
Written and edited by
Software Engineering Center,

Technology Headquarters,
Information-technology Promotion Agency, Japan

SEC BOOKS Ver.2.0

Embedded System development
Process Reference guide

ii

This document has been published as the English edition of ESPR (Embedded System development Process

Reference) Version 2.0 published by IPA/SEC* in Japan. ESPR describes the standard types of work and best practices

for facilitating the processes in embedded software development.

The purpose of ESPR is to be used as the reference guide for improving the current conditions of high-quality

embedded software development and promoting its efficiency by defining and organizing the development processes

that best suit the interests and needs of individual organizations, groups and/or projects.

October 2012

Software Engineering Center, Technology Headquarters,

Information-technology Promotion Agency, Japan

Copyright © 2012, IPA/SEC
Permission to copy and distribute this document is hereby granted provided that this notice is retained on all copies, that

copies are not altered, and that IPA/SEC is credited when the material is used to form other copyright policies.

* Software Engineering Center, Technology Headquarters, Information-technology Promotion Agency, Japan

iiiForeword

Foreword

On the occasion of publication of ESPR Ver.2.0

In fiscal year (FY) 2006, Software Engineering Center (hereafter “SEC”) of Information-Technology

Promotion Agency, Japan (IPA) published the first edition of Embedded Software Development Process

Reference (hereafter “ESPR Ver 1.0”), which intended to describe the embedded software development

process in an orderly manner. Since its release, SEC has been able to enjoy seeing ESPR Ver 1.0 read and

utilized by an unexpectedly large number of embedded software engineers. ESPR Ver 1.0 has been published

in advance as the outcome of careful review on Software Engineering Process (SWP) and a part of Support

Process (SUP) carried out within SEC in response to the growing needs in the embedded software industry

to further smoothen the development process that has lately become increasingly large-scaled and complex.

But when the embedded system is perceived as a product with embedded software, the software

development process must take account of the System Engineering Process (SYP), which includes system

designing performed prior to software development. For this reason, SEC has, in FY 2006, proceeded with

the efforts to review and define SYP by gaining cooperation again from all those who contributed in the

making of ESPR Ver.1.0. The result of their efforts has led to the creation of ESPR Ver.2.0, which not only

includes the descriptions on SYP, but also provides various sets of information to supplement and update the

original contents of ESPR Ver.1.0. In ESPR Ver. 2.0:

• Description on System Engineering Process (SYP) has been newly added;

• Description on Safety Engineering Process (SAP) for securing system safety and reliability has been
newly added;

• Description on Support Process (SUP) has been partially supplemented with additional information;

• Typographic errors and misleading information in ESPR Ver.1.0 have been corrected.

In this way, ESPR Ver.2.0 consolidates know-how to achieve smooth development of embedded software

based on ESPR Ver.1.0. We hope ESPR Ver.2.0 will also help embedded system engineers as much as ESPR

Ver.1.0.

November 2007

Embedded Software Engineering Section, IPA/SEC

iv Foreword

Acknowledgment

“What should be done to develop high-quality embedded software efficiently?”

This is probably one of the most frequently asked questions during our two years of research in
SEC (headed by Dr. Seishiro Tsuruho). In responding to this inquiry, SEC has been promoting the skill
building of human resources allocated in software development and consolidation of software engineering
practices specific to embedded software, as a solution aimed at enhancing the overall embedded software
development capabilities.

This document has been prepared as one of the tangible solutions to the aforesaid efforts to describe, in
an orderly manner, the “development process for embedded software” that has been discussed and reviewed
within the Embedded Software Engineering Section of SEC. In Japan, embedded software has grown
rapidly both in scope and variety over the last few years. We have been witnessing a number of cases of
confusion arising among on-site engineers due to the increasing complexity of development tasks. We have
therefore organized this document to explain about the tasks and basic operations required in embedded
software development in a systematic, easy-to-understand manner by using technical expressions and
terminology that can be well comprehended by the on-site engineers. We hope that this document will be
helpful to many readers in re-examining their organizations, projects, and individual tasks, and restructuring
their style of development into a more efficient form that better suits their given conditions and work
environment.

In preparing for its publication, approximately two years have been taken to carefully review, revise and
refine the draft text of this document primarily by the members of Development Process Technical Working
Group that constitutes a part of Embedded Software Development Improvement and Promotion Taskforce
(Chairperson: Hiroshi Monden; Vice-chairperson: Kiichiro Tamaru) jointly formed by the Ministry of
Economy, Trade and Industry (METI) and SEC. The members of this working group come from various
business and academic institutions who have long been engaged in the implementation and research of
software processes as leading experts in embedded software. Thanks to their cooperation, we are pleased to
be able to publicize this document.

There is “no silver bullet” in software development. It has been a while since we first heard this phrase,
and we know that it still holds true. There is indeed no single solution that can miraculously fix the various
issues existing in different stages of software development all at once. It would therefore be our utmost
pleasure to see this document serve as one of the effective solutions that could at least help eradicate the
demons hidden deep beneath the embedded software development processes.

October 2006

Masayuki Hirayama, Taro Yamazaki, Shuji Muro

Embedded Software Engineering Section, IPA/SEC

vPreface

Preface

Our lives are surrounded by an overwhelming number and variety of information equipment. Many of

them provide their required functionalities by means of the so-called embedded system. In the core of this

embedded system is the embedded software. In order to develop the embedded software efficiently and

ensure that the developed software is of high quality, there is a need to execute the appropriate tasks in

the appropriate sequence in the course of development. “ESPR : Embedded System development Process

Reference – Development Process Guide for Embedded Software” has been prepared as a document that

provides and describes the standard types of work and best practices to smoothen the processes in embedded

software development.

Positioning and Composition of This Document
This document is intended to be used by leaders and managers responsible of embedded software

development projects as a reference material to examine the development processes that should be carried

out by the organizations and/or in the projects that they are supervising.

This document is comprised of the following three sections:

Part 1 Development Process Guide for Embedded Software: Descriptive Section

Part 2 Development Process Guide for Embedded Software: Technical Section

Part 3 Development Process Guide for Embedded Software: Practical Section

Remarks
This document has been prepared on the basis of careful reviews and repeated discussions carried out

within Development Process Technical Working Group of Embedded Software Development Improvement

and Promotion Committee under Ministry of Economy, Trade and Industry (METI).

vi Table of Contents

Foreward..iii

Preface...v

Part	1Descriptive Section 	 1
1.1 What Is Development Process?..2

1.2 Purpose and Positioning of Development Process Guide...3

1.3 Intended Users, Usages and Benefits..5

1.4 Structure of Development Process Guide...7

1.5 Instructions and Directions for Using This Guidebook..12

1.6 Related Standards...14

Part 2 Technical Section 	 17
2.1 Overall Structure..18

2.2 Process Definition Documents...21

System Engineering Process (SYP)..21

Software Engineering Process (SWP)...62

Safety Engineering Process (SAP)..131

Support Process (SUP)..148

2.3 Document Template Samples...163

Table of Contents

viiTable of Contents

Part 3 Practical Section 	 217
3.1 Procedure for Practical Use..218

3.2 Tailoring the Development Process for the Organization / Department..221

3.3 Designing the Process Phases of the Development Project..222

3.4 Planning the Development Project Management (Designing the development

 process phases in detail)...227

	 Appendices	 233
Appendix 1. Terminology..234

Appendix 2. Standards Correspondence Table (Between This Guidebook and X0160).........................238

Appendix 3. List of Activities / Tasks / Sub-tasks...239

Afterword..243

Descriptive Section

1.1 What Is Development Process?∙ ∙ 2

1.2 Purpose and Positioning of Development Process Guide∙ ∙ 3

1.3 Intended Users, Usages and Benefits∙ ∙ 5

1.4 Structure of Development Process Guide∙ ∙ 7

1.5 Instructions and Directions for Using This Guidebook∙ ∙ 12

1.6 Related Standards∙ ∙ 14

Part1

2 Part 1 Descriptive Section

	 1.1 What Is Development Process?

	
What is a Process?

Generally in any type of work, various tasks need to be performed in the course of meeting the purposes

and objectives aimed at achieving through that work. In addressing “what kind of tasks need to be

performed”, various inputs and outputs, and the overall contents of these tasks are defined and organized in

an orderly manner, which are collectively referred to as the “process”.

	
What is Software Development Process?

In order to complete the development of software as a product, various types of work need to be performed

in layers like in any other businesses. The activities deemed necessary in the making of a ‘software product’

will collectively become the so-called “software development process” when they are organized in an

orderly manner.

Software Development Process in General
Various concepts in software development process, including ISO/IEC12207, have been advocated

and are being practiced today. For the development of systems comprised of such software, international

standards like ISO/IEC15288 have also been proposed and established.

However, the existing standards in software development process, on the overall, have been developed

to be generic. Due to this nature, they have been often perceived as difficult to follow in case of embedded

software development.

Development Process Guide for Embedded Software
This guidebook has been prepared to organize what needs to be done in embedded software development

from the standpoint of development process.

Although needless to say, the development of embedded software must comply with the conventional

concepts of software development process to a certain degree, since embedded software, after all, is one

type of software. Therefore, this guidebook contains numerous references made to existing standards on

software development process.

31.2 Purpose and Positioning of Development Process Guide

	
Difference from Software Development Process Models

Some well-known software development process models include the “waterfall development model” and

“spiral development model”. These development process models intend to outline the typical types of work

involved in software development and their relationships in chronological order.

This guidebook and various relevant international standards like ISO/IEC12207 and 15288, on the other

hand, have been compiled to systematically describe the types of work needed in software development,

without defining the individual process and work sequences.

	 1.2 Purpose and Positioning of
Development Process Guide

	
Development Process in Embedded Software Development

Over the past few years, the functional requirements of systems comprised of software have increased

extensively, due to the advancement of various technologies used in devices. This trend has led the

development of embedded software to also expand in scale in order to meet the ever-growing functional

needs. In earlier days, the developers of embedded software did not have to be that conscious about

development process to build the software required to be embedded in the final product, since their scope

of development was relatively limited. But due to the recent expansion in scale of software development,

numerous problems attributable to embedded software or embedded system have come to surface. As a

result, more and more attention is given now to improve the development process to address these emerging

problems.

Current Status of Development Process
The following lists the possible causes of various issues arising from the expansion of scale of

development and increased complexity of organizations involved in the development that are actually faced

in the workplaces where embedded software is developed:

(1) Development process is not clearly defined in the organization in charge of development.

4 Part 1 Descriptive Section

(2) The development process adopted by the organization is neither full-fledged (some aspects are

missing) nor definitive (some parts remain ambiguous).

(3) Only a portion of the development process is considered. The activities and tasks necessary to

complete the entire development process are not fully covered.

These factors, among others, tend to adversely affect the quality of the embedded system.

Purpose of Development Process Guide for Embedded Software
This guidebook intends to improve the current conditions and promote efficient development of high-

quality embedded software by providing the crucial elements of the development process in an orderly

manner.

The set of information provided systematically in this guidebook combines the knowledge and expertise

accumulated and put into practice by the embedded software developers in Japan with information referenced

from relevant international standards (i.e.: ISO/IEC12207, 15288) established under the agreement of global

interest groups based on past experiences in software development.

Moreover, this guidebook (ESPR Ver.2.0) introduces two additional elements in embedded software

development process that have not been discussed in the previous version (ESPR Ver.1.0), which are as

follows:

(1) Process equivalent to the upstream phase of embedded software (system) development

that partly takes into consideration of the system viewed from the standpoint of software to

supplement the perception of embedded system as a product;

(2) Set of requirements to develop a safe system and basic operations performed safely by the

developed system that have been defined from the standpoint of developing an “embedded

system that can be used safely and without anxiety”, using reliable source information like

international standards on system safety (IEC61508) for reference.

This guidebook is intended to serve as a useful reference material for everyone involved in embedded

software development.

Features of Development Process Guide for Embedded Software
Outlined below are the main features of “Development Process Guide for Embedded Software”:

Feature 1: Organized description on more specific low-leveled development processes, using the

international standards on system development process as the reference;

Feature 2: Organized description on work items that should be carried out in embedded software

(system) development and precautions that the developers should watch out for;

Feature 3: Explicit description of inputs and outputs to accomplish individual tasks and concrete

explanation of the work contents using expressions that are easy to understand.

51.3 Intended Users, Usages and Benefits

	 1.3 Intended Users, Usages and Benefits

	 Intended Users / Usages
The intended users and usages of this guidebook are as described below:

Intended Users
This guidebook is intended to be used by the following users involved in embedded software development:

(1) Managers and leaders who are responsible of managing the development projects and

organizations taking part in the development, as well as examining and deciding on the actual

processes and phases to be executed in each development project;

(2) Members of the organizations taking part in the embedded software development who are in

charge of defining the standards and basic concepts of the development process applied by

the participating organizations and groups, and supporting the efforts to put these standards

and concepts into effect;

(3) Members of the support groups belonging to the organizations taking part in the embedded

software development who are indirectly supporting the software development in areas, such

as, quality assurance.

Intended Usages
This guidebook aims at providing the overall picture of the types of work required in software development

in a holistic, orderly manner, with main emphasis placed on embedded software development.

This guidebook is intended to be used by those who are interested in organizing the development processes

that best suit the interests of individual organizations and groups, or the needs of individual projects.

Outlined below are some of the typical situations when there will be a foreseeable need to organize the

processes of the development process:

(1) When the software development process is not defined, and the standards for development

process carried out by the organizations and groups need to be newly established;

(2) When there is a need to redefine the standard development process already put into practice at

the organizational or group level due to the gap and/or conflicts arising between the existing

process and the actual operations at the development site;

(3) When there is a need to define the standard development processes newly because the

conventional development processes are inadequate or outdated.

6 Part 1 Descriptive Section

	
Benefits

The users of this guidebook can expect to gain the following benefits by organizing the development

processes to be carried out by the relevant organizations and groups.

Benefits of Organizing the Development Process
By organizing the development processes to be carried out by the relevant organizations and groups

involved in embedded software development, the members of these organizations and groups will be able
to:

(1) Check that all the activities (tasks / sub-tasks) that should be performed are carried out without fail,

and reexamine the activities (tasks / sub-tasks) that may be found to be unnecessary;

(2) Establish the framework for performing elaborate work to achieve the functionalities demanded by

the market and/or required by the clients, and ensure that they are highly reliable and of high quality;

(3) Ensure the division of labor and collaboration between the different teams allocated with specific

jobs in case of large-scaled development projects that require development members of various

disciplines to be involved and work assignments to be sub-divided among them;

(4) Clearly define the information (e.g.: information regarding the work products, deliverables, contents

of activities (tasks / sub-tasks) that are outsourced, names of these activities (tasks / sub-tasks), etc)

to be provided to the subcontractors in case of projects that outsource a part of the development

work to subcontractors.

Benefits of Using This Document
But using this guidebook as a reference material for organizing the development processes, the users will

be able to:

(1) Sort out the activities (tasks / sub-tasks) that need to be performed respectively by the relevant

organizations and groups, and organize them as the development process to be carried out

respectively by these organizations and groups, by referring to the relevant international standards

and knowledge accumulated over the years by those engaged in software development process;

(2) Review the outcome of individual activities (tasks / sub-tasks) and the contents of the deliverables, by

referring to the document template samples provided in this guidebook;

(3) Prepare for the embedded software development more carefully by referring to the contents of this

guidebook (especially, the information provided under Precaution) while defining the development

processes that best suit the interests of the relevant organizations and groups.

71.4 Structure of Development Process Guide

	 1.4 Structure of Development Process Guide

	
Process Structure

This guidebook classifies the different types of work for embedded software development into four

layers, which are: “process”, “activity”, “task” and “sub-task” (See Fig. 1.1).

* From hereafter, “development process” will be shortened to “process”, unless otherwise stated.

Process
The various types of work that need to be performed in order to proceed with the development of

embedded software have been largely divided into the following four processes (or work clusters):
(1) System Engineering Process

 This process mainly consists of the various types of work for developing the embedded system built

on the basis of the software that would be embedded.

(2) Software Engineering Process

 This process mainly consists of the various types of work related to the actual software development.

(3) Safety Engineering Process

 This process consists of the various types of work that should be carried out to develop an embedded

system that can be used safely and without anxiety.

(4) Support Process

This process consists of the various types of work for providing a wide range of support that becomes

necessary in the course of the development (e.g.: documentation).

Activity
The various types of work that need to be performed in each of the abovementioned processes have been

grouped into a more specific work cluster called “activity”.

For example, Software Engineering Process is composed of the following activities:

• Software Requirements Definition

• Software Architectural Design

• Software Detailed Design

• Implementation & Unit Testing

• Software Integration Testing

• Comprehensive Software Testing

8 Part 1 Descriptive Section

Task
The various types of specific work required to execute the individual activities and achieve the pre-

defined objectives of these activities respectively have been grouped into a lower-leveled work cluster

called.“task”.

For example, the activity named “Software Requirements Definition” is composed of the following two

tasks:

• Creating the Software Requirements Specifications;

• Reviewing the Software Requirements Specifications.

Sub-task
The specific portions of any given tasks that need to be performed (often step by step) to complete the

individual tasks have been grouped into a work cluster of the lowest level called “sub-task”.

For example, the task named “Creating the Software Requirements Specifications” is composed of the

following five sub-tasks:

• Identifying the Constraints

• Clarifying the Functional Software Requirements

• Clarifying the Non-functional Software Requirements

• Prioritizing the Requirements

• Creating the Software Requirements Specifications

Wherever applicable, this guidebook provides the detailed description of what should be done to complete

each sub-task and the points to keep in mind from the standpoint of embedded software when engaging in

these sub-tasks.

	
Regarding the Time Concept

The various types of work (processes, activities, tasks, sub-tasks) described in this guidebook are

basically not arranged in chronological order.

Therefore, in order to determine how the embedded software development of any given project should

actually proceed, there is a need to “select the types of work required for the development” and “design the

development process phases” by using this guidebook as a reference (See Part 3 for the details.).

Selecting the Types of Work Required for the Development
In determining what types of work are required for the development, the nature and characteristic features

of the system and software that need to be developed and/or the special conditions of the development

projects and the organizations involved in the development must be taken into account. The orderly set of

91.4 Structure of Development Process Guide

information provided in this guidebook is intended to cover the full range of work deemed necessary in

developing embedded software newly. Depending on the characteristics of the software to be developed,

some of the work provided in this guidebook may either be omitted because they are not necessary or fine-

tuned to best fit the given conditions of the software.

Likewise, in case of a project where the main objective of the development is to remodel or reuse the

existing embedded software, the project team would need to select only the specific types of work required

for the given project from the full set of information on processes, activities, tasks and sub-tasks provided

in this guidebook.

Designing the Development Process Phases
In planning the actual development project, there is a need to predict the time and period taken from the

very start of the development until the final product is shipped out from the manufacturing site. The act of

In planning the actual development project, there is a need to predict the time and period taken from the

very start of the development until the final product is shipped out from the manufacturing site. The act of

concurrency of the pre-selected set of work.

Softw
are Requirem

ents de�nition

S
W
P
1

Constraints:

 Action

Based on the information clari�ed below from (1) to (6), document the �ndings orderly in the form of a List of

SWP1.1 Creating the Software Requirements Speci�cations

 1 .1 .1 Identifying the Constraints

OutlineInput Output

See also

· ISO/IEC 9126-1*(Software Quality Model) · ISO 13407*(Human-centered Design Process)

· ISO 9241*(Usability) ·IEC 61508**(Safety)

Clarify the items that the software must realize based on the contents of System Requirements Speci�cations, and

document them orderly in the form of Sof tware Requirements Speci�cations.

• Product Plan Description
• (SY106) System Requirements Specifications
• (SY205) System Architectural Design

Description
• (SA104) Safety Requirements Specifications
• Hardware specifications

Clarify the constraints that need
to be considered when examining
the software requirments, and
sort them out in the form of a List
of Constraints.

 (SW101) List of
Constraints

Activity

Process
System Engineering Process (SYP)
Software Engineering Process (SWP)
Support Process (SUP)
Safety Engineering Process (SAP)

Subtask

Task

Figure 1.1 Process Structure

10 Part 1 Descriptive Section

	
Structure of Embedded System

There are many ways of perceiving the term “embedded system”. To some, it may mean a “single

equipment”. Some others may say that it is an “aggregate of multiple equipment”. There are even some that

support the extended interpretation that the equipment integrated with the server is also an inclusive part

of embedded system. In this guidebook, the embedded system is simply defined as a “single equipment”.

At the core of each embedded system are one or more functionalities that each system is expected

to provide. In this guidebook, each of these functionalities provided by the system is referred to as the

“functional block”, and the embedded software used to make each system function is broken down

hierarchically into “functional unit” and “program unit” (See Fig. 1.2.).

Embedded system
Embedded system is a single equipment that has one or more functionalities. Take, for example, a

multi-functional system that function as a telephone, facsimile, copier, scanner and printer. If each of these

functionalities is provided by a separate equipment, each equipment is considered as an embedded system.

On the other hand, if all these functionalities are integrated and inseparable, the entire multi-functional

machine itself is considered as one embedded system. Embedded system is composed of one or more

embedded software and one or more hardware.

Functional block
Normally, an embedded system provides multiple functionalities. A combination of a specific hardware

and specific embedded software, which forms one functional block, is necessary to realize each of these

functionalities.

Embedded software
Embedded software is an entity that constitutes a part of the embedded system, and is composed of a

specific combination of functional units.

Functional unit
Functional unit is an entity that constitutes a part of the embedded software, and is composed of a specific

combination of program units.

Program unit
Program unit is an entity of the lowest level (e.g.: compile or test unit) that constitutes a part of the

functional unit.

111.4 Structure of Development Process Guide

Structure of Embedded System

Functional block #2

Hardware
 #x

Functional block #0

Hardware
 #p

Embedded
software #y

Embedded
 software #q

Functional block #1

Hardware
 #1

…

Hardware
#m

…

Embedded
software #1

Embedded
software #n

Functional unit

Program unit

An entity that constitutes a part of the embedded software

Structure of Embedded Software

Embedded software

An entity that constitutes a part of the embedded system

An entity of the lowest level (e.g.: compile or test unit) that constitutes a part of the functional unit

Figure 1.2 Structure of Embedded System

12 Part 1 Descriptive Section

	 1.5	 Instructions and Directions for Using
This Guidebook

	
Treating This Guidebook as Reference Document

This guidebook provides an orderly set of information on the various types of work required for embedded

software development.

In general, international standards (like ISO) and local standards (like JIS) are established, by nature,

as mandatory conventions and practices intended to be employed and enforced as stated, to ensure that

the activities pre-defined within the scope of the objectives of each standard are performed through the

prescribed disciplined uniform approach, and normally examined together with the means for checking

whether the applicants are fully compliant or not (to grant certification, authentication, etc). In this context,

the standards like ISO/IEC12207 and 15288 that are used as the reference when formulating this guidebook

are no exceptions.

However, this guidebook itself does not follow the same principle. As one part of the name of this

guidebook “ESPR: Embedded System development Process Reference…” suggests, this document is

merely intended to provide an orderly set of referential information on the common practices in embedded

software development, and is not written with the expectation that the prescribed information, when

followed strictly, will meet the compliance requirements for rewarding certification, authentication, or any

other forms of official accreditation.

Regarding the Process Definition
In keeping with the aforesaid purpose of what this guidebook intends to achieve, this document expects

the readers to view both the general and detailed information on processes, activities, tasks and sub-tasks

provided here as merely reference information. Therefore, even when certain usages of the provided

information are recommended as preferable practices in this guidebook, they are neither mandatory nor

binding.

Regarding the Document Template Samples
This guidebook provides samples of document templates to help the readers sort out the outcome of the

tasks and sub-tasks performed in their actual development projects. These document templates are also

provided only for reference, and the suggested usages are neither mandatory nor binding.

131.5 Instructions and Directions for Using This Guidebook

	
Important Reminders on Terminology and Conceptual Framework

The editorial policy of this guidebook is “to express the concepts using the terminology that is widely

acceptable to the engineers at the development sites”. The slight differences between the terminology used

in existing international standards and this guidebook to define the processes and express the concepts of

the processes and activities are the result of deliberate efforts to abide by the aforesaid editorial policy as

much as possible.

Nevertheless, to avoid unnecessary confusion, a table that maps which portion of the text in this guidebook

is corresponding to the existing international standards or other reliable references has been added as one of

the appendices of this guidebook.

Important Reminders on Terminology
Some of the existing international standards are already translated and officially published in Japanese

(e.g.: ISO/IEC12207 → JIS X0160).

This guidebook have used both the original English texts of international standards and the translated

versions published from Japan Industrial Standards Committee (JISC) as references, but some terms and

expressions have been deliberately changed to those that the engineers at the actual development sites in

Japan feel more familiar, based on their opinions.

Important Reminders on the Conceptual Framework of the Processes Dealt
in This Guidebook

This guidebook has used the following four frameworks to group the various types of work deemed

necessary in embedded software development:

• System Engineering Process;

• Software Engineering Process;

• Safety Engineering Process; and

• Support Process.

While using the process categories prescribed in existing international standards as references, this

guidebook has adopted the above four frameworks to focus on describing the types of work directly related

to embedded system building (=System Engineering Process), the types of work directly related to embedded

software development (=Software Engineering Process), the types of work to ensure that the system can be

used safely and without anxiety (=Safety Engineering Process), and the types of work for supporting the

activities, tasks and sub-tasks carried out in these processes (=Support Process) (See Fig. 1.3.). As regards

the support process in particular, the scope of work extends diversely from development management to

14 Part 1 Descriptive Section

outsourcing. This guidebook (ESPR Ver.2.0) provides an orderly set of information to describe the activities

that should be performed in the support process, as shown in the next diagram (Fig. 1-3).

Software Engineering Process

Support Process

System Engineering Process Safety Engineering Process

Software Requirements De�nition

Software Architectural Design

Software Detailed Design

Implementation & Unit Testing

Software Integration Testing

Comprehensive Software Testing

Project Management

Quality Assurance

Risk Management

Documentation & Document Management

Con�guration Management

Problem Resolution Management

Change Management

Joint Review

Subcontractor Management

Preparation of Development Environment

System Requirements De�nition

System Architectural Design

System Integration Testing

System Testing

Safety Requirements De�nition

Safety Testing

Figure 1.3 Processes and Types of Work Defined in This Guidebook

	 1.6	 Related Standards

	
Standards on Development Process

As the standards on system and software development processes, various international standards are

established, including ISO/IEC12207 and ISO/IEC15288.

The relevant portions of these standards are inserted in this guidebook, wherever applicable, under the

heading “Related Standards”.

151.6 Related Standards

ISO/IEC12207: 1995 Software Life Cycle Processes
This is an international standard that prescribes the processes in software product development in a

systematic manner. In Japan, the translated version of this standard titled “JIS X0160 Software Life Cycle

Processes” is published from Japan Industrial Standards Committee (JISC).

This standard has been established for the purpose of sorting out the various types of work pertaining

to software development and to standardize their names, among others. Although this standard does not

address any specific type of software, one of the key underlying themes studied in the course of establishing

this standard was “the development of an enterprise system, especially in the case where a two-party

agreement, whether informal or legally binding, exists between the acquirer and the supplier”.

ISO/IEC15288: 2002 System Life Cycle Processes
This is an international standard that addresses the systems that provides services through the application

of multiple self-contained software and/or hardware, and prescribes the various types of work required

in the life cycle of such systems from the standpoint of development process. In Japan, the translated

version of this standard titled “JIS X0170 System Life Cycle Processes” is published from Japan Industrial

Standards Committee (JISC).

Conceptually, this standard can be perceived as the extended version of ISO/IEC12207 to include the

descriptions on system life cycle processes in its coverage. However, the descriptions on the systems it is

addressing are not particularly focused on embedded system.

	 Standards on Safety and Security
Various standards pertaining to system and product safety and security are established (international

standards, national standards, laws and regulations). Among them, international standards like IEC61508

that have been established to promote the functional safety of electric and electronic systems that use built-

in computers are recently drawing attention.

IEC61508: Functional safety of electrical / electronic /programmable
electronic safety-related systems

This is the international standard that prescribes the various types of work that should be carried out in

the course of development of highly safe systems, including those that contain computing devices (e.g. plant

control systems, automotive systems, etc), to ensure that the required high level of safety of such systems

is achieved. This standard does not address any specific product domain and is strictly limited to providing

the general requirements that need to be met to achieve the required level of safety. Various industries have

started establishing their own domain-specific safety standards, using this standard as the key source of

16 Part 1 Descriptive Section

reference.

	
Standards for Improving the Usability

One of the noteworthy features of embedded systems developed recently is their functional diversity.

Numerous standards are established with the aim to enhance the usability of such multi-functional systems,

including ISO13407 and ISO9241. This guidebook makes references to ISO13407, as the standard that is

also related to development process.

ISO 13407:1999 Human-centered design processes for interactive systems
This is an international standard that prescribes the disciplined uniform approach to incorporate the views

of the so-called “human-centered design”, which is the design concept that takes into consideration of the

human elements of the system users. In this standard, human-centered design is primarily described in the

context of the following three aspects: (1) principles of human-centered design; (2) planning of human-

centered design process; and (3) human-centered design activities.

	
Standards on Software Quality

ISO 9126s: Software Engineering ‒ Product Quality
This is an international standard that provides conceptual descriptions to define what the quality of

software product actually means. It has identified six representative quality characteristics, which are:

functionality; reliability; usability, efficiency; maintainability; and portability, and provides detailed

definition of each characteristic.

Moreover, this standard also provides information on how these quality characteristics can be measured

and visualized.

	
Relationship Between International Standards and This Guidebook

In formulating this guidebook, the international standards mentioned above that provide orderly set of

information on development process, safety, usability and quality, including their basic concepts, have been

used as reference sources. In general, many international standards do not give specific binding details on

how they must be applied. Likewise, the contents of the particular international standards referenced by

this guidebook are also limited to relatively abstract descriptions and do not get into deep details. For this

reason, this guidebook has attempted to interpret these international standards to provide more concrete

information about embedded software development.

Technical Section

2.1 Overall Structure ∙ ∙ 18

2.2 Process Definition Documents∙ ∙ 21

2.3 Document Template Samples∙ ∙ 163

Part2

18 Part 2 Technical Section

	 2.1	 Overall Structure

The development process defined in this guidebook is largely divided into the following four processes.

The overall structure of these processes is as shown on the next page.

• System Engineering Process (SYP)

Consists of the orderly description of the activities (and tasks) to meet the system requirements

particularly for the embedded system that operates by the workings of the software that is

embedded, as well as to verify the system behavior, among others

• Software Engineering Process (SWP)

Consists of the orderly description of the activities (and tasks) directly engaged in software

development that ranges from software requirements definition to comprehensive software testing

• Safety Engineering Process (SAP)

Consists of the orderly description of the activities (and tasks) to build an embedded system that can

be used safely and without anxiety

• Support Process (SUP)

Consists of the orderly description of mainly the activities (and tasks) to support and indirectly

engage in the facilitation of software development

Among the above four processes, descriptions on SYP and SAP have been newly introduced in this

guidebook, “ESPR Ver.2.0: Development Process Guide for Embedded Software”, in addition to SWP and

SUP that are covered in the previous version, ESPR Ver.1. The relationship between the V-model and the

processes/ activities is shown in Fig. 2.1.

	 Terminology
	 Safety, reliability, risk
	 Safety : The expectation that a system does not, under defined conditions, lead to a state in which human life, health, property,

or the environment is endangered. (JIS X 0134: Information technology – System and software integrity levels)
	 Reliability : The ability of a functional unit to perform a required function under stated conditions for a stated period of time.

(JIS X 0014: Information technology – Vocabulary – Reliability, maintainability and availability)
	 Risk : Possibility of suffering a loss as a result of partially or entirely losing something that has value, like assets, infrastructure

and privacy.

