myheader.h ---
void func(void);
// end of file

The descriptive contents of header files should be organized to avoid redundant inclusions. However,
there are cases when redundant inclusions become unavoidable. To prepare for such cases, header files
should be written in such a way that will make them possible of handling multiple inclusions.
As an example, the following may be defined as the rule for writing header files that are capable of
handling redundant inclusions:
Example	of	the	rule: #ifndef macro that judges whether the header has already been included or not

shall be written at the beginning of the header file, so that the descriptions that
follow will not be compiled in subsequent inclusions. In this case, the macro
name should be the same as the header file name but replacing all the lowercase
letters to uppercase letters, and the period ‘.’ to underscore ‘_’.

*M4.4.4 and M4.4.5 are deleted in C++ Language edition and are vacant. (see the table in Appendix)

160 Part 2　Coding Practices for Embedded Software: Practices Chart

ESCR C++

	
	

M4

M
aintainability

Using directive and using declaration of the namespace shall not be writ-
ten before #include in the source file or in the header file, except in case
of writing using declaration in class scope or function scope.

M4.4.7 Preference
guide ○

Rule
specification

Compliant example

Compliant example of (1)
--- file1.h ---
namespace NS1 {
 int func(double x) {return x + 1;}
}
--- file2.h ---
namespace NS2 {
 int g1() {return NS1::func(1);}
 // Compliant:Scope resolution operator

// is used.

}
--- file3.h ---
inline int func(int x) {return x;}
namespace NS2 {
 int g2() {return func(1);}
}

#include "file1.h"
#include "file2.h"
#include "file3.h" // ::func(int) is called

// by func(1) of file3.h.

#include "file1.h"
#include "file3.h" // ::func(int) is called

// by func(1) of file3.h.

#include "file2.h"

Compliant example of (2)
class Base {
public:
 std::size_t size() const {return n;}
protected:
 std::size_t n;
}
class Derived : private Base {
public:
 using Base::size;
 // Compliant: The access level from

// Derived of Base::size() is changed
// to public.

protected:
 using Base::n;
 // Compliant:The access level from

// Derived of Base::size() is changed
// to protected.

Non-compliant example

--- file1.h ---
namespace NS1 {
 inline int func(double x) {return x + 1;}
}
--- file2.h ---
namespace NS2 {
 using NS1::func;
 // Non-compliant:using declaration of
// namespace.

 inline int g1() {return func(1);}
}
--- file3.h ---
inline int func(int x) {return x;}
namespace NS2 {
 inline int g2() {return func(1);}
}

#include "file1.h"
#include "file2.h"
#include "file3.h" // fNS1::func(double)

// is called by func(1)
// of file3.h.

#include "file1.h"
#include "file3.h" // ::func(int) is called

// by func(1) of file3.h.

#include "file2.h"

If using directive or using declaration of the namespace is written before #include in the source file or in
the header file, the names written later will be interpreted differently. In such case, either state the name
explicitly by using the scope resolution operator or write the using declaration of the namespace after
#include in the source file.

161

ESCR C++

Maintainability M4● Write in a unified style

	
	

M4

M
aintainability

《The order of writing the class members shall be defined.》
M4.4.8 Preference

guide

Rule
specification Define

Define the order of writing the class members by taking account of the access levels.
A typical example of this order would be as follows.
			Example:
 Write in the following order.
 public
 protected
 private

M4.5 Unify the style of writing declarations.

(1) In a function prototype declaration, all the parameters shall not
be named (types only.)

(2) In a function prototype declaration, all the parameters shall be
named. In addition, the types of the parameters, their names and
the type of the return value shall be literally the same as those of
the function definition.

M4.5.1 Preference
guide ○

Rule
specification Choose

Compliant example

Compliant example of (1)
int func1(int, int);

int func1(int x, int y) {
 // Process the function.
}

Compliant example of (2)
int func1(int x, int y);
int func2(float x, int y);

int func1(int x, int y) {
 // Process the function.
}

int func2(float x, int y)
 // Process the function.
}

void func(int a[4])
{
 // Process the function.(size of a = 4)
}

Non-compliant example

Non-compliant example of (1) , (2)
int func1(int x, int y);
int func2(float x, int y);

int func1(int y, int x) {
 // The parameter name differs from the
// name in the prototype declaration.

 // Process the function.
}

typedef int INT;
int func2(float x, INT y) {
 // The type of y is not literally the same
// as the type in the prototype
// declaration.

 // Process the function.
}

void func(int a[]) // size not specified
{
 // Process the function.(size of a assumed 4)
}

162 Part 2　Coding Practices for Embedded Software: Practices Chart

ESCR C++

	
	

M4

M
aintainability

In a function prototype declaration, parameter names can be omitted, but describing appropriate pa-
rameter names is useful as function interface information. When describing parameter names, use the
same name as in the definition to avoid unnecessary confusion. As for the parameter type name, make it
literally the same as the function definition to make the code easier to read.
As a principle, any parameter that is not used in the function must be deleted from the function. Howev-
er, there are some cases like in the example below, where it is acceptable to only omit unused parameter
names from the function definition.

Example:
 int func(int x, int, int z) ; // Second parameter is not used.
 int func(int x, int, int z) {
 // Process the function.
 }

Moreover, if the parameter is an array of specific size, it is desirable to specify the number of its elements.

[Related	rule]	M1.1.1

163

ESCR C++

Maintainability M4● Write in a unified style

	
	

M4

M
aintainability

Definition of class or enumeration and function declaration
shall be performed separately.

M4.5.2 Preference
guide

Rule
specification

Compliant example

struct TAG {
 int mem1;
 int mem2;
};
struct TAG x;

Non-compliant example

struct TAG {
 int mem1;
 int mem2;
} x;

(1) ‘,’ shall not be placed before the last ‘}’ in the list of initial value
expressions for structures, unions and arrays, nor in the list of
enumerators.

(2) ‘,’ shall not be placed before the last ‘}’ in the list of initial value
expressions for structures, unions and arrays, nor in the list of
enumerators. However, placing ‘,’ before the last ‘}’ in the list of
initial values for array initialization is allowed.

M4.5.3 Preference
guide

Rule
specification Choose

Compliant example

Compliant example of (1)
struct tag data[] = {
 {1, 2, 3},
 {4, 5, 6},
 {7, 8, 9} // There is no comma after the

// last element.
};

Compliant example of (2)
struct tag data[] = {
 {1, 2, 3},
 {4, 5, 6},
 {7, 8, 9}, // There is a comma after the

// last element.
};

Non-compliant example

Non-compliant example of (1) , (2)
struct tag x = {1, 2,};
 // Not clear whether there are only two
// members or whether there are three or
// more.

The usage of comma in descriptions for initializing multiple data is generally divided into two schools
of coding rules. One school follows the tradition of not placing a comma after the last initial value in or-
der to indicate the end of initialization explicitly. Another school follows the tradition of placing a com-
ma at the end by considering the easiness of adding or deleting initial values. Decide on which rule to
follow by weighing the importance of the usage of comma for such descriptions in your specific cases.

[Related	rule]	M2.1.1

164 Part 2　Coding Practices for Embedded Software: Practices Chart

ESCR C++

	
	

M4

M
aintainability

M4.6 Unify the style of writing null pointers.

(1) nullptr shall be used for the null pointer.
(2) 0 shall be used for the null pointer. NULL shall not be used in

any case.
(3) NULL shall be used for the null pointer. NULL shall not be used for

anything other than the null pointer.

M4.6.1 Preference
guide ○

Rule
specification Choose

Compliant example

Compliant example of (1)
char *p;

p = nullptr;

Compliant example of (2)
char *p;
int dat[10];

p = 0;
dat[0] = 0;

Compliant example of (3)
char *p;
int dat[10];

p = NULL;
dat[0] = 0;

Non-compliant example

Compliant example of (2)
char *p;
int dat[10];

p = NULL;
dat[0] = NULL;

Compliant example of (3)
char *p;
int dat[10];

p = 0;
dat[0] = NULL;

0 and NULL have been conventionally used to express the null pointer, but the expression of the null
pointer varies, depending on the execution environment. Since nullptr has been newly introduced in
C++11, nullptr should be used for null pointer constant.
The use of 0 or NULL to express the null pointer should be limited to only the code developed according
to the language specifications defined in C++03 or older versions that will not be revised according to
the language specifications defined in later versions. In such code, either 0 or NULL should be used to
express the null pointer throughout the entire code, and a local rule should be set to refrain from using
the other to express the null pointer in the same code.

【Reference materials for those wanting to know more in detail about this rule】
● Effective Modern C++ Item 8

165

ESCR C++

Maintainability M4● Write in a unified style

	
	

M4

M
aintainability

M4.7 Unify the style of writing preprocessor directives.

The body and parameters of a macro that includes operators
shall be enclosed with parentheses ().

M4.7.1 Preference
guide ○

Rule
specification

Compliant example

#define M_SAMPLE(a, b) ((a) + (b))

Non-compliant example

#define M_SAMPLE(a, b) a + b

If the body and parameters of a macro are not enclosed with parentheses (), there is a risk of bug being
produced when the operations are not performed in the expected order, since the operation order de-
pends on the order of precedence of operators that come next to the macro after expanding the macro
and the operators in the macro.

#else, #elif or #endif that corresponds to #ifdef, #ifndef or
#if shall be described in the same file, and《their correspondence
relationship shall be clearly stated with a comment defined in the
project》.

M4.7.2 Preference
guide ○

Rule
specification Define

Compliant example

#ifdef AAA
 Process when AAA is defined
 …
#else // not AAA
 Process when AAA is not defined
 …
#endif // end AAA

Non-compliant example

#ifdef AAA
 Process when AAA is defined
 …
#else
 Process when AAA is not defined
 …
#endif

If #else or #endif is described in a distant location or nested in a partitioned process by macros, such
as, #ifdef, their correspondence becomes difficult to understand. Therefore, add a project-defined com-
ment to #else or #endif that corresponds with, such as, #ifdef to make their correspondence easier
to understand.

[Related	rules]	M1.1.1 M1.1.2

166 Part 2　Coding Practices for Embedded Software: Practices Chart

ESCR C++

	
	

M4

M
aintainability

To check whether a macro name has already been defined
or not with #if or #elif, defined(macro_name) or defined
macro_name shall be used.

M4.7.3 Preference
guide ●

Rule
specification

Compliant example

#if defined(AAA)
 …
#endif
#if defined BBB
 …
#endif

Non-compliant example

#if AAA
 …
#endif
#define DD(x) defined(x)
#if DD(BBB)
 …
#endif

#if macro_name does not determine whether a macro is defined or not. In case of #if AAA for example,
the judgment will be false not only when macro AAA is not defined, but also when the value of macro AAA
is 0 (zero). Therefore, defined should be used to check whether a macro is defined or not.
For writing defined, use either defined(macro_name) or defined macro_name. Other ways of writing
defined should be avoided since they are implementation-dependent (i.e. some compilers may process
them as error).

*M4.7.4 is deleted and vacant. (see the table in Appendix)

167

ESCR C++

Maintainability M4● Write in a unified style

	
	

M4

M
aintainability

Macros shall not be #define’d or #undef’d within a block.
M4.7.5 Preference

guide

Rule
specification

Compliant example

#define AAA 0
#define BBB 1
#define CCC 2
struct stag {
 int mem1;
 char *mem2;
};

Non-compliant example

 // Members with restriction on assignable
// values exist.
struct stag {
 int mem1; // The following values are

// assignable:
#define AAA 0
#define BBB 1
#define CCC 2
 char *mem2;
};

In general, macro definitions (#define) are all described together at the beginning of the file. If they
are scattered in various parts of the file, for example, by describing them in blocks, they will become
difficult to read. Moreover, cancellation of definitions (#undef) within a block will also degrade the
readability. Also note that, unlike the scope of variables, macro definitions are valid only up to the end
of the file. The description below shows how the program in the above non-compliant example can be
rewritten to make it compliant:

enum etag {AAA, BBB, CCC};
struct stag {
 enum etag mem1;
 char *mem2;
};

[Related	rule]	M4.7.6

168 Part 2　Coding Practices for Embedded Software: Practices Chart

ESCR C++

	
	

M4

M
aintainability

#undef shall not be used.
M4.7.6 Preference

guide

Rule
specification

#undef can change the state of #define’d macro name to undefined. But the use of #undef involves the
risk of degrading the readability, because the interpretation of #undef may differ, depending on where
the macro name is referred to.

[Related	rule]	M4.7.5

The controlling expression of a #if or #elif preprocessing
directive shall be evaluated to 0 or 1. 【MISRA C:2012 R20.8】

M4.7.7 Preference
guide

Rule
specification

Compliant example

#define TRUE 1
#define FALSE 0
#if TRUE
 ･･･
#if defined(AAA)
 ･･･
#if VERSION == 2
 ･･･
#if 0 // Invalidated due to ～ .

Non-compliant example

#define ABC 2
#if ABC
 ･･･

In case of #if or #elif controlling expression, true or false is evaluated by the controlling expression.
Therefore, the controlling expression should be described in a way that would make it easy to evaluate
true or false, thus making the program easy to read.

169

ESCR C++

Maintainability M4● Write in a unified style

	
	

M4

M
aintainability

M4.8 Unify the style of writing overloads.

Operator overload shall be defined according to the original
meaning of the operator and together with other operators in
the same category.