192.1 Overall Structure

SUP :
Support Process

SWP :
Software Engineering Process

SAP :
Safety Engineering Process

SYP :
System Engineering Process

SYP1 System Requirements De�nition 22
1.1 Creating the System Requirements Speci
cations
1.2 Reviewing the System Requirements Speci
cations

SYP2 System Architectural Design . 32
2.1 Creating the System Architectural Design Description
2.2 Reviewing the System Architectural Design
2.3 Jointly Reviewing the System Architectural Design

SYP3 System Integration Testing . 43
3.1 Preparing for System Integration Test
3.2 Conducting the System Integration Test
3.3 Reviewing the System Integration Test Results

SYP4 System Testing . 51
4.1 Preparing for System Test
4.2 Conducting the System Test
4.3 Reviewing the System Test Results
4.4 Con�rming the Completion of System Development

SYP1 System Requirements De�nition 22
1.1 Creating the System Requirements Speci�cations
1.2 Reviewing the System Requirements Speci�cations

SYP2 System Architectural Design . 32
2.1 Creating the System Architectural Design Description
2.2 Reviewing the System Architectural Design
2.3 Jointly Reviewing the System Architectural Design

SYP3 System Integration Testing . 43
3.1 Preparing for System Integration Test
3.2 Conducting the System Integration Test
3.3 Reviewing the System Integration Test Results

SYP4 System Testing . 51
4.1 Preparing for System Test
4.2 Conducting the System Test
4.3 Reviewing the System Test Results
4.4 Con�rming the Completion of System Development

SWP1 Software Requirements De�nition. 63
1.1 Creating the Software Requirements Speci�cations
1.2 Reviewing the Software Requirements Speci�cations

SWP2 Software Architectural Design. 76
2.1 Creating the Software Architectural Design Description
2.2 Reviewing the Software Architectural Design
2.3 Jointly Reviewing the Software Architectural Design

SWP3 Software Detailed Design . 89
3.1 Creating the Functional Unit Detailed Design Description
3.2 Reviewing the Software Detailed Design
3.3 Checking the Consistency with Hardware Speci�cations

SWP4 Implementation & Unit Testing. 99
4.1 Preparing for Implementation and Unit Test
4.2 Conducting the Implementation and Unit Test
4.3 Reviewing the Implementation and Unit Test Results

SWP5 Software Integration Testing . 109
5.1 Preparing for Software Integration Test
5.2 Conducting the Software Integration Test
5.3 Reviewing the Software Integration Test Results

SWP6 Comprehensive Software Testing 120
6.1 Preparing for Comprehensive Software Test
6.2 Conducting the Comprehensive Software Test
6.3 Reviewing the Comprehensive Software Test Results
6.4 Con�rming the Completion of Software Development

SWP1 Software Requirements De�nition. 63
1.1 Creating the Software Requirements Speci�cations
1.2 Reviewing the Software Requirements Speci�cations

SWP2 Software Architectural Design. 76
2.1 Creating the Software Architectural Design Description
2.2 Reviewing the Software Architectural Design
2.3 Jointly Reviewing the Software Architectural Design

SWP3 Software Detailed Design . 89
3.1 Creating the Functional Unit Detailed Design Description
3.2 Reviewing the Software Detailed Design
3.3 Checking the Consistency with Hardware Speci�cations

SWP4 Implementation & Unit Testing. 99
4.1 Preparing for Implementation and Unit Test
4.2 Conducting the Implementation and Unit Test
4.3 Reviewing the Implementation and Unit Test Results

SWP5 Software Integration Testing . 109
5.1 Preparing for Software Integration Test
5.2 Conducting the Software Integration Test
5.3 Reviewing the Software Integration Test Results

SWP6 Comprehensive Software Testing 120
6.1 Preparing for Comprehensive Software Test
6.2 Conducting the Comprehensive Software Test
6.3 Reviewing the Comprehensive Software Test Results
6.4 Con�rming the Completion of Software Development

SAP1 Safety Requirements De�nition 132
1.1 Creating the Safety Requirements Speci�cations
1.2 Reviewing the Safety Requirements Speci�cations

SAP2 Safety Testing . 141
2.1 Preparing for Safety Test
2.2 Conducting the Safety Test
2.3 Reviewing the Safety Test Results

SUP1 Project Management . 149
1.1 Creating the Project Plan Description
1.2 Understanding the Project Execution Status
1.3 Controlling the Project
1.4 Creating the Project Completion Report

SUP2 Quality Assurance . 152
2.1 De�ning the Quality Objectives
2.2 Establishing the Quality Assurance Method
2.3 Controlling the Quality Based on Quality Visualization

SUP3 Risk Management. 154
3.1 Identifying and Understanding the Risks
3.2 Monitoring the Risks
3.3 Determining and Executing the Risk Treatments

SUP4 Documentation & Document Management

SUP5 Con�guration management 156
5.1 Understanding the Objects of Con�guration Management
5.2 Managing the Con�guration Management / Change Management History

SUP6 Problem Resolution Management 158
6.1 Recording the Problems and Analyzing the Causes
6.2 Analyzing the Impact and Devising the Acceptable Solution
6.3 Implementing the Acceptable Solution
6.4 Tracking the Implemented Solution

SUP7 Change Management . 160
7.1 Recording the Information on Change Requests
7.2 Analyzing the Impact of Changes
7.3 Devising and Executing the Change Plan
7.4 Reviewing the Outcome of the Changes Made

SUP8 Joint Review . 161
8.1 Preparing for the Review
8.2 Carrying Out the Review
8.3 Acknowledging and Following Up on Matters That Have Been Reviewed

SUP9 Subcontractor Management

SUP10 Preparation of Development Environment . . . 162
10.1 Devising the Development Environment Preparation Plan
10.2 Building the Development Environment
10.3 Maintaining the Development Environment

20 Part 2 Technical Section

Hardware developmentESPR x0160

Product inspectionV-Model

(2) Testing �ow(1) Design detailing �ow

SUP1 Project
Management

SUP3 Risk
Management

SUP5 Con�guration
 Management

SUP7
Change Management

SUP9 Subcontractor
Management

SUP2
Quality Assurance

SUP4 Documentation &
Document Management

SUP6 Problem
Resolution Management

SUP8
Joint Review

SUP10 Development
Environment Preparation

The scope of de�nition of development process covered in ESPR is limited to four processes: SYP, SAP, SWP, and SUP,
and does not include Product Planning, Product Inspection and Hardware Development.

SYP2 System
Architectural Design

System Architectural
Design

SYP1 System
Requirements De�nition

System
Requirements Analysis

SYP4
System Testing

System
Quali�cation Testing

SWP1 Software
Requirements De�nition

Software
Requirements Analysis

SWP2 Software
 Architectural Design

Software
 Architectural Design

SWP3 Software
Detailed Design

Software
 Detailed Design

SWP6 Comprehensive
Software Testing

Software
Quali�cation Testing

SWP5 Software
Integration Testing

Software
Integration

SWP4
Unit TestingUnit Testing

Product planning

SAP1 Safety
Requirements De�nition

SAP2
Safety Testing

SYP3 System
Integration TestingSystem Integration

SWP4　
Implementation Coding

SUP: Support Process

SWP: Software Engineering Process

SAP: Safety Engineering Process

SYP: System Engineering Process

Figure 2.1 V-Model and Development Process

212.2 Process Definition Documents

SYP : System Engineering Process

Among the various types of work pertaining to embedded system development, the activities and tasks

ranging from the System Requirements Definition for the product system that includes both the hardware

and software to System Testing are defined in this process.

The following activities are included in this process:

ID Activity Outline of the activity Comprising tasks

SYP1 System
Requirements
Definition

Clarify the requirements
that the system must fulfill
to real ize the targeted
product.

SYP1.1 Creating the System Requirements
Specifications

SYP1.2 Reviewing the System Requirements
Specifications

SYP2 System
Architectural
Design

Examine how to actualize
the embedded system to
be developed, including
the division of roles of
hardware and software.

SYP2.1 Creating the System Architectural Design
Description

SYP2.2 Reviewing the System Architectural
Design

SYP2.3 Jointly Reviewing the System
Architectural Design

SYP3 System
Integration
Testing

Confirm that the functional
blocks operate when the
hardware and software
that structure the system
are integrated.

SYP3.1 Preparing for System Integration Test
SYP3.2 Conducting the System Integration Test
SYP3.3 Reviewing the System Integration Test

Results

SYP4 System
Testing

Confirm that the system
requirements are fully met.

SYP4.1 Preparing for System Test
SYP4.2 Conducting the System Test
SYP4.3 Reviewing the System Test Results
SYP4.4 Confirming the Completion of System

Development

	 2.2 Process Definition Documents

22 Part 2 Technical Section

System
 R

eq
u

irem
en

ts D
efin

itio
n

S
Y
P
1

Input

• Product Plan
Description*
• Product
Specifications**

SYP2

 SYP1.1 Creating the System Requirements Speci�cations
 1.1.1 Understanding the Product Plan Description and Product Speci	cations
 1.1.2 Analyzing and Sorting the Functional System Requirements
 1.1.3 Analyzing and Sorting the Non-functional System Requirements
 1.1.4 Clarifying the System Operational Constraints
 1.1.5 Prioritizing the System Requirements
 1.1.6 Creating the System Requirements Speci	cations

 SYP1.2 Reviewing the System Requirements Speci�cations
 1.2.1 Reviewing the System Requirements Speci	cations Internally

Product
planning

Task structure

• (SY106) System
Requirements
Specifications

………
…………
…………
…………
…………

• (SY107) Internal
Review Report (on
System Requirements
Specifications)

………
…………
…………
…………
…………

………
…………
…………
…………
…………

�
Document template

sample is available.

Output

 Description

In this activity:
• (1.1.1) Grasp the contents of product requirement specifications, based on the contents of Product Plan

Description and Product Specifications;
• (1.1.2) Analyze and clarify the functional requirements of the system;
• (1.1.3) Also clarify the non-functional requirements of the system;
• (1.1.4) Clarify the operational conditions and constraints of the product system by taking the actual operating

environment and other relevant factors into consideration;
• (1.1.5) Prioritize the individual functional and non-functional requirements by taking account of the constraints

in actual system development, including the development period, resources and operating environment
of the product;

• (1.1.6) Create the System Requirements Specifications by organizing the information gained from the above
tasks in an orderly manner;

• (1.2.1) Review the created System Requirements Specifications, based on the pre-defined check points, and
document the outcome of this review orderly in the form of an Internal Review Report.

	Keep in mind the following points as the
prerequisites for commencing the activity to define

the system requirements:
• Product planning: Product strategies (such as, the

Clarify the requirements that the system must fulfill to realize the targeted product.

 Consideration

SYP1 System Requirements Definition

• Terminology
* Product Plan Description : A document that contains catalog-level information on the product, and description about product strategies (such

as, the end users’ needs) that are clearly defined.
** Product Specifications : A document that contains user guide-level information on the product, and description about the services provided by

the product that are clearly defined.

232.2 Process Definition Documents

System
 R

eq
u

irem
en

ts D
efin

itio
n

S
Y
P
1

end users’ needs) are clearly defined;
• Schedule: The overall schedule is already fixed

(product release/launch date, milestones shared
with external stakeholders, etc).

	In case of embedded system, place particular
importance on analyzing the external environment
(such as, the system’s operating environment)
and the functional analysis on how the system is
capable of responding to abnormalities;
	Place importance on analyzing not only the
functional aspects but also the non-functional

aspects of the system (such as, performance and
maintainability);
Examine the requirements also from the standpoint
of the external system that operates closely or in
conjunction with the system that is going to be
developed;
	Decide on the requirements specifications by
also taking account of the functionalities that the
product is expected to continue providing in long
term.

	Scenario analysis (use case diagrams, activity
diagrams, etc)

 <Reference> Techniques and Tools

Hardware development

Product inspectionV-Model

(2) Testing �ow(1) Design detailing �ow

SUP1 Project
Management

SUP3 Risk
Management

SUP5 Con�guration
management

SUP7 Change
management

SUP9 Subcontractor
Management

SUP2
Quality Assurance

SUP4 Documentation &
Document Management

SUP6 Problem
Resolution Management

SUP8
Joint Review

SUP10 Development
 Environment Preparation

The scope of de�nition of development process covered in ESPR is limited to four processes: SYP, SAP, SWP, and SUP,
and does not include Product Planning, Product Inspection and Hardware Development.

SYP2 System
Architectural Design

SYP4
System Testing

SWP1 Software
Requirements De�nition

SWP2 Software
Architectural Design

SWP3 Software
 Detailed Design

SWP6 Comprehensive
 Software Testing

SWP5 Software
 Integration Testing

SWP4 Unit Testing

Product planning

SYP1 System
Requirements De�nition

SAP1 Safety
Requirements De�nition

SAP2
Safety Testing

SYP3 System
Integration Testing

SWP4　Implementation

SUP: Support Process

SWP: Software Engineering Process

SAP: Safety Engineering Process

SYP: System Engineering Process

Figure 2.2 V-Model and Development Process (SYP1 System Requirements Definition)

24 Part 2 Technical Section

System
 R

eq
u

irem
en

ts D
efin

itio
n

S
Y
P
1

 Listed below are matters that need to be careful of
when confirming the contents of the Product Plan
Description:

	Product Plan Description is a document normally
prepared by the product planning or sales
department/division to provide the overview of the
product to be developed. Keep in mind that it does
not necessarily state all the information pointed
above.

	The information stated in the Product Plan

Description may be revised due to various factors,
including the changes in the intended users and
market trends. Give attention to when the Product
Plan Description was created.

 Listed below are matters that need to be careful
of when confirming the contents of the Product
Specifications:

	Product vision and concept:

• Strategic positioning of the product;
• Superiority over similar products developed by

 Precaution

(1) Confirm the following points stated in the Product
Plan Description:

	Product outline and characteristics, functional
differences from existing products, etc;
	Product market, time to market (launch schedule);
	Positioning and level of impor tance of the
product based on medium- to long-term product
strategies;
	Standards, conventions, laws and regulations

related to the product.
(2) Confirm the following points stated in the

Product Specifications:
	Product vision and concept;
	Intended users and system requirements;
	Situations and context in which the product is
used;
	Constraints in realizing the product.

 Action

SYP 1.1 Creating the System Requirements Specifications

Based on the Product Plan Description and Product Specifications, clarify the requirements that the system must fulfill to
realize the targeted product, and create a document called System Requirements Specifications.

	 1.1.1	 Understanding the Product Plan Description and Product Specifications

Outline
Grasp and conf irm the contents
stated in the Product Plan Description
and Product Specifications prepared
by Product Planning Department or
other relevant organizations.

Input
• Product Plan Description
• Product Specifications

Output
(Confirmation Note for Product
Plan Description and Product
Specifications)

• Terminology
* Context : Context is something written or spoken that immediately precedes or follows a word or passage, background information, or an

interrelated condition, situation or circumstance that helps clarify an idea or its meaning. In this guidebook, this term is used, for example in
particular section, to mean the purpose, background or strategy of the embedded system to be developed.

252.2 Process Definition Documents

System
 R

eq
u

irem
en

ts D
efin

itio
n

S
Y
P
1

competitors;
• Concept of not only the functionalities and

services provided by the product, but also the
concept in terms of quality, cost and delivery
(QCD) perceived f rom the standpoint of
stakeholders engaged in product development;

	Intended users and system requirement:

• Age, gender, nationality, occupation and place of
residence of the intended users, among others

• Their expected frequency of use of the targeted
product, and whether they have past experience
using the existing product or not;

• Requirements from the manufacturer (vendor);
• Typical user requirements.

	Situations and context in which the product is used:

• Situation or condition when the intended users
use the product in:

1) Normal state;
2) Unexpected state.
• Elements related to product behavior and

the users’ operation of the product in typical
situations and context

• Scenarios for using the product, including
contextual information and users’ operation (use
case diagram, activity diagrams, etc)

	Constraints in realizing the product:

• Length of time (development period) and budget
(development costs) that can be allocated for
product development;

• Serviceable life of the product (durable years),
and product life cycle;

• Expected product quality (reliability, safety,
usability, etc);

• Peripheral systems and hardware used as the
prerequisites for using the product;

• Constraints on the continuity from the existing
product specifications;

• Constraints on reusing the existing system;
• Constraints due to security and environmental

issues;
• Product (sales) price

26 Part 2 Technical Section

System
 R

eq
u

irem
en

ts D
efin

itio
n

S
Y
P
1

Output
• (SY101) List of Functional System
Requirements
• (SY102) System Functionality-
Operation Matrix

	 1.1.2	 Analyzing and Sorting the Functional System Requirements

Outline
Based on the information described
in the Product Specif icat ions,
analyze and sort out the functional
requirements of the system from
the standpoint of those developing
a system that enables the product to
function as required.

Input
• Product Plan Description
• Product Specifications

 Action

(1) Analyze the requirements stated in the Product
Specifications, and identify the functional
requirements that the system must meet to realize
the product.

(2) Perform use case analysis that takes account of
the system users and when the system is going
to be used, and include the analytical results in
the examination process to identify the functional
requirements.

(3) After identifying the functional requirements, do
the following:

	Analyze the relationship between functionalities
(such as, the sequential relat ionship and
concurrency of system operations) and use the
findings to create an orderly matrix of system
functionalities and operations;
	Examine whether any of the functionalities of the

existing systems can be carried over or reused in
the current system, by considering the likelihood
of current and future reuse of existing systems;
	Clarify which data will be associated to
functionalities that involve data processing.

(4) In addition, gain a good knowledge about how the
systems (and/or sub-systems) are linked via the
network or bus, and the external interfaces for the
linkage.

	Also have a c lea r unders tanding of the
communication protocol, configuration and
contents of data exchanged via the network,
among others.

(5) In case the system comes together with user
interface, the display and operation items, as well as
the devices for controlling the user interface should
also be clearly defined.

Be able to easily map which functional system
requirements correspond with which requirements
stated in the Product Specifications and/or Product
Plan Description.
During the use case analysis, create use case
scenarios and diagrams, as well as an activity
diagram, among others.
The functional system requirements stated in the
Product Specifications may not be sufficient to

fulfill all the functionalities the system is required
to provide for the product. Should this be the
case, perform additional analysis consisting of
the following items to define the full-fledged
functional system requirements in a systematic
order:
(1) Sort and analyze the necessary functionalities

from the standpoint of service;
(2) Based on the perceived granularity of the

 Precaution

272.2 Process Definition Documents

System
 R

eq
u

irem
en

ts D
efin

itio
n

S
Y
P
1

Output
• (SY103) List of Non-functional
System Requirements

Outline
Based on the information described
in the Product Specifications, analyze
and sort out the non-functional
requirements of the system from
the standpoint of those developing
a system that enables the product to
function as required.

Input
• Product Plan Description
• Product Specifications

	 1.1.3	 Analyzing and Sorting the Non-functional System Requirements

(1) Analyze the requirements stated in the Product
Specifications, and identify the non-functional
requirements that the system must meet to realize
the product.

(2) Note that non-functional system requirements
include the “reliability”, “efficiency”, “maintainability”,
“portability” and “usability” of the system.

(Example)
• Tolerable frequency and severity of system errors

• Processing time and response time of individual
functionality

• Easiness to operate the user interface
• Method of performing corrective actions to

defects that occur after the product is launched
in the market (such as, remote maintenance)

(3) If the system is assumed to be used by connecting
it to the network, also clarify the security-related
requirements.

 Action

	For non-functional requirements that can be
specified with concrete numerical targets,
explicitly state the target values.

 (Example) Response time, etc
	For items related to system safety, also examine
the impact and frequency of the problematic state
caused by the system’s functional defects.

Related processes: SAP1 Safety Requirements Definition

	Non-functional requirements are often not
stated explicitly in Product Plan Description and
Product Specifications. Therefore, they frequently
need to be identified by referring to the explicit
descriptions and contextual information on when
the system is intended to be used.

 Precaution

 respective functionalities, sub-divide the
functionalities and sort them out in hierarchical
order;(3) Map the linkage and/or co-relation
between the respective functional items

	To analyze and sort the functionalities, also look
at the relationship between the data used for
the individual functionality, the product and the
externals, and examine the co-relation between

the functionalities and the chronological state
transition of the system and the functionalities.
	If the system to be developed is a multi-CPU type
where multiple CPUs are provided to achieve
the required functionalities, the specifications
on the internal linkage operation should also be
examined.

28 Part 2 Technical Section

System
 R

eq
u

irem
en

ts D
efin

itio
n

S
Y
P
1

	 1.1.4	 Clarifying the System Operational Constraints

(1) Grasp the system’s operating environment.

	Clarify the operational conditions that are
attributable to, such as, the location where the
system is installed.

	Clarify the range of data and values inputted into
the system via a sensor or other means.

　(Example)

 “Specifications for withstanding cold environments”
defined for automobiles

(2) Clarify the size and properties of data processed by
the system and the timing of data input/output.

(3) Clarify the legal restrictions incidental to system use
and other constraints related to social conventions
and business practices.

(4) Clarify the dimensions and layout of the product,
and any other information related to system
mounting. Safety

(5) Clarify how and to what extent the system is
related to intellectual properties and proprietary
technologies of other companies.

(6) Clarify also the constraints regarding the hardware
platform (MPU, LSI, etc) that uses the system.

 Action

	Normally, a system is developed, based on the
assumption of the operating environment in which
it is going to be used. A system developed in
this way is often prone to system failures when
it is actually used in unexpected environmental

conditions that have not been assumed during the
development. Therefore, the possible usages of the
system should be assumed as broadly as possible
when analyzing the system’s operating conditions.

 Precaution

Safety

: Work related to safety

Output
• (SY104) List of System Operational
Constraintst

Outline
Clarify the operational conditions
and constraints of the system used
to realize the product by taking
the actual operating environment
and other relevant factors into
consideration.

Input
• Product Plan Description
• Product Specifications

292.2 Process Definition Documents

System
 R

eq
u

irem
en

ts D
efin

itio
n

S
Y
P
1

(1) Prioritize the system requirements by taking
account of the items listed in (SY101), (SY103), and
(SY104).

(2) In prioritizing the items that need to be addressed
to develop a system that fully meets the defined
requirements, weigh the importance of each of
these items by referring to the estimated cost and
development period that would be necessary to
fulfill the requirements (both functional and non-

functional), product evaluation (on the value of the
product when the system requirements are fully
met, including the value perceived by the users),
and feasibility study.

(3) After examining all the conceivable elements that
should be considered for prioritization, the system
requirements should be classified preferably into
three priority levels: High / Mid / Low.

 Action

Output
• (SY105) Prioritized List of System
Requirements

	 1.1.5	 Prioritizing the System Requirements

Outline
Prioritize the system requirements by
taking account of the critical factors
like constraints that affect the efforts
to develop a system that fully meets
the defined requirements.

Input
• Product Plan Description
• Product Specifications
• (SY101) List of Functional System
Requirements
• (SY103) List of Non-functional
System Requirements
• (SY104) List of System
Operational Constraints

	In some cases, the f ol lowing analy t ica l
methodologies may prove to be effective for
system requirements prioritization:

• Quality Function Deployment (QFD)
• Analytical Hierarchy Process (AHP) for relative

comparison of the requirements.

	Moreover, there are cases when the system
requirements may conflict with each other. In such
cases, additional examinations would become
necessary, including the trade-off analysis.

	There a re a lso cases when some system
requirements may not be feasible. In such cases,

careful examination to distinguish the feasible
ones from others would also be an important step
in narrowing down the system requirements.

	The prioritization of system requirements
may have to be repeated in some cases when
coordination with the customers and other
stakeholders become necessary.

	The prioritization of system requirements should
also be examined with a medium- to long-term
view that takes account of the possibility of
launching variants or new versions of the product
in the future.

 Precaution

30 Part 2 Technical Section

System
 R

eq
u

irem
en

ts D
efin

itio
n

S
Y
P
1

(1) Create the System Requirements Specifications
by taking account of the items listed in (SY101)
through (SY105).

(2) If multiple alternative draft documents of System
Requirements Specifications have been examined,

the most desirable document must be selected and
finalized in this sub-task.

(3) In conjunction with the above, organize the system
design guidelines as well.

 Action

Output
• (SY106) System Requirements
Specifications

………
…………
…………
…………
…………

………
…………
…………
…………
…………

�
Document template sample is

available.

	 1.1.6	 Creating the System Requirements Specifications

Outline
Sort out the system requirements
and describe them orderly in the
form of a document called System
Requirements Specifications.

Input
• Product Plan Description
• Product Specifications
• (SY101) List of Functional System
Requirements
• (SY102) System Functionality-
Operation Matrix
• (SY103) List of Non-functional
System Requirements
• (SY104) List of System Operational
Constraints
• (SY105) Prioritized List of System
Requirements

	The requirements pertaining to the following
points should be clearly specified in the System
Requirements Specifications:
• Peripheral systems and hardware that are related

to the system that is going to be developed;
• Input/output information or data exchanged

between the system and external sources/
destinations;

• Funct ional and non-f unct ional sys tem
requirements (that are prioritized);

• Operational constraints of the system as a whole
and individual functionalities (sequence, priority,
concurrency).

	Add the outcome of use case analysis (use case
diagram, use case scenario, etc) on as-needed
basis.
	The following set of information should also be
included to describe the system design guidelines:

• Design-related constraints;
• Applicable techniques for optimal designing;
• System platform suitable for implementation;
• Possibility of reusing the existing system.
	When there are still uncertainty factors, they
should also be stated explicitly in the System
Requirements Specifications.
	Points to keep in mind in documentation:
• Attach the revision history and indicate clearly

where have been revised;
• Clearly indicate who or which organization is

responsible of the created document;
• Ensure that the created document is managed

proper ly by per f orming conf igu ra t ion
management and change management.

Related processes: SUP5 Configuration Management;
SUP7 Change Management

 Precaution

312.2 Process Definition Documents

System
 R

eq
u

irem
en

ts D
efin

itio
n

S
Y
P
1

Output
(SY107) Internal Review Report (on System
Requirements Specifications)

………
…………
…………
…………
…………

………
…………
…………
…………
…………

�
Document template sample is available.

SYP1.2 Reviewing the System Requirements Specifications

Confirm that the defined system requirements meet the product requirements.

	 1.2.1	 Reviewing the System Requirements Specifications Internally

Outline
Check whether or not the contents of System
Requirements Specifications cover all what is
required for the system, and document the findings
orderly in the form of an Internal Review Report.

Input
(SY106) System
Requirements
Specifications

(1) Review the System Requirements Specifications
(SY106) internally, based on the following
perspectives:

	Whether the prerequisite environment and
conditions for system operation, and relevant
contextual information are clearly described or
not;
	Whether the intended users and the scenarios of
their operation are clearly described or not;
	Whether the functional and non-functional
requirements of the system are clearly described
or not, based on the findings of the above check
points;
	Whether the functional and non-functional system
requirements checked above are clearly prioritized
or not.

	Whether open issues that are still undecided
(“TBD (To Be Determined) matters”) are clearly
indicated or not;
	Whether the requirements described in System
Requirements Specifications are appropriate or
not from the standpoint of business (in terms of
business viability, novelty, etc).

Related processes: SUP3 Risk Management

(2) Document the findings of the above check points
orderly in the form of an Internal Review Report
(SY107) where the issues raised in the internal
review and the personnel in charge of handling
these issues are stated explicitly, and distribute
this report to the relevant members of the
development project.

	In reviewing the System Requirements Specifica-
tions, it is desirable to invite the following mem-
bers as reviewers:
• Developers and engineers engaged in the current

system development;
• Members who participated in the study group to

define the Product Specifications and Product
Plan Description;

• Engineers who have been involved in similar
system development projects in the past.

	The review manager should make sure that the
issues raised in the internal review meetings are
included in the Internal Review Report preferably

together with possible solutions and/or actions
that address these issues.

	Issues found in the early stage of development
when the system requirements are defined should
be addressed as soon as possible to prevent them
from growing or leading into bigger problems in
the latter half of the development process. There-
fore, the information mentioned in the Internal Re-
view Report should be shared with the stakehold-
ers that include the project manager, development
team leader and personnel in charge of product
planning, and their consensus should also be built 	
this early stage.

 Precaution

 Action

32 Part 2 Technical Section

System
 A

rch
itectu

ral D
esig

n

S
Y
P
2 Input

• Product Plan Description
• Product Specifications
• (SY106) System
Requirements
Specifications
• (SA104) Safety
Requirements
Specifications

SWP1

 SYP2.1 Creating the System Architectural Design Description
 2.1.1 Con�rming the Design Conditions
 2.1.2 Designing the System Structure
 2.1.3 Designing the Overall System Behaviors
 2.1.4 Designing the Interface
 2.1.5 Creating the System Architectural Design Description

 SYP2.2 Reviewing the System Architectural Design
 2.2.1 Reviewing the System Architectural Design Description Internally
 SYP2.2 Reviewing the System Architectural Design
 2.2.1 Reviewing the System Architectural Design Description Internally

 SYP2.3 Jointly Reviewing the System Architectural Design
 2.3.1 Jointly Reviewing the System Architectural Design Description

SYP1

Task structure

• (SY205) System
Architectural Design

Description
………
…………
…………
…………
…………

• (SY206) Internal
Review Report
(on System Architectural

Design)
………
…………
…………
…………
…………

………
…………
…………
…………
…………

�
Document template

sample is available.

Output

 Description

In this activity:
• (2.1.1) (2.1.2) Confirm the functional and non-functional system requirements that must be achieved, based on the

System Requirements Specifications. Moreover, confirm the constraints in achieving the system require-
ments from the standpoint of how to realize the specifications;

• (2.1.3) Sort out the functionalities that constitute the system from the standpoint of both the hardware and software,
and examine the behavior and structure of the system by taking account of the division of roles played re-
spectively by the hardware and software;

• (2.1.4) Design the interface between the functional blocks that constitute the system as well as the interface between
the system and external entities;

• (2.1.5) Create the System Architectural Design Description by arranging the results of the above sub-tasks in an or-
derly format;

• (2.2.1) Review the created System Architectural Design Description internally, based on the pre-defined check points,
and document the outcome of the internal review orderly in the form of an Internal Review Report;

• (2.3.1) Also hold joint review meetings with stakeholders, and document the outcome of the joint review orderly in
the form of a Joint Review Report.

	Examine the architecture to be designed for em-
bedded system from multiple standpoints, includ-
ing the estimate total cost to realize the system,

requirements on system performance, as well as
the expected level of reliability, safety, reusability,
and scalability. Also examine whether it is better

Examine how to actualize the embedded system to be developed, including the division of roles of hardware and
software.

 Consideration

SYP2 System Architectural Design

332.2 Process Definition Documents

System
 A

rch
itectu

ral D
esig

n

S
Y
P
2	Design modeling methodology

・UML (Undefined Modeling Language)
	Scenario analysis (use case diagrams, activity dia-
grams, etc)

 <Reference> Techniques and Tools

Hardware development

Product inspectionV-Model

(2) Testing �ow(1) Design detailing �ow

SUP1 Project
Management

SUP3 Risk
Management

SUP5 Con�guration
 Management

SUP7 Change
 Management

SUP9 Subcontractor
Management

SUP2
Quality Assurance

SUP4 Documentation &
Document Management

SUP6 Problem
Resolution Management

SUP8
Joint Review

SUP10 Development
Environment Preparation

The scope of de�nition of development process covered in ESPR is limited to four processes: SYP, SAP, SWP, and SUP,
and does not include Product Planning, Product Inspection and Hardware Development.

SYP2 System
Architectural Design

SYP4
System Testing

SWP1 Software
Requirements De�nition

SWP2 Software
Architectural Design

SWP3 Software
 Detailed Design

SWP6 Comprehensive
 Software Testing

SWP5 Software
Integration Testing

SWP4 Unit Testing

Product planning

SYP1 System
 Requirements De�nition

SAP1 Safety
Requirements De�nition

SAP21
Safety Testing

SYP3 System
Integration Testing

SWP4　Implementation

SUP: Support Process

SWP: Software Engineering Process

SAP: Safety Engineering Process

SYP:System Engineering Process

Figure 2.3 V-Model and Development Process (SYP2 System Architectural Design)

to achieve the required functionalities through
software or through hardware.
	In addition, explore the possibility of whether
some functionalities constituting the existing sys-

tems are going to be reused or not.
	Preferably, make use of drawings that will help
grasp the overview of the entire system and visu-
alize the outcome of the architectural design.