M4.8.1 Preference
guide ●

Rule
specification

Compliant example

class CLS {
public:
 bool operator != (const CLS &c) const {
 // Compliant: With == operator

// definition.
 if (cls_i == c.cls_i) {
 return false;
 }
 return true;
 }
 bool operator == (const CLS &c) const {
 // Compliant: With != operator definition.
 if (cls_i != c.cls_i) {
 return false;
 }
 return true;
 }

 CLS(int i) : cls_i(i) { }
private:
 int cls_i;
};

Non-compliant example

class CLS {
public:
 bool operator != (const CLS &c) const {
 // Non-compliant: Without == operator

// definition.
 if (cls_i == c.cls_i) {
 return false;
 }
 return true;
 }

 CLS(int i) : cls_i(i) { }
private:
 int cls_i;
};

When overloading the operator, be sure to maintain the meaning of the operator defined in the program-
ming language (== operator is for equality, + operator is for addition, and so on). When the definition of
the overloaded operator is going to deviate from the original meaning, define the overloaded operator as
a function. When defining an overloaded operator, also define other overloaded operators that the users
(in each project) consider using as a set of operators in the same category.

Category Operators in the same category

Unary plus and minus unary + unary −

Additive operation prefix++				postfix++				prefix−−				postfix−− + − += −=

Multiplicative operation * / % *= /= %=

Bit shift << >> <<= >>=

Relational operation < > <= >=

Equality operation == !=

Bit operation unary ～ & ˆ | &= ˆ= |=

170 Part 2　Coding Practices for Embedded Software: Practices Chart

ESCR C++

	
	

M4

M
aintainability

When defining operators new and delete of a class, all the
standard forms shall be defined.

M4.8.2 Preference
guide

Rule
specification

Compliant example

class CLS {
public:
// Operators new and delete in single-object form
 static void *operator new(std::size_t);
 // Exception is thrown.
 static void *operator new(std::size_t,
 const std::nothrow_t&) noexcept;
 // Exception is not thrown.
 static void operator delete(void *)
 noexcept; // Exception is not thrown.
 static void operator delete(void *,
 const std::nothrow_t&) noexcept;
 // Exception is not thrown.
// Operators new and delete in array form
 static void *operator new[](std::size_t);
 // Exception is thrown.
 static void *operator new[](std::size_t ,
 const std::nothrow_t&) noexcept;
 // Exception is not thrown.
 static void operator delete[](void *)
 noexcept; // Exception is not thrown.
 static void operator delete[](void *,
 const std::nothrow_t&) noexcept;
 // Exception is not thrown.
// Operators new and delete in placement form
 static void *operator new (std::size_t, void *)
 noexcept; // Exception is not thrown.
 static void *operator new[](std::size_t, void *)
 noexcept; // Exception is not thrown.
 static void operator delete (void *, void *）
 noexcept; // Exception is not thrown.
 static void operator delete[](void *,void *)
 noexcept; // Exception is not thrown.
…
};

[According to C++03]
class CLS {
public:
// Operators new and delete in single-object form
 static void *operator new(std::size_t)
 throw(std::bad_alloc); // Exception is thrown.
 static void *operator new(std::size_t,
 const std::nothrow_t&) throw();
 // Exception is not thrown.
 static void operator delete(void *)
 throw(); // Exception is not thrown.
 static void operator delete(void *,
 const std::nothrow_t&) throw();
 // Exception is not thrown.
// Operators new and delete in array form
 static void *operator new[](std::size_t)
 throw(std::bad_alloc); // Exception is thrown.

Non-compliant example

class CLS {
public:
// Non-compliant:Global new and delete
// operators are hidden.
 static void *operator new(std::size_t) ;
 // Exception is thrown.
 static void operator delete(void *) noexcept ;
 // Exception is not thrown.
…
};

[In case of C++03]
class CLS {
public:
// Non-compliant:Global new and delete
// operators are hidden.
 static void *operator new(std::size_t)
 throw(std::bad_alloc);
 // Exception is thrown.
 static void operator delete(void *) throw();
 // Exception is not thrown.
…
};

171

ESCR C++

Maintainability M4● Write in a unified style

	
	

M4

M
aintainability

 static void *operator new[](std::size_t ,
 const std::nothrow_t&) throw();
 // Exception is not thrown.
 static void operator delete[](void *)
 throw(); // Exception is not thrown.
 static void operator delete[](void *,
 const std::nothrow_t&) throw();
 // Exception is not thrown.
// Operators new and delete in placement form
 static void *operator new (std::size_t, void *)
 throw(); // Exception is not thrown.
 static void *operator new[](std::size_t, void *)
 throw(); // Exception is not thrown.
 static void operator delete (void *, void *）
 throw(); // Exception is not thrown.
 static void operator delete[](void *,void *)
 throw(); // Exception is not thrown.
…

When defining operators new and delete of a class, define all the following standard forms:
● Operators new and delete in single-object form (that are not in array form)
 - That throw exceptions
 - That do not throw exceptions
● Operators new and delete in array form
 - That throw exceptions
 - That do not throw exceptions
● Operators new and delete in placement form
 - That do not throw exceptions

When user-defined new and delete operators are provided in a class, global new and delete
operators of the same name provided for that class by default will be hidden. Therefore, unless
all the standard forms are defined, the compiler may not be able to find the correct new and delete
operators actually required for execution.
Operators new and delete in array form and operators new and delete in single object form have
different names(*). Therefore, even when user-defined operators new and delete in single object
form, for example, are provided in a class, the default global new and delete operators in array form
will not be hidden. However, from the standpoint of handling consistency, when creating user-defined
new and delete operators, define both in single object form and array form.
* Name difference
 - Single-object form: operator new operator delete
 - Array form: operator new[] operator delete[]

【Reference materials for those wanting to know more in detail about this rule】
● C++ Coding Standards Item 46

[Related	rule]	M5.2.1

172 Part 2　Coding Practices for Embedded Software: Practices Chart

ESCR C++

	
	

M4

M
aintainability

Operators new and delete shall be defined in pairs.
M4.8.3 Preference

guide ●

Rule
specification

Compliant example

class CLS {
public:
 static void *operator new(std::size_t);
 static void operator delete(void) noexcept;
 static void *operator
 new(std::size_t, std::ostream&);
 // Compliant: Corresponding operator delete
// does not exist.

 static void operator
 delete(void*, std::stream&) noexcept;
 …
};

[In case of C++03]
class CLS {
public:
 static void *oper ator new(std::size_t)

throw(std::bad_alloc) ;
 static void operator delete(void) throw();
 static void *operator
 new(std: :size_t, std::ostream&)

throw(std::bad_alloc) ;
 // Compliant: Corresponding operator delete
// exists.

 static void operator
 delete(void*, std::stream&) throw() ;
 ･･･
};

Non-compliant example

class CLS {
public:
 static void *operator new(std::size_t);
 static void *operator delete(void*)
 noexcept;
 static void *operator
 new(std::size_t, std::ostream&);
 // Non-compliant: Corresponding operator
// delete does not exist.

 ･･･
};

[In case of C++03]
class CLS {
public:
 static void *ope rator new(std::size_t)

throw(std::bad_alloc);
 static void *operator delete(void*) throw() ;
 static void *operator
 new(std:: size_t, std::ostream&)

throw(std::bad_alloc);
 // Non-compliant: Corresponding operator
// delete does not exist.

 ･･･
};

When user-defined new operator is provided, that means that the default memory allocation method is
changed. Normally, when the memory allocation method is changed, the method of releasing the mem-
ory is also changed accordingly. Therefore, when user-defined new operator is provided, also define the
corresponding operator delete as a pair.
Moreover, when defining operator new in a class, it must be done carefully. If only operator new is
defined without defining the corresponding operator delete, memory leak may occur because operator
delete will not be called if the constructor fails after successful memory allocation for the object. This
risk is attributable to C++ language specification that prevents the compiler from inserting the code to
call operator delete when it cannot find operator delete of the same form as operator new. In other
words, when an operator new of a non-standard form is defined(*), the compiler will not insert the code
to call operator delete, unless operator delete of the same form as user-defined operator new is defined.

* The first parameter of new is fixed as std::size_t. But from second parameter onward, the users can
freely define any parameter.

【Reference materials for those wanting to know more in detail about this rule】
● C++ Coding Standards Item 45
● Effective C++ Item 52

[Related	rule]	M5.2.1

173

ESCR C++

Maintainability M5● Write in a style that makes testing easy

	
	

M5

M
aintainability

Write in a style that makes testing easy.
Maintainability

M5
One of the essential tasks in embedded software development is to check the be-
haviors (through testing). However, with recent complex embedded software, it is be-
coming	increasingly	challenging	to	fulfill	this	task	when	faced	with	difficulties	caused	
by, such as, bugs and malfunctions detected during tests that cannot be reproduced.
Therefore, when writing the source code, it is desirable to be more conscious of writing
in a style that will make the root cause analysis easy to perform when problem arises.
Moreover, particular attention must also be given to descriptions that involve, such as,
the use of dynamic memory, by keeping in mind the risk of memory leak, among other
points of concern.

Maintainability M5.1 	 Write in a style that makes it easy to investigate the causes of
problems when they occur.

Maintainability M5.2 	 Be careful when using dynamic memory allocations.

174 Part 2　Coding Practices for Embedded Software: Practices Chart

ESCR C++

	
	

M5

M
aintainability

M5.1
 Write in a style that makes it easy to investigate the causes
of problems when they occur.

《The rules for writing the code for setting debug options and
for recording logs in release modules shall be defined.》

M5.1.1 Preference
guide ○

Rule
specification Define

Besides implementing the specified functionalities correctly, a good program requires coding that also
take account of the easiness to debug and investigate into the causes of problems when they occur. De-
scriptions that make investigation of problems easy to conduct can be achieved by writing descriptions
for debugging that are not reflected in the release modules and descriptions for outputting logs after re-
lease that are reflected in the release modules. Explained below are the points to take into consideration
when determining the rules to be followed in writing each of these descriptions.

●Descriptions	for	debugging
Descriptions for debugging, including print statements used during program development, need to be
written as isolated descriptions that are not reflected in the release module. Explained below are two
ways of writing the descriptions for debugging: (a) by isolating the debug descriptions using macro
definitions; and (b) by using assert macros for debugging purpose.

(a)	Using	macro	definitions	to	isolate	debug	descriptions
Use the macro definitions to identify the code parts to be compiled so that the debug descriptions are not
reflected in the provided release module. Strings, such as, “DEBUG” and “MODULEA_DEBUG” that contain
“DEBUG” as part of the name are commonly used as those macro names.

Example	of	rule	definition:
#ifdef DEBUG shall be used to isolate the debug code. (DEBUG macro shall be specified at compile time.)

 [Code	example]
#ifdef DEBUG
fprintf(stderr, "var1 = %dn", var1);
#endif

The following macro definitions can also be used.

175

ESCR C++

Maintainability M5● Write in a style that makes testing easy

	
	

M5

M
aintainability

Example	of	rule	definition:
#ifdef DEBUG shall be used to isolate the debug code. (DEBUG macro shall be specified at compile time.)
In addition, the following macro shall be used to output debug information.

DEBUG_PRINT(str); // Output str to standard output

Since this macro is defined in the common header of the project, debug_macros.h, this header shall be
included when using this macro.

－－ debug_macros.h －－
#ifdef DEBUG
#define DEBUG_PRINT(str) fputs(str, stderr)
#else
#define DEBUG_PRINT(str) ((void) 0) // no action
#endif // DEBUG

 [Code	example]
void func(void) {
 DEBUG_PRINT(">> func\n") ;
 …
 DEBUG_PRINT("<< func\n") ;
}

(b)	Using	assert	macro
In C++ language standard, assert macro is provided as a macro for program diagnosis. It is useful for
making coding errors easier to detect during debugging. To facilitate debugging, define where to use
the assert macro and follow this defined usage throughout the project. By doing so, it will be possible
to collect consistent debug information during, such as, the integration test, and such information, as a
result, will help make debugging easier.
The following is a brief explanation on how to use the assert macro, using a coding example that shows
how this macro is used in a function definition written under the precondition that the null pointer is
never passed as the argument.

void func(int *p) {
 assert(p != nullptr) ;
 *p = INIT_DATA ;
 …
}

176 Part 2　Coding Practices for Embedded Software: Practices Chart

ESCR C++

	
	

M5

M
aintainability

If the NDEBUG macro is defined at compile time, the assert macro does nothing. On the other hand, if the
NDEBUG macro is not defined and the expression passed to the assert macro is false, the program abends
after outputting the file name and the line number of the source to the standard error. Note that the macro
name is NDEBUG, and not DEBUG.
assert macro is a macro provided by the compiler in <assert.h>. By using the following example as a
reference, examine how to abort the program and determine whether to use the macro provided by the
compiler or to provide your own assert function.

#ifdef NDEBUG
#define assert(exp) ((void) 0)
#else
#define assert(exp) (void) ((exp)) || (_assert(#exp, __FILE__, __LINE__)))
#endif
void _assert(char *mes, char *fname, unsigned int lno) {
 fprintf(stderr, "Assert : %s : %s(%d)\n", mes, fname, lno) ;
 fflush(stderr) ;
 abort() ;
}

C++11 allows embedding static assert that can be evaluated by the compiler in the source code and
confirming the offset of a structure member and the length of a string constant at the time the code is
compiled.

static_assert(sizeof(t) <= 4, “The size of t is exceeding 4 bytes. ”);

●Outputting	logs	after	release
It is also useful to include descriptions for problem investigation in the release module that does not
contain descriptions for debugging. One common method is to record the result of the investigation as
log information. Log information is helpful for validation testing of the release module as well as for
investigation of problems that occurred in the system provided to the customer.
In case of recording the log information, the following items should be determined in advance and de-
fined as the coding convention.