34 Part 2 Technical Section

System
 A

rch
itectu

ral D
esig

n

S
Y
P
2

SYP2.1 Creating the System Architectural Design Description

Examine how to achieve the requirements (on system architecture) defined in the System Requirements Speci-
fications, including the division of roles played by the hardware and software, and document the findings or-
derly in the form of System Architectural Design Description.

(1) Confirm the contents of the following items de-
scribed in the System Requirements Specifications:

	System constraints (including the operational con-
straints);
	Functional and non-functional system require-
ments.

(2) Reconfirm the system’s operating environment.

(3) Confirm the conditions of using the existing system
in case the existing system is going to be partially
used or extended.

(4) Also confirm the future possibility of expanding the
functionality of the current system.

(5) Confirm the scope of current system development.

 Action

Output
(Design Conditions Confirmation
Note)

	 2.1.1	 Confirming the Design Conditions

Outline
Confirm what the requirements
and conditions are in designing the
system architecture.

Input
• Product Plan Description
• Product Specifications
• (SY106) System Requirements
Specifications
• (SA104) Safety Requirements
Specifications

	Design conditions that can be defined numerically
should be stated explicitly with the respective
numerical targets.
	Bear in mind the necessity of cross-development

and have the differences between development
environment and execution environment clarified
beforehand.

 Precaution

352.2 Process Definition Documents

System
 A

rch
itectu

ral D
esig

n

S
Y
P
2

(1) Identify the high-level functionalities that structure
the system, and extract them as functional blocks.

(2) Examine the division of roles played by the hard-
ware and software in each functional block.

(3) Examine the relationship between respective func-
tional blocks.

(4) Examine the general contents of each functional
block, and divide the functionalities specified in the
System Requirements Specifications respectively
into functional blocks.

(5) Identify the functionalities and data used com-
monly by the entire system.

Based on the outcome gained from the above,
create a Functional Block Diagram that shows the
functional structure of the system schematically. De-
pending on the type of processing or service that the
system is expected to perform, there may be cases
when it is better to extract and break down the sys-
tem into components based on the data handled by
the system.

 Action

Output
• (SY201) System Structural
Diagram (Functional Block
Diagram)
• (SY202) List of Common
Functionalities and Data

	 2.1.2	 Designing the System Structure

Outline
Design the system structure by sorting
out the system functionalities from the
standpoint of both the hardware and
software, and extracting the functional
blocks that structure the system.

Input
• Product Plan Description
• Product Specifications
• (SY106) System Requirements
Specifications
• (SA104) Safety Requirements
Specifications

	Examine whether it is better to achieve the
required functionalities by means of software or
hardware.
• Examine the division of roles played by

the hardware and software from multiple
standpoints, including the estimate total cost
to realize the system, requirements on system
performance, expected level of reliability,
safety, reusability, and scalability, as well as
the appropriate method to realize the system
(whether through hardware or software).

	Also explore the possibility of reusing a part of the
functionalities provided by the existing systems
to develop the required system, based on the
following needs:
• Develop the product in series in the future with

new versions and variants;
• Improve the foreseeability of the entire system

(structure, behaviors, etc)
•Develop a system that can easily be debugged

and maintained;
• Ensure high reliability and safety.

	Explore, in addition, the possibility of purchasing
or implementing external component blocks to
support any of the functionalities that structure the
system;
	Organize the functional blocks in levels that will
make them easily reusable later on, by bearing
in mind the future possibility of developing new
versions and variants of the product in series;
	Use descriptive diagrams that will help improve
the development foreseeability of the entire
system.
	Also examine which functional block will handle
the initialization of the system;
	Preferably, the functionalities for diagnosing the
hardware and software, debugging and testing
should also be examined;
	Also consider desigining the redundancy of
functionalities that need to be highly reliable and
safe;
	Clarify also the MPU, ROM/RAM capacity, LSI,
related control devices and sensors used for the
system, among others.

 Precaution

36 Part 2 Technical Section

System
 A

rch
itectu

ral D
esig

n

S
Y
P
2

(1) Gain an organized view on how the functional
blocks are co-related to enable the system to
provide the required functional services.

(2) Sort out the operational scenarios (sequences) by
considering the possibility of concurrent operation
of multiple functional blocks and examining the
operational timing of the functional blocks. Also list
the possible interrupt actions.

(3) Clarify the operational context of the functional
blocks that structure the system.

(4) Associate the functional blocks respectively with
the use cases that have been examined in system

requirements analysis.

(5) Roughly estimate the time-related performance
of software and of hardware by bearing in mind
the non-functional requirements of the system,
and considering the time constraints (like response
time) that affect the system operation.

(6) Gain a clear concept on how the system handles
errors.

(7) Examine the framework on how to ensure the level
of safety required by the system by considering the
conditions in which the system is intended to be

used. Safety

 Action

Output
• (SY203) System Behavioral
Design Description

	 2.1.3	 Designing the Overall System Behaviors

Outline
Examine and sort out the overall
system behaviors by bearing in mind
the functional blocks that structure
the system.

Input
• Product Plan Description
• Product Specifications
• (SY106) System Requirements
Specifications
• (SA104) Safety Requirements
Specifications

	Examine not only the normal behaviors expected
from the system, but also its abnormal behaviors
caused by abnormal processing and other reasons.
	Clarify the state transitions of the system by

taking account of the internal states of the system
(consider the state transition of the system as
a whole that includes both the hardware and
software).

 Precaution

Safety

: Work related to safety

372.2 Process Definition Documents

System
 A

rch
itectu

ral D
esig

n

S
Y
P
2

(1) Clarify the external interface.

	Clarify the interface between the system to be
developed and the external systems.
	Clarify the types of data and information exchanged
via the external interface, as well as the method or
means applied for communication as well as for data
transmission and reception to make the interface
work.

(2) Clarify the internal interface.

	Clarify the interface between the functional blocks
that structure the system.
	Clarify the types of data and information exchanged

via the internal interface, as well as the method or
means applied to make the interface work between
system units (such as, bus and shared memory).

(3) Also clarify the interface between software elements
and hardware elements.

(4) As regards the interface between the system to be
developed and external system, also consider the
specifications of intermediate devices like sensors
and actuators, and the data related to them, and
create a table that lists the related data and/or sensor
data on as needed basis.

 Action

Output
• (SY204) System Interface Design
Description

	 2.1.4	 Designing the Interface

Outline
Clarify the external and internal
interfaces used for the system.

Input
• (SY106) System Requirements
Specifications
• (SA104) Safety Requirements
Specifications
• (SY201) System Structural
Diagram (Functional Block
Diagram)
• (SY202) List of Common
Functionalities and Data

	As regards the interface between the software
and hardware, consider the specifications and
characteristic properties of the hardware device,
and confirm that the designed interface conforms
to the specifications of the interfaced hardware
device on as needed basis.
	When data exists in between as the interface,
clarify its type and size, as well as the timing or
interval to receive the data.
	In examining the external system interface,

include the user interface (audio, visual, etc) in
the examination if they exist. In such cases, also
consider the non-functional system requirements
that pertain to usability.
	There is a need to clarify and sort out all the
interfaces between the hardware and software
including the following:
	 (Example) Definition of interrupt;
	 Input/output register read and written by the

software.

 Precaution

See also

Hardware specifications

38 Part 2 Technical Section

System
 A

rch
itectu

ral D
esig

n

S
Y
P
2

	Sort out the information outputted in various
materials in the course of designing the system
architecture, and document them systematically.

	Confirm that the created document adequately
reflects all the points indicated in internal and joint
reviews.

 Action

Sort out the information outputted in (SY201) through (SY204), and document them orderly in the form of System
Architectural Design Description.

Output
• (SY205) System Architectural
Design Description

………
…………
…………
…………
…………

………
…………
…………
…………
…………

�
Document template sample is

available.

	 2.1.5	 Creating the System Architectural Design Description

Outline
Sort out all the matters pertaining
to system architectural design, and
document them orderly in the form
of System Architectural Design
Description.

Input
• (SY201) System Structural
Diagram (Functional Block
Diagram)
• (SY202) List of Common
Functionalities and Data
• (SY203) System Behavioral
Design Description
• (SY204) System Interface Design
Description

 In creating the System Architectural Design
Description, information on static and dynamic
(behavioral) structures of the system as a whole
should be included to make the system to be
developed easily foreseeable.
 The prerequisites for system architecture should
be stated explicitly in the System Architectural
Design Description. Moreover, the reasons why
the architecture was defined to be so should also
be explained in this document.
 It is desirable to perform version management
that will enable the readers to know which part
of the document has been revised or added, and

attach the list of past versions.
 Points to keep in mind in documentation:
• Attach the revision history and indicate clearly

where have been revised;
• Clearly indicate who or which organization is

responsible of the created document;
• Ensure that the created document is managed

proper ly by per f orming conf igu ra t ion
management and change management.

Related processes: SUP5 Configuration Management;

SUP7 Change Management

 Precaution

392.2 Process Definition Documents

System
 A

rch
itectu

ral D
esig

n

S
Y
P
2

SYP2.2 Reviewing the System Architectural Design

Confirm that the system architecture that has been designed satisfies the system and safety requirements.

(1) Check whether the contents of System Architectural
Design Description are appropriate or not.

	Check whether the functional blocks that structure
the system are divided appropriately or not, and
whether they can enable the system to achieve
fully what it is required to provide, as described in
the System Requirements Specifications (confirm
the traceability).
	Check whether the division of roles played
respectively by the software and hardware is
appropriate or not.
	Check whether the prerequisites for dividing the
functional blocks and the roles played respectively
by the software and hardware are correct or not.
	Check whether the non-functional system
requirements are all achievable or not.
• Check whether the system can achieve the

expected level of performance (on efficiency,

etc) or not.
• Check whether the maintainability and

portability of the system can be appropriately
achieved, when considering the potential
expansion of the system in the future.

	Check whether or not the usability and safety of
the system are taken into account, based on the
targeted system users and the context of their use.
	Check whether or not the system architecture
is designed to enable the system to function
systematically as a whole.
	Check whether or not the design of the system
architecture is traceable f rom the system
requirements, and whether the designed system
architecture can be traced to the test specifications.
	Confirm the feasibility of the finalized system
architecture design.

Output
• (SY206) Internal Review
Report (on System
Architectural Design)

………
…………
…………
…………
…………

………
…………
…………
…………
…………

�
Document template sample is
available.

	 2.2.1	 Reviewing the System Architectural Design Description Internally

Outline
Confirm that the contents of the
created System Architectural
Design Description satisfy and are
appropriate for the specifications
of the system requirements, and
document the findings orderly in the
form of an Internal Review Report.

Input
• (SY106) System Requirements
Specifications
• (SA104) Safety Requirements
Specifications
• (SY205) System Architectural
Design Description
• (SY201) System Structural Diagram
(Functional Block Diagram)
• (SY203) System Behavioral Design
Description
• (SY204) System Interface Design
Description

See also

Hardware specifications, etc

 Action

40 Part 2 Technical Section

System
 A

rch
itectu

ral D
esig

n

S
Y
P
2 	One of the effective ways of checking the contents

of the System Architectural Design Description is
to hold review meetings. As regards the points of
concern on holding review meetings, refer to the
description under SWP2.2.

	Conduct the review that take the system design
conditions into account, as well as the background
and reasons for reaching the f inal system
architecture design.

	When multiple members are assigned to examine
the different aspects of system architecture, make
sure that the views on system architecture held by
the members do not conflict drastically.

	The review manager should make sure that the
issues raised in the internal review meetings are

included in the Internal Review Report preferably
together with possible solutions and/or actions that
address these issues.

	Issues found in the early stage of development
when the system architecture is designed should be
addressed as soon as possible to prevent them from
growing or leading into bigger problems in the
latter half of the development process. Therefore,
the information mentioned in the Internal Review
Report should be shared with the project manager,
development team leader, personnel in charge of
product planning, and other relevant stakeholders,
and their consensus should also be built at this
early stage.

 Precaution

(2) Document the findings of the above check points
orderly in the form of an Internal Review Report
(SY206) where the issues raised in the internal
review and the personnel in charge of handling

these issues are stated explicitly, and distribute this
report to the relevant members of the development
project.

412.2 Process Definition Documents

System
 A

rch
itectu

ral D
esig

n

S
Y
P
2

SYP2.3 Jointly Reviewing the System Architectural Design

Evaluate the designed system architecture among the stakeholders from the standpoint of how much it meets the
product plan and system requirements.

(1) Hold joint meetings among stakeholders of
system development (personnel in charge of
product planning, software developers, hardware
developers, system evaluators, personnel in charge
of manufacturing, etc) to review the validity of the
proposed system architectural design. In these
joint review meetings, focus on examining in
particular the following points dealt in the System
Architectural Design Description:

	Is the “how” (system architectural design that
has been studied) meeting the “what” (system
requirements)?

	Is the feasibility of the system architectural design
ensured?

	Are the requirements for software development
clearly described?

	Are the requirements for hardware development
clearly described?

	Are the requirements for integrating and
evaluating the system clearly described?

	Are security-related aspects (such as, system
vulnerability) taken into consideration?

	Are system safety-related aspects taken into
consideration?

	Are the system development environment,
system’s operating environment (OS, Lib) and
middleware used in the system clearly described?

	Are techniques and approaches for operation
evaluation during the manufacturing phase taken
into consideration?

	Are the laws and regulations applied to the domain
related to the system clearly described and are
they being observed?

	Are system constraints clearly described?

 Action

Output
• (SU801) Joint Review Records
(System Architectural Design
Description)

………
…………
…………
…………
…………

• (SY208) System Architectural
Design Joint Review Report

………
…………
…………
…………
…………

�
Document template sample is
available.

	 2.3.1	 Jointly Reviewing the System Architectural Design Description

Outline
Hold joi n t mee t i ngs a mong
stakeholders to review the contents
of the System Architectural Design
Description and confirm the validity
of the proposed methods to fulfil the
system requirements.

Input
• (SY106) System Requirements
Specifications
• (SA104) Safety Requirements
Specifications
• (SY205) System Architectural
Design Description
• (SY206) Internal Review Report
(on System Architectural Design)

• Terminology
* Stakeholders: Individuals belonging to corporate entities to end users who have interest in the product

42 Part 2 Technical Section

System
 A

rch
itectu

ral D
esig

n

S
Y
P
2

	Holding formal-styled review meetings where
the participating members have clearly assigned
roles (as chairperson, secretary, reviewers, etc)
would be effective in balancing the interests of the
stakeholders smoothly, should they conflict.

	Joint reviews are also desirable to evaluate the
functional blocks, because they will be examined
from various angles by multiple stakeholders with
varying interests and viewpoints.

Related processes: SUP8 Joint review

 Precaution

(2) Create a Joint Review Report, based on the review
records.

	Explicitly state in the Joint Review Report all

the issues and possible solutions raised during
the review, and distribute this document to the
relevant stakeholders.

432.2 Process Definition Documents

System
 In

teg
ratio

n
 Testin

g

S
Y
P
3

Input

• Real machine
• Software that has
been tested
• (SY205) System
Architectural Design
Description

SYP4

 SYP3.1 Preparing for System Integration Test
 3.1.1 Preparing for System Integration
 3.1.2 Preparing for System Integration Test

 SYP3.2 Conducting the System Integration Test
 3.2.1 Conducting the System Integration Test
 3.2.2 Reviewing the System Integration Test Results

 SYP3.3 Reviewing the System Integration Test Results
 3.3.1 Reviewing the System Integration Test Results Internally

SWP6

Task structure

• (SY304) Integrated
System

………
…………
…………
…………
…………

• (SY301) System
Integration Test
Specifications

………
…………
…………
…………
…………

• (SY306) System
Integration Test Report
………
…………
…………
…………
…………

• (SY307) Internal Review
Report (on System
Integration Test)

………
…………
…………
…………
…………

�Document template
sample is available.

Output

 Description

In this activity:
• (3.1.1) As one of the tasks to prepare for the finalization of system development, prepare for system integration
by making the software that has gone through the Comprehensive Software Test phase in Software Engineering
Process (SWP) and the real machine (hardware) used for the product available;
• (3.1.2) Prepare for the System Integration Test;
• (3.2.1) Integrate the real machine and the software that is built to be mountable in a real machine, conduct the
System Integration Test, and review the test results;
• (3.2.2) (3.3.1) Review the results of the System Integration Test, based on the pre-defined check points, and
document the outcome of this review orderly in the form of an Internal Review Report.
In the context of embedded system development, System Integration Test can be positioned as the opportunity
to confirm that the integration of software and hardware has been achieved in accordance with the system
requirements and system architectural design.

	The integration of the embedded system is
achieved by integrating the software with the
real machine (hardware). Before integrating the
system, there is a need to examine in which order
the software and hardware should be integrated,
and how to confirm that the integrated system

works properly.
Arrange the integration schedule in such a way so
that the engineers in charge of hardware and the
engineers in charge of software can collaborate
smoothly.

Confirm that the functional blocks operate when the hardware and software that structure the system are
integrated.

 Consideration

SYP3 System Integration Testing

44 Part 2 Technical Section

System
 In

teg
ratio

n
 Testin

g

S
Y
P
3

	Bug management tool
	Reliability growth curve

 <Reference> Techniques and Tools

Hardware development

 Product inspectionV-Model

(2) Testing �ow(1) Design detailing �ow

SUP1 Project
Management

SUP3 Risk
Management

SUP5 Con�guration
Management

SUP7 Change
 Management

SUP9 Subcontractor
Management

SUP2
Quality Assurance

SUP4 Documentation &
Document Management

SUP6 Problem
Resolution Management

SUP8
Joint Review

SUP10 Development
Environment Preparation

The scope of de�nition of development process covered in ESPR is limited to four processes: SYP, SAP, SWP, and SUP,
and does not include Product Planning, Product Inspection and Hardware Development.

SYP2 System
Architectural Design

SYP4
System Testing

SWP1 Software
 Requirements De�nition

SWP2 Software
Architectural Design

SWP3 Software
 Detailed Design

SWP6 Comprehensive
Software Testing

SWP5 Software
Integration Testing

SWP4 Unit Testing

Product planning

SYP1 System
 Requirements De�nition

SAP1 Safety
Requirements De�nition

SAP21
Safety Testing

SYP3 System
Integration Testing

SWP4　Implementation

SUP: Support Process

SWP: Software Engineering Process

SAP: Safety Engineering Process

SYP: System Engineering Process

Figure 2.4 V-Model and Development Process (SYP3 System Integration Testing)

452.2 Process Definition Documents

System
 In

teg
ratio

n
 Testin

g

S
Y
P
3

SYP3.1 Preparing for System Integration Test

Prepare for the system integration tests.

(1) Be ready with the real machine (hardware) that is
necessary to realize the system.

(2) Be ready with the software that has passed the
comprehensive software tests.

(3) Set the above-mentioned software in the state that
is executable by the computer inside the product.

 Action

Output
(Software installed in ROM, etc)

	 3.1.1	 Preparing for System Integration

Outline
As one of the tasks to prepare for the
f inalization of system development,
prepare for system integration by making
the software that has gone through the
Comprehensive Software Test phase in
Software Engineering Process (SWP) and
the real machine (hardware) used for the
product available.

Input
• Real machine
• Software that has been tested
• (SY205) System Architectural
Design Description

	“Software in the state that is executable by the
computer” means the state in which the software
is installed in ROM for target micro-computer.

	Keep an eye on the respective version of the
software and hardware that will be integrated.

	Before integrating the system, there is a need to
examine in which order the software and hardware
should be integrated, and how to confirm that the
integrated system works properly.

	Be prepared also with the procurement and
installation of the real machine and in-circuit
emulator (ICE).

	It is also important to arrange the integration
schedule in such a way so that the engineers in
charge of hardware and the engineers in charge of
software can collaborate smoothly.

 Precaution

46 Part 2 Technical Section

System
 In

teg
ratio

n
 Testin

g

S
Y
P
3

(1) List the items that need to be checked at the time
of system integration, and create the test cases for
System Integration Testing, based on these check
items.

(2) Devise test cases for checking the interface when
the software and hardware are integrated.

(3) Devise test cases for confirming that all the func-
tionalities that need to be provided by the system
can be actualized by the integrated system.

(4) Create the test data used to conduct the above-
mentioned test cases. Also have the various test cri-
teria defined beforehand, including the criteria for
judging the test results, the criteria for evaluating
the System Integration Test on the overall, and the
criteria for determining the satisfactory completion
of the System Integration Testing activity.

(5) Sort out the above-mentioned test cases and test
data, and create a document called System Inte-
gration Test Specifications to describe them in an
orderly manner.

(6) Prepare the test cases for verifying the modifica-
tions (when modifications are implemented and
need to be verified).

	When a defect is detected during the System In-
tegration Testing activity and modification has
been implemented to resolve it, prepare test cases
to verify that the modification was successful in
eliminating the defect, and that no other problems
have derived from this modification.

	Determine the scope of the modification verifica-
tion test and select the appropriate test cases, based
on the description of the defect.

 Action

Output
• (SY301) System Integration Test
Specifications
• (SY302) System Integration Test
Data
• (SY303) Internal Confirmation
Note (on System Integration Test
Specifications)

………
…………
…………
…………
…………

………
…………
…………
…………
…………

�
Document template sample is

available.

	 3.1.2	 Preparing for System Integration Test

Outline
Prepare to conduct the integration
test to the system when it is built
into the final integrated form.

Input
• (SY205) System Architectural
Design Description
• (SU601) Defect Management
Ticket (when modifications are
implemented and need to be
verified)

 Precaution

	When testing the interface between the software
and hardware, be especially attentive about the
data input to and/or output from the software via
the hardware.
	For integration of a complex system that uses
more than one CPU, the hardware and software

that structure the system do not necessarily
have to be integrated all at once. Therefore, for
testing such complex systems, prepare test cases
designed to be conducted one by one to check
only the functionalities achieved by the specific
portion of the system that has been integrated, by

472.2 Process Definition Documents

System
 In

teg
ratio

n
 Testin

g

S
Y
P
3

	 experimentally activating the part of the system
required to perform the given functionalities.
	Examine whether or not the pass/fail test criteria
should also be included in the System Integration
Test Specifications.

	 Take account of the configuration management
process, if necessary. Also think about the
sequence of integrating the system partially (if
integrated portion by portion) and the sequence of
testing the integrated system portions.
	Since there are integration test cases designed
to cover only a specific porton of the system as
mentioned earlier, consider also using simulation
test equipment, test programs and ICE, among
others.
	Be sure to review the description of the System
Integration Test Specifications.
	Points to consider when preparing the test for
verifying the modification:

• Is the scope of implementation of this test
covering all the potentially affected areas?

• Basically, reuse the test cases that have already
been created. Consider preparing new test cases
when the modification was large-scaled, and
extensive areas were affected.

	Points to keep in mind in documentation:
• Attach the revision history and indicate clearly

where have been revised;
• Clearly indicate who or which organization is

responsible of the created document;
• Ensure that the created document is managed

p rope r l y by pe r f o r ming con f ig u ra t ion
management and change management.

R e l a t e d p r o c e s s e s : S U P 5 C o n f i g u r a t i o n
Management; SUP7 Change Management

48 Part 2 Technical Section

System
 In

teg
ratio

n
 Testin

g

S
Y
P
3

SYP3.2 Conducting the System Integration Test

Conduct the System Integration Test.

(1) Embed the software built to be mountable in the
product into the real machine (hardware).

(2) Based on the test cases described in the
System Integration Test Specifications, conduct
the Integration Test one by one to check the
functionalities achieved by operating the integrated
system.

	When the integrated system is tested by using
an alternative test case or data, keep records of
the test results, along with the reason(s) stating
explicitly why the alternative test case or data had
to be used.

	When a prepared test case cannot be conducted,
keep records of the event, along with the reason(s)
stating explicitly why it was not executable.
Moreover, determine the reasonableness of the
stated reason(s).

(3) Conduct the test for verifying the modification to:

	Check whether the defect has been eliminated or
not by the modification;

	Check whether the modification to resolve the
defect has led to any other defects or not.

 Action

Output
• (SY304) Integrated System
• (SY305) System Integration Test
Results

	 3.2.1	 Conducting the System Integration Test

Outline
Integrate the real machine and the
software that is built to be mountable
in a real machine, and conduct the
Integration Test.

Input
• Software that has been tested
• Real machine
• (SY301) System Integration Test
Specifications
• (SY302) System Integration Test
Data
• (SU601) Defect Management
Ticket (when modif ications are
implemented and need to be
verified)

	When a defect that has been detected while testing
is resolved by implementing a modification, there
is a need to identify the functional blocks that
are related to the defective functional block, and
conduct all the tests that are necessary to confirm

that they all function normally again.
	Before running the test for verifying the
implemented modification, be sure to check that
the latest modified version is tested.

 Precaution

492.2 Process Definition Documents

System
 In

teg
ratio

n
 Testin

g

S
Y
P
3

(1) Judge whether the system in its final integrated
form has been successfully integrated or not, by
referring to the criteria described in the System
Integration Test Specifications.

(2) When a defect has been detected while running the
System Integration Test, investigate the root cause
of the defect (whether it was caused by or in the
software or hardware, for example), and document
the findings in Defect Management Ticket.

(3) In the System Integration Test Report, state
explicitly the following set of information, among
others:

	Test methods, test environment, tools and data that
have been used;

	Number of defects that have been detected, which
of them are considered critical, result of the defect
analysis;

	Judgment of whether the System Integration
Test was completed successfully or not, and the
grounds that.

Related processes: SUP6　Problem Resolution
Management

 Action

Output
• (SY306) System Integration Test
Report

………
…………
…………
…………
…………

• (SU601) Defect Management
Ticket

………
…………
…………
…………
…………

………
…………
…………
…………
…………

�
Document template sample is

available.

	 3.2.2	 Reviewing the System Integration Test Results

Outline
Review the results gained from the
System Integration Test, and judge
whether the tested system has passed
or failed this test.

Input
• (SY301) System Integration Test
Specifications
• (SY305) System Integration Test
Results
• (SU601) Defect Management
Ticket (when modif ications are
implemented and need to be
verified)

	When a defect has been detected while testing,
first try reproducing the defect, and clarify the
context and the state the system was in.

 Precaution

50 Part 2 Technical Section

System
 In

teg
ratio

n
 Testin

g

S
Y
P
3

SYP3.3 Reviewing the System Integration Test Results

Review the results of the System Integration Test from the standpoint of checking whether or not the integrated
embedded system is capable of processing correctly what it is required to achieve as defined in the System
Architectural Design.

(1) Review the results of the System Integration Test
from the following perspectives:

	When an unsolved issue is found:
• Evaluate the severity (level of importance) of

the issue;
• When the issue is evaluated to be a critical

problem that affects the functionality, reliability
and/or safety of the entire system, carry out
concrete countermeasures by examining the
following points, among others:
a. Return to relevant system development

processes (software and/or hardware);
b. Add restrictions to the conditions of using the

system;

c. Reconsider the resource plan.
Related processes: SUP8 Joint review; SUP1 Project
Management

	Check whether there have been any test cases
that were not carried out, and if there were any,
investigate the reason(s) why they were not carried
out, and examine the possible solutions.

(2) Document the findings of the above check points
orderly in the form of an Internal Review Report
(SY307) where the issues raised in the internal
review and the personnel in charge of handling
these issues are stated explicitly, and distribute this
report to the relevant members of the development
project.

 Action

Output
• (SY307) Internal Review
Report (on System Integration
Test)

………
…………
…………
…………
…………

………
…………
…………
…………
…………

�
Document template sample is

available.

	 3.3.1	 Reviewing the System Integration Test Results Internally

Outline
Review the contents of the System
Integration Test Report, check
whether or not there have been any
issues that could not be solved at
the stage of system integration, and
examine the possible solutions.

Input
• (SY205) System Architectural Design
Description
• (SY301) System Integration Test
Specifications
• (SY303) Internal Confirmation Note (on
System Integration Test Specifications)
• (SY306) System Integration Test Report
• (SU601) Defect Management Ticket

	Check whether the number of defects that have
been detected is acceptable or not, based on the
quality criteria.
	When the test for verifying the modification
has been conducted, check whether the scope
of the test and the test environment have been
appropriate or not.

	The review manager should make sure that the
issues raised in the internal review meetings are
included in the Internal Review Report preferably
together with possible solutions and/or actions that
address these issues (such as, holding joint review
meetings).actions (e.g., holding a joint review).

 Precaution

512.2 Process Definition Documents

System
 Testin

g

S
Y
P
4

Input

• (SY304) Integrated
System
• (SY106) System
Requirements
Specifications
• (SA104) Safety
Requirements
Specifications

Product
 inspection

 SYP4.1 Preparing for System Test
 4.1.1 Creating the System Test Speci�cations
 4.1.2 Preparing for System Test
 4.1.3 Reviewing the System Test Speci�cations Internally

 SYP4.2 Conducting the System Test
 4.2.1 Conducting the System Test
 4.2.2 Reviewing the System Test Results

 SYP4.4 Con�rming the Completion of System Development
 4.4.1 Con�rming the Completion of System Development

 SYP4.3 Reviewing the System Test Results
 4.3.1 Reviewing the System Test Results Internally

SYP3

Task structure

• (SY401) System Test
Specifications

………
…………
…………
…………
…………

• (SY406) System Test
Report

………
…………
…………
…………
…………

• (SY408) Completed
System
• (SU104) Project
Completion Report (on
System Development)
………
…………
…………
…………
…………

………
…………
…………
…………
…………

�
Document template

sample is available.

Output

 Description

In this activity:
• (4.1.1) (4.1.2) (4.1.3) Prepare the test specifications for checking and reviewing whether or not the fully integrated
system is capable of operating the functionalities described in the System Requirements Specifications, and conduct
a comprehensive set of tests collectively referred to as the System Test by actually operating the system according to
the prepared test specifications (hereafter called the “System Test Specifications”);
• (4.2.1) (4.2.2) (4.3.1) Review the results of the System Test, based on the pass/fail criteria applied to this test, and
document the findings orderly in the form of an Internal Review Report;
• (4.4.1) Make a final judgment as the organization in charge of product system development on whether the
developed system has passed or failed the System Test, based on the test results documented in the System Test
Report, and sort out the information deemed necessary for later product inspection.
System Testing can be regarded as the final activity in system development to test and review the developed system.
Therefore, this activity must be carried out comprehensively without any omission, by assuming how the system actually
operates when the product is used in the real world.

	Before conducting the System Test, a particular
attention should be given to the operating
environment in which the system is tested
(hereafter called the “test environment”). Conduct
the System Test in a test environment assumed to

be close to the environment in which the product
is likely to be used by its users in the real world.
	Consider the System Test as the final opportunity
to test and review the system that has been
developed, and be careful not to leave out any test

Confirm that the system requirements are fully met.

 Consideration

SYP4 System Testing

52 Part 2 Technical Section

System
 Testin

g

S
Y
P
4

	Automatic testing tool (automated regression test,
etc)

	Bug management tool
	Reliability growth curve

 <Reference> Techniques and Tools

Hardware development

Product inspectionV-Model

(2) Testing �ow(1) Design detailing �ow

SUP1 Project
Management

SUP3 Risk
Management

SUP5 Con�guration
 Management

SUP7 Change
Management

SUP9 Subcontractor
Management

SUP2
Quality Assurance

SUP4 Documentation &
Document Management

SUP6 Problem
 Resolution Management

SUP8
Joint Review

SUP10 Development
Environment Preparation

The scope of de�nition of development process covered in ESPR is limited to four processes: SYP, SAP, SWP, and SUP,
and does not include Product Planning, Product Inspection and Hardware Development.

SYP2 System
Architectural Design

SYP4
System Testing

SWP1 Software
 Requirements De�nition

SWP2 Software
 Architectural Design

SWP3 Software
 Detailed Design

SWP6 Comprehensive
 Software Testing

SWP5 Software
 Integration Testing

SWP4 Unit Testing

Product planning

SYP1 System
 Requirements De�nition

SAP1 Safety
Requirements De�nition

n

SAP21
Safety Testing

SYP3 System
Integration Testing

SWP4　Implementation

SUP: Support Process

SWP: Software Engineering Process

SAP: Safety Engineering Process

SYP: System Engineering Process

Figure 2.5 V-Model and Development Process (SYP4 System Testing)

	 cases, including not only the cases where the
system is tested in conditions when the product is
used in normal state but also the cases where the
system is tested in abnormal conditions of use, as

well as the test cases for checking the compliance
of the system to standards, conventions, laws and
regulations that are relevant to the product.

532.2 Process Definition Documents

System
 Testin

g

S
Y
P
4

SYP4.1 Preparing for System Test

Prepare for the System Test.

(1) By keeping in mind that the System Test is intended
to be conducted in a test environment assumed
to be close to the user environment in which the
developed system is actually used as the final
product, create the System Test Specifications that
consist of specifications for a set of tests devised
from a wide variety of perspectives.

 Structure the System Test with a set of tests devised
from the following perspectives:

	Comprehensive tes ts tha t covers a l l the
functionalities and services described in the
product manuals;
	Tests pertaining to normal, quasi-normal and
abnormal system operations;
	Tests pertaining to durability of the system in
continuous use;
	Tests pertaining to system performance, including
the processing capacity;

	Tests pertaining to usability of the system;
	Tests pertaining to maintainability of the system
(online update, etc);
	Tests pertaining to system security;
	Tests pertaining to system safety.

Related processes: SAP2 Safety Testing

Tests pertaining to compliance of the system to
standards, conventions, laws and regulations that
are relevant to the product.

(2) By referring to the perspectives mentioned
above, itemize the contents of the System Test
Specifications into categories of test cases,
prerequisites for the system’s operating conditions
(states), expected system behaviors, and other
classifiable units.

(3) Clarify the criteria for judging whether the tested
system has passed or failed the System Test.

 Action

Output
• (SY401) System Test
Specifications

………
…………
…………
…………
…………

………
…………
…………
…………
…………

�
 Document template sample is
available.

	 4.1.1	 Creating the System Test Specifications

Outline
Identify the items that need to
be tested as the product system
based on the contents of System
Requirements Specifications, and
document them orderly in the form
of System Test Specifications.

Input
• (SY106) System Requirements
Specifications
• (SA104) Safety Requirements
Specifications
• Product manuals
• I n for mat ion (del iverables)
necessary for test specifications

See also

System Test Specifications created in the past

54 Part 2 Technical Section

System
 Testin

g

S
Y
P
4

	As regards the system’s operating conditions
(states), consider not only the conditions when the
product is used in normal state but also the cases
when the product is used under quasi-normal or
abnormal conditions.
	If there are similar products developed in the past,
take account of the defects that have been detected
previously in those products as well.
	Review all the data related to the system without
omitting any.
	Distinguish the tests conducted at the development
side with the tests conducted at the user side.

Safety

	It is desirable to examine and create the System
Test Specifications during the upstream process
(such as, during the design phase).
	Points to keep in mind in documentation:
• Attach the revision history and indicate clearly

where have been revised;
• Clearly indicate who or which organization is

responsible of the created document;
• Ensure that the created document is managed

properly by performing configuration
management and change management.

Related processes: SUP5 Configuration
Management; SUP7 Change Management

 Precaution

Safety

: Work related to safety

552.2 Process Definition Documents

System
 Testin

g

S
Y
P
4

(1) Prepare the test environment.
	Since system behaviors in actual operating
environment (i.e.: real machine environment)
forms the basis of the System Test, prepare a test
environment where the system can actually be
used and operated.

(2) Prepare the test data.
	Prepare a set of data that would be necessary to
carry out the test cases of the System Test (system
input data, data operated by the user, etc).
	Examine the types of tests carried out in the
System Test.
	Since some test cases may require the system
to be in a very unusual operating environment
(condition) or tested with a rare type of data, also
examine how to be well prepared with all the
necessary environment and data.

(3) Also have the various test criteria defined
beforehand, including the criteria for judging the
test results, the criteria for evaluating the System
Test on the overall, and the criteria for determining
the satisfactory completion of the System Testing
activity.

(4) Prepare the test cases for verifying the modification
(when modifications are implemented and need to
be verified).

	When a defect is detected during the System
Testing activity and modification has been
implemented to resolve it, prepare test cases to
verify that the modification was successful in
eliminating the defect, and that no other problems
have derived from this modification..
	Determine the scope of the modif ication
verification test and select the appropriate test
cases, based on the description of the defect.

 Action

Output
• (SY402) System Test Data
• (SY403) System Test
Environment

	 4.1.2	 Preparing for System Test

Outline
Prepare for the System Test (test
data, test environment), based on
the System Test Specifications.

Input
• (SY401) System Test Specifications System to be
tested
• (SU601) Defect Management Ticket (when the
test to verify the modification is conducted)

	Depending on the system, the organization in
charge of development alone may not be able
to prepare all the actual operating environments
necessary to run the tests. Therefore, be sure to
start preparing or procuring the test environments
at an early stage, including the arrangements
to gain support from others on the preparation,
should there be any test environments that cannot
be prepared alone.

 If there are test environments that cannot be
prepared physically by any means, consider
preparing the necessary operating environment
through feasible alternative methods, including the
use of a simulator.
	Since the System Test is composed of a set of tests
devised from various perspectives, the tests may
be conducted by more than one tester. If multiple
testers are assigned to handle a certain number of

test cases respectively, there is a need to prepare the
same number of test environments and systems to
be tested as the number of testers assigned to this
activity.
	In some tests composing the System Test, the
system behavior is decided at a subtle timing that
is difficult to reproduce. Contrive special ways to
enable the system to repeat its behavior in such
delicate tests.
	Points to consider when preparing the test for
verifying the modificationt
• Is the scope of implementation of this test

covering all the potentially affected areas?
• Basically, reuse the test cases that have already

been created. Consider preparing new test cases
when the modification was large-scaled, and
extensive areas were affected.

 Precaution

56 Part 2 Technical Section

System
 Testin

g

S
Y
P
4

	Check whether or not the test cases described
in the System Test Specifications (SY401)
can all be mapped respectively to the specific
items described in the System Requirements

Specifications (SY106) for defining functional/
non-functional requirements and operational
constraints of the system.

 Action

Review the System Test Specifications that have been created.

Output
• (SY404) Internal Confirmation
Notes (on System Test
Specifications)

	 4.1.3	 Reviewing the System Test Specifications Internally

Outline
Review the System Test
Specifications.

Input
• (SY106) System Requirements
Specifications
• (SA104) Safety Requirements
Specifications
• (SY401) System Test Specifications
• System to be tested

	Check the extent of the test perspectives described
under SYP4.1.1 covered in the System Test
Specifications.

	Confirm that the contents of the System Test

Specifications are fully covered and aligned with
the information provided in the product manuals
(e.g.: user manual).

 Precaution

572.2 Process Definition Documents

System
 Testin

g

S
Y
P
4

SYP4.2 Conducting the System Test

Conduct the system test.

(1) Conduct the System Test.
	Conduct the System Test, based on the System Test
Specifications (SY401), and gain the test results as
the output.
	When an alternative test is carried out, keep
records of the test results, along with the reason(s)
stating explicitly why the alternative test had to be
carried out.
	When a defect is detected while testing, decide
whether to continue conducting the remaining
tests, or suspend them until the defect is resolved.
	Collect the output data of test results (various logs,

etc).
	When a prepared test case cannot be conducted,
keep records of the event, along with the reason(s)
stating explicitly why it was not executable.
Moreover, determine the reasonableness of the
stated reason(s).

(2) Conduct the test for verifying the modification to:
	Check whether the defect has been eliminated or
not by the modification;
	Check whether the modification to resolve the
defect has led to any other defects or not.

 Action

Conduct the System Test by following the System Test Specifications.

Output
• (SY405) System Test Results

	 4.2.1	 Conducting the System Test

Outline
Conduct t he System Test by
f o l l ow i n g t h e S y s t e m Te s t
Specifications.

Input
• (SY401) System Test Specifications
System to be tested
• (SY402) System Test Data
• (SY403) System Test Environment

	By considering the possibility of repeating the
same tests later on, it is desirable to preserve all
the test data necessary to reproduce the same test
conditions for retesting.
	Before running the test for verifying the

implemented modification, be sure to check that
the latest modified version is tested.
	When there is a need to correct or modify the
system, do so after analyzing its impact.

 Precaution

58 Part 2 Technical Section

System
 Testin

g

S
Y
P
4

	When a defect has been detected while testing,
record the description of the defect in the Defect
Management Ticket.

	If the defect has been confirmed by the test
for verifying the modif ication that it has

been eliminated, record the findings (that the
modification has been verified) in the Defect
Management Ticket.

Related processes: SUP6 Problem Resolution
Management

 Action

Review the results gained from the System Test, and judge whether the tested system has passed or failed each test
case that has been conducted.

Output
• (SY406) System Test Report

………
…………
…………
…………
…………

• (SU601) Defect Management
Ticket

………
…………
…………
…………
…………

………
…………
…………
…………
…………

�
 Document template sample is
available.

	 4.2.2	 Reviewing the System Test Results

Outline
Review the results of the System
Test, and judge whether the tested
system has passed or failed this test.

Input
• (SY401) System Test Specifications
• System to be tested
• (SY405) System Test Results
• (SU601) Defect Management
Ticket (when the test to verify the
modification is conducted)

	Do not take any test results for granted, and
consider the possibility of incorrect information
included in the System Test Specifications.

	Judge whether the tested system has passed or
failed each test case, based on the test criteria
described in the System Test Specifications.

 Precaution

592.2 Process Definition Documents

System
 Testin

g

S
Y
P
4

SYP4.3 Reviewing the System Test Results

Review the results of the System Test from the standpoint of checking whether or not the system requirements
defined in the System Requirements Definition have been correctly achieved by the developed system.

(1) Review the results of the System Test from the
following perspectives.

	When an unsolved issue is found:
• Evaluate the severity (level of importance) of the

issue;
• When the issue is evaluated to be a critical

problem that affects the functionality, reliability
and/or safety of the entire system, carry out
concrete actions by examining the following
points, among others:

a. Return to relevant system development
processes (software and/or hardware);

b. Add restrictions to the conditions of using the
system;

c. Reconsider the release plan.

Related processes: SUP8 Joint review; SUP1 Project
Management

	When there are any test cases that have been found
to be omitted, investigate the reason(s) why they
were not carried out, and examine the possible
solutions.

Related processes: SUP6 Problem Resolution
Management

(2) Document the findings of the above check points
orderly in the form of an Internal Review Report
(SY407) where the issues raised in the internal
review and the personnel in charge of handling
these issues are stated explicitly, and distribute this
report to the relevant members of the development
project.

 Action

Output
• (SY407) Internal Review Report
(on System Test)

………
…………
…………
…………
…………

………
…………
…………
…………
…………

 Document template sample is
available.

	 4.3.1	 Reviewing the System Test Results Internally

Outline
Review the contents of the System
Test Report, check whether or not
there have been any issues that could
not be solved at the final stage of
system development, examine the
possible solutions, and document the
findings orderly in the form of an
Internal Review Report.

Input
• (SY106) System Requirements
Specifications
• (SA104) Safety Requirements
Specifications
• (SY401) System Test Specifications
• (SY404) Internal Confirmation
Notes (on System Test
Specifications)
• (SY406) System Test Report
• (SU601) Defect Management
Ticket

	Check whether the defect detection rate is
acceptable or not, based on the quality criteria.
	When the test for verifying the modification
has been conducted, check whether the scope
of the test and the test environment have been
appropriate or not.

	The review manager should make sure that the
issues raised in the internal review meetings are
included in the Internal Review Report preferably
together with possible solutions and/or actions that
address these issues (such as, holding joint review
meetings).

 Precaution

60 Part 2 Technical Section

System
 Testin

g

S
Y
P
4

SYP4.4 Confirming the Completion of System Development

Evaluate the developed system among the stakeholders by checking whether the system requirements defined in
the System Requirements Definition are correctly realized by the developed system or not.

(1) Hold joint meetings among stakeholders of
system development (personnel in charge of
product planning, software developers, hardware
developers, system evaluators, personnel in charge
of manufacturing, etc) to make a final judgment
on whether the system has been successfully
developed or not.

In these joint review meetings, focus on examining
the following check points in particular:

	Check whether or not the developed system can
win the assurance that it is certainly capable of
satisfying both the functional and non-functional
requirements when it is used as the product system
by the intended users under the environment it is
intended to be used in;

	Check whether there are still any pending issues in
system development or not;
	Check whether the tested system has any quality-
related issues or not, by using the metrics on, such
as, the total number of defects detected during
the System Testing activity, the total number of
modifications implemented, the number of critical
defects that have been identified and the number
of modifications implemented to resolve these
critical defects;
	Check whether or not the issues indicated in
the reviews held in other testing activities prior
to System Testing have all been appropriately
addressed and solved.

Related processes: SUP2 Quality Assurance; SUP6
Problem Resolution Management; SUP8 Joint review

 Action

Output
• (SU801) Joint Review Records
(on System Test)

………
…………
…………
…………
…………

• (SU104) Project Completion
Report (on System Development)
………
…………
…………
…………
…………

• (SY408) Completed System

………
…………
…………
…………
…………

�
 Document template sample is
available.

	 4.4.1	 Confirming the Completion of System Development

Outline
Review the test results described
in system test-related documents
jointly among the stakeholders.
Based on the findings from this joint
review, make a final judgment as the
organization in charge of product
system development on whether
the developed system has passed or
failed the System Test, and sort out
the information deemed necessary
for later product inspection.

Input
• (SY106) System Requirements
Specifications
• (SY401) System Test Specifications
• (SY406) System Test Report
• (SY407) Internal Review Report
(on System Test)
• (SA104) Safety Requirements
Specifications
• (SA201) Safety Test Specifications
• (SA206) Internal Review Report
(on Safety Test)
• (SU101) Project Plan Description
• (SU601) Defect Management
Ticket

612.2 Process Definition Documents

System
 Testin

g

S
Y
P
4

	In this review, conf irm that an adequate
approach was taken to develop the system both
quantitatively and qualitatively, and that the
system developed as a result of this approach is
valid as a newly created product.
	Since this review is the final opportunity to review

the system within the entire system development
process, the judgment on whether the review
results have been acceptable or not must be made
by the high-ranking personnel responsible of the
entire system development.

 Precaution

(2) Record the results gained in this review, and create
a document called the Completion Report, based on
the review results.

For more information on the creation of the
Completion Report, see “SUP1.4 Creating the Project

Completion Report”.
Distribute the created Completion Report to

the stakeholders involved in the current system
development.

Related processes: SUP1 Project Management

62 Part 2 Technical Section

SWP : Software Engineering Process

Among the various types of work pertaining to embedded software development, the activities

and tasks ranging from Software Requirements Definition directly related to software production

to Comprehensive Software Testing are defined in this process.

The following activities are included in this process:

ID Activity Outline of the activity Comprising tasks

SWP1 Software
Requirements
Definition

Clarify the requirements that
the software must fulfill to real-
ize the targeted product.

SWP1.1	 Creating the Software Requirements
Specifications

SWP1.2	 Reviewing the Software Requirements
Specifications

SWP2 Software
Architectural
Design

Decide on the architecture (=
behavior and structure) of the
embedded software to be de-
veloped.

SWP2.1	 Creating the Software Architectural
Design Description

SWP2.2	 Reviewing the Software Architectural
Design

SWP2.3	 Jointly Reviewing the Software
Architectural Design

SWP3 Software Detailed
Design

By dividing the functional
units defined in the Software
Architectural Design into pro-
gram units, design the detailed
behaviors and logical structure
of the software.

SWP3.1	 Creating the Functional Unit Detailed
Design Description

SWP3.2	 Reviewing the Software Detailed
Design

SWP3.3	 Checking the Consistency with
Hardware Specifications

SWP4 Implementation &
Unit Testing

Implement the respective units
that structure the software and
test the behaviors of the soft-
ware at unit level.

SWP4.1	 Preparing for Implementation and
Unit Test

SWP4.2	 Conducting the Implementation and
Unit Test

SWP4.3	 Reviewing the Implementation and
Unit Test Results

SWP5 Software
Integration Testing

Assemble the individual pro-
gram units one by one, and test
the functionalities expected to
be provided by the program
units respectively when they
are executed in combinations.

SWP5.1	 Preparing for Software Integration Test
SWP5.2	 Conducting the Software Integration

Test
SWP5.3	 Reviewing the Software Integration

Test Results

SWP6 Comprehensive
Software Testing

Conduct the Comprehensive
Software Test, using the soft-
ware in the state where all the
functional units that structure
the software are fully integrat-
ed.

SWP6.1	 Preparing for Comprehensive Software
Test

SWP6.2	 Conducting the Comprehensive
Software Test

SWP6.3	 Reviewing the Comprehensive
Software Test Results

SWP6.4	 Confirming the Completion of
Software Development

632.2 Process Definition Documents

So
ftw

are R
eq

u
irem

en
ts D

efin
itio

n

S
W
P
1

Input

• Product Plan
Description
• (SY106) System
Requirements
Specifications
• (SY205) System
Architectural Design
Description
• (SA104) Safety
Requirements
Specifications
• Hardware
specifications

SWP2

 SWP1.1 Creating the Software Requirements Speci�cations
 1.1.1 Identifying the Constraints
 1.1.2 Clarifying the Functional Software Requirements
 1.1.3 Clarifying the Non-functional Software Requirements
 1.1.4 Prioritizing the Requirements
 1.1.5 Creating the Software Requirements Speci�cations

 SWP1.2 Reviewing the Software Requirements Speci�cations
 1.2.1 Reviewing the Software Requirements Speci�cations Internally

SYP2

Task structure

• (SW105) Software
Requirements
Specifications

………
…………
…………
…………
…………

• (SW106) Internal
Review Report (on
Software Requirements
Specifications)

………
…………
…………
…………
…………

………
…………
…………
…………
…………

�
Document template

sample is available.

Output

	 Description

In this activity:

• (1.1.1)	 Find out what the constraints in specifying the software requirements, based on the contents of the
System Requirements Specifications and hardware specifications;

• (1.1.2)	 Clarify the functional requirements of the software;

• (1.1.3)	 Also clarify the non-functional requirements of the software;

• (1.1.4)	 Prioritize the individual functional and non-functional requirements by taking account of the constraints
in actual software development, including the development period and resources, and the system
constraints identified earlier in (1.1.1);

• (1.1.5)	 Create the Software Requirements Specifications by organizing the information gained from the above
in an orderly manner;

• (1.2.1)	 Review the created Software Requirements Specifications, based on the pre-defined check points, and
document the outcome of this review orderly in the form of an Internal Review Report.

Keep in mind the following points as the
prerequisites for commencing the activity to
define the software requirements:

• Product planning: Product strategies (such as,
the end users’ needs) are clearly defined;

• Product specifications: The contents of the
product specifications are already fixed
and detailed to the descriptive level of user
manual;

• Schedule: The overall schedule is already fixed

Clarify the requirements that the software must fulfill to realize the targeted product.

	 Consideration

SWP1 Software Requirements Definition

64 Part 2 Technical Section

So
ftw

are R
eq

u
irem

en
ts D

efin
itio

n

S
W
P
1

(product release/launch date, milestones
shared with external stakeholders, etc);

• System architecture: Matters pertaining to the
following are all clearly defined:

 Division of functional role played by the
software or hardware (software requirements
are clearly defined), hardware structure,
external interfaces, methods of achieving the
required performance, maintenance-related
functionalities, and security.

• Prerequisites: Software (OS, libraries, etc) and
existing products that will be used.

In defining the software requirements, keep
in mind the following matters that have
been examined in the System Requirements
Definition:

• In case of embedded system, take account of
the results gained from analyzing the external
environment (such as, the system’ s operating
environment) and the functional analysis on
how the system is capable of responding to
abnormalities caused by the external environ-
ment

• Take account of not only the functional aspects
but also the non-functional aspects (such as,
performance and maintainability);

• Also keep in mind the external system that
operates closely or in conjunction with the
system that is going to be developed;

• In addition, take account of the functionalities
that the product is expected to continue pro-
viding in long term.

OOA (Object Oriented Analysis)
Structured analysis
DFD (Data Flow Diagram: Analytical technique
used in structured analysis)

Scenario analysis
Prototyping
Quality function deployment

	 <Reference> Techniques and Tools

652.2 Process Definition Documents

So
ftw

are R
eq

u
irem

en
ts D

efin
itio

n

S
W
P
1

Hardware development

Product inspectionV-Model

(2) Testing �ow(1) Design detailing �ow

Product planning

SUP: Support Process

SWP: Software Engineering Process

SAP: Safety Engineering Process

SYP:System Engineering Process

SAP1 Safety
Requirements De�nition

SYP1 System
 Requirements De�nition

SYP2 System
Architectural Design

SYP4
System Testing

SYP3 System
Integration Testing

SAP2
Safety Testing

SWP1 Software
Requirements De�nition

SWP2 Software
Architectural Design

SWP3 Software
 Detailed Design

SWP4 Implementation

SWP4 Unit Testing

SWP5 Software
Integration Testing

SWP6 Comprehensive
 Software Testing

SUP1 Project
Management

SUP2
Quality Assurance

SUP3 Risk
Management

SUP4 Documentation &
Document Management

SUP5 Con�guration
 Management

SUP6 Problem
Resolution Management

SUP7 Change
 Management

SUP8
Joint Review

SUP9 Subcontractor
Management

SUP10 Development
Environment Preparation

The scope of de�nition of development process covered in ESPR is limited to four processes: SYP, SAP, SWP, and SUP,
and does not include Product Planning, Product Inspection and Hardware Development.

Figure 2.6 V-Model and Development Process (SWP1 Software Requirements Definition)

66 Part 2 Technical Section

So
ftw

are R
eq

u
irem

en
ts D

efin
itio

n

S
W
P
1

(1) Clarify the product plan and product development
strategies, as well as the product objectives that must
be taken into account when defining the software
requirements, including the following:

 Any new characteristic functionalities?
 Will the product line development approach be
taken?

(2) Clarify the product characteristics like:

 Requirements on reliability and safety; Safety

 Serviceable life (durable years) and product life
cycle;
 Situation and environment in which the product is
assumed to be used;
 Standards and conventions that the product must

comply with, if any.

(3) Identify the stakeholder*** of the product.
 Identify the stakeholders of the product (such as,
service, sales, planning, hardware development,
manufacturing departments/divisions).
Clarify the end users of the product and the
characteristics of each user group;
Clarify the constraints that apply only to specific
stakeholders only and must therefore be addressed
separately, and include them in the List of
Constraints.

(4) Clarify the product structure, including the following:
Hardware structure and its constraints;
OS and middleware that are going to be used, and

 Action

Based on the information clarified below from (1) to (6), document the findings orderly in the form of a List of
Constraints:

SWP1.1 Creating the Software Requirements Specifications

Clarify the items that the software must realize based on the contents of System Requirements Specifications, and
document them orderly in the form of Software Requirements Specifications.

	 1.1.1	 Identifying the Constraints

Outline
Clarify the constraints that need
to be considered when examining
the software requirments, and sort
them out in the form of a List of
Constraints.

Input
• Product Plan Description
• (SY106) System Requirements Specifications
• (SY205) System Architectural Design Description
• (SA104) Safety Requirements Specifications
• Hardware specifications

Output
• (SW101) List of
Constraints

• Terminology
* ISO/IEC 9126-1 (Software Quality Model), ISO 9241 (Usability), ISO 13407 (Human-centered Design Process) : Standards related

to usability of the software, such as, the easiness to handle and operate the software.
** IEC 61508 (Safety) : Standard that defines what needs to be done to achieve safety during the development of a system

consisting of one or more computers that must be highly safe to use (such as, a plant control system and automotive system)
*** S t ak eholder s :Individuals with interest in the product, ranging from those belonging to corporate entities to end users

Safety

: Work related to safety

 See also
 • ISO/IEC 9126-1*(Software Quality Model)
 • ISO 9241*(Usability)

• ISO 13407*(Human-centered Design Process)
• IEC 61508**(Safety)

672.2 Process Definition Documents

So
ftw

are R
eq

u
irem

en
ts D

efin
itio

n

S
W
P
1

 Product planning and product development
strategies:

Grasp the needs of the end users, product
var iat ions, medium- to long-term market
strategies, etc;
Grasp the overall schedule (product release/
launch date, milestones shared with external
stakeholders, etc),and clarify the length of time
that can be allocated for software development;
Also identify the functionalit ies that will
enable the target product to be superior over the
competing products;
Be knowledgable about the technical progress
made in hardware platform, middleware and
per ipheral devices, and grasp the product
strategies, including the timeframe on when
advanced products are expected to be released.
Review the product specifications (check whether
they are fixed to the extent that can be published
as user manual or not);
Identify the TBD (To Be Determined) matters
rega rd i ng t he level of pe r for mance and
functionalities that need to be achieved.

 Product characteristics:
Reliability: For defining the level of reliability
that will be required, examine the specific values
that need to be met in terms of MTBF (Mean
Time Between Failure), MTTR (Mean Time To
Repair) and other relevant metrics.
Operating environment: Clarify the context

in which the product is going to be used (e.g.:
temperature, noise, static electricity);

 For embedded system, it is not enough just to
examine the context in which the system behaves
in a normal state. It is also mandatory to examine
the context in which the system may behave in an
abnormal state.
Maintenance-related environment: Examine when
and how the maintenance should be performed.
Standards/conventions that need to comply
with: Product Liability (PL) law, environmental
standards, etc;
Safe t y: Sys tem requ i rement s rela t ed to
safety (required level of safety integrity and
functionalities to achieve that level) Safety

 Stakeholders
As far as the users are concerned, identify not
only the primary users of the product, but also the
secondary users.

 Product structure:
Type of MPU/MCU to be used;
Available memory capacity;
Input/output devices;
OS and libraries;
Division of functional roles provided by the
hardware and software.

 Software to be reused
As regards the reuse of software, bear in mind the
granularity of the reuse (also consider the extentof
reusable architecture).

 Precaution

their respective constrains (include them in the List
of Constraints);
Interfaces for interconnecting the product with the
peripheral software, systems, and hardware (such
as, sensors and actuators).

(5) Check whether any existing software is going to be
reused or not:

Examine the need of reusing any existing software
or not;
If yes, clarify the specifications and characteristics

of the existing software that is going to be used, as
well as the policy on reuse.

(6) Clarify the environment for development, testing
and installing the software:

Tools used for development;
Test environment, tools for testing, test methods,
and test data, and their respective availability;
Also clarify in advance the constraints faced at the
time of installation and other occasions.

Safety

: Work related to safety

68 Part 2 Technical Section

So
ftw

are R
eq

u
irem

en
ts D

efin
itio

n

S
W
P
1 Output

• (SW102) List of
Functional Software
Requirements

	 1.1.2	 Clarifying the Functional Software Requirements

Outline
E x a m i n e t h e f u n c t i o n a l
requirements that the software
mu s t a ch ieve whe n f u l ly
developed, and sort them out in
the form of a List of Functional
Software Requirements.

Input
• Product Plan Description
• (SY106) System Requirements Specifications
• (SY205) System Architectural Design
Description
• (SA104) Safety Requirements Specifications
• Hardware specifications

 Action

Among the functionalities achieved and/or provided by the system, clarify which functionalities need to be achieved
by the software, and sort them out in the form of a List of Functional Software Requirements.
In identifying the functional requirements, examine the functionalities that need to be achieved by the software by
also taking account of the result of use case analysis.

 Points to consider investigating the software
functional requirements

 Clearly distinguish the functionalities to be
achieved by the sof tware f rom others, by
refer r ing to system requirements and the
architectural design of the system;

 Clarify the hardware functionalities and platform
that are related to software functionalities;

 Examine which functionalities will enable the
target product to be superior over the competing
products;

 When it seems very unlikely for the software to
meet the required level of performance in some

functionalities, use the hardware to achieve
them.

 During the use case analysis, create use case
scenarios and diagrams, as well as an activity
diagram, among others.

 Double-check that no functional software
requirements have been left out.

 Confirm that abnormal cases are taken into
consideration sufficiently.

 Examples of functional software requirements
related to safety Safety

 Fail-safe mechanism;
 Data protection in the event of failure.

 Precaution

• Terminology
* Functional requirements : Functionalities that the software is required to provide to meet the needs of the targeted product

and intended users. For instance, capabilities like “Can input the data named xxx” and “Can send emails” are functional
requirements.

Safety

: Work related to safety

See also

• ISO/IEC 9126-1 (Software Quality Model)

• ISO 9241 (Usability)

• ISO 13407 (Human-centered Design Process)

• IEC 61508 (Safety)

692.2 Process Definition Documents

So
ftw

are R
eq

u
irem

en
ts D

efin
itio

n

S
W
P
1

ISO/IEC 9126-1: 2001 Software engineering -- Product quality
-- Part 1: Quality Model (JIS X0129-1)

Year of establishment / revision : ISO/IEC 2001, JIS 2003

Purpose:		 Quality metrics for software products

Scope:		 Software products

URL:		 http://www.iso.org/

Source in Japan:		 Japanese Standards Association

Overview

Standard that defines the characteristics of software quality, by dividing them into six categories

(Functionality, Reliability, Usability, Efficiency, Maintainability, Portability), and further defining multiple

subcharacteristics to each of them.

Software Quality Characteristics

Characteristics Subcharacteristics

Functionality Suitability, Accuracy, Interoperability, Security, Functionality Compliance

Reliability Maturity, Fault Tolerance, Recoverability, Reliability Compliance

Usability Understandability, Learnability, Operability, Attractiveness, Usability Compliance

Efficiency Time Behavior, Resource Utilization, Efficiency Compliance

Maintainability Analyzability, Changeability, Stability, Testability, Maintainability Compliance

Portability Adaptability, Installability, Co-existence, Replaceability, Portability Compliance

Related Standards

70 Part 2 Technical Section

So
ftw

are R
eq

u
irem

en
ts D

efin
itio

n

S
W
P
1 Output

• (SW103) List of Non-
functional Software
Requirements

	 1.1.3	 Clarifying the Non-functional Software Requirements

Outline
Exa mine t he non- f u nc t iona l
requirements that the software must
achieve when fully developed,
and sort them out in the form of a
List of Non-functional Software
Requirements.

Input
• Product Plan Description
• (SY106) System Requirements
Specifications
• (SY205) System Architectural
Design Description
• (SA104) Safety Requirements
Specifications
• Hardware specifications

See also

• ISO/IEC 9126-1 (Software Quality Model)

• ISO 9241 (Usability)

• ISO 13407 (Human-centered Design Process)

 Action

Clarify the non-functional requirements of the software perceived to be related to the requirements to achieve the
system functionalities, and sort them out in the form of a List of Non-functional Software Requirements.

 Requirements on reliability
 Requirements on usability
 Requirements on efficiency

 Requirements on maintainability
 Requirements on portability
 Other non-functional software requirements

 Examples of matters examined as the requirements
on reliability:

Examine the situations when the hardware or the
software is forced to behave in unexpected manner
in specific operating conditions of the system, and
decide on how the system deals with abnormality
management;
Examine what the software can do to enable the
system to continue offering the functionalities
that are minimally required even when the system
encounters an undesirable situation;
Clarify the procedure and methods to recover the

system from abnormal operating mode.

 Examples of matters examined as the requirements
on usability:

By bearing in mind that many embedded systems
are often used by a large indefinite number of end
users, examine what the software should achieve
in terms of usability (for instance, standardize the
user interface used for the entire system).

Preferably, also examine, from the standpoint
of usability, what the software can do to support
the hardware in achieving its requirements (for

 Precaution

• Terminology
* Non-functional requirements : Requirements on, such as, efficiency, usability and portability that are required by the software. For

instance, capabilities like “Can complete processing within nn seconds”, “Enable the users to operate without relying on manuals”,
and “Can be reused” are non-functional requirements.

712.2 Process Definition Documents

So
ftw

are R
eq

u
irem

en
ts D

efin
itio

n

S
W
P
1

instance, on the time required for screen display or
calculation).

 E x a m p l e s o f m a t t e r s e x a m i n e d a s t h e
requirements on efficiency:

 C on s id e r t he r e q u i r e me nt s on s y s t e m
performance (e.g.: processing speed, start-up
time, response time).Pay particular attention
to system hardware const raints and t ime
constraints attributable to external operating
environment;
 Pay attention to resource utilization of the
system hardware (e.g.: memory capacity, data
size). Also take account of the period the data
used in the system continues to exist;

 E x a m p l e s o f m a t t e r s e x a m i n e d a s t h e
requirements on maintainability:

Examine the troubleshooting mechanism that
will make it possible to analyze the cause of
trouble when it occurs in the field. Also give some
thoughts to how the software can support the
mechanism to record the event log information. In

addition, examine the maintenance method to be
applied (such as, remote maintenance) and how to
execute this method.