177

ESCR C++

Maintainability M5● Write in a style that makes testing easy

	
	

M5

M
aintainability

●When	to	output	logs
Logs should be output not only when an abnormal condition is detected, but also at the timing of,
such as, data communication with an external system. The point is to output logs at appropriate tim-
ing (such as, when key events occur) that will make it easier to trace the history and faster to identify
the root cause of the detected abnormality.

●What	to	output	in	logs
Information on the process executed immediately before the occurrence of the abnormal condition,
the data values processed at that time, and information for tracing memory usage are some of the
log information that should be recorded to enhance the traceability of the history and facilitate the
investigation of the cause of the abnormality.

●Macro	or	function	for	outputting	log	information
Localize the log information output as a macro or a function. It is often preferable to make the log
output destination changeable.

(1) The # and ## preprocessor operators should not be used.
(2) A macro parameter immediately following a # operator shall

not immediately be followed by a ## operator.
【MISRA C: 2012: R.20.11】

M5.1.2 Preference
guide

Rule
specification Choose

Compliant example

Compliant example of (2)
#define AAA(a, b) a#b
#define BBB(x, y) x##y

Non-compliant example

Non-compliant example of (1), (2)
#define XXX(a, b, c) a#b##c

The order of evaluation of # operator and ## operator is not defined. Therefore, do not mix # and ##
operators, nor use them more than once.

178 Part 2　Coding Practices for Embedded Software: Practices Chart

ESCR C++

	
	

M5

M
aintainability

Inline function shall be used rather than using function-like
macro.

M5.1.3 Preference
guide

Rule
specification

Compliant example

inline int func(int arg1, int arg2) {
 return arg1 + arg2;
}

Non-compliant example

#define func(arg1, arg2) (arg1 + arg2)

The process will become easier to trace, for example, if the process is stopped at the beginning of a
function for debugging. Therefore, use the inline function rather than using function-like macro.
In addition, since the compiler will perform type check, coding errors will become easier to detect if
inline function is used instead of function-like macro.
If there is a need to support multiple types, one way is to use the inline function template.

template<typename T>
inline T& func(const T& arg1, const T& arg2) {
 retrun arg1 + arg2 ;
}

[Related	rule]	E1.1.1

179

ESCR C++

Maintainability M5● Write in a style that makes testing easy

	
	

M5

M
aintainability

M5.2 Be careful when using dynamic memory allocations.

(1) Dynamic memory shall not be used.
(2) If dynamic memory is used,《the maximum amount of memory

that can be used, process to be taken when running out of mem-
ory, and debugging procedure shall be defined》.

M5.2.1 Preference
guide

Rule
specification

Choose
Define

Using dynamic memory involves the risk of accessing invalid memory as well as the risk of memory
leak that leads to depletion of system resources, which may be caused by forgetting to return the ob-
tained memory space to the system.

●Example	of	rule	definition:
<Link to the sample or reference document>
			●Do not allocate the object used only in the function as new.

 <Non-compliant	example>
func() {
 CLS *p = new CLS(); // Non-compliant
 …
 delete p ;
}

 <Compliant	example>
func() {
 CLS clobj ; // Compliant
 …
}

180 Part 2　Coding Practices for Embedded Software: Practices Chart

ESCR C++

	
	

M5

M
aintainability

●Reference:	Problems	when	using	dynamic	memory
Described below are problems that tend to occur when dynamic memory is used.
●Buffer	overflow

This occurs as a result of referencing or updating areas beyond the range of obtained memory. In
particular, when an area outside the range is accidentally updated, this failure does not occur at the
time of update but will occur when the memory destroyed by the update is referenced. The prob-
lem with dynamic memory is that it is very difficult to locate which part of the memory has been
destroyed.

●Forgetting	to	initialize
When a class area is allocated with new and an appropriate constructor is defined, there is no risk
of initialization being forgotten. However, be careful when an area other than class is allocated with
new, because initialization will not be performed automatically.

●Memory	leak
There is a risk of this problem being caused by forgetting to return the obtained memory space. This
problem does not occur with programs that terminate each time after running once. However, with
programs that keep running, memory leak can occur and become the cause of memory depletion
and system malfunction.

●Use	after	return
When the obtained memory space is returned due to, such as, delete, the returned memory space
may be reused later, such as, when new is called. In case the deleted memory address is used to up-
date the memory, the memory space will be destroyed if it is already being reused for other purpose.
As explained in the case with buffer overflow, it is very difficult to locate which part of the memory
has been destroyed.

The code that leads to these problems does not cause a compile error. In addition, problems do not oc-
cur at the location where the bugs were implanted, making them undetectable in tests that are just for
checking the normal specifications. They cannot be discovered unless the code is carefully reviewed or
tests are performed after inserting a test code specifically written to detect such problems or after adding
a special library to the program for similar purpose.

[Related	rules]	M4.8.2 M4.8.3

Portability
One	of	the	distinctive	aspects	of	embedded	software	is	that	there	

are	diverse	options	in	the	platform	used	for	software	operation.	

This	also	means	that	 there	are	many	possible	combinations	of	

MPU	options	and	OS	options	to	select	the	hardware	and	software	

platforms	from.	As	the	number	of	functionalities	realized	by	the	

embedded	software	increases,	opportunities	to	port	the	existing	

software	to	other	platforms	by	modifying	or	remodeling	it	to	make	

it	compatible	with	multiple	platforms	are	also	on	the	rise.

Due	to	this	trend,	software	portability	is	becoming	an	extremely	

important	element	also	at	 the	source	code	level.	 In	particular,	

writing	in	a	style	that	is	implementation-dependent	is	one	of	the	

most	common	mistakes	made	on	a	regular	basis.

●	Portability	P1 : 	Write	in	a	style	that	is	not	dependent	
on	the	compiler.

●	Portability	P2 : 	Localize	the	code	that	has	a	problem	
with	portability.

182 Part2　Coding Practices for Embedded Software: Practices Chart

ESCR C++

	
	

P1

Portability

Write in a style that is not dependent on
the compiler.

Portability

P1
Use of compilers is unavoidable when programming in C++ language. Various compilers
are available in the world and each has its own features. If the source code is written poorly,
the code may become dependent on the features of the compiler used, and may cause
unexpected results when a different compiler is used.
For this reason, programming must be performed carefully with an awareness that the
code must be written in a style that is not implementation-dependent.

Portability P1.1 	 Do not use functionalities that are advanced features or
implementation-defined.

Portability P1.2 	 Use only the characters and escape sequences defined in the
language standard.

Portability P1.3 	
Confirm and document data type representations, behavioral
specifications of advanced functionalities and implementation-
dependent parts.

Portability P1.4 	 For source file inclusion, confirm the implementation-dependent
parts and write in a style that is not implementation-dependent.

Portability P1.5 	 Write in a style that does not depend on the environment used for
compiling.

Portability P1.6 	 Do not use unrecommended functionalities.

183

ESCR	C++

Portability P1● Write in a style that is not dependent on the compiler.

	
	

P1

Portability

P1.1 Do not use functionalities that are advanced features or
implementation-defined.

(1) Functionalities not specified in the language standard
shall not be used.

(2) If functionalities not specified in the language standard
are used,《the functionalities used and their usage
shall be documented.》.

P1.1.1 Preference
guide

Rule
specification

Choose
Docu-
ment

At present, C++11 is the C++ language standard that is widely used. But there are still many compilers
that also support the older version, C++03, including some compilers that support both C++11 and
C++03, and allow the users to choose which version to use for processing.
Another realistic approach would be to choose rule (2) and allow the use of functionalities defined in the
latest language standard, C++14, that are specifically supported by the compiler used.
Regarding the acceptable ways of using the functionalities that are not specified in the language stan-
dard, the details are provided in the following related rules.

[Related	rules]	P1.1.3 P1.2.1 P1.2.2 P1.3.2 P2.1.1 P2.1.2

All usage of implementation-defined behavior shall be
documented.

P1.1.2 Preference
guide ○

Rule
specification

Docu-
ment

In the language standard, there are implementation-defined items that vary depending on the compiler.
Below are some examples of implementation-defined items and the information that must be document-
ed when they are going to be used.
● How to represent floating-point numbers
● For C++03, how to handle signs of remainders for integer division.
 It is recommended to round in the direction of zero.
● Search order of files for the #include directive
● #pragma

184 Part2　Coding Practices for Embedded Software: Practices Chart

ESCR C++

	
	

P1

Portability

To use a program written in another language,《its
interface shall be documented and its usage shall be
defined》.

P1.1.3 Preference
guide

Rule
specification

Define /
Docu-
ment

The language standard does not define the interface for using programs written in languages other than
C++ or C from a program written in C++. In other words, using a program written in another language
requires the use of an advanced functionality, which means that portability will be impaired. Therefore,
when using such a program, document the specifications of the compiler and define its usage, regardless
of the possibility of porting.
For using the functions and variables described in C++ language from a program written in C, describe
the linkage specification (extern ”C”) when defining them.

[Related	rules]	P1.1.1 P2.1.1

P1.2
 Use only the characters and escape sequences defined in the
language standard.

To use characters other than those defined in the
language standard for writing a program, the compiler
specifications shall be confirmed and《their usage shall
be defined》.

P1.2.1 Preference
guide

Rule
specification

Define /
Docu-
ment

Compliant example

string index[10]; // table of nemes
int count = 0;
// Compliant

Non-compliant example

string index[10]; // Name table.
int count = 0;
// Non-compliant:In Shift_JIS code, second
// byte of the character “表” is ‘\’ in ASCII
// code, and may be interpreted as the line
// concatenation of // comment.

The basic character set defined in the language standard as usable for source code are upper and lower
case letters of the Latin alphabet, decimal digits, graphic characters (_ { } [] # () < > % : ; .
? * + − / ^ & ¦ = , ” ’), space character, and control characters that represent the horizontal tab,
vertical tab, form feed and new line.
International characters and multibyte characters (like Japanese) can be used as identifiers and charac-
ters, but they may not be supported by some compilers. Therefore, if these characters are going to be
used, check beforehand that they can be used in the following locations and define their usage.

185

ESCR	C++

Portability P1● Write in a style that is not dependent on the compiler.

	
	

P1

Portability

・Identifiers

・String	literals

- Processing when \ exists in the character codes of the string (whether special care is required or
whether options are required at compile time, etc.)

- The necessity to write using wide string literals (with the prefix L, such as L”string”)
- The necessity to write using UTF-16 string literals (with the prefix u, such as u”string”)
- The necessity to write using UTF-32 string literals (with the prefix U, such as U”string”)

・Character	constants
- The bit length of the character constant
- Processing when \ exists in the character codes of the character constant (whether special care is

required or whether options are required at compile time, etc.)
- The necessity to write using wide character constants (with the prefix L, such as L’あ’).
- The necessity to write using char16_t character constants (with the prefix u, such as u’あ’).
- The necessity to write using char32_t character constants (with the prefix U, such as U’あ’).

・The	file	name	of	#include

For example, define the following rules.
・As the identifier, only the alphanumeric characters and underscore should be used.

In recent years, many processing systems have come to support multi-byte character code including
Japanese with Unicode. In Japan, Shift_JIS has been widely used to express Japanese characters. But
recently, projects adopting UTF-8 are increasing, such as in open system development projects.

[Related	rules]	M4.3.1		M4.3.2		P1.1.1

186 Part2　Coding Practices for Embedded Software: Practices Chart

ESCR C++

	
	

P1

Portability

Only escape sequences defined in the language standard
shall be used.

P1.2.2 Preference
guide

Rule
specification

Compliant example

char c = '\t'; // Compliant:

Non-compliant example

char c = '\e'; // Non-compliant：The escape is
 // sequence not defined in the
 // language standard. It is not
 // portable

The language standard defines the following seven nongraphic characters as escape sequences:
 \a (alert) \b (backspace) \f (form feed) \n (new line)
 \r (carriage return) \t (horizontal tab) \v (vertical tab)

[Related	rule]	P1.1.1

187

ESCR	C++

Portability P1● Write in a style that is not dependent on the compiler.

	
	

P1

Portability

P1.3
 Confirm and document data type representat ions,
behavioral specifications of advanced functionalities and
implementation-dependent parts.

Simple char type (that does not specify the signedness) shall be
used only for storing character values. If a process that depends on
signedness (implementation-defined) is required, unsigned char or
signed char that specifies its signedness shall be used.

P1.3.1 Preference
guide ○

Rule
specification

Compliant example

char c = 'a'; // Used to store characters.
int8_t i8 = -1; // To use it as an 8-bit

 // data, use a type defined,
 // for example, with typedef.

Non-compliant example

char c = -1;
if (c > 0) {
// Non-compliant： char can be signed or
// unsigned depending on the compiler, and
// this difference affects the result of the
// comparison.

Unlike other integer types like int, char that does not specify its signedness will be either signed or
unsigned depending on the compiler (int type is the same as signed int type.) Therefore, using char that
depends on the signedness is not portable. This is because char that does not specify its signedness is
an independent type provided for storing characters (comprised of three types: char, unsigned char and
signed char) and the language standard assumes such usage. For using char as a small integer type, such
as, when a process that depends on signedness is required, use either unsigned char or signed char that
specifies its signedness. In this case, it is desirable to use typedef as the type to localize the range of
modification during porting.
A problem similar to this rule exists with the returned type of the standard function getc that is int and
must not be received by char. However, this is rather a problem pertaining to function interface (assign-
ment that may cause information loss).

【Reference materials for those wanting to know more in detail about this rule】
● MISRA C:2012 R10.1

[Related	rule]	P2.1.3

188 Part2　Coding Practices for Embedded Software: Practices Chart

ESCR C++

	
	

P1

Portability

The members of an enumeration (enum) type shall be
defined with values that can be represented as int type.

P1.3.2 Preference
guide

Rule
specification

Compliant example

enum T {
 E = INT_MAX // Compliant:：Can be

 // represented with int.
};

Non-compliant example

enum T {
 E = LONG_MAX // Non-compliant： Cannot be

 // represented with int.

};

In C++ language standard, the type of the members of an enumeration type is the type that can represent
all the member values. For example, if all the members of an enumeration type can be represented as
long type but not as int type, the type of all these members is long.
However, in C language standard, the members of an enumeration type must have values that can be
represented as int type. Therefore, by considering the compatibility between C and C++ languages,
limit the values of the members to the range that can be represented with int type.

[Related	rules]	P1.1.1 M2.2.4

(1) Bit fields shall not be used.
(2) Bit fields shall not be used for data whose bit positions are

meaningful.
(3)《If it is being relied upon, the implementation-defined behavior

and packing of bit fields shall be documented.》

P1.3.3 Preference
guide ○

Rule
specification

Choose
Docu-
ment

Compliant example

Compliant example of (2)
struct S {
 unsigned int bit1 : 1;
 unsigned int bit2 : 1;
};
ext ern struct S * p;
 // Compliant if p points to a data that
 // is, for example, just a set of flags and
 // bit1 can be any bit in that data.

p->bit1 = 1;

Non-compliant example

Non-compliant example of (2)
struct S {
 unsigned int bit1 : 1;
 unsigned int bit2 : 1;
};
ext ern struct S * p;
 // If the bit positions are meaningful, for
 // example, when p points at IO ports; in
 // other words, if there is a meaning for
 // bit1 to point at either the lowest bit
 // or the highest bit of the data, the
 // program is non-portable.

p->bit1 = 1; // As to which bit of
 // the data, p will point at,
 // is implementation-dependent.

189

ESCR	C++

Portability P1● Write in a style that is not dependent on the compiler.

	
	

P1

Portability

The following behaviors of bit field vary depending on the compiler used:
1) Whether the bit field of an enum type or an int type that does not specify its signedness will be han-

dled as signed;
2) Assignment order of the bit fields within a unit;
3) Boundary of a bit field in a storage unit.
If bit fields are used to access data whose bit positions are meaningful, such as, the IO ports, portability
problem arises due to rules (2) and (3). Therefore, in such cases, do not use bit fields, but instead, use
bitwise operations, such as, & and |.

[Related	rule]	R2.6.1

P1.4
 For source file inclusion, confirm the implementation-
dependent par ts and wr i te in a s ty le tha t is not
implementation-dependent.

The #include directive shall be followed by either a
<filename> or ”filename” sequence.

P1.4.1 Preference
guide ●

Rule
specification

Compliant example

#include <stdio>
#include "myheade.h"
#if VERSION == 1
#define INCFILE "vers1.h"
#elif VERSION == 2
#define INCFILE "vers2.h"
#endif
#include INCFILE

Non-compliant example

#include stdio // Neither <> nor “” is
// placed.

#include "myheader.h" 1 // 1 is specified at
 // the end.

In the language standard, the behavior is not defined for cases where the format of the header name does
not match with neither of the two styles (< > or ” ”) after macro-expansion of the #include directive.
Most compilers will output an error if it cannot match the format with neither of the two styles, while
some others may not handle it as an error. Therefore, write the header name format in either of the two
styles to ensure safety.

190 Part2　Coding Practices for Embedded Software: Practices Chart

ESCR C++

	
	

P1

Portability

《The usage of < > format and " " format for #include file
specification shall be defined.》

P1.4.2 Preference
guide

Rule
specification Define

Compliant example

#include <stdio>
#include "myheader.h"

Non-compliant example

#include "stdio"
#include <myheader.h>

There are two ways of writing #include. To unify the writing style, define rules, for example, that
include the following:
- Specify the header provided by the compiler by enclosing it with < >;
- Specify the header created in the project by enclosing it with ” ”;
- Specify the header provided by the purchased software by enclosing it with ” ”.

Characters ’, \, ”, /*, // and : shall not be used for file
specification in #include.

P1.4.3 Preference
guide ○

Rule
specification

Compliant example

#include "inc/my_header.h" // Compliant:

Non-compliant example

#include "inc\my_header.h" // Non-compliant

The language standard does not define the behavior when the characters mentioned above are used
(more specifically, in the following cases); that is to say, the operation result is not certain when these
characters are used in the following cases, which consequently make the code non-portable:
- When characters ’ , \ , ” , /* or // appear in the string enclosed with < > ;
- When characters ’ , \ , ” , /* or // appear in the string enclosed with ” ”.
Also, the behavior of the character : (colon) differs depending on the compiler, and makes the code
non-portable.

191

ESCR	C++

Portability P1● Write in a style that is not dependent on the compiler.

	
	

P1

Portability

P1.5
 Write in a style that does not depend on the environment
used for compiling.

The absolute path shall not be written for #include file
specification.

P1.5.1 Preference
guide

Rule
specification

Compliant example

#include "h1.h"

Non-compliant example

#include "/project1/module1/h1.h"

If an absolute path is written in the code, there will be a need to modify the path when the program is
compiled after changing the directories.

P1.6 Do not use unrecommended functionalities.

Deprecated functionalities shall not be used.
P1.6.1 Preference

guide ○

Rule
specification

Compliant example

// Example 1: increment operator in type bool
bool x = false;
x = true; // Compliant

// Example 2: register keyword
int y; // Compliant

Non-compliant example

// Example 1: increment operator in type bool
bool x = false;
x++; // Non-compliant

// Example 2: register keyword
register int y; // Non-compliant: register

 // keyword is deprecated.

There is no guarantee as to when the deprecated functionalities will continue to be supported till. It is
therefore safer not to use them.
Deprecrated functionalities are listed in Annex D of the C++ Standard. For example, in C++11, incre-
ment operator in type bool and register keyword are deprecated.

192 Part2　Coding Practices for Embedded Software: Practices Chart

ESCR C++

	
	

P2

Portability

Localize the code that has a problem
with portability.

Portability

P2
The principle is not to write implementation-dependent source code as much as possible.
But in some cases, writing implementation-dependent source code is unavoidable. A typ-
ical example is when an assembly language program is called. In such case, it is recom-
mended to localize the implementation-dependent parts of the code as much as possible.

Portability P2.1 	 Localize the code that has a problem with portability.

193

ESCR	C++

Portability P2● Localize the code that has a problem with portability.

	
	

P2

Portability

P2.1 Localize the code that has a problem with portability.

When assembly language programs are called from C++ language,
《how to localize such parts shall be defined》, such as, by

expressing them as functions of C++ language that contain only
inline assembly language code or by describing them using macros.

P2.1.1 Preference
guide ○

Rule
specification Define

Compliant example

#define SET_PORT1 asm(" st.b 1, port1")
void f() {
 …
 SET_PORT1;
 …
}

Non-compliant example

void f() {
 …
 asm(" st.b 1,port1");
 …
}
// asm and other processes are mixed.

Many compilers provide extended support to support asm(string) format as a method to include the as-
sembly language code. However, there are some compilers that do not provide such support. Moreover,
the same format may lead to different behavior depending on the compiler used. As a result, the code
becomes non-portable.

[Related	rules]	P1.1.1 P1.1.3

Keywords extended by the compiler shall be used by
localizing them after《defining the macros.》

P2.1.2 Preference
guide ○

Rule
specification Define

Compliant example

// interrupt is defined as a keyword
// extended by a specific compiler.
#define INTERRUPT interrupt
INTERRUPT void int_handler(void) {
 …
}

Non-compliant example

// interrupt is defined as a keyword extended
// by a specific compiler.
// It is used without being defined as a macro.
interrupt void int_handler(void) {
 …
}

Some compilers provide extended keywords instead of using the #pragma directive. But the code will
become non-portable when these keywords are used. Therefore, when using them, localize them, such
as, by defining them as macros. For the macro name, use the keyword written in uppercase letters, as
shown above in the compliant example.

[Related	rule]	P1.1.1

194 Part2　Coding Practices for Embedded Software: Practices Chart

ESCR C++

	
	

P2

Portability

(1) The basic types (char, int, long, long long, float, and double) shall
not be used. Instead, the types defined by typedef shall be used.

《The types defined by typedef that are used in the project shall
be defined.》

(2) When using any of the basic types (char, int, long, long long,
float, and double) in a form that is dependent on its size, the type
defined by typedef for each of these basic types shall be used.

《The types defined by typedef that are used in the project shall
be defined.》

P2.1.3 Preference
guide ○

Rule
specification

Choose
Define

Compliant example

Compliant example of (1), (2)
uint32_t flag32; // When assuming that the

 // size is 32 bits,
 // use uint32_t.

Compliant example of (2)
int i; → int i;
for (i = 0; i < 10; i++) {
// i is used as the index.
// Any basic type defined in the language
// specification can be used, because i can
// be represented by 8 bits, 16 bits or 32
// bits.

Non-compliant example

Non-compliant example of (1), (2)
unsigned int flag32; // Use int, assuming

 // that the size is 32
 // bits.

The size and internal representation of integer types and floating point types vary depending on the
compiler.
C++11 specifies the following typedefs to be provided as the language standard. Therefore, these type
definitions should be used.

int8_t int16_t int32_t int64_t uint8_t uint16_t uint32_t uint64_t

When using a compiler that supports C++03, it is advisable to refer to them as the typedef names for
these basic types.

[Related	rule]	P1.3.1

Efficiency
Embedded	software	 is	characteristic	 for	being	embedded	 in	

a	product	and	operating	 together	with	hardware	 to	serve	 its	

purposes	in	 the	real	world.	The	increasing	demand	for	 further	

product	cost	reduction	has	imposed	various	restrictions,	not	only	

on,	such	as,	MPU	or	memory,	but	also	on	software.	

In	addition,	requirements,	such	as,	on	real-time	property	have	

placed	stricter	time	constraints	that	need	to	be	met.	Embedded	

software	must	 therefore	be	coded	with	particular	attention	

on	resource	efficiency	 like	efficient	use	of	memory	and	 time	

efficiency	that	takes	account	of	time	performance.

●	Efficiency	E1 : 	Write	in	a	style	that	takes	account	of	
resource	and	time	efficiencies.

196 Part2　Coding Practices for Embedded Software: Practices Chart

ESCR C++

	
	

E1

Efficiency

Write in a style that takes account of
resource and time efficiencies.

Efficiency

E1
Depending	on	how	the	source	code	is	written,	the	object	size	may	increase	and	the	ex-
ecution speed may slow down. If there are restrictions on memory size and processing
time, the code must be written thoughtfully with additional considerations given to these
restrictions.

Efficiency E1.1 	 Write in a style that takes account of resource and time efficiencies.

197

ESCR	C++

Efficiency E1● Write in a style that takes account of resource and time efficiencies.

	
	

E1

Efficiency

E1.1
 Write in a style that takes account of resource and time
efficiencies.

Macro functions shall be used only in parts related to
speed performance.

E1.1.1 Preference
guide ●

Rule
specification

Compliant example

exte rn void func1(int,int); // Function.
#define func2(arg1, arg2) // Function macro.
func1(arg1, arg2);

for (i = 0; i < 10000; i++) {
 func2(arg1, arg2); // Speed performance
 // is critical for
 // this process.
}

Non-compliant example

#define func1(arg1, arg2) // Function macro.
extern void func2(int, int); // Function.
func1(arg1, arg2);

for (i = 0; i < 10000; i++) {
 func2(arg1, arg2); // Speed performance
 // is critical for
 // this process.
}

Function is safer than macro function. So, use function as much as possible (see M5.1.3). However,
processing of function calls and returns may slow down the speed performance. Therefore, if speed
performance is an issue that has to be improved, use macro function instead.
Note, however, that when too many macro functions are used, the object size may increase because the
expanded code will be spread to wherever the macro function is used.

[Related	rule]	M5.1.3

Operations that remain unchanged shall not be performed
within an iterated process.

E1.1.2 Preference
guide ●

Rule
specification

Compliant example

var1 = func();
for (i = 0; (i + var1) < MAX; i++) {
 …
}

Non-compliant	example

// Function func returns the same result.
for (i = 0; (i + func()) < MAX; i++) {
 …
}

Repeating the same process that returns the same result is inefficient. Although optimization of the
compiler is often reliable for preventing such inefficiency, attention is still necessary in some cases, like
in the non-compliant example shown above, where the compiler used cannot determine the invariance.

198 Part2　Coding Practices for Embedded Software: Practices Chart

ESCR C++

	
	

E1

Efficiency

If the function argument is type class, pass by reference
or pass by pointer shall be used instead of pass by value.