 E x a m p l e s o f m a t t e r s e x a m i n e d a s t h e
requirements on portability:

Consider also the portability of the software
when OS, CPU or peripheral circuits are changed.
Consider up-front the independence of software
units, based on the assumption that some of the
existing software may be reused.

 Examples of matters examined as other non-
functional software requirements:

 Identify the mechanism and/or architecture re-
quired for reuse;
 Requirements on security (e.g.: data encryption,
user authentication; anti-virus measures);
 Interoperability (e.g.: communication protocol);
 External interface requirements (e.g.: function
interface with linking software, communication
protocol, user interface);
 Data definition.

Functionality

Portability

Maintainability

Reliability

Usability

E�ciency

Software quality

Degree of implementation of
functionalities required to ful�ll
the purpose

Degree of continuing to
function normally

Degree of easiness to understand
and use

Degree of resources utilized
to ful�ll the purpose

Degree of operating as it is even
when transferred to a di�erent
environment

Degree of e�orts required for
maintenance (revision)

Figure 2.7 ISO/IEC9126 (JIS X 0129-1) Software Quality Characteristics

72 Part 2 Technical Section

So
ftw

are R
eq

u
irem

en
ts D

efin
itio

n

S
W
P
1 Output

•(SW104) Prioritized List of
Software Requirements

	 1.1.4	 Prioritizing the Requirements

Outline
Decide on the order of priority
of software requirements.

Input
• (SW102) List of Functional
Software Requirements
• (SW103) List of Non-functional
Software Requirements

 Action

Prioritize the software requirement items listed in (SW102) and (SW103).

 The software requirements should be classified
preferably into four priority levels: Mandatory /
High / Low / Optional. Upon prioritization, keep

records on the grounds or reason(s) why these
requirements have been respectively set to the
specified priority levels.

 Points to consider in prioritization:
In pr ior it izing the sof tware requirements,

consider the degree of development r isk in
meeting the individual requirements (including
project management viewpoints) and evaluate the
requirements from the following perspectives:

 Length of time, amount of budget and resources

allocated for the development project;
 Newly introduced technologies and technical
proficiency;

 Business needs.
Moreover, evaluate the feasibility of high-risk

requirements also from the standpoint of long-term
product strategies.

 Precaution

732.2 Process Definition Documents

So
ftw

are R
eq

u
irem

en
ts D

efin
itio

n

S
W
P
1Output

• (SW105) Software
Requirements Specifications
………
…………
…………
…………
…………

………
…………
…………
…………
…………

Document template sample
is available.

	 1.1.5	 Creating the Software Requirements Specifications

Outline
Sort out the software requirements
and document them orderly in the
form of Software Requirements
Specifications.

Input
• (SW101) List of Constraints
• (SW102) List of Functional
Software Requirements
• (SW103) List of Non-functional
Software Requirements
• (SW104) Prioritized List of
Software Requirements

See also

IEEE Std 830 (Recommended Practice fort Software Requirements Specifications)

 Action

Sort out the items listed in (SW101) through (SW104), and document them orderly in the form of Software
Requirements Specifications (SW105).

 Create this document by organizing the set of
information gained as outputs while defining the
software requirements in a systematic order.

 Also confirm that the issues raised in reviews
(held internally or jointly) are adequately
reflected in this document.

 Points to keep in mind in documentation:

 Create software-related manuals prepared for
use by the end-users on as-needed basis.

 Attach the revision history and indicate clearly
where have been revised;

 Clearly indicate who or which organization is

responsible of the created document;
 Ensure that the created document is managed
prop e r ly by p e r fo r m i ng c on f ig u r a t ion
management and change management.

R e l a t e d p r o c e s s e s : S U P 5 C o n f i g u r a t i o n
Management; SUP7 Change Management

 Precaution

74 Part 2 Technical Section

So
ftw

are R
eq

u
irem

en
ts D

efin
itio

n

S
W
P
1

(1) Evaluate the validity.

 Are the requirements described in the Software
Requi rements Speci f icat ions (hereaf te r
simplified to “this document”) valid in light
of system requirements and other relevant
requirements?

(2) Evaluate the feasibility.

 A re the requ i rements descr ibed in th is
document feasible or testable based on the
technical capacity held by the organization(s) in
charge of software development?

(3) Evaluate the testability (whether the software
requirements can be tested or not).

 Can the requirements be tested to check the
system operations in the assumed fields of
operations?

(4) Evaluate the operability and maintainability.

 Are the concepts and methods applied in
updating the software appropriate?

 Are appropriate methods to address and solve
the defects when they occur being examined?

(5) Evaluate the traceability.

 Are the software requirements respectively
tagged with an identif ier so that they can
be t raced to conf irm that the subsequent
development work is proceeding in accordance
with the software requirements defined in this
document?

 Are the deliverables used as the input source of
individual requirements stated explicitly in this
document?

 Action

Review the Software Requirements Specifications (SW105) internally, based on the following perspectives (1) through
(7). Document the findings orderly in the form of an Internal Review Report (SY107) where the issues raised in the
internal review and the personnel in charge of handling these issues are stated explicitly, and distribute this report to
the relevant members of the development project:

SWP1.2 Reviewing the Software Requirements Specifications

Confirm that the defined software requirements satisfy the system requirements and other relevant requirements.

	 1.2.1	 Reviewing the Software Requirements Specifications Internally

Outline
Check whether or not the contents
o f S o f t w a r e R e q u i r e m e n t s
Specif ications cover all what is
required to realize the software,
and document the findings orderly
in the form of an Internal Review
Report.

Input
• Product Plan Description
• (SY106) System Requirements
Specifications
• (SY205) System Architectural
Design Description
• (SA104) Safety Requirements
Specifications
• (SW105) Software Requirements
Specifications

Output
• (SW106) Internal Review
Report (on Software
Requirements Specifications)
………
…………
…………
…………
…………

………
…………
…………
…………
…………

�
Document template sample
is available.

752.2 Process Definition Documents

So
ftw

are R
eq

u
irem

en
ts D

efin
itio

n

S
W
P
1

(6) Evaluate the consistency.

 Are there any conflicts in the contents of the
relevant deliverables? Are there any conflicting
descriptions existing within this document?

(7) Evaluate the integrity.

 A r e a l l t he ne c e s s a r y i n fo r m a t ion on
functionalities, performance, design-related

constraints, attributes and external interface ,
among others, described in this document?

 Are the software behaviors in all the assumable
contexts of system operation defined in this
document?

 Are the requirements described uniquely in a
way that cannot be interpreted otherwise?

 Consider the following points from the standpoint
of validity:

 Are functionalities that satisfy the needs of the
end users being provided?

 Are functionalit ies that meet the product
development strategies being provided?

 Are the requirements complying with the
constraints on, such as, hardware used for the
system?

 Are the requirements in line with system
requirements specifications?

 Consider the following points from the standpoint
of feasibility:

 Is the use of hardware being considered in
achieving some functionalit ies instead of
the software when it seems very unlikely for
the software to meet the required level of
performance?

 Are the constraints on reused software being
considered?

 Consider the following points from the standpoint
of testablility:

 Is it possible to build the test environment?
 Is the number of labor units (effort) required
for building the test environment not exceeding
the total labor units allocated for product
development?

 Regarding the tests using the real machine, can

they be carried out without damaging the real
machine?

 Is it possible to prepare the test environment
including the hardware and create the test data?

 Consider the following points from the standpoint
of operability and maintainability:

 Can the modified software be delivered via the
network?

 Is the software maintained through, such as,
manual replacement of ROM performed by the
maintenance personnel?

 The review manager should make sure that the
issues raised in the internal review meetings are
included in the Internal Review Report preferably
together with possible solutions and/or actions
that address these issues (such as, holding joint
review meetings).

 Issues found in the early stage of development
when the requirements are defined should be
addressed as soon as possible to prevent them
from growing or leading into bigger problems
in the latter half of the development process.
Therefore, the information mentioned in the
Internal Review Report should be shared with
the stakeholders that include the projec t
manager and development team leader, and their
consensus should also be built at this early stage.

 Precaution

76 Part 2 Technical Section

So
ftw

are A
rch

itectu
ral D

esig
n

S
W
P
2

Input

• (SW105) Software
Requirements Specifi-
cations
• (SY205) System
Architectural Design
Description
• Hardware specifica-
tions

SWP3

 SWP2.1 Creating the Software Architectural Design Description
 2.1.1 Con�rming the Design Conditions
 2.1.2 Designing the Software Structure
 2.1.3 Designing the Overall Software Behaviors
 2.1.4 Designing the Interface
 2.1.5 Estimating the Performance / Amount of Memory Used
 2.1.6 Creating the Software Architectural Design Description

 SWP2.2 Reviewing the Software Architectural Design
 2.2.1 Reviewing the Software Architectural Design Description Internally

 SWP2.3 Jointly Reviewing the Software Architectural Design
 2.3.1 Jointly Reviewing the Software Architectural Design Description

SWP1

Task structure

• (SW205) Software
Architectural Design
Description
• (SW206) Internal
Review Report (on
Software Architec-
tural Design)

………
…………
…………
…………
…………

………
…………
…………
…………
…………

�
Document template

sample is available.

Output

	 Description

In this activity:

• (2.1.1)	 Confirm the functional and non-functional software requirements that must be achieved, based on the
Software Requirements Specifications. Moreover, confirm the constraints in achieving the software
requirements from the standpoint of how to realize the specifications;

• (2.1.2) (2.1.3) Examine the behavior and structure of the software for achieving the requirements
specifications;

• (2.1.4)	 Design the interface between the functional units that constitute the software;

• (2.1.5)	 Examine the desirable level of performance and estimate the required memory capacity by taking
account of the hardware in which the software will be implemented;

• (2.1.6)	 Create the Software Architectural Design Description by arranging the results of the above sub-tasks in
an orderly format;

• (2.2.1)	 Review the created Software Architectural Design Description internally, based on the pre-defined
check points, and document the outcome of the internal review orderly in the form of an Internal
Review Report;

• (2.3.1)	 Also hold joint review meetings with relevant stakeholders, and document the outcome of the joint
review orderly in the form of a Joint Review Report.

Also eye the possibility of using software components or reusing past software assets.

Decide on the architecture (= behavior and structure) of the embedded software to be developed, and create the
Software Architectural Design Description.

SWP2 Software Architectural Design

………
…………
…………
…………
…………

………
…………
…………
…………
…………

………
…………
…………
…………
…………

………
…………
…………
…………
…………

772.2 Process Definition Documents

So
ftw

are A
rch

itectu
ral D

esig
n

S
W
P
2

In this guidebook, the embedded software is broken down hierarchically into “functional units” and “program
units”, as described below:

Embedded software = Aggregate of functional units
Functional unit = Aggregate of program units

 The behavior of embedded system varies
depending on the operating environment and
condit ions (context*). Therefore, analyze
the various contexts in which the system is
expected to be used, and design the software
behaviors based on the result of this analysis.

 Extract the functional units by localizing and
commonalizing the functionalities that are
commonly processed.

 Preferably, the result of architectural designing
should be visualized, by utilizing modeling
techniques.

 In designing the architecture, take the required

level of safety integrity into consideration, and
also examine the following points: Safety

•	 Clarify the design methods that will be
applied and the reason(s) for selecting them;

•	 Clarify the prerequisites and constituents of
the architecture;

•	 Clarify the relationship and interactions
between the software and hardware;

•	 Avoid ambiguous expressions in describing
the architectural design;

•	 Identify all the data used by the system and
clarify the test methods for checking the
designed architecture.

 OOD (Object Oriented Design)
 Modeling techniques
•	UML (Unified Modeling Language), etc

 SADT (Structured Analysis and Design
Technique)

 Consideration

 <Reference> Techniques and Tools

• Terminology
* Context : Context is something written or spoken that immediately precedes or follows a word or passage, background information,

or an interrelated condition, situation or circumstance that helps clarify an idea or its meaning. In this guidebook, this term is used,
for example in particular section, to mean the purpose, background or strategy of the embedded system to be developed.
Safety

: Work related to safety

78 Part 2 Technical Section

So
ftw

are A
rch

itectu
ral D

esig
n

S
W
P
2

Hardware development

SUP: Support process

SWP: Software Engineering Process

SAP: Safety Engineering Process

SYP:System Engineering Process

Figure 2.8 V-Model and Development Process (SWP2 Software Architectural Design)

Product planning Product inspectionV-Model

(1) Design detailing �ow (2) Testing �ow

SAP1 Safety
Requirements De�nition

SYP1 System
 Requirements De�nition

SYP2 System
Architectural Design

SYP4
System Testing

SYP3 System
Integration Testing

SAP2
Safety Testing

SWP1 Software
Requirements De�nition

SWP2 Software
Architectural Design

SWP3 Software
 Detailed Design

SWP6 Comprehensive
 Software Testing

SWP5 Software
Integration Testing

SWP4 Unit Testing

SWP4　Implementation

SUP1 Project
Management

SUP2
Quality Assurance

SUP3 Risk
Management

SUP4 Documentation &
Document Management

SUP5 Con�guration
 Management

SUP6 Problem
Resolution Management

SUP7 Change
 Management

SUP8
Joint Review

SUP9 Subcontractor
Management

SUP10 Development
Environment Preparation

The scope of de�nition of development process covered in ESPR is limited to four processes: SYP, SAP, SWP, and SUP,
and does not include Product Planning, Product Inspection and Hardware Development.

792.2 Process Definition Documents

So
ftw

are A
rch

itectu
ral D

esig
n

S
W
P
2

(1) Confirm the functional software requirements.
 Based on the contents of the funct ional
software requirements described in the Software
Requirements Specif icat ions, identify the
functionalities required to be achieve by the
software.

(2) C o n f i r m t h e n o n - f u n c t i o n a l s o f t w a r e
requirements.

 C o n f i r m t he no n -f u n c t io n a l s of t wa r e
requ i rement s desc r ibed i n the Sof t ware
Requirements Specifications.

(3) Confirm the constraints.
 Re-examine the sof tware funct ionalit ies

descr ibed in the Sof tware Requi rements
Specifications, and confirm the constraints,
including those listed below, from the standpoint
of designing an architecture that will enable the
software to achieve the required functionalities:
•	 Conditions for software creation (type of

OS and language that are going to be used,
among other)

•	 Hardware conditions (interrupt method, etc)
•	 P e r f o r m a n c e c o n d i t i o n s , o p e r a t i n g

environment, etc
•	 Safety requirements Safety

 Action

In proceeding with software designing, confirm the functional and non-functional software requirements, and the
constraints that serve as prerequisites described in the Software Requirements Specifications (SW105).

SWP2.1 Creating the Software Architectural Design Description

Examine how to achieve the requirements defined in the Software Requirements Specifications (i.e.: software
architecture), and document the findings orderly in the form of Software Architectural Design Description.

	 2.1.1	 Confirming the Design Conditions

Outline
Confirm what the requirements
and conditions are in designing
the software architecture.

Input
• (SW105) Software Requirements Specifications
• (SY205) System Architectural Design
Description

Output
(Design Conditions
Confirmation Note)

See also	 　Hardware specifications

Safety

: Work related to safety

 Focus on confirming the following points in
particular:

 Specific conditions on performance-related
requirements and specifications on abnormal
and exceptional behaviors;

 Memory capacity, and types and capacity of
external storage media

 Types, specifications and processing capacity of
hardware equipment and devices;

 Result of the investigation on the use of existing
software (including OS).

 Also examine the system requirements pertaining
to security;

 Confirm the system requirements pertaining to
safety (required level of safety integrity, and the
functionalities to achieve the required safety
integrity level). Safety

 Check whether there are any information
missing and/or TBD (To Be Determined) matters
still remaining in the Software Requirements
Specifications.

 Precaution

80 Part 2 Technical Section

So
ftw

are A
rch

itectu
ral D

esig
n

S
W
P
2

See also

Hardware specifications

Output
• (SW201) Software Structure
Design Description
• (SW202) Functional Unit
Design Description

	 2.1.2	 Designing the Software Structure

Outline
Design the software structure and
functionalities provided by each
functional unit.

Input
• (SW105) Software Requirements
Specifications
• (SY205) System Architectural
Design Description

 Action

Examine how the software should be broken down into functional units in order to achieve the software
requirements as specified in the Software Requirements Specifications, and sort out the functionalities to be provided
by each functional unit.

(1) Extract the functional units.

 Clarify the functionalities to be achieved by the
software, and extract the functional units by
localizing and commonalizing the functionalities
that are commonly processed. In extracting the
functional units, also give adequate attention to
non-functional software requirements, including

those listed below:
 Reliability (on recovery, data assurance, etc)
 Maintainability (on tracing the defects, etc)

(2) Refine the functional units.

 Refine each functional unit in depth to the level
(granularity) that is specific enough to work on
the detailed design of the software.

 In designing the software structure, give attention
to the following points:

 Maintainability, development efficiency, test
efficiency, reliability, scalability and safety;

 Localization/encapsulation of functionalities
based on the consideration given to the cost
spent on changes/modifications and quality
management;

 Componentization/communalization based on the
consideration given to development efficiency/
memory utilization;

 Development of built-in event log/retrieval
mechanism for debugging/ testing/maintenance;
 Development of bui lt-in mechanism for
modifying/updating the software after it is
shipped out;

 Development of built-in fail-safe mechanism.

 Method of proceeding with the design:

 In designing the software architecture, refine
each functional unit in depth to the level
(granularity) that is specific enough to assign
engineers to work on the detailed design of the
software;

 Work on the structural design in conjunction
with behavioral design and interface design.

 Other points to consider:

 Create a structural drawing that shows how the
functional units are positioned and co-related
(functional unit association chart);

 Clearly compartmentalize the core functional
units of the software, by bearing in mind the
future possibility of developing new versions and
variants of the product in series.

 Precaution

812.2 Process Definition Documents

So
ftw

are A
rch

itectu
ral D

esig
n

S
W
P
2

See also

Hardware specifications

Output
• (SW203) Software Behavioral
Design Description

	 2.1.3	 Designing the Overall Software Behaviors

Outline
Design the overall sof tware
behaviors.

Input
• (SW105) Software Requirements
Specifications
• (SY205) System Architectural
Design Description

 Action

Study and sort out the dynamic behaviors of the system including the hardware.

 Clarify the software behaviors that drive the
system behaviors.

 Clarify the context that becomes the prerequisite
for software behavior, and examine the scenarios
and sequences descr ibed in the Sof tware
Requirements Specifications. Also consider the
smooth sequence of system behaviors driven
by specific software behaviors. Especially in

case of embedded software, take account of the
following matters:

•	 Concurrent processing: Hardware interrupt
handling, task priority, concurrent processing
/ task state transition, etc;

•	 Abnor mal it ies / except ions: Overload ,
hardware failure, etc;

•	 Flow of data processing: From input to output.

 Express the behaviors and controls in ways that are
easy to understand, including the concurrent use
of visuals.

 Sort out the behaviors by using state transition
models and/or other methods.

 Bear in mind the following points when designing
the behaviors of embedded software:

 Performance: Concurrent processing and task
priority, SRAM / cache allocation;

 Real-time processing: Interrupt control, hardware
interrupt level setting;

 Multi-tasking: Exclusive control (allocating /
releasing / racing resources);

 Treatment of abnormalit ies / exceptions:
Counteractions against DoS attacks, recovery
operation, data violation caused by noise,
malfunctioning of MPU, chattering;

 Memory layout: Resident or non-resident, ROM
or RAM;

 Multi-processor structure: Load balancing,
exclusive resource control;

 Clarify the internal state of each functional
unit, definition of relational states between the
functional units and state transitions;

 Time constraints of each functional unit.

 Precaution

82 Part 2 Technical Section

So
ftw

are A
rch

itectu
ral D

esig
n

S
W
P
2

See also

Hardware specifications

Output
• (SW204) Software Interface
Design Description

	 2.1.4	 Designing the Interface

Outline
Design the interface between
functional units.

Input
• (SW105) Software Requirements
Specifications
• (SY205) System Architectural Design
Description

 Action

Design the interface between the functional units that structure the software.

(1) Design the memory layout.

 Design the layout of the entire memory.
(2) Design the memory layout in detail by specifying

the memory spaces and areas.

 Decide on the specific memory areas to be used
by the software.
•	 Decide on the name / structure / size of each

memory area.
•	 Define the name / location / type / size /

meaning / default value / access source of
each fields in the memory area.

(3) Design the interface between the functional
units.

 Design the calling sequence, parameters,
callback information, etc.

(4) Centralize and give logical values to common
information.

 Centralize and give logical values to information
that have to be heavily modified when change
arises.
•	Table offset
•	Common constants, etc

 Points to consider in interface designing

 Extract the abnormal / exceptional codes and
messages as early as possible. Sort them out and
create a table that lists them systematically.

 Clarify the read/write sources of common data

that need to be processed exclusively.
 Regrading the common resources, clarify the
timing to allocate / release them.

 Regarding the bit structure, take account of its
scalability.

 Precaution

832.2 Process Definition Documents

So
ftw

are A
rch

itectu
ral D

esig
n

S
W
P
2

Output
• (Materials for estimating the
performance)
• (Materials for estimating the
amount of memory used)

	 2.1.5	 Estimating the Performance / Amount of Memory Used

Outline
Estimate the performance and
the amount of memor y that
would be used by examining
the various conditions that may
affect them.

Input
• (SY205) System Architectural
Design Description
• (SW201) Software Structure Design
Description
• (SW203) Software Behavioral
Design Description
• (SW204) Software Interface Design
Description

 Action

(1) Estimate the performance.

 Est imate the per for mance as accurately
as possible by considering the worst-case
conditions.
•	 For critical elements, use the data based on

actual measurement as the reference.
•	 Calculate the throughput of the entire system

at times of overload.
(2) Estimate the amount of memory used.

 Include all possible memory usages in the

est imate, including the stack at t imes of
overload.
•	 Both the code segment for programs, and the

data segment used, such as, for tables and
buffers

•	 Estimate from a dynamic standpoint
•	 ROM, RAM (including SRAM), cache and

all other available memory devices.
 If necessary, also include other hardware
resources like hard disks into the estimate.

 Po i n t s to co n s i d e r w h e n e s t i m a t i n g t h e
performance:

 Characteristic proper ties of the hardware
(processing / response speed of input / output
devices, memory wait, etc)

 Time taken for start-up (take the worst-case
conditions into consideration)

 OS processing time, etc
Ca ref u l ly exa m i ne t he p roce s s i ng a nd

response time (speed) achieved by the software,
including the methods of achieving the desirable

performance levels, by bearing in mind the
impact on users’ experience (such as, in terms of
usability).

 Points to consider when estimating the amount of
memory used:

 Degree of multi-tasking, stack size based on the
number of nests, OS area (task control table,
etc)

 Use the result of size-based estimation as the
basis for calculating the estimate memory space
used for codes.

 Precaution

84 Part 2 Technical Section

So
ftw

are A
rch

itectu
ral D

esig
n

S
W
P
2

Output
• (SW205) Software
Architectural Design
Description

………
…………
…………
…………
…………

………
…………
…………
…………
…………

�
 Document template

sample is available.

	 2.1.6	 Creating the Software Architectural Design Description

Outline
Sort out all the matters pertaining
to software architectural design,
and document them orderly in the
form of Software Architectural
Design Description.

Input
• (SW201) Software Structure Design
Description
• (SW202) Functional Unit Design
Description
• (SW203) Software Behavioral Design
Description
• (SW204) Software Interface Design
Description
• (Materials for estimating the performance)
• (Materials for estimating the amount of
memory used)

 Action

Sort out the information outputted in (SW201) through (SW204), and document them orderly in the form of Software
Architectural Design Description (SW205).

 Sort out the information outputted in various
mater ials in the course of designing the
software architecture, and document them
systematically.

 Confirm that the created document adequately
reflects all the points indicated in internal and
joint reviews.

 Regarding the reference materials:

 Keeping the documents that can be used as
evidences for proving the validity of the design
(materials for estimating the performance
and the amount of resources used, documents
that describe the control methods, etc) and
documents for explaining the perspectives
applied in designing (i.e.: design policy) as
separate materials would help smoothen the
efforts to deal with changes in specifications
and software-related problems when they occur.

 It is desirable to perform version management
that will enable the readers to know which part
of the document has been revised or added, and

attach the list of past versions.
 Points to keep in mind in documentation:

 Sort out the names of functional units, tasks /
processes systematically.

 Attach the revision history and indicate clearly
where have been revised;

 Clearly indicate who or which organization is
responsible of the created document;

 Ensure that the created document is managed
prop e r ly by p e r fo r m i ng c on f ig u r a t ion
management and change management.
R e l a t e d p r o c e s s e s : S U P 5 C o n f i g u r a t i o n
Management; SUP7 Change Management

 Precaution

852.2 Process Definition Documents

So
ftw

are A
rch

itectu
ral D

esig
n

S
W
P
2

(1) Check whether the contents of the Software
Architectural Design Description (SW205) are
appropriate or not. Document the findings orderly
in the form of Internal Review Report (SW206),
including the issues raised during the review as
well as the personnel in charge of handling these
issues, and distribute the report to the relevant
stakeholders.

 Check whether the funct ional units that
structure the software can collectively realize
the system and software requirements correctly
or not. Some of the key check points include the
following:
•	Definiteness and validity of the functionalities

provided by the functional units;
•	Definiteness and validity of the behaviors

realized collectively by the functional units;
•	Definiteness and validity of the interface

between functional units.
 Evaluate the software architecture design from
the standpoint of whether the non-functional
software requirements are adequately reflected

in the design or not, and whether the software,
when developed, will be fully capable of being
operated, tested and maintained or not.
•	Whether the designed software architecture is

easy to understand or not by taking account
of the intended users’ skil l levels, and
whether safety matters are also adequately
taken into consideration or not.

•	Whether the software’s operating conditions
(performance, peak load, long continuous
operation) are taken into account or not.

•	Whether testability / maintainability are taken
into account or not.

(2) Envision the detailed design of the functional
units.

 Evaluate the software architectural design of the
individual functional units by taking account of
the following criteria:

•	 Validty of the functionalitles, interface and
behaviors;

•	 Low-levelness and feasibility of the detailed
design;

 Action

SWP2.2 Reviewing the Software Architectural Design

Review the designed software architecture to check whether it fully satisfies the system and software requirements
or not.

	 2.2.1	 Reviewing the Software Architectural Design Description Internally

Outline
Check whether or not the software
architectural design satisf ies
the software requirements and
the behaviors of the equipment
/ s y s t e m m e e t t h e s y s t e m
specifications, and document the
findings orderly in the form of an
Internal Review Report.

Input
• (SW105) Software Requirements Specifications
• (SW205) Software Architectural Design Description
• (SW201) Software Structure Design Description
• (SW202) Functional Unit Design Description
• (SW203) Software Behavioral Design Description
• (SW204) Software Interface Design Description,
etc

Output
• (SW206) Internal
Review Report
(on Software
Architectural
Design)

………
…………
…………
…………
…………

………
…………
…………
…………
…………

�
 Document

template sample is
available.

See also Hardware specifications, etc

86 Part 2 Technical Section

So
ftw

are A
rch

itectu
ral D

esig
n

S
W
P
2

•	 Compliance with design standards (design
methods / annotat ions / terminology /
readability / notation);

•	 Adequate investigation of existing software /
commercial software / open source software,
in case they are planned to be used;

•	 Easiness to transfer to a different platform

(portability) and extend the functionalities
(scalability).

(3) Check whether the respectively designed
portions of software architecture can be mapped
with corresponding software requirements or not
(traceability).

 Points to bear in mind when holding meetings to
review the software architecture:

 When to hold : Keep in mind the importance
of avoiding extensive re-designing necessitated
by review feedbacks when setting the meeting
schedule. Carry out reviews at interim check
gates when the design is partially completed
rather than waiting for the entire design to be
completed.

 What to review: Mainly focus on the critical
areas and areas that have been designed by new
participants.

 Who to call as reviewers: Assign members that
have high technical knowledge and skills. If
necessary, consider inviting hardware designers
as well.

 What to record : It is desirable to comply
with the project standards and record useful
information that contributes to the improvement
of design quality (date & t ime of review
meetings, modules that have been evaluated,

the names of reviewers, the problems and issues
raised in the meetings, their possible causes
and solutions that have been examined, among
others).

 The review manager should make sure that the
issues raised in the internal review meetings are
included in the Internal Review Report preferably
together with possible solutions and/or actions
that address these issues (such as, holding joint
review meetings).

 Issues found in the early stage of development
when the architecture is designed should be
addressed as soon as possible to prevent them
from growing or leading into bigger problems
in the latter half of the development process.
Therefore, the information mentioned in the
Internal Review Repor t should be shared
with the stakeholders that include the project
manager and development team leader, and
their consensus should also be built at this early
stage.

 Precaution

Review is the most convenient and reliable way of ensuring software quality.

Reviews provide the stakeholders
the opportunity to exchange
information and get assurance
through face-to-face meetings

Complex areas
Areas where there is considerable delay in development
Areas created by inexperienced developers
Areas where the interface between the software and peripherals is intricate
Areas where the usage is not clearly de�ned

Areas in similar products where bugs have been found
Areas where the customer frequently use
Areas where handling of abnormalities is important

Check the problematic areas, using quantitative data gained
in the course of designing and implementation.

Check the key areas, using past incidents (defects and failures)
 as the reference.

Figure 2.9 Check Points in Review Sessions

872.2 Process Definition Documents

So
ftw

are A
rch

itectu
ral D

esig
n

S
W
P
2

(1) Based on the project plan, confirm among all the
members involved in the development project
that the software architecture design is valid for
the equipment / system in which the software is
embedded.

 In the review, take account of the following
points in particular:
•	 Feasibility of the software requirements,

and clarity of the changes made to and /or
constraints of the requirements;

•	 Responsiveness to ac t u a l ope ra t ion ,
including maintenance and security;

•	 Smooth transferability to subsequent process
phases;

•	 Compliance with the project plan, standards
and conventions, including hardware (on
project schedule, documents, records on
quality, techniques, methods, etc)

(2) Hold a joint review when an issue that requires
coordination with stakeholders arises, including
the following cases:

 Hold the joint review when there is a need
to work together with members of other
development groups to resolve project-wide
problems that occurred or have been identified
while designing the software architecture;

 Focus on resolving these problems as early as
possible to avoid delays in the designing phase
and the necessity of re-designing.

(3) Based on the review records, create a document
called Joint Review Report.

•	 In the Joint Review Report, also explicitly
state the issues and their possible solutions
raised in the review meetings, and distribute
this report to the relevant members of the
development project.

Related processes: SUP8 Joint review

 Action

SWP2.3 Jointly Reviewing the Software Architectural Design

Evaluate the designed software architecture among the stakeholders by holding joint review meetings to check
whether the architecture is fully meeting the system and software requirements or not.

	 2.3.1	 Jointly Reviewing the Software Architectural Design Description

Outline
Conf irm among the stakeholders
t he va l id i t y of t he desig n for
achieving software requirements by
holding joint review* meetings to
check the contents of the Software
Architectural Design Description.

Input
• (SW205) Software
Architectural Design
Description
• (SW206) Internal Review
Report (on Software
Architectural Design)

Output
• (SU801) Joint Review Records (on
Software Architectural Design)

………
…………
…………
…………
…………

• (SW207) Software Architectural
Design Joint Review Report
………
…………
…………
…………
…………

�
 Document template sample is

available.

• Terminology
* Joint review : A form of review held by the members of the development project to check appropriate outcome has been produced

or not at each milestone of the development process from both the technical and administrative standpoints. Joint review is an
opportunity not only for the engineers in charge of creating the deliverables to cross-check them, but also for other stakeholders
involved in the product development to participate and check the deliverables from multiple perspectives.

See also

• (SY106) System Requirements Specifications

• (SY205) System Architectural Design Description

• (SW105) Software Requirements Specifications

………
…………
…………
…………
…………

88 Part 2 Technical Section

So
ftw

are A
rch

itectu
ral D

esig
n

S
W
P
2

Standards Related to Development Process

ISO/IEC 14764
Software lifestyle

processes - Maintenance

ISO/IEC TR 15846
Software lifestyle

processes - Con�guration
Management

ISO/IEC 15910
Software User

Documentation Process

ISO/IEC 15939
Software Measurement

Process

Software Life Cycle
Processes-Japan

Common Frame 98

ISO/IEC 15288
System life cycle

processes

Conform to
12207

Software
version

Process-speci�c
standards

ISO/IEC 12207
Software life cycle

processes

Related Standards

892.2 Process Definition Documents

So
ftw

are D
etailed

 D
esig

n

S
W
P
3

Input

• (SW105) Software
Requirements
Specifications
• (SW205) Software
Architectural Design
Description
• Hardware
specifications

SWP4

 SWP3.1Creating the Functional Unit Detailed Design Description
 3.1.1 Dividing into Program Units
 3.1.2 Designing the Program Units
 3.1.3 De
ning the Interface in Detail
 3.1.4 Estimating the Amount of Memory Used
 3.1.5 Creating the Software Detailed Design Description

 SWP3.2 Reviewing the Software Detailed Design
 3.2.1 Reviewing the Software Detailed Design Description Internally

 SWP3.3 Checking the Consistency with Hardware Speci�cations
 3.3.1 Checking the Consistency with Hardware Speci
cations

SWP2

Task structure

• (SW305) Software
Detailed Design
Description

………
…………
…………
…………
…………

• (SW306) Internal
Review Report (on
Software Detailed
Design)

………
…………
…………
…………
…………

………
…………
…………
…………
…………

�
Document template

sample is available.

Output

	 Description

In this activity:
• (3.1.1)	 To enable the embedded software to achieve the functionalities provided by the system to be developed,

divide the software into several implementable portions (called the “program units” hereafter), based on
the software requirements specifications and software architectural design;

• (3.1.2)	 Clarify what each program unit processes and the logic applied to that processing;
• (3.1.3)	 Define how the program units are interrelated respectively, and decide on the interface between the

program units;
• (3.1.4)	 Estimate the amount of memory used, from the standpoint of implementation;
• (3.1.5)	 Sort out the findings of the above and document them in the form of Software Detailed Design

Description;
• (3.2.1)	 Review the created Software Detailed Design Description, based on the pre-defined check points, and

document the outcome of this review orderly in the form of an Internal Review Report;
• (3.3.1)	 Moreover, check among the project members the consistency of software detailed design with the

hardware specifications, and document the findings in the form of Report on Hardware Specifications
Consistency Check Result.

By dividing the functional units defined in the Software Architectural Design into program units, design the detailed
behaviors and logical structure of the software.

SWP3 Software Detailed Design

 In case of embedded system, examine the
details of the program units by giving sufficient
at tent ion to the data deter mined by the
operating environment of the system (such as,
the ambient temperature of the air conditioning
system).

 Also closely examine the hardware environment
and condit ions in which the sof tware is
designed to operate.

 Give attention to the information on matters
coordinated with the hardware design group.

 Consideration

90 Part 2 Technical Section

So
ftw

are D
etailed

 D
esig

n

S
W
P
3

 In commencing the work to create the detailed
design of the software, confirm that the safety
requirements of the system, the sof tware

architectural design, and the method of assuring
the safety of the software are all documented.

Safety

 OOP (Object Oriented Programming) SADT (Structured Analysis and Design
Technique)

 <Reference> Techniques and Tools

Hardware development

V-Model

SUP: Support Process

SWP: Software Engineering Process

SAP: Safety Engineering Process

SYP:System Engineering Process

Figure 2.10 V-Model and Development Process (SWP3 Software Detailed Design)

Product planning Product inspection

(1) Design detailing �ow (2) Testing �ow

SAP1 Safety
Requirements De�nition

SYP1 System
 Requirements De�nition

SYP4
System Testing

SYP3 System
Integration Testing

SAP2
Safety Testing

SYP2 System
Architectural Design

SWP1 Software
Requirements De�nition

SWP2 Software
Architectural Design

SWP3 Software
 Detailed Design

SWP6 Comprehensive
 Software Testing

SWP5 Software
Integration Testing

SWP4 Unit Testing

SWP4　Implementation

SUP1 Project
Management

SUP2
Quality Assurance

SUP3 Risk
Management

SUP4 Documentation &
Document Management

SUP5 Con�guration
 Management

SUP6 Problem
Resolution Management

SUP7 Change
 Management

SUP8
Joint Review

SUP9 Subcontractor
Management

SUP10 Development
Environment Preparation

The scope of de�nition of development process covered in ESPR is limited to four processes: SYP, SAP, SWP, and SUP,
and does not include Product Planning, Product Inspection and Hardware Development.

Safety

: Work related to safety

912.2 Process Definition Documents

So
ftw

are D
etailed

 D
esig

n

S
W
P
3

 Program unit is the lowest unit level that is
implemented, compiled and tested.

SWP3.1 Creating the Functional Unit Detailed Design Description

Based on the specifications of the functional units described in the Software Architectural Design Description,
design the software in more specific details by dividing the software into implementable low-leveled portions
(program units) and defining the design of these units, and document the designed details orderly in the form of
Software Detailed Design Description.

	 3.1.1	 Dividing into Program Units

Outline
Divide each functional unit into
program units.

Input
• (SW105) Software Requirements
Specifications
• (SW205) Software Architectural
Design Description

Output
• (SW301) Program Unit
Functional / Structural Design
Description

 Action

Divide each functional unit into program units, and define the structure and functionalities of each program unit.

 Points to consider when dividing the functional
units into program units:

 Focus on the data flow (flow to process data);
 Identify the functionalities that are common
to multiple program units, and define them as
common functionalities;

 Take note of the independence (encapsulation)

of each program unit, and the binding degree
between each other;

 Testability, maintainability, scalability;
 Easiness to review;
 Reusability;
 Be careful not to leave out any processing, and
prevent any processings from causing conflicts.

 Precaution

92 Part 2 Technical Section

So
ftw

are D
etailed

 D
esig

n

S
W
P
3

See also

Hardware specifications

Output
• (SW302) Program Unit
Design Description

	 3.1.2	 Designing the Program Units

Outline
Define what each program unit
processes in detail that is as low-
leveled as possible to implement.

Input
• (SW205) Software Architectural Design
Description
• (SW301) Program Unit Functional /
Structural Design Description

 Action

(1) Def ine what each program unit processes
in detail that is as low-leveled as possible to
implement.
Matters to define in detail include the following:

 Methods, timing and set values to control the
hardware;

 Argument values for OS system call and
utilities (like generic libraries and common
functionalities);

 Conditions and techniques for high-speed
processing (when necessary);

 State management (for managing the states that
determine the software behavior based on event

inputs)
 Error processing
 Resource definition (on resources used in the
program units)

 System initialization processing
(2) Examine the detailed definition of program unit

functionalities used for analyzing defects.
Matters to design in detail include the following:

 State after controlling the hardware (especially
the information when error occurs)

 Means of confirming the software execution
states

 Extract the values that are commonly used, and
specify the concrete numerical values (used as
#define values). Also specify the concrete values
for items defined in the Software Architectural
Design Description. Examples of commonly

used values are as follows:
•	Memory size (tables, buffers, etc)
•	Error values
•	Conditions for compiling

 Take account of events and exclusive control

 Precaution

• Terminology
* Product line : Refers to software engineering techniques for developing new software efficiently by developing small

software segments (domains) and combining the existing domains. Product line is effective when there is a need to develop
numerous software that share similar specifications.
Safety

 Work related to safety

932.2 Process Definition Documents

So
ftw

are D
etailed

 D
esig

n

S
W
P
3

Output
• (SW303) Program Unit
Interface Design Description

	 3.1.3	 Defining the Interface in Detail

Outline
Define the interfaces between the
functional units and the interfaces
between the program units in detail
that are as low-leveled as possible to
implement.

Input
• (SW205) Software Architectural
Design Description
• (SW302) Program Unit Design
Description

 Action

Define the interfaces between the functional units that structure the software and the interfaces between the
respective program units in detail.

(1) Define the interfaces between the functional
units in detail that are as low-leveled as possible
to implement.

 Define the specifications of the interfaces defined
in the architecture design in detail that are as
low-leveled as possible to implement. Clarify the
structure, size, meaning and default values of the
following:
•	Inputs into functional units
•	Outputs from functional units
•	Memory to be referenced / configured (tables,

buffers, etc)
(2) Design the interfaces between the program

units.

 Define the interfaces between the program units
in detail that are as low-leveled as possible to
implement. Clarify the structure, size, meaning
and default values of the following:
•	Inputs into program units
•	Outputs from program units
•	Memory to be referenced / configured (tables,

buffers, etc)

 Prevent the memory (tables, buffers, etc) from
causing conflict, due to, such as, bad timing

when used for processing interrupts.

 Precaution

 be t ween the prog ram u n it s t hat behave
asynchronously.

 Based on the requirements definitions and
architectu re design, consider the futu re
possibi l it y of developing the product in
series (new versions / variants), and clearly
distinguishthe program units that structure
the core portion of the software with program
units that correspond to product variants.
•	Product line*

 Regarding the program units for realizing the
user interface, take account of quality aspects
like user-friendliness (consider designing these
program units in such a way that can prevent the
users from to use making erroneous operations) .

 Take account of required safely integrity levels
(on accuracy, verifiability, fault tolerance, etc).

Safety

94 Part 2 Technical Section

So
ftw

are D
etailed

 D
esig

n

S
W
P
3

	 3.1.4	 Estimating the Amount of Memory Used

Outline
Estimate in detail how much memory
may be necessary, and judge from
the estimated amount whether the
software can be implemented or not.

Input
• (SW205) Software Architectural
Design Description
• (SW301) Program Unit Functional
/ Structural Design Description
• (SW302) Program Unit Design
Description
• (SW303) Program Unit Interface
Design Description

 Action

Estimate the memory capacity necessary to develop the software as designed.

(1) Estimate in detail how much memory may be
necessary.

 Estimate in detail the amount of memory
expected to be used. Calculate the estimate
amount of memory that may be necessary for
each memory type (ROM, RAM, stack area, etc).

(2) Check whether the software can be implemented or
not

 Check whether the software can be implemented

or not, based on the estimated amount of memory
that may be necessary for each memory type.
When the estimated amount exceeds the capacity
of the physical memory intended to be installed,
reconsider the software detailed design, or see if
the physical memory capacity can be enlarged
by consulting with those in charge of hardware
development.

 Be careful of the following points when estimating
how much memory may be necessary:

 Is the estimated memory capacity taking future
possibilit ies of specif ication changes and
additions into consideration? (Is the capacity

adequate (with enough free space) to handle
them if they occur?)

 Has the environment to analyze defects (area for
emulator, etc) been taken into consideration as
well?

 Precaution

Output
• (SW304) Amount of
Memory Used (Notes)

952.2 Process Definition Documents

So
ftw

are D
etailed

 D
esig

n

S
W
P
3

Output
• (SW305) Software Detailed
Design Description ………

…………
…………
…………
…………

………
…………
…………
…………
…………

�
Document template sample
is available.

	 3.1.5	 Creating the Software Detailed Design Description

Outline
Sort out all the matters pertaining
to software detailed design, and
document them orderly in the
form of System Software Detailed
Design Description.

Input
• (SW301) Program Unit Functional /
Structural Design Description
• (SW302) Program Unit Design
Description
• (SW303) Program Unit Interface
Design Description
• (SW304) Amount of Memory Used
(Notes)
• (SW309) Report on Hardware
Specifications Consistency Check
Result (after the indicated matters are
reflected)

 Action

Sort out the information outputted in (SW301) through (SW304), and document them orderly in the form of Software
Detailed Design Description (SW305).

 Sort out the information outputted in various
materials in the course of designing the software
in detail, and document them systematically.

 Confirm that the created document adequately

ref lects all the points indicated in internal
reviews and reviews for checking the consistency
with hardware specifications.

 Points to keep in mind in documentation:

 Attach the revision history and indicate clearly
where have been revised;

 Clearly indicate who or which organization is
responsible of the created document;

 Ensure that the created document is managed
prop e r ly by p e r fo r m i ng c on f ig u r a t ion
management and change management.

Related processes: SUP5 Configuration Management;
SUP7 Change Management

 Precaution

96 Part 2 Technical Section

So
ftw

are D
etailed

 D
esig

n

S
W
P
3

SWP3.2 Reviewing the Software Detailed Design

Confirm that the detailed software design is at an implementable level.

	 3.2.1	 Reviewing the Software Detailed Design Description Internally

Outline
Check whether or not the sof tware
de t a i led desig n i s r ef lec t i ng t he
a rch itect u ral design requi rements
adequately and is also implementable,
and document the findings orderly in the
form of Internal Review Report.

Input
• (SW205) Software
Architectural Design
Description
• (SW305) Software Detailed
Design Description

Output
• (SW306) Internal Review
Report (on Software Detailed
Design) ………

…………
…………
…………
…………

………
…………
…………
…………
…………

�
Document template sample
is available.

 Other points that should be reviewed include:

 Validity of the program unit structure;
 Consistency between functional units and
program units;
 Consis t ency of t he i nt e r faces be t ween
functional units;

 Consistency of the interfaces between program
units;

 Structure and exclusive control of the memory
(tables, buffers, etc) and wasteful areas within
the memory;

 Various set values, argument values (for OS
system calls, generic libraries, etc)

 Method of achieving high-speed processing (if
necessary);

 Methods and set values to control the hardware;

 Effective use of hardware functionalities (Has
high-speed processing being examined?);

 Infinite loop, deadlock (Check whether there are
any conditions that may lead to their occurrence);

 Interrupt handling (nested interrupts, exit
routine, etc);
 A re a l l t he i n for mat ion ne ce s sa r y fo r
implementation covered in Software Detailed
Design Description without fail?

 The review manager should make sure that the
issues raised in the internal review meetings are
included in the Internal Review Report preferably
together with possible solutions and/or actions
that address these issues (such as, holding joint
review meetings).

 Precaution

 Action

(1) Review the contents of Software Detailed Design
Description from the following perspectives:

 Is the software divided into units correctly?
Are the processing contents of each unit clearly
defined?

 Is the information on interfaces between units
consistent?

 Is there any issue regarding the relationship

between individual units and hardware?
(2) Document the findings of the above check points

orderly in the form of an Internal Review Report
(SW306) where the issues raised in the internal
review and the personnel in charge of handling
these issues are stated explicitly, and distribute
this report to the relevant members of the
development project.

972.2 Process Definition Documents

So
ftw

are D
etailed

 D
esig

n

S
W
P
3

SWP3.3 Checking the Consistency with Hardware Specifications

Check whether or not the software detailed design is consistent with the specifications of both the software and
hardware.

	 3.3.1	 Checking the Consistency with Hardware Specifications

Outline
Check whether or not the software
detailed design is consistent with the
specifications of both the software
and hardware, and document the
findings orderly in the form of Report
on Consistency Check Result.

Input
• (SW205) Software Architectural
Design Description
• (SW305) Software Detailed
Design Description

Output
• (SW307) Report on
Hardware Specifications
Consistency Check Result

 Check if there have been any par ts in the
specifications of the software and hardware
found newly to be unclear or misinterpreted
during the software and hardware design phase,
to prevent the need for redesigning arising in
subsequent process phases. Matters that should
be checked at this stage include:
• Hardware initialization procedure;
• Timing
• Set values of the hardware.

 Inconsistencies between the software and
hardware exist ing in the detailed design
level w i l l lead d i rec t ly t o p roblemat ic
conditions of the system. Therefore, there is
a need to distribute the Report on Hardware
Specif icat ions Consistency Check Result
created here, not only to those involved in
sof tware development , but also to those
engaged in hardware development, and gain
their acknowledgment.

 Precaution

 Action

Lay out the specifications of both the hardware and software, and check whether they are consistent with each
other or not. Document the findings orderly in the form of Report on Hardware Specifications Consistency Check
Result (SW307) where the issues raised in the internal review and the personnel in charge of handling these issues
are stated explicitly, and distribute this report to the relevant members of the development project.

98 Part 2 Technical Section

So
ftw

are D
etailed

 D
esig

n

S
W
P
3

V - M o d e l
 The relationship between the activities described in this guidebook can be visually represented in the form of a V-shaped
model (referred to simply as “V-model” hereafter).
 V-Model divides the development process into two streams, the design detailing �ow (see arrow (1) in the diagram below)
where activities to break down the requirements into implementable units and implement the software are carried out, and
the testing �ow (see arrow (2) in the diagram below) where activities to check whether
the software functions correctly as required or not are carried out, and shows the relationship between the activities carried
out in the former stream (design detailing �ow) and the corresponding activities carried out in the latter stream (testing �ow).
 During the design detailing �ow, documents (speci­cations and design descriptions) are created as deliverables of the
activities performed in this stream. During the testing �ow, the software is tested to check whether it functions correctly or
not by referencing the documents created as deliverables of corresponding activities in the former stream. Therefore, when
creating these documents, it is important to describe the functional and non-functional requirements clearly in them, among
others, with an awareness that that they will be used in the subsequent testing �ow as the reference sources for checking the
functionalities of the software.

Related Techniques

Scope covered by this guide (Ver.2.0)

Hardware developmentESPR x0160

Product
inspectionV-Model

(2) Testing �ow(1) Design detailing �ow

Product
planning

SUP: Support Process

SWP: Software Engineering Process

SAP: Safety Engineering Process

SYP: System engineering process

SAP1 Safety
Requirements De�nition

SYP1 System
Requirements De�nition

SYP2 System
Architectural Design

System
Requirements Analysis

System Architectural
Design

System
Quali�cation Testing

SYP4
System Testing

System
Integration

SYP3 System
Integration Testing

SAP2 Safety
testing

SWP1 Software
Requirements De�nition

Software Requirements
Analysis

SWP2 Software
Architectural Design

Software Architectural
Design

SWP3 Software
Detailed Design

Software
 Detailed Design

SWP4　
Implementation

Coding

Software Quali�cation
Testing

Software
Integration

Unit testing

SWP6 Comprehensive
Software Testing

SWP5 Software
Integration Testing

SWP4
Unit Testing

SUP1 Project
Management

SUP2
Quality Assurance

SUP3 Risk
Management

SUP4 Documentation &
Document Management

SUP5 Con�guration
Management

SUP6 Problem
Resolution Management

SUP7 Change
Management

SUP8
Joint Review

SUP9 Subcontractor
Management

SUP10 Development
Environment Preparation

The scope of de�nition of development process covered in ESPR is limited to four processes: SYP, SAP, SWP,
and SUP, and does not include Product Planning, Product Inspection and Hardware Development.

992.2 Process Definition Documents

Im
p

lem
en

tatio
n

 &
 U

n
it Testin

g

S
W
P
4

Input

• Program units that
are going to be reused
(SW305) Software
Detailed Design
Description

SWP5

 SWP4.1Preparing for Implementation and Unit Test
 4.1.1 Preparing for Implementation
 4.1.2 Preparing for Unit Test

 SWP4.2 Conducting the Implementation and Unit Test
 4.2.1 Implementing the Program Units
 4.2.2 Conducting the Unit Test
 4.2.3 Reviewing the Unit Test Results

 SWP4.3 Reviewing the Implementation and Unit Test Results
 4.3.1 Reviewing the Source Code
 4.3.2 Reviewing the Unit Test Results Internally

SWP3

Task structure

• (SW404) Program Unit
• (SW401) Unit Test
Specifications

………
…………
…………
…………
…………

• (SW406) Unit Test
Report

………
…………
…………
…………
…………

• (SW408) Internal
Review Report (on
Implementation & Unit
Test)

………
…………
…………
…………
…………

………
…………
…………
…………
…………

�
Document template

sample is available.

Output

	 Description

In this activity:
• (4.1.1)	 Prepare the development environment for implementing embedded software program units, and existing

program units that are intended to be reused, among others;
• (4.1.2)	 Prepare for testing the implemented program units at unit level;
• (4.2.1) (4.2.2) (4.2.3) Implement the program units according to the Software Detailed Design Description and

conduct the Unit Test;
• (4.3.1) (4.3.2) Moreover, review the source code of the program units that have been fully implemented and

the test results gained from the Unit Test, based on the pre-defined check points, and document
the outcome of this review orderly in the form of an Internal Review Report.

Implement the respective program units that structure the software and test the behaviors of the software at unit
level.

SWP4 Implementation & Unit Testing

 For implementation, pre-define the coding
practices and rules to be adopted.

 Bear in mind the importance of preparing the

test environment for the Unit Test according
to pre-defined schedule, since the preparatory
work tends to be delayed.

 Programming tools (compiler, linker)
 Source code management tools
 Debugging tools (debugger, in-circuit emulator
(ICE))

 Test support tools
 Static and dynamic source code check tools

 Quality metrics (source code) measurement
tools

 Code clone detection tools (technologies used
for revising source codes, refactoring, quality
evaluation, detection of code plagiarism, etc)

 Consideration

 <Reference> Techniques and Tools

100 Part 2 Technical Section

Im
p

lem
en

tatio
n

 &
 U

n
it Testin

g

S
W
P
4

Hardware development

V-Model

SUP: Support Process

SWP: Software Engineering Process

SAP: Safety Engineering Process

SYP:System Engineering Process

Figure 2.11 V-Model and Development Process (SWP4 Implementation & Unit Testing)

Product planning Product inspection

(1) Design detailing �ow (2) Testing �ow

SAP1 Safety
Requirements De�nition

SYP1 System
 Requirements De�nition

SYP2 System
Architectural Design

SYP4
System Testing

SYP3 System
Integration Testing

SAP2
Safety Testing

SWP1 Software
Requirements De�nition

SWP2 Software
Architectural Design

SWP3 Software
 Detailed Design

SWP4　Implementation

SWP4 Unit Testing

SWP5 Software
Integration Testing

SWP6 Comprehensive
 Software Testing

SUP1 Project
Management

SUP2
Quality Assurance

SUP3 Risk
Management

SUP4 Documentation &
Document Management

SUP5 Con�guration
 Management

SUP6 Problem
Resolution Management

SUP7 Change
 Management

SUP8
Joint Review

SUP9 Subcontractor
Management

SUP10 Development
Environment Preparation

The scope of de�nition of development process covered in ESPR is limited to four processes: SYP, SAP, SWP, and SUP,
and does not include Product Planning, Product Inspection and Hardware Development.

1012.2 Process Definition Documents

Im
p

lem
en

tatio
n

 &
 U

n
it Testin

g

S
W
P
4

(1) Prepare the program units that are intended to
be reused.

 In case of using program units that have already
been developed, after making them available,

check that they are in the usable state.
(2) Prepare the development environment.

 Prepare an environment for development that is
suitable for implementing program units.

SWP4.1 Preparing for Implementation and Unit Test

Prepare for the implementation of program units as defined in the Software Detailed Design Description as well as
for the Unit Test.

	 4.1.1	 Preparing for Implementation

Outline
Be ready to implement the program
units by preparing the development
envi ron ment for implement ing
the program units and the existing
program units that are intended to be
reused, among others;

Input
Program units intended to be
reused*

Output
• (SU1002) Software
Development Environment

 Action

 Regarding the program units intended to be
reused, also check the following points:

 Version;

 Quality (already known defects, etc)
 Restriction of usage

 Precaution

• Terminology
* Program units intended to be reused: Refers to “components” of existing software to be reused for new software development.

102 Part 2 Technical Section

Im
p

lem
en

tatio
n

 &
 U

n
it Testin

g

S
W
P
4

	 4.1.2	 Preparing for Unit Test

Outline
C r e a t e t h e U n i t T e s t
Specifications, and be ready
to conduct the Unit Test.

Input
• (SW305) Software Detailed
Design Description
• (SU1002) Software
Development Environment
• (SU601) Defect Management
Ticket (when modifications are
implemented and need to be
verified)

 Action

Get ready to conduct the Unit Test by preparing the following items (1)-(4).

(1) Prepare the test cases for the Unit Test.

 Prepare the test cases to check whether the
detailed software design can be implemented
correctly as defined in the Software Detailed
Design Description (SW305), and document the
prepared test cases orderly in the form of Unit
Test Specifications. The test cases that should be
prepared include:
• Functional test;
• Condition coverage test / data boundary-value

test.
(2) Prepare the test data.

 Create the data (specif ic input data, etc)
necessary to run the test cases prepared above in
(1).

(3) Create the stubs / test drivers (pseudo-software).

 If necessary, create the stubs / test drivers to
operate the functional units that need to be
tested.

(4) Also have the various test criteria def ined
beforehand, including the criteria for judging the
test results, the criteria for evaluating the Unit Test
on the overall, and the criteria for determining the
satisfactory completion of the Unit Testing activity.

(5) Prepare the test cases for verifying the modification
(when modifications are implemented and need to
be verified).

 When a defect is detected during Unit Testing
and modification has been implemented to
resolve it, prepare test cases to verify that the
modification was successful in eliminating the
defect, and that no other problems have derived
from this modification.
•	Determine the scope of the modification

verification test and select the appropriate
test cases, based on the description of the
defect.

 Review the Unit Test Specifications.
Matters that should be reviewed include the:

 Adequacy of the number of test cases;

 Coverage of the test cases (inst ruct ions,
conditions, judgment);

 Contradictions / duplications of test cases;.

 Precaution

Output
• (SW401) Unit Test Specifications

………
…………
…………
…………
…………

• (SW402) Unit Test Data
• (SW403) Internal Confirmation Note
(on Unit Test Specifications)

………
…………
…………
…………
…………

�
Document template sample is available.

1032.2 Process Definition Documents

Im
p

lem
en

tatio
n

 &
 U

n
it Testin

g

S
W
P
4

 Method of testing the hardware driver and
interrupt handler;

 Method of testing the program unit that requires
high-speed processing;

 Error processing.

 Points to consider regarding the input values used
in the test cases:

 Normal data;
 Data without any set value (NULL value);
 Values / conditions far greater or smaller than
the boundary-values / specified values;

 Minimum value, maximum value.

 Points to consider regarding the preparation of the
modification verification test:

 Is the test covering all the areas that are affected
by the modification?

 Basically, reuse the test case that has already
been developed. However, if a wide area has
been modified or affected by the modification,
consider preparing a new test case. (Bear in
mind the area used for global variables / shared
memory, etc).

 Points to keep in mind in documentation:

 Attach the revision history and indicate clearly
where have been revised;

 Clearly indicate who or which organization is
responsible of the created document;

 Ensure that the created document is managed
prop e r ly by p e r fo r m i ng c on f ig u r a t ion
management and change management.

Related processes: SUP5 Configuration Management;
SUP7 Change Management

104 Part 2 Technical Section

Im
p

lem
en

tatio
n

 &
 U

n
it Testin

g

S
W
P
4

(1) Implement the program units.

 Implement the program units according to
the relevant contents defined in the Software
Detailed Design Description.

 Compile, and if there are syntax errors, modify
the errors.

(2) Check the program units that are going to be
used for the current software development.

 If existing software assets or commercial
software products are going to be used, check

their source codes and decide on which part
of the source code to use for the ongoing
development.

(3) Modify the defect.

 When the program unit is found to be defective
in source code reviews and tests, modify the
defect by referencing the information on this
defect described in the Defect Management
Ticket.

SWP4.2 Conducting the Implementation and Unit Test

Implement the program units and conduct the Unit Test as defined in the Software Detailed Design Description.

	 4.2.1	 Implementing the Program Units

Outline
Implement the program
units.

Input
• (SW305) Software Detailed Design Description
• (SU1002) Software Development Environment
• (SU601) Defect Management Ticket (when
modifications are implemented and need to be
verified)

Output
• (SW404) Program Unit

 Action

 Matters to be careful in implementation include
the:

 Use of techniques to achieve high-speed
processing (such as, inline assembler);

 Use of preferable optimization techniques
that vary depending on the extent of memory
constraints;

 Consideration of making the source code easy
to read and test.

 Obligation to follow the coding conventions,

etc;
 Consideration to enter comments in the source
code to make the processing contents easy to
understand;

 When modifications are implemented to resolve
the defects, attach the revision history and
clearly indicate where has been revised.

 After completing the implementation, bear in
mind the need to perform source code version
management (check-in / check-out).

 Precaution

See also

Coding practices and conventions

1052.2 Process Definition Documents

Im
p

lem
en

tatio
n

 &
 U

n
it Testin

g

S
W
P
4

	 4.2.2	 Conducting the Unit Test

Outline
Conduct the Unit Test by following
the Unit Test Specifications.

Input
• (SW401) Unit Test Specifications
• (SW402) Unit Test Data
• (SW404) Program Unit
• (SU1002) Software Development
Environment
• (SU601) Defect Management
Ticket (when modifications are
implemented and need to be
verified)

 Action

(1) Conduct the Unit Test.

 Conduct the Unit Test, based on Unit Test
Specifications (SW401), and gain the test results
as the output.

 When an alternative test is carried out, keep
records of the test results, along with the
reason(s) stating explicitly why the alternative
test had to be carried out.

 When a defect is detected while testing, decide
whether to continue conducting the remaining
tests, or suspend them until the defect is
resolved.

 Collect the outputted test results (various logs,
etc).

 W he n a p r e p a r e d t e s t c a s e c a n no t b e
conducted, keep records of the event, along
with the reason(s) stating explicitly why it
was not executable. Moreover, determine the
reasonableness of the stated reason(s).

(2) When modification has been implemented to
resolve the defect detected while testing (such
as, during Unit Test), conduct the test for verifying
the modification to:

 Check whether the defect has been eliminated
or not;

 Check whether the modification to resolve the
defect has led to any other defects or not.

 Before running the test for ver i f y ing the
implemented modification, be sure to check that

the latest modified version is tested.

 Precaution

Output
• (SW405) Unit Test Results
(notes)

106 Part 2 Technical Section

Im
p

lem
en

tatio
n

 &
 U

n
it Testin

g

S
W
P
4

	 4.2.3	 Reviewing the Unit Test Results

Outline
Review the results gained from
the Unit Test, and judge whether
the tested unit has passed or failed
this test.

Input
• (SW401) Unit Test Specifications
• (SW405) Unit Test Results (notes)
• (SU601) Defect Management Ticket
(when modifications are implemented
and need to be
verified)

 Action

(1) Review the results of the Unit Test

 Review the test results to judge whether the
tested software has passed or failed each test
case that has been conducted.

 When the test for verifying the modification
has been carried out and the result shows
that the defect has been resolved through the

modification, record the findings in the Defect
Management Ticket as the evidence that the
modification has been verified.

(2) Record the defects.

 When a defect is detected, record the contents
of the defect in the Defect Management Ticket.

 Do not take any test results for granted, and
consider the possibility of incorrect information
included in the Unit Test Specifications.

(Unit Test Report may be substituted by the Unit
Test Specifications when the outcome of the Unit Test
(pass/fail judgment) is entered in the latter document).

 Precaution

Output
• (SW406) Unit Test Report
………
…………
…………
…………
…………

• (SU601) Defect Manage-
ment Ticket

………
…………
…………
…………
…………

………
…………
…………
…………
…………

�
Document template sample

is available.

1072.2 Process Definition Documents

Im
p

lem
en

tatio
n

 &
 U

n
it Testin

g

S
W
P
4

SWP4.3 Reviewing the Implementation and Unit Test Results

Review the implementation and the test results gained from the Unit Test to check that the implemented program
units can process correctly as defined in the Software Detailed Design Description.

	 4.3.1	 Reviewing the Source Code

Outline
C h e c k w h e t h e r o r n o t t h e
implementation (coding) has been
completed cor rectly to achieve
the functionalities described in
the Sof t ware Detai led Design
Description.

Input
• (SW305) Software Detailed Design
Description
• (SW404) Program Unit

Output
• (SW407) Internal
Confirmation Note (on
Source Code)

 Action

Check whether the source code for realizing the program units has been implemented correctly or not.

 Check whether the functionalities described in
the Software Detailed Design Description can be
achieved or not.

 Compare the source code with the coding
practices and coding conventions adopted in the
organization engaged in the current software
development to check whether the source code
has any problems or not.
• For functionalities that must be processed at

high speed, is the implemented code capable
of meeting this requirement?