E1.1.3 Preference
guide ●

Rule
specification

Compliant example

class CLS { … } ;
 int func1(const CLS &c);
 // Compliant： Pass by reference.
 int func2(const CLS *p);
 // Compliant： Pass by pointer.
class CLS obj;
…
 func1(obj);
 // Compliant： Pass by reference.
 func1(&obj);
 // Compliant：Pass by pointer.

Non-compliant example

class CLS { … } ;
 int func(const CLS c);
 // Non-compliant：Pass the class as it is.
class CLS obj;
 …
 func(obj);
 // Non-compliant： Pass the class as it is.

It is generally desirable to use pass by reference for function argument. But when null pointer is used as
the interface, use pass by pointer. For referencing only what is called, use const qualifier. When pass by
reference is used, the creation of temporary objects may lead to significant overhead. In C++11, rvalue
reference has been introduced as a new feature to reduce the copy overhead of temporary objects.

【Reference materials for those wanting to know more in detail about this rule】
● Effective Modern C++ Chapter 5

[Related	rule]	R3.7.1

《The policy of selecting either switch or if statement
shall be determined and defined by taking readability and
efficiency into consideration.》

E1.1.4 Preference
guide

Rule
specification Define

switch statements often provide higher readability than if statements. In addition, recent compilers tend
to output optimized code using, such as, table jump or binary search when they process switch state-
ments. Take these matters into consideration when defining this rule.

Example of the rule： switch statement shall be used instead of if statement when:
- a process branches according to the value of the expression (integer value), and
- the number of branches is three or more.
However, this rule shall not apply if:
- using the switch statement causes an efficiency issue that impedes the improve-
ment of program performance.

199

ESCR	C++

Efficiency E1● Write in a style that takes account of resource and time efficiencies.

	
	

E1

Efficiency

Variable definition and function definition shall not be
written in the header file.

E1.1.5 Preference
guide ○

Rule
specification

Compliant example

Compliant example(1)
--- file1.h ---
extern int x; // Variable declaration.
int func(void) ; // Function declaration.

--- file1.c ---
#include "file1.h"
int x; // Variable definition.
int func(void) { // Function definition.
 …
}

Compliant example(2)
-- a.h --
namespace NS1 { // Compliant： Namespace
 // with a name is used.
 int x; // x has only one instance.
 void func() { … } // func has only one
 // instance.
};
-- a.cpp --
#include "a.h"
void f1() {
 NS1::x = 10; // A value is set to x of NS1
 NS1::func(); // func() of NS1 is called.
 …
}
-- b.cpp --
#include "a.h"
void f2() {
 NS1::x = 20; // A value is set to x of NS1
 NS1::func(); // func() of NS1 is called.
 …
}

Non-compliant example

Non-compliant example(1)
--- file1.h ---
int x; // External variable definition.
static int func(void) { // Function definition.
 …
}

Non-compliant example(2)
The instances of x and func() are generated
in both files, a.cpp and b.cpp. What this
means is that the memory space for two x
will be allocated, and that, as a result,
the code size of function func() will be
doubled.

-- a.h --
namespace {
 // Non-compliant：Unnamed namespace is used.
 int x;
 void func() { … }
};
-- a.cpp --
#include "a.h"
void f1() {
 x = 10;
// A value is set to x defined in this file.
 func();
// func defined in this file is called.
 …
}
-- b.cpp --
#include "a.h"
void f2() {
 x = 20;
// A value is set to x defined in this file.
 func();
// func defined in this file is called.
 …
}

A header file may be included in multiple source files. Therefore, if variable declaration and function
declaration are written in the header file, the size of the object code generated after compilation may
become unnecessarily large and risky. In the header file, basically write only the declaration and type
definition. If necessary, though, the definition of inline function and template function may also be
written in there.

200 Part2　Coding Practices for Embedded Software: Practices Chart

ESCR C++

	
	

E1

Efficiency

For initialization of data members, initialization shall be
written in member declaration or constructor initializer shall
be used.

E1.1.6 Preference
guide ○

Rule
specification

Compliant example

class CLS1 {
public:
 CLS1() { ... }
 CLS1(const CLS1 &cls1) { ... }
 CLS1(int i) { ... }
 ...
};

class CLS2 {
public:
 CLS2 (const CLS1 & cls1) : cls1_1(cls1)
 { ... } ;
 // Compliant:
 // Initialization is
 // executed by
 // initialization list.
 ...
private:
 CLS1 cls1_1;
 CLS1 cls1_2 = CLS1(10);
 // Compliant:
 // Initialization is
 // written in member
 // declaration.
 ...
} ;

Non-compliant example

class CLS1 {
public:
 CLS1() { ... }
 CLS1(const CLS1 &cls1) { ... }
 CLS1(int i) { ... }
 ...
};

class CLS2 {
public:
 CLS2 (const CLS1 & cls1) {
 cls1_1 = cls1;
 cls1_2 = CLS1(10);
 } ;
 // Non-compliant: Initialization is not
 // executed because initialization is
 // neither written in member declaration
 // nor in the constructor initializer.
 // To initialize cls1_1 and cls1_2
 // respectively, CLS1() is called, and
 // subsequently, the assignment written in
 // the constructor itself is executed.
 ...
private:
 CLS1 cls1_1;
 CLS1 cls1_2;
 ...
} ;

Data members of the type class that have not been initialized by the constructor initializer or by execu-
tion of initialization written in member declaration are implicitly initialized by default constructor at the
beginning of constructor execution. Therefore, when these uninitialized members are initialized in the
constructor by using the assignment operator, the aforesaid implicit initialization becomes redundant
and unnecessary.

[Related	rule]	R1.4.1

201

ESCR	C++

Efficiency E1● Write in a style that takes account of resource and time efficiencies.

	
	

E1

Efficiency

Overload function that corresponds with the type shall
be defined to prevent implicit type conversion from
occurring.

E1.1.7 Preference
guide

Rule
specification

Compliant example

class CLS {
public:
 explicit CLS(int i) : cls_i(i) { … }
 CLS &operator += (const CLS &rhs) {
 return this += rhs.i;
 }
 // Compliant：Function that matches with
 // the parameter type is defined.to prevent
 // implicit type conversion from occurring.
 CLS &operator += (int i) {
 cls_i += i;
 return * this;
 }
 …
private:
 int cls_i;
};

void func() {
 …
 CLS cls_obj(10);
 cls_obj += 10;
 // Compliant：operator += (int) is called
 // and temporary object is not generated.

Non-compliant example

class CLS {
public:
 explicit CLS(int i) : cls_i(i) { … }
 CLS &operator += (const CLS &rhs) {
 cls_i += rhs.cls_i;
 return * this;
 }
 // Non-compliant：Function that matches
 // with the parameter type is not defined.
private:
 int cls_i;
};

void func() {
 …
 CLS cls_obj(10);
 cls_obj += 10;
 // Non-compliant：operator +=(CLS),a
 // temporary object with default value
 // 10 is generated.

When implicit type conversion occurs, unnecessary temporary object will be generated. Therefore,
when overloading, avoid implicit type conversion by defining the function that matches with the param-
eter type. As to the extent of parameter types that should be covered respectively in function definitions
for the purpose of avoiding implicit type conversion, determine it based on the right balance between the
desired level of improvement in efficiency and the size and maintainability of the written code.

【Reference material for those wanting to know more in detail about this rule】
● More Effective C++ Item 21

[Related	rules]	M1.8.7 M1.8.8

202 Part2　Coding Practices for Embedded Software: Practices Chart

ESCR C++

	
	

E1

Efficiency

Prefix form shall be used for increment and decrement
operators.

E1.1.8 Preference
guide ○

Rule
specification

Compliant example

class CLS {
public:
 CLS &operator ++() { // Prefix form.
 … // Increment operation is executed.
 return *this;
 }
 CLS operator ++(int) { // Postfix form.
 CLS old_value(*this); // The value just
 // before it
 // was updated is
 // retained.
 ++ (*this);
 return old_value; // The value just
 // before it was
 // updated is returned.
 }
 …
}

void func() {
 for (int i = 0; i<MAX; i++) {
 ++ cls; // Compliant： Prefix ++ .
// Some kind of processing is executed
// after ++ operation.

Non-compliant example

class CLS {
public:
 CLS &operator ++() { // Prefix form.
 … // Increment operation is executed.
 return *this;
 }
 CLS operator ++(int) { // Postfix form.
 CLS old_value(*this); // The value just
 // before it was
 // updated is
 // retained.
 ++ (*this);
 return old_value; // The value just
 // before it was
 // updated is
 // returned.
 }
 …
}

void func() {
 for (int i = 0; i<MAX; i++) {
 cls++; // Non-compliant：Unnecessary
 // postfix ++ Some kind of
 // processing is executed after
 // ++ operation.

When the increment and decrement operators are written in postfix form, the original value is returned
after once retaining it in a temporary object. If there is no need to use the original value, write the incre-
ment and decrement operators in prefix form.
This rule, however, does not prohibit the use of postfix form for types like int and pointer defined in the
language that have been customarily written in postfix form.

Example:
for (int i = 0 ; i<MAX ; i++) // Compliant: Customary code written for int type.

203

ESCR	C++

Efficiency E1● Write in a style that takes account of resource and time efficiencies.

	
	

E1

Efficiency

The use of virtual inheritance shall be allowed only when
the classes that have the same base class are multiply
inherited.

E1.1.9 Preference
guide

Rule
specification

Compliant example

class Base { … };
class D1 : public virtual Base { … };
class D2 : public virtual Base { … };
class DD : public D1, D2 { … };
 // Compliant： Virtually inherited from
 // the same base class.
class Base1 { … };
class Base2 : public Base1 { … };
class CLS : public Base2 { … };
 // Compliant：Virtual inheritance is not
 // used.

Non-compliant example

class Base { … };
class D1 : public virtual Base { … };
class D2 : public virtual Base { … };
// Dl and D2 will be non-compliant if a class
// (DD in the compliant example) that is
// required to organize the data members of
// a base class collectively as a single class
// member is not defined.

class Base1 { … };
class Base2 : public virtual Base1 { … };
class CLS : public virtual Base2 { … };
 // Non-compliant：Virtual inheritance is
 // used when the inheritance is not a
 // multiple inheritance.

Virtual inheritance increases the object size and slows down the execution speed. Therefore, do not use
it unless the classes that have the same base class are multiply inherited and the data members of the
same bass class are viewed as they belong to a single common bass class.

【Reference material for those wanting to know more in detail about this rule】
● More Effective C++ Item 24

[Related	rule]	M3.5.1

204 Part2　Coding Practices for Embedded Software: Practices Chart

ESCR C++

	
	

E1

Efficiency

Any code that is unrelated to the template parameter shall
not be written in the template definition.

E1.1.10 Preference
guide ○

Rule
specification

Compliant example

templae <class T>
class CLS_T {
public:
 CLS_T(const T &tobj) : cls_t_obj(tobj) { }
 T get_value() {return cls_t_obj;}
private:
 T cls_t_obj;
};

 // Compliant：util_func is unrelated to
 // the template parameter and is defined
 //outside of the template.
void util func() {
 // Processing code that is unrelated to
 // the template parameter.
 …
}

Non-compliant example

templae <class T>
class CLS_T {
public:
 CLS_T(const T &tobj) : cls_t_obj(tobj) { }
 T get_value() {return cls_t_obj;}
 // Non-compliant：util_func is not related
 // to template parameter.

 void util func() {
 // Processing code that is unrelated to the
 // template parameter.
 …
 }
private:
 T cls_t_obj;
};

Writing any code unrelated to the template parameter within the template may make the expanded code
oversized.
Therefore, any code unrelated to the template parameter should be written outside of the template.

205Appendix List of practices and rules

ESCR C++

Practice in detail Rule
Relationship with MISRA rules

C:2004 C:2012 C++:2008
[Reliability R1] Initialize areas and use them by taking their sizes into consideration.

R1.1 Use areas after initializing them.
R1.1.1 Automatic variables shall be initialized at the time of declaration, or the initial values

shall be assigned just before using them. 9.1 R9.1 8-5-1

R1.1.2
(C edition) const variables shall be initialized at the time of declaration.

R1.2 Describe initializations without excess
or deficiency.

R1.2.1
(C edition)

Arrays with specified number of elements shall be initialized with values that match the
number of the elements.

R1.2.2 Initialization of enumeration type (enum type) members shall be by either: not specifying
any constants; specifying all the constants; or specifying only the first member. 9.3 R8.12 8-5-3

R1.3 Pay attention to the range of the area
pointed by a pointer.

R1.3.1

(1) Integer addition to or subtraction from (including ++ and --) pointers shall not be
made; Array format with [] shall be used for references and assignments to the
allocated area.

17.1 R18.1
5-0-15
5-0-16(2) Integer addition to or subtraction from (including ++ and --) pointers shall be made

only when the pointer points to the array and the result must be pointing within the
range of the array.

17.4 R18.4

R1.3.2 Subtraction between pointers shall be used only when both pointers are pointing at
elements in the same array. 17.2 R18.2 5-0-17

R1.3.3

Comparing which pointer is greater or less than the other pointer shall be used only
when two pointers are both pointing at either the elements in the same array, the
members with the same access control defined in the same structure or class, or the
members of the same structure.

17.3 R18.3 5-0-18

R1.4 Use the object after constructing it
completely.

R1.4.1

All the data members of a class shall be initialized in its constructor. The initialization
procedure shall be as follows:

8-5-1

1. Initialization shall be written in the declaration of members that are always initialized
with the same value. The constructor initializer shall be used to perform the
initialization of other members.
However, this shall not apply in case of initializing multiple non-class type members
with the same value.

2. The constructor initializer shall have the base class and data members written in the
order they are declared.

3. The constructor initializer shall not use any other data members of the same class
for initialization. Or, if there is a need to use other any of these data members, they
shall be limited to only those declared before the specific data member targeted for
initialization.

R1.4.2 Non-static data members shall be all copied whenever a copy constructor or copy
assignment operator is used.

R1.4.3
Member function for only reading data members shall be called after the constructor
initializes the object completely and before the destructor starts
destroying the object.

R1.4.4 Virtual function shall not be called from the constructor and destructor. 12-1-1

R1.4.5 The constructor and copy assignment operator shall respond to unsuccessful object
construction.

15-1-1
15-3-1

R1.4.6 Catch handler described in the constructor or destructor shall not reference data
members of that class. 15-3-3

R1.5 Pay attention to object creation and
destruction. R1.5.1 The same form (whether with or without []) shall be used for new and corresponding

delete .
[Reliability R2] Use data by taking their ranges, sizes and internal representations into consideration.

R2.1 Make comparisons that do not depend
on internal representations.

R2.1.1 Floating-point expressions shall not be used to perform equality or inequality
comparisons. 13.3 D1.1 6-2-2

R2.1.2 Floating-point variable shall not be used as a loop counter. 13.4 R14.1 6-5-1
R2.1.3 memcmp shall not be used to compare class-type objects.

R2.2 When values such as logical values
are defined as a range, do not make
a judgment by finding whether or not
a value is equivalent to any particular
value (representative value) within this
range

R2.2.1
(C edition)

Comparison with a value defined as true shall not be made in expressions that examine
true or false.

R2.3 Use the same data type to perform
operations or comparisons.

R2.3.1 Unsigned integer constant expressions shall be described within the range that can be
represented with the result type. 12.11 R12.4 5-19-1

R2.3.2 When using conditional operator (? : operator), the logical expression shall be enclosed
in parentheses() and both return values shall be the same type.

R2.3.3 Loop counters and variables used for comparison of loop iteration conditions shall be
the same type.

Appendix		List	of	practices	and	rules

To indicate the relationship with MISRA rules, the rule number of corresponding (the same or alike) MISRA rule is used (for both MISRA C rules and MISRA C++ rules, respectively).
When “(C edition)” is written in the space for indicating the related rule numbers, it means that the rule is included in ESCR C Language edition but has been deleted from ESCR C++ Language edition. When
“(vacant)” is written in the space for indicating the related rule numbers, it means that the rule has been deleted from Ver. 1.0 of both ESCR C and ESCR C++ Language editions.

206 Appendix

ESCR C++

Practice in detail Rule
Relationship with MISRA rules

C:2004 C:2012 C++:2008

R2.4 Describe code by taking operation
precision into consideration.

R2.4.1
When the type of an operation and the type of the destination to which the operation
result is assigned (assignment destination) are different, the operation shall be
performed after casting them to the type of expected operation precision.

10.3
10.4 R10.8 5-0-7

5-0-8

R2.4.2
When performing arithmetic operations or comparisons of expressions mixed with
signed and unsigned, an explicit cast to the expected type shall
be performed.

R2.5 Do not use operations that have the
risk of information loss.

R2.5.1

When performing assignments (=operation, actual arguments passing of function calls,
function return) or operations to data types that may cause
information loss, they shall be first confirmed that there are no problems, and a cast
shall be described to explicitly state that they are problem-free.

10.1
10.2

R10.3
R10.4
R10.6
R10.7

5-0-3

R2.5.2 Unary operator '-' shall not be used in unsigned expressions. 12.9 R10.1 5-3-2

R2.5.3 When one’s complement (~) or left shift (<<) is applied to unsigned char or unsigned
short type data, an explicit cast to the type of the operation result shall be performed. 10.5 5-0-10

R2.5.4 The right-hand side of a shift operator shall be zero or more, and less than the bit width
of the left-hand side. 12.8 R12.7 5-8-1

R2.6 Use types that can represent the
target data.

R2.6.1

(1) The types used for bit field shall only be signed int or unsigned int. If a bit field of 1
bit width is required, unsigned int type shall be used, and not the signed int type.

9-6-2
9-6-3
9-6-4

(2) bool type, integer type that specified the signedness (signed or unsigned) or
signedness-specified enum type shall be used for bit field. If a bit field of 1 bit width
is required, the integer type that specified unsigned or bool type shall be specified.

6.4 R6.1

(3) Integer type that specified the signedness (signed or unsigned), bool type or enum
type shall be used for bit field. If a bit field of 1 bit width is required, the integer type
that specified unsigned or bool type shall be specified.

6.5 R6.2

R2.6.2 Data used as bit sequences shall be defined with unsigned type, and not with the signed
type. 12.7 R10.1 5-0-21

R2.7 Pay attention to pointer types.

R2.7.1

(1) Pointer type shall not be converted to other pointer type or to integer type, and vice
versa, with the exception of the following cases:

・Conversion from pointer to data type to void * type;
・Conversion between pointers to class typewith base-derived relationship.

11.1
11.2
11.3
11.4

R11.1
R11.2
R11.3
R11.4
R11.5
R11.6
R11.7

5-2-6
5-2-7
5-2-8
5-2-9

(2) Pointer type shall not be converted to other pointer type or to integer type with less
data width than that of the pointer type, with the exception of the following cases:

・Mutual conversion between void * types in pointer to data type;
・Conversion between pointers to class typewith base-derived relationship.
(3) Pointer to data type can be converted to pointer to other data type or to void * type,

but pointer to function type shall not be converted to pointer to other function type
or to pointer to data type. In case of converting pointer type to integer type, such
conversion shall not be performed if the data width of the integer type is less than
that of the pointer type.

R2.7.2 A cast shall not be performed that removes any const or volatile qualification from the
type addressed by a pointer. 11.5 R11.8 5-2-5

R2.7.3 Comparison to check whether a pointer is negative or not shall not be performed.

R2.7.4

(1) A pointer to a derived class may be converted to a pointer to its base class.
 However, a pointer to the base class may not be converted to a pointer to its derived

class. 5-2-2
5-2-3(2) A pointer to a derived class may be converted to a pointer to its base class.

 Moreover, if dynamic _ cast operator is used, a pointer to a base class may also be
converted to a pointer to its derived class.

R2.8 Write in a way that will enable the
compiler to check that there are no
conflicting declarations, usages and
definitions.

R2.8.1
(C edition) Functions with no parameters shall be declared with a void type parameter.

R2.8.2
(1) Functions shall not be defined with a variable number of arguments. 16.1 R16.1

8-4-1(2) When using functions with a variable number of arguments,《they shall be used
after documenting the intended behaviors based on the compiler used》

R2.8.3 One prototype declaration shall be made at one location, so that it will be referenced by
both its function calls and function definition.

8.1
8.3
8.4

R8.2
R8.3
R8.4
R17.3

3-2-1
3-2-2
3-3-1
3-9-1

207Appendix List of practices and rules

ESCR C++

Practice in detail Rule
Relationship with MISRA rules

C:2004 C:2012 C++:2008
[Reliability R3] Write in a way that ensures intended behavior.

R3.1 Write in a way that is conscious of
area size.

R3.1.1

(1) In an extern declaration of an array, the number of elements shall always be
specified.

8.12 R8.11 3-1-3(2) In an extern declaration of an array, the number of elements shall always be
specified, except for extern declarations of arrays that correspond to the array
definition that includes initialization and has omitted the number of elements.

R3.1.2

For a loop to sequentially access array elements, its iteration conditions shall include the
judgment on whether the access is within the range of the array or not. However, for a
loop to sequentially access array elements from the beginning of the array, range-based
for loop shall be used.

R3.1.3
(C edition) The size of the array initialized with a designated initializer shall be clearly indicated.

R3.1.4
(C edition) Variable length array type shall not be used. R18.8

R3.2 Prevent operations that may cause
runtime error from falling into error
cases.

R3.2.1 Operations shall be performed after confirming that the right-hand side expression of
division or remainder operation is not 0. 21.1 D4.1 0-3-1

R3.2.2 Destination pointed by a pointer shall be referenced after checking that the pointer is
not the null pointer. 21.1 D4.1 0-3-1

R3.3 Check the interface restrictions when
a function is called.

R3.3.1 If a function returns error information, then that error information shall be tested. 16.1 R17.1 0-3-2

R3.3.2 The restrictions of the parameters shall be checked before starting the function
processing. 20.3 D4.11 0-3-1

R3.4 Do not perform recursive calls. R3.4.1 Functions shall not call themselves, either directly or indirectly. 16.2 R17.2 7-5-4

R3.5 Pay attention to branch conditions and
describe how to handle cases that do
not follow the predefined conditions
when they occur.

R3.5.1

The else clause shall be written at the end of an ifelse if statement. If it is known that the
else condition does not normally occur, the description of the else clause shall be either
one of the following:

《(i) Unexpected condition handling process shall be written in the else clause.
 (ii) A project-specific comment specified by the project shall be written in the else
clause.》

14.10 R15.7 6-4-2

R3.5.2

The default clause shall be written at the end of a switch statement. If it is known that
the default condition does not normally occur, the description of the default clause shall
be either one of the following:

《(i) Unexpected condition handling process shall be written in the default clause.
 (ii) A project-specific comment specified by the project shall be written in the default
clause.》

15.3 "R16.4
R16.5" 6-4-6

R3.5.3 Equality operators (== !=) shall not be used for comparison of loop counters. 6-5-2

R3.6 Pay a t t en t ion t o the o rder o f
evaluation.

R3.6.1 Variables whose values are changed shall not be referred to or modified in the same
expression. 12.13 R13.3 5-2-10

R3.6.2 Function calls with side effects and volatile variables shall not be described more than
once in a sequence of actual arguments or binary operation expressions. 12.2 R13.2 5-0-1

R3.6.3 sizeof operator shall not be used in expressions that have side effect.

R3.7 Pay attention to the behavior of
classes.

R3.7.1 In the class that manages resources, copy constructor, copy assignment operator and
destructor shall be defined.

R3.7.2 Virtual destructor shall be declared in the base class.

R3.7.3

Copy assignment operator and move assignment operator shall be defined to comply
with the following rules that state that:
1. Copy assignment operator and move assignment operator shall return a self-

reference.
2. Copy assignment operator shall declare in the form of either “T&operator=(constT&)”

or “T&operator =(T)”. Move assignment operator shall declare in the form of “T
&operator=(T &&)”. Their return type shall not be const-qualified.

3. Copy assignment operator shall be capable of self-assignment.
R3.7.4 Default parameter values shall not be changed when overriding virtual functions. 8-3-1
R3.7.5 Non-virtual function shall not be redefined in the derived class.

R3.7.6 Pass by reference or pass by pointer shall be used to set an object for polymorphic
behavior as the function argument.

R3.7.7 Override keyword shall be written for overriding of virtual function to occur.

208 Appendix

ESCR C++

Practice in detail Rule
Relationship with MISRA rules

C:2004 C:2012 C++:2008

R3.8 Pay attention to the behavior of
exceptions.

R3.8.1
(1) Exception handling shall not be used.

15-0-1(2) When using exception handling,《its method of use in the project shall be
specifically defined》.

R3.8.2 Exception specification shall not be described. 15-4-1
15-5-2

R3.8.3 Null shall not be thrown. 15-1-2
R3.8.4 Pointer shall not be thrown as an exception. 15-0-2
R3.8.5 Destructor shall not throw exceptions. 15-5-1
R3.8.6 No argument shall be written in the throw expression when rethrowing an exception.
R3.8.7 Exception object shall be caught by reference. 15-3-5

R3.8.8 Exception handlers shall be written in the order of derived class, base class and “… ” (that
catches all the exceptions).

15-3-6
15-3-7

R3.8.9 All the exceptions shall be caught without any omission in the main function and thread
start function. 15-3-2

R3.9 Pay attention to the behavior of
templates. R3.9.1 In case the template formal parameter is referenced by pointer, template specialization

shall be prepared.
R3.10 Pay attention to the behavior of

lambda expressions. R3.10.1 In lambda expressions, default capture mode shall not be used, and all the local names
used shall be written explicitly.

R3.11 Be careful with how to access the
shared data in programs that use
threads or signals.

R3.11.1 std::atomic shall be used for parallel concurrent processing instead of volatile.

R3.11.2 Bit fields that may be allocated in the same memory space shall not be accessed by
multiple threads or shall be exclusively controlled properly.

[Maintainability M1] Keep in mind that others will read the program.

M1.1 Do not leave unused descriptions.

M1.1.1 Unused functions, variables, parameters typedefs, tags, labels or macros shall not be
declared (defined).

0-1-3
0-1-5
0-1-10
0-1-11
0-1-12

M1.1.2
(1) Sections of code should not be “commented out”. 2.4 D4.4 2-7-2

2-7-3
(2) For commenting out sections of code, 《the coding rule shall be specified.》

M1.2 Do not write confusingly.

M1.2.1

(1) Only one variable shall be declared in one declaration statement (avoid multiple
declarations).

(2) Automatic variables of the same type used for the similar purposes may be declared
in one declaration statement, but variables with initialization and variables without
initialization shall not be mixed.