• Are any techniques applied to optimize the

source code in accordance with the memory
constraints?

• Is the source code easy to read and test?
• Is the source code following the coding

conventions?
• Are there any comments entered in the source

code to make the processing contents easy to
understand?

• In case the source code had to be modified
to resolve the defect that was found, is the
revision history available to check what and
where has been revised?

108 Part 2 Technical Section

Im
p

lem
en

tatio
n

 &
 U

n
it Testin

g

S
W
P
4

	 4.3.2	 Reviewing the Unit Test Results Internally

Outline
Check whether or not there are
pending issues that are still not
solved and/or any test cases in the
Unit Test that have not been tested
yet, and document the f indings
orderly in the form of the Internal
Review Report.

Input
• (SW305) Software Detailed Design
Description
• (SW401) Unit Test Specifications
• (SW403) Internal Confirmation
Note (on Unit Test Specifications)
• (SW406) Unit Test Report
• (SW407) Internal Confirmation
Note (on Source Code)
• (SU601) Defect Management Ticket

 Action

(1) Review the results of the Unit Test from the
following perspectives:

 Check whether there are any pending issues or
not, and if there are any, gain an understanding
on why they are still unsolved, and decide
whether they should be solved immediately
or carried over as they are to the next testing
phase.

 Check whether there have been any test cases
that were not carried out, and if there were any,

investigate the reason(s) why they were not
carried out, and examine the possible solutions.

(2) Document the findings of the above check points
orderly in the form of an Internal Review Report
(SW408) where the issues raised in the internal
review and the personnel in charge of handling
these issues are stated explicitly, and distribute
this report to the relevant members of the
development project.

 Regarding the results gained from the Unit Test,
also check the following points:

 Check whether the number of defects that have
been detected is acceptable or not, based on the
quality criteria;

 When the test for verifying the modification
has been conducted, check whether the scope
of the test and the test environment have been

appropriate or not.

 The review manager should make sure that the
issues raised in the internal review meetings are
included in the Internal Review Report preferably
together with possible solutions and/or actions
that address these issues (such as, holding joint
review meetings).

 Precaution

Output
• (SW408) Internal Review
Report (on Implementation &
Unit Test)

………
…………
…………
…………
…………

………
…………
…………
…………
…………

�
Document template sample is
available.

1092.2 Process Definition Documents

So
ftw

are In
teg

ratio
n

 Testin
g

S
W
P
5

Input

• (SW404) Program
Unit
• (SW205) Software
Architectural Design
Description

SWP6

 SWP5.1 Preparing for Software Integration Test
 5.1.1 Preparing for Software Integration
 5.1.2 Preparing for Software Integration Test

 SWP5.2 Conducting the Software Integration Test
 5.2.1 Software Integration
 5.2.2 Conducting the Software Integration Test
 5.2.3 Reviewing the Software Integration Test Results

 SWP5.3 Reviewing the Software Integration Test Results
 5.3.1 Reviewing the Software Integration Test Results Internally

SWP4

Task structure

• (SW504) Functional
Unit
• (SW501) Software
Integration Test Speci-
fications

………
…………
…………
…………
…………

• (SW506) Software
Integration Test Re-
port

………
…………
…………
…………
…………

• (SW507) Internal
Review Report (on
Software Integration
Test)

………
…………
…………
…………
…………

………
…………
…………
…………
…………

�
Document template

sample is available.

Output

	 Description

In this activity:
• (5.1.1)	 Prepare for software integration by, such as, creating make file used for integrating the individual

program units;
• (5.1.2)	 Proceed with the preparation of Software Integration Test;
• (5.2.1) (5.2.2) (5.2.3) Integrate the individual program units, conduct the integration test, and review the test

results;
• (5.3.1)	 Review the results of the Software Integration Test, based on the pre-defined check points, and

document the outcome of this review orderly in the form of an Internal Review Report.

In the context of embedded software, Software Integration Test can be positioned as the opportunity to
confirm that the software integration has been achieved in accordance with the software requirements and
software architectural design.

Assemble the individual program units that structure the software one by one, and test the functionalities expected
to be provided by the program units respectively when they are executed in combinations.

SWP5 Software Integration Testing

 In case of embedded software integration,
program units are integrated one by one by
using stubs and test drivers.

 When a defect is detected as a result of the
integration test, bear in mind the need for
version management of the source code of
program units that are integrated.

 Consideration

110 Part 2 Technical Section

So
ftw

are In
teg

ratio
n

 Testin
g

S
W
P
5

 Boundary-value / limit-value analysis method,
etc

 Code clone detection tool
 Cleanroom method

 <Reference> Techniques and Tools

Hardware development

V-Model

SUP7 Change
management

SUP: Support Process

SWP: Software Engineering Process

SAP: Safety Engineering Process

SYP:System Engineering Process

Figure 2.12 V-Model and Development Process (SWP5　Software Integration Testing)

Product planning Product inspection

(1) Design detailing �ow (2) Testing �ow

SAP1 Safety
Requirements De�nition

SYP1 System
 Requirements De�nition

SYP2 System
Architectural Design

SYP4
System Testing

SYP3 System
Integration Testing

SAP2
Safety Testing

SWP1 Software
Requirements De�nition

SWP2 Software
Architectural Design

SWP3 Software
 Detailed Design

SWP4　Implementation

SWP4 Unit Testing

SWP5 Software
Integration Testing

SWP6 Comprehensive
 Software Testing

SUP1 Project
Management

SUP2
Quality Assurance

SUP3 Risk
Management

SUP4 Documentation &
Document Management

SUP5 Con�guration
 Management

SUP6 Problem
Resolution Management

SUP8
Joint Review

SUP9 Subcontractor
Management

SUP10 Development
Environment Preparation

The scope of de�nition of development process covered in ESPR is limited to four processes: SYP, SAP, SWP, and SUP,
and does not include Product Planning, Product Inspection and Hardware Development.

1112.2 Process Definition Documents

So
ftw

are In
teg

ratio
n

 Testin
g

S
W
P
5

 Prepare the program units that are going to be
integrated.

 Prepare the environment for integrating the
software, including the compile and link
environments (creating the make file, etc).

SWP5.1 Preparing for Software Integration Test

Prepare for software integration as well as for conducting the Software Integration Test.

	 5.1.1	 Preparing for Software Integration

Outline
Prepare the program units that are going
to be integrated, and the environment to
perform the integration.

Input
• (SW404) Program Unit
• (SW205) Software
Architectural Design
Description

Output
• (SU1002) Software
Development Environment
(make file, etc)

 Action

Prepare for the software Integration.

 Check the program units to be integrated for the
following points:

 Version
 Quality (already known defects, etc)

 Whether the conditions set for compile and
link (allocating registers for local variables,
whether memory efficiency or execution speed
is prioritized, etc) are appropriate or not.

 Precaution

112 Part 2 Technical Section

So
ftw

are In
teg

ratio
n

 Testin
g

S
W
P
5

Bug Curve and Reliability

The reliability of software is a�ected by the bugs that may be hidden in the software. However, it is extremely
di�cult to detect all the bugs.
In general, many bugs in the software are found soon after commencing the tests. The number of bug
detections tends to decrease gradually along with the progress of the tests and eventually becomes almost
nil by the end of the testing phase. Due to this tendency, the quality of software is generally considered to be
stabilizing when the number of newly detected bugs added to the cumulative total number of bug
detections (referred to simply as the “total bug count” hereafter) within a certain length of time starts
decreasing steadily. In other words, when the number of new bugs detected within the given period does not
decrease steadily, this statistical data suggests that the software quality is not yet stabilizing.
The changes in the bug detection rate can be con rmed easily through a visual check, using a graph showing
the “bug curve” (see below). The bug curve, also known as the “reliability growth curve”, represents the
number of bugs detected as time passes. When the slope of this curve is shallow, it means that the number
of new bugs detected in the course of testing is increasing only gradually, implying that the software is
becoming more reliable. There are various types of reliability growth curves, including the better known
ones called the “Gompertz curve” and “logistic curve”.
A special attention should be given to the bugs detected near the end of the testing phase to correctly
determine their signi cance to software quality. For instance, the total bug count may temporarily increase
sharply when numerous typographical errors are found in one of the nal tests conducted to check the
quality of the Help contents that can be accessed via a user interface. However, since typos are minor issues,
they should not be weighed heavily even when quite many of them are detected, and the software quality
can still be considered to be stabilizing, if no serious bugs are detected. On the other hand, the quality of
the software under development should de nitely be judged as not yet stabilizing, if the detected bugs
are found to be critical that they require the speci cations to be revised.
The bug curve can be used to measure the reliability of the software. At the same time, it is also important
to weigh the severity of the detected bugs in order to determine the software quality correctly.

To
ta

l b
ug

 c
ou

nt

Time

(1) When the total bug count stops increasing
rapidly in the latter period of the testing phase

To
ta

l b
ug

 c
ou

nt

Tim e

(2)

It thus implies that the quality of
software is not yet stabilizing
and that the software is still
inadequate in terms of reliability.

When the slope of the curve becomes
steeper, it means that the rate of new
bug detections is rising.

It thus implies that the quality of software
is stabilizing and that the software is
becoming more reliable.

When the slope of the curve becomes
shallower, it means that the rate of
new bug detections is slowing down.

When the total bug count continues to increase
rapidly in the latter period of the testing phase

Related Techniques

1132.2 Process Definition Documents

So
ftw

are In
teg

ratio
n

 Testin
g

S
W
P
5

	 5.1.2	 Preparing for Software Integration Test

Outline
Get ready to conduct the Software
Integration Test.

Input
• (SW205) Software
Architectural Design
Description
• (SU1002) Software
Development Environment
• (SU601) Defect Management
Ticket (when modifications are
implemented and need to be
verified)

 Action

Get ready to conduct the Software Integration Test by preparing the following items (1) (5).

(1) Pre p are th e tes t c as es fo r th e S of t w are
Integration Test.

 Prepare the test cases to check whether
the functionalities defined in the Software
Architectural Design are correctly realized or
not, and organize them in the form of Software
Integration Test Specifications. The test cases
that should be prepared include:
• Functional test;
• Condition coverage test;
• Data boundary-value test;
• Interface test for testing the interface between

the program units and the interface between
the functional units.

(2) Prepare the test data.

 Create the data (specif ic input data, etc)
necessary to run the test cases prepared above
in (1).

(3) Create the stubs / test drivers* (pseudo-software).

 If the test plan is to f irst integrate some
program units that par tially comprise the
sof tware and test this integrated por tion,

prepare the stubs / test drivers and perform the
compile and link to create a testable state.

(4) Also have the various test criteria def ined
beforehand, including the criteria for judging the
test results, the criteria for evaluating the Software
Integration Test on the overall, and the criteria for
determining the satisfactory completion of the
Software Integration Testing activity.

(5) Prep are the tes t c ases for ver i f y ing the
m o d i f i c a t i o n (w h e n m o d i f i c a t i o n s a r e
implemented and need to be verified).

 When a defect is detected during the Software
Integration Testing activity and modification
has been implemented to resolve it, prepare
test cases to verify that the modification was
successful in eliminating the defect, and that
no other problems have derived from this
modification.

 Determine the scope of the modif icat ion
verification test and select the appropriate test
cases, based on the description of the defect.

Output
• (SW501) Software Integration
Test Specifications

………
…………
…………
…………
…………

• (SW502) Software Integration
Test Data
• (SW503) Internal Confirmation
Note (on Software Integration
Test Specifications)

………
…………
…………
…………
…………

�
Document template sample is

available.

• Terminology
* Stub/test driver : Stub is a placeholder for substituting the lower-level module that is called by the tested component

(program unit). Test driver is a placeholder for substituting the higher-level module that transmits the test data to the tested
component (program unit).

114 Part 2 Technical Section

So
ftw

are In
teg

ratio
n

 Testin
g

S
W
P
5

 Review the contents of the Software Integration
Test Specif ications. Matters that should be
reviewed at this stage include:

 Adequacy of the number of test cases based
on the scale and size of the software to be
developed;

 Combination of the functionalities
 Coverage of the test cases (corresponding to the
contents of the Software Architectural Design
Description);

 Contradictions / duplications of test cases;
 Method of testing the hardware driver and
interrupt handler (nested interrupts, etc);

 Method of testing the program unit that requires
high-speed processing;

 Validity of the criteria for evaluating non-
functional software requirements (performance,
etc);

 Error processing.

 Regarding the input values used in the test cases,
consider the following, and also take account
of singularity from the standpoint of system
operation:

 Normal data;

 Data without any set value (NULL value);
 Values / conditions far greater or smaller than
the boundary-values / specified values;

 Minimum value, maximum value.

 Points to consider regarding the preparation of
the modification verification test:

 Is the test covering all the areas that are affected
by the modification?

 Basically, reuse the test case that has already
been developed. However, if a wide area has
been modified or affected by the modification,
consider preparing a new test case. (Bear in
mind the area used for global variables / shared
memory, etc).

 Points to keep in mind in documentation:

 Attach the revision history and indicate clearly
where have been revised;

 Clearly indicate who or which organization is
responsible of the created document;

 Ensure that the created document is managed
prop e r ly by p e r fo r m i ng c on f ig u r a t ion
management and change management.

Related processes: SUP5 Configuration Management;
SUP7 Change Management

 Precaution

1152.2 Process Definition Documents

So
ftw

are In
teg

ratio
n

 Testin
g

S
W
P
5

SWP5.2 Conducting the Software Integration Test

Integrate the software (program units) and conduct the Software Integration Test.

	 5.2.1	 Software Integration

Outline
Integrate the program units.

Input
• (SW404) Program Unit
• (SW404) Program Unit
• (SW205) Software Architectural Design
Description
• (SU1002) Software Development
Environment

Output
• (SW504) Functional Unit

 Action

Perform the compile and link, and integrate the program units.

 Points to consider regarding the software
integration:

 Confirm that the program unit of appropriate
version is used for integration.

 Precaution

116 Part 2 Technical Section

So
ftw

are In
teg

ratio
n

 Testin
g

S
W
P
5

	 5.2.2	 Conducting the Software Integration Test

Outline
Conduct the Software Integration
Test, according to the Software
Integration Test Specifications.

Input
• (SU1002) Software Development
Environment
• (SW504) Functional Unit
• (SW501) Software Integration Test
Specifications
• (SW502) Software Integration Test
Data
• (SU601) Defect Management
Ticket (when modifications are
implemented and need to be
verified)

 Action

(1) Conduct the Software Integration Test.

 Conduct the Software Integration Test, based
on the Software Integration Test Specifications
(SW501), and gain the test results as the output.

 When an alternative test is carried out, keep
records of the test results, along with the
reason(s) stating explicitly why the alternative
test had to be carried out.

 When a defect is detected while testing, decide
whether to continue conducting the remaining
tests, or suspend them until the defect is
resolved.

 Collect the outputted test results (various logs,

etc).
 W he n a p r e p a r e d t e s t c a s e c a n no t b e
conducted, keep records of the event, along
with the reason(s) stating explicitly why it
was not executable. Moreover, determine the
reasonableness of the stated reason(s).

(2) Conduct the test for verifying the modification
to:

 Check whether the defect has been eliminated
or not by the modification, and whether the
modification to resolve the defect has led to any
other defects or not.

Output
• (SW505) Software
Integration Test Results

 Before running the test for ver i f y ing the
implemented modification, be sure to check that
the latest modified version is tested.

 Precaution

1172.2 Process Definition Documents

So
ftw

are In
teg

ratio
n

 Testin
g

S
W
P
5

	 5.2.3	 Reviewing the Software Integration Test Results

Outline
Review the results gained from the
Software Integration Test, and judge
whether the tested software has
passed or failed this test.

Input
• (SW501) Software Integration
Test Specifications
• (SW505) Software Integration
Test Results
• (SU601) Defect Management
Ticket (when modifications are
implemented and need to be
verified)

 Action

(1) Review the results gained from the Software
Integration Test.

 Review the test results to judge whether the
tested software has passed or failed each test
case that has been conducted.

 When the test for verifying the modification
has been carried out and the result shows
that the defect has been resolved through the

modification, record the findings in the Defect
Management Ticket as the evidence that the
modification has been verified.

(2) Record the defects.

 When a defect is detected, record the contents
of the defect in the Defect Management Ticket.

Related processes: SUP6 Problem Resolution
Management

Output
• (SW506) Software
Integration Test Report

………
…………
…………
…………
…………

• (SU601) Defect
Management Ticket

………
…………
…………
…………
…………

………
…………
…………
…………
…………

�
Document template sample

is available.

 When reviewing the test results, bear in mind
the possibility that the contents of the Software
Integration Test Specifications may be incorrect.

 Precaution

118 Part 2 Technical Section

So
ftw

are In
teg

ratio
n

 Testin
g

S
W
P
5

SWP5.3 Reviewing the Software Integration Test Results

Review the results of the Software Integration Test from the standpoint of checking whether or not the
integrated software is capable of processing correctly what it is required to achieve as defined in the Software
Architectural Design.

	 5.3.1	 Reviewing the Software Integration Test Results Internally

Outline
Check whether or not there are
pending issues that are still not
solved and/or any test cases in
the Software Integration Test
that have not been carried out,
and document the f indings
orderly in the for m of the
Internal Review Report.

Input
• (SW205) Software Architectural Design
Description
• (SW501) Software Integration Test
Specifications
• (SW503) Internal Confirmation Note (on
Software Integration Test Specifications)
• (SW506) Software Integration Test
Report
• (SU601) Defect Management Ticket

Output
• (SW507) Internal Review
Report (on Software
Integration Test)

………
…………
…………
…………
…………

………
…………
…………
…………
…………

�
Document template sample
is available.

 Action

(1) Review the results of the Software Integration
Test from the following perspectives:

 Check whether there are any pending issues or
not, and if there are any, gain an understanding
on why they are still unsolved, and decide
whether they should be solved immediately
or carried over as they are to the next testing
phase.

Related processes: SUP8 Joint Review; SUP1 Project
Management

 Check whether there have been any test cases

that were not carried out, and if there were any,
investigate the reason(s) why they were not
carried out, and examine the possible solutions.

Related processes: SUP6 Problem Resolution
Management

(2) Document the findings of the above check points
orderly in the form of an Internal Review Report
(SW507) where the issues raised in the internal
review and the personnel in charge of handling
these issues are stated explicitly, and distribute
this report to the relevant members of the
development project.

 Check whether the number of defects that have
been detected is acceptable or not, based on the
quality criteria.

 When the test for verifying the modification
has been conducted, check whether the scope
of the test and the test environment have been
appropriate or not.

 The review manager should make sure that the
issues raised in the internal review meetings are
included in the Internal Review Report preferably
together with possible solutions and/or actions
that address these issues (such as, holding joint
review meetings).

 Precaution

1192.2 Process Definition Documents

So
ftw

are In
teg

ratio
n

 Testin
g

S
W
P
5

ISO/IEC 12207 Information technology－Software life cycle processes (JIS X 0160)

Year of establishment / revision: ISO/IEC 1995, AMD.1 2002, AMD.2 2004, JIS 1996

Purpose: Standardization of the concepts of software life cycle processes

Scope: Software development process

URL: http://www.iso.org/

Source in Japan: Japanese Standards Association

Overview:

Standard that organizes the software product development processes systematically, and serves as
the fundamental standard pertaining to these processes.
This standard has been established for the purpose of setting the common language, such as, the
names used to refer to the various types of work related to the development of software that is
nowadays not only used in the �eld of information technology but is also extending its usages
broadly in industrial systems.
This standard lays down the framework of software development in which the processes ranging
from the initial planning stage to the �nal retirement stage when the users stop using the software
product are sorted out orderly according to the life cycle of the software, and prescribes the matters
concerning the management and improvement of these processes.
This standard de�nes these processes conceptually by breaking down the various types of work
involved in software development hierarchically into “processes”, “activities” and “tasks”. Based on this
hierarchy, this guidebook focuses on discussing the speci�c processes for embedded software
development in an orderly manner.

Process description

- [Process name]

 - List of activities

 [Activity 1]

 - Task 1

 - Task 2

 - Task 3

Related Standards

120 Part 2 Technical Section

C
o

m
p

reh
en

sive
 So

ftw
are

 Te
stin

g

S
W
P
6

Input

• (SW504) Functional
Unit
• (SW105) Software
Requirements Specifi-
cations

SYP3

 SWP6.1 Preparing for Comprehensive Software Test
 6.1.1 Creating the Comprehensive Software Test Speci�cations
 6.1.2 Preparing for Comprehensive Software Test
 6.1.3 Reviewing the Comprehensive Software Test Speci�cations Internally

 SWP6.2 Conducting the Comprehensive Software Test
 6.2.1 Conducting the Comprehensive Software Test
 6.2.2 Reviewing the Comprehensive Software Test Results

 SWP6.3 Reviewing the Comprehensive Software Test Results
 6.3.1 Reviewing the Comprehensive Software Test Results Internally

 SWP6.4 Con�rming the Completion of Software Development
 6.4.1 Con�rming the Completion of Software Development

SWP5

Task structure

• (SW601) Compre-
hensive Software Test
Specifications

………
…………
…………
…………
…………

• (SW606) Compre-
hensive Software Test
Report

………
…………
…………
…………
…………

• (SU103) Project
Completion Report
(on Software Develop-
ment)

………
…………
…………
…………
…………

�
Document template

sample is available.

Output

	 Description

In this activity:
• (6.1.1) (6.1.2) (6.1.3) Prepare the test specifications for checking and reviewing whether the fully integrated

software is capable of providing the functionalities and operations described in the
Software Requirements Specifications;

• (6.2.1) (6.2.2) Conduct a comprehensive set of tests collectively referred to as the Comprehensive Software
Test by actually operating the software according to the prepared test specifications (hereafter
called the “Comprehensive Software Test Specifications”);

• (6.3.1)	 Review the results of the Comprehensive Software Test, based on the pass/fail criteria applied to this
test, and document the findings orderly in the form of an Internal Review Report;

• (6.4.1)	 Moreover, hold joint meetings with relevant stakeholders to review the results of the Comprehensive
Software Test and also carry out the final review of the current software development project. Upon
reaching a positive conclusion in these meetings, document the outcome of the joint review orderly in
the form of Software Development Project Completion Report.

Comprehensive Software Testing can be regarded basically as the final test phase in software development to
check and review the developed software. Therefore, this review must be carried out comprehensively without
any omission, by assuming how the software actually operates when the product is used in the real world.

Conduct the Comprehensive Software Test, using the software in the state where all the functional units that
structure the software are fully integrated.

SWP6 Comprehensive Software Testing

1212.2 Process Definition Documents

C
o

m
p

reh
en

sive
 So

ftw
are

 Te
stin

g

S
W
P
6

 Before conducting the Comprehensive Software
Test, a particular attention should be given
to the operating environment in which the
software is tested (hereafter called the “test
environment”). Conduct the Comprehensive
Software Test in a test environment assumed
to be close to the environment in which the
software is likely to operate in the real world.

 Consider the Comprehensive Software Test
as the final opportunity to check and review
the software that has been developed, and be

careful not to leave out any test cases, including
the test cases for conducting the regression
test that would be necessary when a defect is
detected while testing.

 Defects that have been detected while testing
must be managed according to pre-defined
procedure and rules, including the appropriate
management of information regarding where
they were detected and how they have been
resolved, among others.

 Simulators for simulating system behaviors, etc
 Measur ing inst r uments (logic analyzer,
oscilloscope, etc)

 Automatic testing tool (automated regression
test, etc)

 Bug management tool
 Reliability growth curve

 Consideration

 <Reference> Techniques and Tools

122 Part 2 Technical Section

C
o

m
p

reh
en

sive
 So

ftw
are

 Te
stin

g

S
W
P
6

Hardware development

V-Model

SUP: Support Process

SWP: Software Engineering Process

SAP: Safety Engineering Process

SYP:System Engineering Process

Product planning Product inspection

(1) Design detailing �ow (2) Testing �ow

SAP1 Safety
Requirements De�nition

SYP1 System
 Requirements De�nition

SYP2 System
Architectural Design

SYP4
System Testing

SYP3 System
Integration Testing

SAP2
Safety Testing

SWP1 Software
Requirements De�nition

SWP2 Software
Architectural Design

SWP3 Software
 Detailed Design

SWP4　Implementation

SWP4 Unit Testing

SWP5 Software
Integration Testing

SWP6 Comprehensive
 Software Testing

SUP1 Project
Management

SUP2
Quality Assurance

SUP3 Risk
Management

SUP4 Documentation &
Document Management

SUP5 Con�guration
 Management

SUP6 Problem
Resolution Management

SUP7 Change
 Management

SUP8
Joint Review

SUP9 Subcontractor
Management

SUP10 Development
Environment Preparation

The scope of de�nition of development process covered in ESPR is limited to four processes: SYP, SAP, SWP, and SUP,
and does not include Product Planning, Product Inspection and Hardware Development.

Figure 2.13 V-Model and Development Process (SWP6　Comprehensive Software Testing)

1232.2 Process Definition Documents

C
o

m
p

reh
en

sive
 So

ftw
are

 Te
stin

g

S
W
P
6

 Prepare the test cases to check whether
the sof tware can cor rectly realize all the
required funct ionalit ies descr ibed in the
Software Requirements Specifications. When
preparing these test cases, be sure to cover all

the functional and non-functional software
requirements.

 Have the criteria for pass/fail judgment of each
test case clearly defined beforehand.

SWP6.1 Preparing for Comprehensive Software Test

Prepare for the Comprehensive Software Test.

	 6.1.1	 Creating the Comprehensive Software Test Specifications

Outline
Create the Comprehensive
Software Test Specifications.

Input
• (SW105) Software Requirements
Specifications
• Information necessary to create the
test specifications (deliverables)

Output
• (SW601) Comprehensive
Software Test Specifications

………
…………
…………
…………
…………

………
…………
…………
…………
…………

Document template sample is

available.

 Action

Create the Comprehensive Software Test Specifications based on the contents of the Software Requirements Specifications.

 Examine whether the Comprehensive Software
Test Specif ications created in the past are
reusable or not.

 Check whether the past incidents on defects are
taken into consideration.

 If the current software is built for a product
planned to be developed in ser ies, check
whether the test cases on new functionalities are
sufficient, and whether the impact of changes in
the functionalities is clearly grasped or not.

 Extract all the necessary test cases without fail,
by utilizing, such as, state transition table and
matrix coverage methodology.
 Check whether the tes t procedu res and
criter ia for judging the completion of the
Comprehensive Software Test are complying
with relevant laws, regulations and standards,
among others.

 Check whether the expected outcome of the
outputs is clearly described or not.

 Create test cases that take account of the

situations in which the end users actually use
the product (software).

 Create test cases for testing normal operations
as well as for testing abnormal / exceptional
cases.

 Take account of the consistency with other
systems as well as with hardware.

 I t is desirable to examine and create the
Comprehensive Software Test Specifications
during the upstream process (such as, during the
design phase).

 Points to keep in mind in documentation:
 Attach the revision history and indicate clearly
where have been revised;

 Clearly indicate who or which organization is
responsible of the created document;

 Ensure that the created document is managed
prop e r ly by p e r fo r m i ng c on f ig u r a t ion
management and change management.
Related processes: SUP5 Configuration Management;
SUP7 Change Management

 Precaution

See also Comprehensive Software Test Specifications created in the past

124 Part 2 Technical Section

C
o

m
p

reh
en

sive
 So

ftw
are

 Te
stin

g

S
W
P
6

	 6.1.2	 Preparing for Comprehensive Software Test

Outline
Prepare the test data and
test environment that would
be necessary to conduct the
Comprehensive Sof t ware
Test.

Input
• (SW601) Comprehensive Software Test
Specifications
• (SW504) Final executable source code
• (SU601) Defect Management Ticket
(when modifications are implemented
and need to be verified)

 Action

Prepare the test data and test environment that would be necessary to conduct the Comprehensive Software
Test.

(1) Create the test data
 Create the data (specif ic input data, etc)
necessary to run the test cases prepared in 6.1.1.

(2) Prepare the test environment.
 Prepare the test environment that would be
necessary to conduct the Comprehensive
Software Test.
• Create the testing jigs (communication target,

etc).
• Create the simulation software.

 Convert the source code into executable format
and write it to the semiconductor memory.

 Mount the memory and circuits, and be ready
with real machines (or prototypes) to run the
software in the real physical environment.

(3) Also have the various test criteria def ined
beforehand, including the criteria for judging
the test results, the criteria for evaluating the
Comprehensive Software Test on the overall,
and the criteria for determining the satisfactory
completion of the Comprehensive Software
Testing activity.

(4) Prep are th e tes t c as es for ver i f y ing th e
m o d i f i c a t i o n (w h e n m o d i f i c a t i o n s a r e
implemented and need to be verified).

 Prepare the test cases to ver ify that the
modification was successful in eliminating the
defect, and that no other problems have derived
from this modification.
• Decide on the scope of the test and choose

which test case to conduct, depending on the
description of the defect.

Output
• (SW602) Real Machine
• (SW603) Comprehensive
Software Test Data

 Keep in mind to prepare a wide variation of
test data that can be used to test the overall
workings of the software, and also to test the
software especially in events that are related
to abnormal processing in case of embedded
software

 When preparing the test jigs, confirm that the
precision level is within the acceptable tolerance
limits.

 Check whether the environment is suitable for
the hardware to operate normally (noise, power
supply, etc).

 Confirm that the software to be tested is the

correct version.
 As for the test environment, contrive ways to
facilitate test reproducibility to help analyze
what the cause(s) may be when a defect is
detected.

 Points to consider when preparing the test for
verifying the modification
• Is the scope of this test covering all the

potentially affected areas?
• Basically, reuse the test cases that have

already been created. Consider preparing new
test cases when the modification was large-
scaled, and extensive areas were affected.

 Precaution

1252.2 Process Definition Documents

C
o

m
p

reh
en

sive
 So

ftw
are

 Te
stin

g

S
W
P
6

	 6.1.3	 Reviewing the Comprehensive Software Test Specifications

Outline
Review the Comprehensive
Software Test Specifications.

Input
• (SW105) Software Requirements
Specifications
• (SW601) Comprehensive Software
Test Specifications

 Action

Review the Comprehensive Software Test Specifications that have been created.

 Review the Comprehensive Software Test
Specifications (SW601) within the development
group to check whether or not the functional
and non-functional requirements defined in the

Software Requirements Specifications (SW105)
can be verified sufficiently by the test cases
described in the Comprehensive Software Test
Specifications.

Output
• (SW604) Internal
Confirmation Note (on
Comprehensive Software Test
Specifications)

 Matters that should be reviewed include the:

 Adequacy of the number of test cases based on
the size of the software;

 Coverage of the test cases (corresponding to
the contents of the Software Requirements
Specifications);

 Contradictions / duplications of test cases;
 Validity of the criteria for evaluating non-
functional software requirements (performance,

etc);
 Error processing;
 Fail-safe processing;
 Expected values

 When the test cases are created by the developers,
closely check whether the test cases that they
picked out and the pass/fail criteria for evaluating
the test result are strict enough (adequate) or not.

 Precaution

126 Part 2 Technical Section

C
o

m
p

reh
en

sive
 So

ftw
are

 Te
stin

g

S
W
P
6

SWP6.2 Conducting the Comprehensive Software Test

Conduct the Comprehensive Software Test.

	 6.2.1	 Conducting the Comprehensive Software Test

Outline
Conduct the Comprehensive
Sof tware Test, based on the
Comprehensive Software Test
Specifications.

Input
• (SW601) Comprehensive Software
Test Specifications
• (SW603) Comprehensive Software
Test Data
• (SW602) Real Machine
• (SU1002) Software Development
Environment

Output
• (SW605) Comprehensive
Software Test Results

 Action

Conduct the Comprehensive Software Test by following the Comprehensive Software Test Specifications.

(1) Conduct the Comprehensive Software Test.
 Conduct the Comprehensive Software Test,
based on Comprehensive Sof t ware Test
Specifications (SW601), and gain the test results
as the output.

 When an alternative test is carried out, keep
records of the test results, along with the
reason(s) stating explicitly why the alternative
test had to be carried out.