M1.2.2
Suffixes shall be added to constant descriptions that can use them to indicate
appropriate types. Only an uppercase letter “L” shall be used for a suffix
indicating a long type integer constant.

2-13-3
2-13-4

M1.2.3 When expressing a long string literal, successive string literals shall be concatenated
without using newlines within the string literal.

M1.2.4 《A rule specifying how to use the namespace shall be defined.》 7-3-4
M1.2.5 Namespace definition shall not be nested.
M1.2.6 Function template shall not be explicitly specialized. 14-8-1

M1.2.7
If the declaration of a constructor becomes the same as the declaration of a default
copy constructor when all the parameters specified with a default value are excluded,
such constructor shall not be defined.

M1.3 Do not write in an unconventional
style.

M1.3.1 Expressions evaluating to true or false shall not be described in switch (expression). 15.4 R16.7 6-4-7

M1.3.2
The case labels and default label in a switch statement shall be described only in the
compound statement (excluding nested compound statements) within the body of the
switch statement.

15.1 R16.2 6-4-4

M1.3.3
(C edition)

The types shall be explicitly described for definitions and declarations of functions and
variables.

M1.4 Write in a style that clearly specifies
the order of evaluation of operations.

M1.4.1

Expressions described at the right hand and left hand of && and || operations shall be
either expressions that do not include binary operation or expressions enclosed with ().
However, if only && operations or only || operations are successively combined, it is not
necessary to enclose each && and || expression with ().

12.5 R12.1 5-0-2
5-2-1

M1.4.2 《Usage of parentheses to explicitly indicate operator precedence shall be defined.》 12.1 R12.1 5-0-2

M1.5 Explicitly describe the operations that
are likely to cause misunderstanding
when they are omitted.

M1.5.1 A function identifier (function name) shall only be used with either a preceding “& ” or
with a parenthesized parameter list, which may be empty. 16.9 8-4-4

M1.5.2 The conditional expression in an if statement or loop shall explicitly state that the type is
bool . 13.2 R14.4 5-0-13

M1.6 Use one area for one purpose.
M1.6.1 Variables shall be prepared for each purpose. 18.3

M1.6.2
(1) Unions shall not be used. 18.4 R19.2

9-5-1
(2) If unions are used, the same members that are assigned values shall be referenced.

209Appendix List of practices and rules

ESCR C++

Practice in detail Rule
Relationship with MISRA rules

C:2004 C:2012 C++:2008

M1.7 Do not reuse names.

M1.7.1

The following rules shall be followed to ensure name uniqueness:

2-10-2
2-10-3
2-10-4
2-10-5
2-10-6

1. An identifier declared in an inner scope shall not hide an indentifier declared in an
outer scope. 5.2 R5.3

2. A typedef name (including qualification, if any) shall be a unique identifier. 5.3 R5.6
3. A tag name, union name and or enumeration name (including qualified names, if any)

shall all be a unique identifier. 5.4 R5.7

4. No object or function identifier with static storage duration should be reused. 5.5 R5.8
R5.9

5. No identifier in one category should have the same spelling as an identifier in another
category. 5.6

M1.7.2 Names of functions, variables and macros in the standard library shall not be redefined
or reused. In addition, these macro names shall not be undefined.

20.1
20.2

R21.1
R21.2

17-0-1
17-0-2
17-0-3

M1.7.3 Names (variables) that start with an underscore shall not be defined. 17-0-1
17-0-2

M1.8 Do not use language specifications
t h a t a r e l i k e l y t o c a u s e
misunderstanding.

M1.8.1 The right-hand operand of a logical && or || operator shall not contain side effects. 12.4 R13.5 5-14-1

M1.8.2

(1) Macros shall only expand to a braced initializer, a constant, a parenthesised
expression, a type qualifier, a storage class specifier, or a do-whilezero construct.. 19.4 R20.4

16-2-2
(2) Macros shall only expand to a guard for prevention of redundant inclusion of the

header file, a type qualifier, or a storage class specifier.
M1.8.3 #line shall not be used, unless it is automatically generated by a tool.

M1.8.4 Sequences of three or more characters starting with ?? and alternative tokens shall not
be used. 4.2 R4.2 2-3-1

2-5-1

M1.8.5 A sequence starting with zero (0) that is two or more digits long shall not be used as a
constant. 7.1 R4.1

R7.1 2-13-2

M1.8.6 && || , (comma) and & operators shall not be overloaded. 5-2-11
5-3-3

M1.8.7 explicit specifier shall be used for conversion function.
M1.8.8 Single-parameter constructor shall have an explicit specifier. 12-1-3

M1.9 When writing in an unconventional
style, explicitly state its intention.

M1.9.1 If statements that do nothing need to be intentionally described, comments or empty
macros shall be used to make them noticeable. 14.3 R15.6 6-2-3

M1.9.2 《The unified style of writing infinite loops shall be defined.》
M1.10 Do not embed magic numbers. M1.10.1 A meaningful constant shall be used after defining it as a constant with a name.

M1.11 Explicitly state the area attributes.
M1.11.1 Read-only areas shall be declared as const type. 16.7 R8.13 7-1-1

7-1-2
M1.11.2 Areas that may be updated by other execution units shall be declared as volatile .
M1.11.3 《Rules for variable declaration and definition for ROMization shall be defined》.

M1.12 Correctly describe the statements
even if they are not compiled. M1.12.1 Correct code shall be described even if it is going to be deleted by the preprocessor. 19.16 R20.13

[Maintainability M2] Write in a style that can prevent modification errors.

M2.1 Clarify the grouping of structured data
and blocks.

M2.1.1
If arrays and structures are initialized with values other than 0, their structural form shall
be indicated by using braces ‘{ } ’. Data shall be described without any omission, except
when all values are 0.

9.2 R9.2
R9.3 8-5-2

M2.1.2 The body of if , else if , else , while , do , for , and switch statements shall be enclosed
into blocks.

14.8
14.9 R15.6 6-3-1

6-4-1

M2.2 Localize access ranges and related
data.

M2.2.1 Variables used only in one function shall be declared within the function. 8.7 R8.5

M2.2.2

Variables accessed by several functions defined in the same file shall be declared by
either one of the following methods so that they will become inaccessible from other
files:

8.10

R8.7
R8.8

(1) By declaring these variables outside of function, using the static storage class
specifiers;

(2) By declaring these variables in unnamed namespace.

M2.2.3

Functions called from only the functions defined in the same file shall be declared by
either one of the following methods so that they will not be called from other files: 8.10

8.11(1) By declaring these functions as static functions;
(2) By declaring these functions in unnamed namespace.

M2.2.4 enum shall be used when defining related constants.
M2.2.5 Data members shall be private. 11-0-1

M2.3 Commonalize the code used to do the
same process. M2.3.1 A constructor shall be used for object initialization processed in the same way.

210 Appendix

ESCR C++

Practice in detail Rule
Relationship with MISRA rules

C:2004 C:2012 C++:2008
[Maintainability M3] Write programs simply.

M3.1 Do structured programming.

M3.1.1 For any iteration statement, there shall be at most one break statement or goto
statement used for loop termination. 14.6 R15.4 6-6-4

M3.1.2
(1) The goto statement shall not be used. 14.4 R15.1

6-6-2(2) When using a goto statement, the destination to jump to shall be the label declared
after the goto statement that is within the block enclosing the goto statement.

R15.2
R15.3

M3.1.3
(Vacant) The continue statement shall not be used. 14.5 6-6-3

M3.1.4

(1) Each case clause and default clause in a switch statement shall always end with a
break statement. 15.2 R16.3

6-4-5(2) If the case clause or default clause in a switch statement is not going to be ended
with a break statement, 《a project-specific comment shall be defined》 and that
comment shall instead be inserted.

M3.1.5
(1) A function shall end with one return statement. 14.7 R15.5

6-6-5(2) A return statement to return in the middle of processing shall be written only in case
of recovery from abnormality.

M3.2 Limit the number of side effects per
statement to one.

M3.2.1
(1) Comma expressions shall not be used. 12.10 R12.3

5-18-1(2) Comma expressions shall not be used, other than in expressions for initializing or
updating in for statements.

M3.2.2 Multiple assignments shall not be written in one statement, except when the same value
is assigned to multiple variables.

M3.3 Write expressions that differ in
purpose separately.

M3.3.1 The three expressions of a for statement shall be concerned only with loop control. 13.5 R14.2

M3.3.2 Numeric variables being used within a for loop for iteration counting shall not be
modified in the body of the loop. 13.6 R14.2 6-5-3

6-5-5

M3.3.3
(1) Assignment operators shall not be used in expressions to examine true or false. 13.1 R13.4

6-2-1(2) Assignment operators shall not be used in expressions to examine true or false,
except for conventionally used notations.

M3.4 Do not use complicated pointer
operation. M3.4.1 Three or more pointer indirections shall not be used. 17.5 R18.5 5-0-19

M3.5 Do not use compl icated c lass
structure. M3.5.1 Virtual inheritance and non-virtual inheritance shall not be mixed in an accessible base

class in the same hierarchical structure. 10-1-3

[Maintainability M4] Write in a unified style.

M4.1 Unify the coding styles.
M4.1.1 《Conventions regarding the style of using, such as, the braces‘{ } ’, indentation and

space shall be defined.》
M4.1.2 C++ style casting shall be used, provided that casting to void shall be allowed. 5-2-4

M4.2 Unify the style of writing comments. M4.2.1 《Convention regarding the style of writing file header comments, function header
comments, end of line comments, block comments and copyright shall be defined.》

M4.3 Unify the naming convention.
M4.3.1 《Convention for naming external variables and internal variables shall be defined.》
M4.3.2 《Convention for naming files shall be defined.》

M4.4 Unify the contents to be described
in a file and the order of describing
them.

M4.4.1 《The descriptive contents of header files (declarations, definitions, etc) and the order
they are described in shall be defined.》

M4.4.2 《The descriptive contents of source files (declarations, definitions, etc) and the order
they are described in shall be defined.》 8.6

M4.4.3 To use or define external variables or functions (except for functions used only in the
file), the header file describing their declarations shall be included. 8.8 R8.5 3-3-1

M4.4.4
(C edition) External variables shall not be defined in multiple locations.

M4.4.5
(C edition) Variable definitions or function definitions shall not be described in a header file.

M4.4.6 Header files shall be descriptively capable of handling redundant inclusions.《The
descriptive method to achieve this capability shall be defined.》 19.15 D4.10 16-2-3

M4.4.7
using directive and using declaration of the namespace shall not be written before
#include in the source file or in the header file, except in case of writing using
declaration in class scope or function scope.

7-3-5
7-3-6

M4.4.8 《The order of writing the class members shall be defined.》

211Appendix List of practices and rules

ESCR C++

Practice in detail Rule
Relationship with MISRA rules

C:2004 C:2012 C++:2008

M4.5 Unify the style of writing declarations.

M4.5.1

(1) In a function prototype declaration, all the parameters shall not be named (types
only) .

16.3
16.4

R8.2
R8.3

3-9-1
8-4-2(2) In a function prototype declaration, all the parameters shall be named.

 In addition, the types of the parameters, their names and the type of the return value
shall be literally the same as those of the function definition.

M4.5.2 Definition of class or enumeration and function declaration shall be performed
separately.

M4.5.3

(1) “,” shall not be placed before the last “} ” in the list of initial value expressions for
structures, unions and arrays, nor in the list of enumerators.

(2) “,” shall not be placed before the last “} ” in the list of initial value expressions for
structures, unions and arrays, nor in the list of enumerators.

 However, placing “,” before the last “} ” in the list of initial values for array initialization
is allowed.

M4.6 Unify the style of writing null pointers. M4.6.1

(1) nullptr shall be used for the null pointer.
4-10-1
4-10-2

(2) 0 shall be used for the null pointer. NULL shall not be used in any case.
(3) NULL shall be used for the null pointer. NULL shall not be used for anything other

than the null pointer.

M4.7 Unify the style of writing preprocessor
directives.

M4.7.1 The body and parameters of a macro that includes operators shall be enclosed with
parentheses () . 19.10 R20.7 16-0-6

M4.7.2
#else, #elif or #endif that corresponds to #ifdef, #ifndef or #if shall be described in the
same file, and 《their correspondence relationship shall be clearly stated with a comment
defined in the project》.

19.17 R20.14 16-1-2

M4.7.3 To check whether a macro name has already been defined or not with #if or #elif,
defined (macro name) or defined macro name shall be used. 16-0-7

M4.7.4
(Vacant)

defined operator used in #if or #elif shall be written as “defined (macro name)” or “defined
macro name”, and not in any other way. 19.14 16-1-1

M4.7.5 Macros shall not be #define ’d or #undef ’d within a block. 19.5 16-0-2
M4.7.6 #undef shall not be used. 19.6 R20.5 16-0-3

M4.7.7 The controlling expression of a #if or #elif preprocessing directive shall be evaluated to
0 or 1. R20.8

M4.8 Unify the style of writing overloads.

M4.8.1 Operator overload shall be defined according to the original meaning of the operator
and together with other operators in the same category. 5-17-1

M4.8.2 When defining operators new and delete of a class, all the standard forms shall be
defined.

M4.8.3 Operators new and delete shall be defined in pairs.
[Maintainability M5] Write in a style that makes testing easy.

M5.1 Write in a style that makes it easy to
investigate the causes of problems
when they occur.

M5.1.1 《The rules for writing the code for setting debug options and for recording logs in
release modules shall be defined.》

M5.1.2
(1) The # and ## preprocessor operators should not be used. 19.13 R20.10

16-3-1
16-3-2(2) A macro parameter immediately following a # operator shall not immediately be

followed by a ## operator. 19.12 R20.11

M5.1.3 Inline function shall be used rather than using function-like macro. 19.7 D4.9 16-0-4

M5.2 Be careful when using dynamic
memory allocations. M5.2.1

(1) Dynamic memory shall not be used. 20.4 R21.3
D4.12

18-4-1(2) If dynamic memory is used,《the maximum amount of memory that can be used,
process to be taken when running out of memory, and debugging procedure shall be
defined》.

[Portability P1] Write in a style that is not dependent on the compiler.

P1.1 Do not use functionalities that are
advanced features or implementation-
defined.

P1.1.1
(1) Functionalities not specified in the language standard shall not be used. 1.1 R1.1

R1.2
1-0-1

(2) If functionalities not specified in the language standard are used, 《the functionalities
used and their usage shall be documented.》

P1.1.2 《All usage of implementation-defined behavior shall be documented.》 3.1 D1.1

P1.1.3 To use a program written in another language,《its interface shall be documented and
its usage shall be defined》. 1.3 D1.1 1-0-2

P1.2 Use only the characters and escape
sequences defined in the language
standard.

P1.2.1
To use characters other than those defined in the language standard for writing a
program, the compiler specifications shall be confirmed and《their usage shall be
defined》.

3.2 D1.1 2-2-1

P1.2.2 Only escape sequences defined in the language standard shall be used. 4.1 R4.1 2-13-1

212 Appendix

ESCR C++

Practice in detail Rule
Relationship with MISRA rules

C:2004 C:2012 C++:2008

P1.3 C o n f i r m a n d d o c u m e n t
d a t a t y p e r e p r e s e n t a t i o n s ,
b e h a v i o r a l s p e c i f i c a t i o n s o f
a dv anc e d f unc t i ona l i t i e s and
implementationdependent parts.

P1.3.1

Simple char type (that does not specify the signedness) shall be used only for storing
character values. If a process that depends on signedness
(implementation-defined) is required, unsigned char or signed char that specifies its
signedness shall be used.

6.1
6.2

R10.1
R10.2
R10.3
R10.4

5-0-11
5-0-12

P1.3.2 The members of an enumeration (enum) type shall be defined with values that can be
represented as int type.

P1.3.3

(1) Bit fields shall not be used.

9-6-1(2) Bit fields shall not be used for data whose bit positions are meaningful.
(3) 《 If it is being relied upon, the implementationdefined behavior and packing of bit

fields shall be documented.》 3.5 D1.1

P1.4 For source file inclusion, confirm
the imp lementa t iondependen t
parts and write in a style that is not
implementationdependent.

P1.4.1 The #include directive shall be followed by either a <filename> or “filename” sequence. 19.3 R20.3 16-2-6
P1.4.2 《The usage of < > format and “ ” format for #include file specification shall be defined.》 19.3 R20.3

P1.4.3 Characters ‘, \, “, /*, // and : shall not be used for file specification in #include. 19.2 R20.2 16-2-4
16-2-5

P1.5 Write in a style that does not depend
on the environment used for compiling. P1.5.1 The absolute path shall not be written for #include file specification.

P1.6 D o n o t u s e u n r e c o m m e n d e d
functionalities. P1.6.1 Deprecated functionalities shall not be used.

[Portability P2] Localize the code that has a problem with portability.

P2.1 Localize the code that has a problem
with portability.

P2.1.1

When assembly language programs are called from C++ language,《how to localize
such parts shall be defined》, such as, by expressing them as functions of C++
language that contain only inline assembly language code or describing them using
macros.

2.1 D4.2
D4.3 7-4-3

P2.1.2 Keywords extended by the processing system shall be used by localizing them after
《defining the macros》.

P2.1.3

(1) The basic types (char , int , long , long long, float , and double) shall not be used.
Instead, types created with typedef shall be used. 《The types defined by typedef
that are used in the project shall be defined.》

6.3 D4.6 3-9-2(2) When using any of the basic types (char, int, long, long long, float, and double) in a
form that is dependent on its size, the type defined by typedef for each of these basic
types shall be used. 《The types defined by typedef that are used in the project shall be
defined.》

[Efficiency E1] Write in a style that takes account of resource and time efficiencies.

E1.1 Write in a style that takes account of
resource and time efficiencies.

E1.1.1 Macro functions shall be used only in parts related to speed performance.
E1.1.2 Operations that remain unchanged shall not be performed within an iterated process.

E1.1.3 If the function argument is type class, pass by reference or pass by pointer shall be
used instead of pass by value.

E1.1.4 《The policy of selecting either switch or if statement shall be determined and defined by
taking readability and efficiency into consideration.》

E1.1.5 Variable definition and function definition shall not be written in the header file. 8.5 3-1-1

E1.1.6 For initialization of data members, initialization shall be written in member declaration or
constructor initializer shall be used.

E1.1.7 Overload function that corresponds with the type shall be defined to prevent implicit
type conversion from occurring.

E1.1.8 Prefix form shall be used for increment and decrement operators.

E1.1.9 The use of virtual inheritance shall be allowed only when the classes that have the
same base class are multiply inherited. 10-1-2

E1.1.10 Any code that is unrelated to the template parameter shall not be written in the template
definition.

213

ESCR C++

Citations	and	References

［1］	 ISO/IEC	25010:2011,	Systems	and	software	engineering-Systems	and	software	Quality	Requirements	
and	Evaluation	(SQuaRE)	-	System	and	software	quality	models

［2］	 THE	CERT	C	SECURE	CODING	STANDARD	1st	Edition,	Robert	C.	Seacord,	 ISBN-13:978-
0321563217,	Addison-Wesley	Professional,	October	2008

［3］	 ISO/IEC	9899:1999,	Programming	languages	–	C,	ISO/IEC	9899/Cor1:2001
［4］	 ISO/IEC	14882:2003,	Programming	languages	--	C++
［5］	 ISO/IEC	14882:2011,	Programming	languages	--	C++
［6］	 ISO/IEC	14882:2014,	Programming	languages	--	C++
［7］	 The	C++	Programming	Language	Fourth	Edition,	Bjarne	Stroustrup,	Addison-Wesley	Professional,	ISBN-

13:	978-0321563842,	May	2013
［8］	 The	C	Programming	Language,	Second	Edition",	Brian	W.	Kernighan,	Dennis	M.	Ritchie,	ISBN-13:	978-

0131103627,	Prentice	Hall,	March	1988
［9］	 Guidelines	 for	 the	Use	of	 the	C	Language	 in	Vehicle	Based	Software,	The	Motor	 Industry	Software	

Reliability	Association,	ISBN-13:	978-0952415664,	April	1998,	www.misra-c.com
［10］	 Guidelines	for	the	Use	of	the	C	language	in	Critical	Systems,	The	Motor	Industry	Software	Reliability	

Association,	ISBN-13:	978-0952415626	(paperback),	October	2004,	www.misra-c.com
［11］	 Guidelines	for	the	Use	of	the	C	language	in	Critical	Systems,	The	Motor	Industry	Software	Reliability	

Association,	ISBN-13:	978-1906400101	(paperback),	March	2013,	www.misra-c.com
［12］	 Guidelines	for	the	Use	of	the	C++	Language	in	Critical	Systems,	The	Motor	Industry	Software	Reliability	

Association,	ISBN-13:	978-906400033	(paperback),	June	2008,	www.misra-cpp.com
［13］	 MISRA-C	:	Guidelines	 for	programming	of	highly	 reliable	software	 for	embedded	system	developers,	

SESSAME	Working	Group	3,	ISBN-13:	978-4542503342,	Japanese	Standards	Association,	May	2004	
(in	Japanese)

［14］	 Indian	Hill	C	Style	and	Coding	Standards,	ftp://ftp.cs.utoronto.ca/doc/programming/ihstyle.ps
［15］	 Writing	Solid	Code:	Microsoft's	Techniques	for	Developing	Bug-Free	C	Programs,	Steve	Maguire,	ISBN-

13:	978-1556155512,	Microsoft	Press,	May	1993
［16］	 The	Practice	of	Programming,	Brian	W.	Kernighan,	Rob	Pike,	 ISBN-13:	978-0201615869,	Addison-

Wesley	Professional,	February	1999
［17］	 C	Style:	Standards	and	Guidelines:	Defining	Programming	Standards	for	Professional	C	Programmers,	

David	Straker,	ISBN-13:	978-0131168985,	Prentice	Hall,	January	1992
［18］	 C	Programming	FAQs:	Frequently	Asked	Questions,	Steve	Summit,	 ISBN-13:	9780201845198,	

Addison-Wesley	Professional,	November	1995
［19］	 JOINT	 STRIKE	 FIGHTER	 AIR	 VEHICLE	C++	CODING	 STANDARDS	 FOR	 THE	 SYSTEM	

DEVELOPMENT	AND	DEMONSTRATION	PROGRAM,	Document	Number	2RDU00001	Rev	 	C,	
Lockheed	Martin	Corporation,	December	2005,	http://www.stroustrup.com/JSF-AV-rules.pdf

［20］	 Effective	C++:	55	Specific	Ways	to	Improve	Your	Programs		and	Designs,	Third	Edition",	Scott	Meyers,	
ISBN-13:	978-0321334879,	Addison-Wesley		Professional,	May	2005

［21］	 More	Effective	C++:	35	New	Ways	to	 Improve	Your	Programs	and	Designs,	Scott	Meyers,	 ISBN-13:	
978-0201633719,	Addison-Wesley	Professional,	January	1996

［22］	 Effective	Modern	C++:	42	Specific	Ways	to	 Improve	Your	Use	of	C++11	and	C++14,	Scott	Meyers,	
ISBN-13:	978-1491903995,	Oreilly	&	Associates	Inc,	December	2014

［23］	 C++	Coding	Standards:	101	Rules,	Guidelines,	and	Best	Practices,	Herb	Sutter,	Andrei	Alexandrescu,	
ISBN-13:	978-0321113580,	Addison-Wesley	Professional,	November	2004

［24］	 GNU	Coding	Standards,	Free	Software	Foundation,	http://www.gnu.org/prep/standards/
［25］	 Linux	kernel	coding	style,	https://www.kernel.org/doc/Documentation/CodingStyle
［26］	 Google	C++	Style	Guide,	Google,	https://google.github.io/styleguide/cppguide.html

Citations and References

214

ESCR C++

Ver.1.0 Authors and editors (in alphabetical order)
FUTAGAMI Takao TOYO Corporation
HACHIYA Shouichi GAIA System Solutions Inc.
HIRAYAMA Masayuki IPA/SEC (Toshiba Corporation)
ITOH Masako Fujitsu Limited
KOGA Keiko Hitachi Solutions, Ltd.
MITSUHASHI Fusako NEC Corporation
NISHIYAMA Hiroyasu Hitachi, Ltd.
SASAKI Kouji Fujitsu Software Technologies Limited
SHISHIDO Fumio emBex Inc.
TOYAMA Keisuke IPA/SEC (Hitachi, Ltd.)
UNO Musubi Panasonic Corporation
YOSHIZAWA Satomi NEC Corporation

Ver.2.0 Authors and editors (in alphabetical order)
FUJIMOTO Takanari Mitsubishi Electric Corporation
FUTAGAMI Takao TOYO Corporation
ITOH Masako Fujitsu Limited
MIHARA Yukihiro IPA/SEC (Debug Engineering Institute)
MITSUHASHI Fusako NEC Corporation
NISHIYAMA Hiroyasu Hitachi, Ltd.
OBATA Hiromi IPA/SEC
SHUKUGUCHI Masahiko eSOL Co., Ltd.
TACHI Nobuyuki Nagoya University
TOYAMA Keisuke IPA/SEC

(Organizational affiliations are as of the publication of Japanese edition.)

Editorial supervisor
NAKATA Ikuo Professor Emeritus at the University of Tsukuba

Contributors to English translation version
SHIMIZU Tatsuo Shimizu International, Inc.
TOYAMA Keisuke IPA/SEC

Written and edited by Software Reliability Enhancement Center,
Technology Headquarters, Information-technology Promotion Agency, Japan

ESCR	C++
【Revised	Edition】
Embedded	System	development	Coding	Reference	guide	[C++	Language	Edition]
Ver.	2.0
October 1, 2016

Written and edited by Software Reliability Enhancement Center,
Technology Headquarters, Information-technology Promotion Agency, Japan

Bunkyo Green Court Center Office
2-28-8 Honkomagome, Bunkyo-ku, Tokyo, 113-6591 Japan
http://www.ipa.go.jp/english/sec

Copyright © 2016, IPA/SEC

	 Printed	in	Japan

C＋＋

C＋＋
Revised Edition

Embedded System development
Coding Reference guide

Written and edited by
Software Riliability Enhancement Center,

Technology Headquarters,
Information-technology Promotion Agency,Japan

Information-technology
Promotion
Agency,Japan

W
ritten and edited by

Softw
are R

iliability Enhancem
ent C

enter,
Technology H

eadquarters,
Inform

ation-technology Prom
otion Agency,Japan

[C++ Language Edition]

R
evised

Edition
E

m
bedded S

ystem
 developm

ent
C

oding R
eference guide

[C
++ Language Edition]