 When a defect is detected while testing, decide
whether to continue conducting the remaining
tests, or suspend them until the defect is
resolved.

 Collect the outputted test results (various logs,

etc).
 W he n a p r e p a r e d t e s t c a s e c a n no t b e
conducted, keep records of the event, along
with the reason(s) stating explicitly why it
was not executable. Moreover, determine the
reasonableness of the stated reason(s).

(2) When a defect occurred and modification has
been implemented to resolve it, conduct the test
for verifying the modification to:

 Check whether the defect has been eliminated
or not.

 Check whether the modification to resolve the
defect has led to any other defects or not.

 Before running the test for ver i f y ing the
implemented modification, be sure to check that
the latest modified version is tested.

 Precaution

1272.2 Process Definition Documents

C
o

m
p

reh
en

sive
 So

ftw
are

 Te
stin

g

S
W
P
6

	 6.2.2	 Reviewing the Comprehensive Software Test Results

Outline
Review the results gained from the
Comprehensive Software Test, and
judge whether the tested software
has passed or failed this test.

Input
• (SW601) Comprehensive Software
Test Specifications
• (SW504) Final executable source
code
• (SW605) Comprehensive Software
Test Results
• (SU601) Defect Management
Ticket (when modifications are
implemented and need to be
verified)

 Action

Review the results gained from the Comprehensive Software Test, and judge whether the software has passed
or failed each test case that has been conducted.

 When a defect is detected, record the description
of the defect in the Defect Management Ticket.

 When the test for verifying the modification
has been carried out and the result shows
that the defect has been resolved through the

modification, record the findings in the Defect
Management Ticket as the evidence that the
modification has been verified.

Related processes: SUP6 Problem Resolution
Management

Output
• (SW606) Comprehensive
Software Test Report

………
…………
…………
…………
…………

• (SU601) Defect
Management Ticket

………
…………
…………
…………
…………

………
…………
…………
…………
…………

�
Document template sample

is available.

 When reviewing the test results, bear in mind the
possibility that the contents of the Comprehensive
Software Test Specifications may be incorrect.

 Judge from the test results whether the software

has passed or failed the Comprehensive Software
Test , based on the cr i ter ia def ined in the
Comprehensive Software Test Specifications.

 Precaution

128 Part 2 Technical Section

C
o

m
p

reh
en

sive
 So

ftw
are

 Te
stin

g

S
W
P
6

SWP6.3 Reviewing the Comprehensive Software Test Results

Review the results of the Comprehensive Software Test from the standpoint of checking whether or not the
software has correctly realized its requirements defined in the Software Requirements Definition.

	 6.3.1	 Reviewing the Comprehensive Software Test Results Internally

Outline
Check whether or not there are
pending issues that are still not
solved and/or any test cases in
the Comprehensive Software
Test that have not been carried
out, and document the findings
o rd e r ly i n t he fo r m of t he
Internal Review Report.

Input
• (SW105) Software Requirements
Specifications
• (SW601) Comprehensive Software
Test Specifications
• (SW604) Internal Confirmation Note
(Comprehensive Software Test
Specifications)
• (SW606) Comprehensive Software
Test Report
• (SU601) Defect Management Ticket

Output
• (SW607) Internal Review
Report (on Comprehensive
Software Test)

………
…………
…………
…………
…………

………
…………
…………
…………
…………

�
Document template sample

is available.

 Action

(1) Review the results of the Comprehensive
Sof t ware Tes t Result s f rom the fo l lowing
perspectives:

 Check whether there are any pending issues or
not, and if there are any, gain an understanding
on why they are still unsolved, and decide
whether they should be solved immediately
or carried over as they are to the next testing
phase.

Related processes: SUP8 Joint Review; SUP1
Project Management

 Check whether there have been any test cases

that were not carried out, and if there were any,
investigate the reason(s) why they were not
carried out, and examine the possible solutions.

Related processes: SUP6 Problem Resolution
Management

(2) Document the findings of the above check points
orderly in the form of an Internal Review Report
(SW607) where the issues raised in the internal
review and the personnel in charge of handling
these issues are stated explicitly, and distribute
this report to the relevant members of the
development project.

 Check whether the number of defects that have
been detected is acceptable or not, based on the
quality criteria.

 When the test for verifying the modification
has been conducted, check whether the scope
of the test and the test environment have been
appropriate or not.

 The review manager should make sure that the
issues raised in the internal review meetings are
included in the Internal Review Report preferably
together with possible solutions and/or actions
that address these issues (such as, holding joint
review meetings).

 Precaution

1292.2 Process Definition Documents

C
o

m
p

reh
en

sive
 So

ftw
are

 Te
stin

g

S
W
P
6

SWP6.4 Confirming the Completion of Software Development

Evaluate the developed software among the stakeholders by checking whether the software requirements defined in the
System Requirements Definition are correctly realized by the developed software or not, and carry out the final review of
software development.

	 6.4.1	 Confirming the Completion of Software Development

Outline
Review the test results described in
the Comprehensive Software Report
jointly among the stakeholders.
Based on the findings from this joint
review, make a final judgment as the
organization in charge of software
d e ve l o p m e n t o n w h e t h e r t h e
developed software has passed or
failed the Comprehensive Software
Test, and sort out the information
deemed necessary for later product
inspection.

Input
• (SW105) Software Requirements
Specifications
• (SW601) Comprehensive Software
Test Specifications
• (SW606) Comprehensive
Software Test Report
• (SW607) Internal Review Report
(on Comprehensive Software Test)
• (SU101) Project Plan Description
• (SU601) Defect Management
Ticket

Output
• (SU801) Joint Review
Records (on Software
Integration Test)

………
…………
…………
…………
…………

• (SU103) Project Completion
Report (on Software
Development)

………
…………
…………
…………
…………

………
…………
…………
…………
…………

�
Document template sample is
available.

 Action

Hold joint meetings to review the results gained from the Comprehensive Software Test according to
the following procedure, and create the Completion Report when successful completion of the software
development project can be confirmed.

(1) Gather the stakeholders of software development
(personnel in charge of product planning,
software developers, hardware developers,
system evaluators , personnel in charge of
manufacturing, etc) to review the developed
software and make a final judgment on whether
the software has been successfully developed or
not.
In these joint review meetings, focus on examining
the following check points in particular:

 Check whether or not the developed software
used by the intended users under the expected
environment is:

• Certainly capable of satisfying the functional
requirements as much as expected;

• Certainly capable of satisfying the non-
functional requirements as much as expected.

 Check whether there are still any pending issues
in software development or not.

 Check whether the tested software has any
quality-related issues or not, by using the
metrics on, such as, the number of defects
detected during the Comprehensive Software
Test, the number of modifications implemented,
and the number of critical defects that have
been identified.

130 Part 2 Technical Section

C
o

m
p

reh
en

sive
 So

ftw
are

 Te
stin

g

S
W
P
6

 In this review, conf irm that an adequate
approach was taken to develop the software
both quantitatively and qualitatively, and
that the software developed as a result of this
approach is valid as a newly created product.

 Since this review is the final opportunity to
review the software within the entire software
development process, the judgment on whether
the review results have been acceptable or not
must be made by the high-ranking personnel
responsible of the entire software development.

 Precaution

 Check whether or not the issues indicated in the
reviews held in other testing activities prior to
Comprehensive Software Testing have all been
appropriately addressed and solved.
Related processes: SUP2 Quality Assurance; SUP6
Problem Resolution Management; SUP8 Joint
Review

(2) When the results gained in this review are all
positive and satisfactory, create a document
called the Completion Report, based on the
review records.
For more information on the creation of the
Completion Report, see “SUP1.4 Creating the
Project Completion Report”.
Distribute the created Completion Report not
only to the stakeholders involved in the current
software development, but also to those involved in
the current hardware development, and those that
preside over the entire system.

Related processes: SUP1 Project Management

1312.2 Process Definition Documents

SAP : Safety Engineering Process

In this process, the safety that the product is required to secure under all conditions in which it is assumed

to be used is defined, along with the various types of work to confirm that the product is definitely safe to

use in any of the expected usages.

The following activities are included in this process:

ID Activity Outline of the activity Comprising tasks

SAP1 Safety Requirements
Definition

Identify the product requirements
pertaining to safety, and document
them orderly in the form of Safety
Requirements Specifications.

SAP1.1 Creating the Safety Requirements
Specifications

SAP1.2 Reviewing the Safety Requirements
Specifications

SAP2 Safety Testing Carry out a set of tests on the developed
product from the standpoint of safety.

SAP2.1 Preparing for Safety Test
SAP2.2 Conducting the Safety Test
SAP2.3 Reviewing the Safety Test Results

132 Part 2 Technical Section

Safe
ty R

eq
u

irem
en

ts D
efin

itio
n

S
A
P
1

Input

• Product Plan
Description
• Product
Specifications

SYP2

 SAP1.1 Creating the Safety Requirements Speci�cations
 1.1.1 Understanding the Product Plan Description and Product Speci	cations
 1.1.2 Examining the Potential System Failures
 1.1.3 Examining the Requirements to Achieve the Required Safety
 1.1.4 Creating the Safety Requirements Speci	cations

 SAP1.2 Reviewing the Safety Requirements Speci�cations
 1.2.1 Reviewing the Safety Requirements Speci	cations Internally

Product
planning/

SYP1

Task structure

• (SA104) Safety
Requirements
Specifications

………
…………
…………
…………
…………

• (SA105) Internal
Review Report (on
Safety Requirements
Specifications)

………
…………
…………
…………
…………

………
…………
…………
…………
…………

Document template

sample is available.

Output

 Description

In this activity:
• (1.1.1) Clarify the situations in which the system is expected to be used and the intended users, by grasping the

functionalities to be achieved and services to be provided by the product, based on the contents of the Product
Plan Description and Product Specifications;

• (1.1.2) Examine the potential system failures;
• (1.1.3) Examine the requirements on safety that the system is required to meet (i.e.: safety functions), and determine

the level of safety that the system is required to secure in each functionality;
• (1.1.4) Create the Safety Requirements Specifications by organizing the information gained from the above tasks in

an orderly manner;
• (1.2.1) Review the created Safety Requirements Specifications, based on the pre-defined check points, and

document the outcome of this review orderly in the form of an Internal Review Report.

	K e e p i n m i n d t h e f o l l o w i n g p o i n t s a s
t h e p r e r e q u i s i t e s f o r c o m m e n c i n g t h e
activity to define the safety requirements:
• Product planning: Product strategies (such as, the

end users’ needs) are clearly defined;
• The situations (contexts) in which the product

system is expected to be used are clearly defined;
	Gain a general knowledge on the level of impact
when the safety of the system is compromised and
the potential frequency of occurrence of system

safety-impairing incidents;
	A l so ga i n a gene r a l k nowled ge on t he
extent of impact and the length of t ime
t he i m pa c t i s ex pec t ed t o l i n ge r w he n
the safety of the system is compromised;
	When def ining the saf ety requirements,
a l s o e x a m i n e w h o a n d / o r w h e r e a r e
r e s p o n s i b l e o f a c h i e v i n g t h e s y s t e m
safety, and the mechanism for ensuring it.

Clarify the product requirements pertaining to safety.

 Consideration

SAP1 Safety Requirements Definition

1332.2 Process Definition Documents

S
A
P
1

Safe
ty R

eq
u

irem
en

ts D
efin

itio
n

	Hazard analysis techniques
• FTA (Fault Tree Analysis)
• FMEA (Failure Modes and Effects Analysis)

 <Reference> Techniques and Tools

Hardware development

Product inspectionV-Model

(2) Testing �ow(1) Design detailing �ow

SUP1 Project
Management

SUP3 Risk
Management

SUP5 Con�guration
Management

SUP7 Change
Management

SUP9 Subcontractor
Management

SUP2
Quality Assurance

SUP4 Documentation &
Document Management

SUP6 Problem
Resolution Management

SUP8
Joint Review

SUP10 Development
Environment Preparation

The scope of de�nition of development process covered in ESPR is limited to four processes: SYP, SAP, SWP, and SUP,
and does not include Product Planning, Product Inspection and Hardware Development.

SYP2 System
Architectural Design

SYP4
System Testing

SWP1 Software
Requirements De�nition

SWP2 Software
Architectural Design

SWP3 Software
Detailed Design

SWP6 Comprehensive
Software Testing

SWP5 Software
Integration Testing

SWP4 Unit Testing

Product planning

SYP1 System
Requirements De�nition

SAP1 Safety
Requirements De�nition

SAP2
Safety Testing

SYP3 System
Integration Testing

SWP4　Implementation

SUP: Support Process

SWP: Software Engineering Process

SAP: Safety Engineering Process

SYP:System Engineering Process

Figure 2.14 V-Model and Development Process (SAP1 Safety Requirements Definition)

134 Part 2 Technical Section

Safe
ty R

eq
u

irem
en

ts D
efin

itio
n

S
A
P
1

SAP1.1 Creating the Safety Requirements Specifications

(1) Confirm the following points stated in the Product
Plan Description:

	Product outline and characteristics, functional
differences from existing products, etc;
	Standards, conventions, laws and regulations
related to the product.

(2) Confirm the following points stated in the Product
Specifications;

	Product vision and concept;
Intended users and system requirements;
	Situations and context in which the product is
used;
Constraints in realizing the product.

 Action

Output
(Product Plan Description,
Specifications Confirmation
Note)

	 1.1.1	 Understanding the Product Plan Description and Product Specifications

Outline
From the standpoint of system safety,
confirm the contents of the Product Plan
Description and Product Specifications
created by the organization (department,
d iv ision , e tc) in charge of product
planning.

Input
• Product Plan Description
• Product Specifications

	Points to give par ticular attention to when
confirming the contents of the Product Plan
Description include the following:

	Since Product Plan Description is a document
Product Plan Description is a document normally
prepared by the product planning or sales
department / division to provide the overview
of the product to be developed, keep in mind
that it does not necessarily state the information
pertaining to the safety of the product and system
adequately or appropriately;

	Since the information stated in the Product Plan

Description may be revised due to various factors,
including the changes in the intended users and
market trends, keep in mind that product safety
requirements also have various aspects to be
covered, even within the scope of a single product.

	Points to give par ticular attention to when
c o n f i r m i n g t h e c o n t e n t s o f t h e Pr o d u c t
Specifications include the following:

	Product vision and concept:

• What kind of functionalities and services are the
product supposed to provide?

 Precaution

Clarify the safety items that the system is required to fulfill, based on the contents of the Product Plan Description
and Product Specifications, and organize them orderly in the form of Safety Requirements Specifications.

1352.2 Process Definition Documents

S
A
P
1

Safe
ty R

eq
u

irem
en

ts D
efin

itio
n

• If the product cannot provide these functionalities
and services safely, how will the system and its
surroundings be affected by the lack of product
safety?

	 Intended users and system requirements:

• What kind of users are expected to use the
system? Moreover, how are primary, secondary
and tertiary users of the system expected
to co-relate or interact with each other?

• Also analyze how the system is likely to affect
those who are not direct users of the system
when its safety is compromised.

	Situations and context in which the product is
used:

• Identify all the operating modes of the system
used in every conceivable context, including
the situations when the intended users use the
product in:

 1) Normal state;

 2) Unexpected state;
and examine the safety aspects of the system in
all these situations;

• Clarify who and/or where are responsible of
safety-related matters while the product is being
developed and the same after the product is
released.

	Constraints in realizing the product:

• Identify all the elements that structure the
product (software, hardware, etc) and sort out
the relationship between each other and their
constraints;

• Also identify the systems and hardware that
are prerequisites for using the system to
be developed (i.e.: peripheral systems and
hardware), and sort out the constraints that they
impose on the system’s operating modes and
functionalities.

136 Part 2 Technical Section

Safe
ty R

eq
u

irem
en

ts D
efin

itio
n

S
A
P
1

(1) List the potential defects and failures that may
occur in the product or the system, and examine
how frequently any of these incidents may occur.

(2) Examine how and to what level these defects and
failures mentioned above may impact the users and
their surroundings when they occur.

 Action

	 1.1.2	 Examining the Potential System Failures

	In a normal system, safety functions aimed at
preventing defects and failures from occurring and
mitigating the impact even if they occur are taken
into account. Consider in addition, the cases when
these functionalities do not work normally.

	Examine the impact on safety caused by defects
and failures from a broad perspective, including
fatal accidents, injury accidents, economic losses
and social confusion, among others.

	Since defects and failures are not only attributable
to embedded software that has become defective,
but also to peripheral hardware failures that may
have served as the trigger, estimate the frequency
of failure occurrences by thoroughly examining

the system components and related elements.

	Consider the possibilities of system safety being
inhibited, the potential impact, and conceivable
countermeasures from a broad perspective,
including not only the cases when the safety is
compromised due to human errors caused by the
users while they are operating or using the product
or system, but also the cases caused by various
other external factors (disturbances).

	Especially in case of failures caused by hardware
that adversely affect the software and make
system operation unsafe, perceive hardware failure
occurrences from the standpoint of probabilistic
logic.

 Precaution

Output
• (SA101) List of Potential
System Failures

Outline
Examine the frequency of potential defects
and failures occurring in the product or
the system, and the level of impact these
incidents may have when they occur.

Input
• Product Plan Description
• Product Specifications

1372.2 Process Definition Documents

S
A
P
1

Safe
ty R

eq
u

irem
en

ts D
efin

itio
n

(1) Based on Product Plan Description, Product
Specifications, and List of Potential System Failures
(SA101), give thought to the safety that the product is
required to provide, and identify the requirements on
safety functions that the system is required to provide
to achieve the product safety.

(2) Consider the safety functions not just for the software
but also from the standpoint of maintaining the
safety of the entire system that takes account of
related hardware behaviors as well. Sort out the safety
requirements for system and software architectures by
giving particular attention to the following:

	Self-monitoring function of the software;
	Monitoring function of the hardware, sensors, and
actuators.

(3) Identify and sort out the safety functions that
correspond to each operating mode of the system
(start-up, automatic, manual, semi-automatic, steady,
non-steady, etc).

(4) Examine the implementation of logic duplication, fail-
safe and foolproof mechanisms as the system’s safety

mechanisms.
(5) Examine a mechanism to minimize the impact of

possible safety-inhibiting factors including disturbances
to the system, input data errors and users’ operation
errors, and maintain the safety of the system.

(6) In defining the system safety requirements, examine
not only the necessary safety functions implemented
in the system, but also the methods and approaches
to ensure safety of the system while it is used or in
operation (such as, how the system administrator and
the users must respond when the system is in abnormal
state).

(7) Sort out the techniques and tools to be used to develop
a safe product / system. Especially when the required
level of safety is high, clarify the compilers and tools to
be used for development.

(8) Examine to what extent the functionality of each safety
function need to be guaranteed, by taking account of
the frequency of potential defects and failures occurring
and the level of impact these incidents may have when
they occur, and determine the required level of safety of
each safety function (Safety Integrity Level*).

 Action

	 1.1.3	 Examining the Requirements to Achieve the Required Safety

	Examine the specifications of each safety function
thoroughly and in detail to ensure that the system
safety requirements can be fully met, and sort
out the result of this elaborate examination in an
orderly manner.
	Define the requirements on safety functions
clearly and strictly, and with consideration on
making these definitions usable for verification
and testing purposes, such as, in Functional Safety
Evaluation and Safety Testing.

	List all the constraints on safety existing between
the software and hardware.
	In examining the compilers and tools used for
development, take their reliability and past
performances into consideration.
	In conceptualizing the levels of safety to be
applied to the system under development, refer to
widely accepted concepts like “Safety Integrity
Level* advocated in IEC61508.

 Precaution

• Terminology
* Safety Integrity Level (SIL) : IEC61508 calls for the use of SIL as the measure for managing the tolerable levels of the rate in which the

safety functions that a system is required to achieve become dysfunctional.

Output
• (SA102) List of System
Safety Requirements
• (SA103) System Safety
Integrity Level

Outline
Exa m i ne t he r equ i r eme nt s (on sa fe t y
functions) for achieving the safety that the
product and the system are required to provide,
and determine the level of safety integrity to
be achieved by each safety function.

Input
• Product Plan Description
• Product Specifications
• (SA101) List of Potential
System Failures

138 Part 2 Technical Section

Safe
ty R

eq
u

irem
en

ts D
efin

itio
n

S
A
P
1

(1) Create the Safety Requirements Specifications by
taking account of the items listed in (SA101) and
(SA102), and the safety levels defined in (SA103).

	If multiple alternative draft plans of Safety
Requirements Specifications have been examined
in prior, the most desirable plan must be selected
and finalized in this sub-task.
	In conjunction with the above, also organize the

system safety design guidelines and the principles
for ensuring safety when the system is used or in
operation.
	State explicitly in the Safety Requirements
Specifications, the safety characteristics (safety
functions and SIL) that the product is required to
provide, including the software requirements on
safety functions.

 Action

	 1.1.4	 Creating the Safety Requirements Specifications

	 The requirements pertaining to the following
points should be clearly specified in the Safety
Requirements Specifications:

• Impact when the safety is compromised due to,
such as, system failure;

• Mechanism of the system to prevent failures
and other safety-inhibiting incidents from
occurring;

• Mechanism to ensure safety when the system is
used or in operation;

• Safety integrity levels that the system is
required to meet.

	Add the outcome of use case analysis (use case
diagram, use case scenario, etc) on as-needed
basis.
	The following set of information should also be
included to describe the system’s safety design
guidelines:

• Safety-related design constraints;
• Applicable techniques for safe designing;
• System platform that ensures system safety;
• Warranty of safety gained by reusing the

existing system.
	When there are still uncertainty factors, they
should also be stated explicitly in the Safety
Requirements Specifications.
	Points to keep in mind in documentation:
• Attach the revision history and indicate clearly

where have been revised;
• Clearly indicate who or which organization is

responsible of the created document;
• Ensure that the created document is managed

proper ly by performing conf igura t ion
management and change management.

Related processes: SUP5 Configuration Management;
SUP7 Change Management

 Precaution

Output
• (SA104) Safety
Requirements Specifications
………
…………
…………
…………
…………

………
…………
…………
…………
…………

�
 Document template sample is
available.

Outline
Sort out the requirements on product
and system safety, and describe them
orderly in the form of a document
c a l l e d S a f e t y R e q u i r e m e n t s
Specifications.

Input
• Product Plan Description
• Product Specifications
• (SA101) List of Potential System
Failures
• (SA102) List of System Safety
Requirements
• (SA103) System Safety Integrity
Level

1392.2 Process Definition Documents

S
A
P
1

Safe
ty R

eq
u

irem
en

ts D
efin

itio
n

SAP1.2 Reviewing the Safety Requirements Specifications

Confirm that the defined system safety requirements satisfy the product safety requirements.

(1) Review the Safety Requirements Specifications
(SA104) internally, based on the following
perspectives:

	Are the extent and level of impact on the users
and the surroundings when the product or system
currently under development becomes defective or
causes a failure being examined?
	Are the safety integrity levels required to apply to
the system already determined after considering
the frequency of defect and failure occurrences
and the level of impact?
	Is the mechanism to minimize the impact of
possible safety-inhibiting factors including
disturbances to the system, input data errors and
users’ operation errors, and maintain the safety of
the system being examined?

	In defining the system safety requirements, are
the necessary safety functions implemented in the
system as well as the methods and approaches to
ensure safety of the system while it is used or in
operation (such as, how the system administrator
and the users must respond when the system is in
abnormal state) being examined?
	Are the functional system requirements on safety,
including the requirements mentioned above,
clearly defined?

(2) Document the findings of the above check points
orderly in the form of an Internal Review Report
(SA105) where the issues raised in the internal
review and the personnel in charge of handling
these issues are stated explicitly, and distribute this
report to the relevant members of the development
project.

Output
• (SA105) Internal
Review Report (on
Safety Requirements
Specifications)

………
…………
…………
…………
…………

………
…………
…………
…………
…………

�
 Document template
sample is available.

	 1.2.1	 Reviewing the Safety Requirements Specifications Internally

Outline
Check whether or not the contents of Safety
Requirements Specifications cover all what the
system is required to provide for safety, and
document the findings orderly in the form of an
Internal Review Report.

Input
• (SA104) Safety
Requirements
Specifications

	In reviewing the Safety Requirements Specifications,
it is desirable to invite the following members as
reviewers:

• Developers and engineers engaged in the current
system development;

• Members who participated in the study group to

review the Product Specifications and Product
Plan Description that serve as the basis for
defining the system to be developed;

• Engineers who have been involved in similar
system development projects in the past.

 Precaution

 Action

140 Part 2 Technical Section

Safe
ty R

eq
u

irem
en

ts D
efin

itio
n

S
A
P
1

	Review the Safety Requirements Specifications from
various perspectives, including the standpoint of
system architecture, hardware, safety, performance
efficiency and usability.

	Give attention to the traceability of system safety.

	The review manager should make sure that the issues
raised in the internal review meetings are included in
the Internal Review Report preferably together with
possible solutions and/or actions that address these
issues.

	Issues found in the early stage of development when
the requirements are defined should be addressed
as soon as possible to prevent them from growing
or leading into bigger problems in the latter half of
the development process. Therefore, the information
mentioned in the Internal Review Report should be
shared with the stakeholders that include the project
manager, development team leader and personnel
in charge of product planning, and their consensus
should also be built at this early stage.

1412.2 Process Definition Documents

S
A
P
2

Safety Testin
g

Input

• Real machine
• (SA104) Safety
Requirements
Specifications

SYP4/
Product

inspection

 SAP2.1 Preparing for Safety Test
 2.1.1 Preparing for Safety Test

 SAP2.2 Conducting the Safety Test
 2.2.1 Conducting the Safety Test
 2.2.2 Reviewing the Safety Test Results

 SAP2.3 Reviewing the Safety Test Results
 2.3.1 Reviewing the Safety Test Results Internally

SYP3

Task structure

• (SA201) Safety Test
Specifications

………
…………
…………
…………
…………

• (SA205) Safety Test
Report

………
…………
…………
…………
…………

• (SA206) Internal
Review Report (on
Safety Test)

………
…………
…………
…………
…………

………
…………
…………
…………
…………

�
Document template
sample is available.

Output

 Description
In this activity:
• (2.1.1) (2.2.1) Prepare the test specifications for checking and reviewing whether or not the system is capable of

providing the functionalities and operations described in the Safety Requirements Specifications, and conduct
a set of tests collectively referred to as the Safety Test by actually operating the system according to the
prepared test specifications (hereafter called the “Safety Test Specifications”);

• (2.2.2) (2.3.1) Review the results of the Safety Test, based on the pass/fail criteria applied to this test, and document
the findings orderly in the form of an Internal Review Report. Make a final judgment as the organization in
charge of product system development on whether the developed system has passed or failed the Safety Test,
based on the test results documented in the Safety Test Report, and sort out the information deemed necessary
for later product inspection.

Safety Testing can be regarded as an important opportunity in system development to review the safety of the
product. Therefore, in order to prevent the product from causing any harm to the users, this activity must be carried
out exhaustively by assuming a wide variety of failures that may occur.

	Before conducting the Safety Test, a particular
attention should be given to the operating
environment in which the system is tested (test
environment). Conduct the Safety Test in a test
environment assumed to be close to the environ-
ment in which the product is likely to be used by
its users in the real world.

	Consider the System Test as the opportunity in

system development to review the safety of the
product, and be careful not to leave out any test
cases, including not only the cases where the
system is tested in conditions when the product is
used in normal state but also the cases where the
system is tested in abnormal conditions of use, as
well as in defective conditions.

Check whether the system is satisfying its safety requirements or not.

 Consideration

SAP2 Safety Testing

142 Part 2 Technical Section

Safety Testin
g

S
A
P
2

	Devices for simulating the system behaviors, etc
	Bug management tool

	Reliability growth curve

 <Reference> Techniques and Tools

Hardware development

V-Model

The scope of de�nition of development process covered in ESPR is limited to four processes: SYP, SAP, SWP, and SUP,
and does not include Product Planning, Product Inspection and Hardware Development.

SWP4　Implementation

SUP: Support Process

SWP: Software Engineering Process

SAP: Safety Engineering Process

SYP:System Engineering Process

Product planning Product inspection

(1) Design detailing �ow (2) Testing �ow

SAP1 Safety
Requirements De�nition

SYP1 System
Requirements De�nition

SYP2 System
Architectural Design

SYP4
System Testing

SYP3 System
Integration Testing

SAP2
Safety Testing

SWP1 Software
Requirements De�nition

SWP2 Software
Architectural Design

SWP3 Software
Detailed Design SWP4 Unit Testing

SWP5 Software
Integration Testing

SWP6 Comprehensive
Software Testing

SUP1 Project
Management

SUP2
Quality Assurance

SUP3 Risk
Management

SUP4 Documentation &
Document Management

SUP5 Con�guration
Management

SUP6 Problem
Resolution Management

SUP7 Change
Management

SUP8
Joint Review

SUP9 Subcontractor
Management

SUP10 Development
Environment Preparation

Figure 2.15 V-Model and Development Process (SAP2 Safety Testing)

1432.2 Process Definition Documents

S
A
P
2

Safety Testin
g

(1) Make a list of items that need to be checked
through the Safety Test, and create the test cases
for the Safety Test based on this list.

(2) Think of not only the test cases for testing the
safety functions implemented in the system, but
also the test cases for validating the methods and
approaches taken to ensure safety of the system
while it is used or in operation (such as, how the
system administrator and the users must respond
when the system is in abnormal state).

(3) Create the test data used to conduct the above-
mentioned test cases.

(4) Also have the various test criteria defined
beforehand, including the criteria for judging the
test results, the criteria for evaluating the Safety
Test on the overall, and the criteria for determining
the satisfactory completion of the Safety Testing
activity.

(5) Examine the plan for reviewing and confirming the
system safety.

(6) Sort out the above-mentioned test cases and test
data, and create a document called Safety Test
Specifications to describe them in an orderly
manner.

(7) Prepare the test cases for verifying the modification
(when modifications are implemented and need
to be verified).

	When a defect is detected during the Safety
Testing activity and modification has been
implemented to resolve it, prepare test cases to
verify that the modification was successful in
eliminating the defect, and that no other problems
have derived from this modification.

	Determine the scope of the modif ication
verification test and select the appropriate test
cases, based on the description of the defect.

 Action

Output
• (SA201) Safety Test Specifications
………
…………
…………
…………
…………

• (SA202) Safety Test Data
………
…………
…………
…………
…………

• (SA203) Internal Confirmation Note
(on Safety Test Specifications)

………
…………
…………
…………
…………

………
…………
…………
…………
…………

�
 Document template sample is
available.

	 2.1.1	 Preparing for Safety Test

Outline
Prepare for conducting the Safety
Test to the system.

Input
• (SA104) Safety Requirements
Specifications
• (SU601) Defect Management
Ticket (when modifications are
implemented and need to be
verified)

See also

Safety Test Specifications created in the past

SAP2.1 Preparing for Safety Test

Prepare for the Safety Test.

144 Part 2 Technical Section

Safety Testin
g

S
A
P
2

	Examine the test cases also for checking the
possibility of disturbances to the system, input
data errors and/or users’ operation errors
	Be sure to review the description of the Safety
Test Specifications.
	Examine and select beforehand the methods and
techniques to be used in the Safety Testing activity.
	State the set of information explicitly in the safety
test plan:
• Who runs the tests;
• When are the tests conducted;
• What are tested;
• Test strategies;
• Test environment, etc.
	Points to consider when preparing the test for
verifying the modification
• Is the scope of implementation of this test

covering all the potentially affected areas?
• Basically, reuse the test cases that have already

been created. Consider preparing new test cases
when the modification was large-scaled, and
extensive areas were affected.

	Points to keep in mind in documentation:
• Attach the revision history and indicate clearly

where have been revised;
• Clearly indicate who or which organization is

responsible of the created document;
• Ensure that the created document is managed

proper ly by performing conf igura t ion
management and change management.

Related processes: SUP5 Configuration Management;
SUP7 Change Management

 Precaution

1452.2 Process Definition Documents

S
A
P
2

Safety Testin
g

(1) Based on the test cases described in the Safety Test
Specifications, check the operations and behaviors
of the safety functions one by one.

	When the system is tested by using an alternative
test case or data, keep records of the test results,
along with the reason(s) stating explicitly why the
alternative test case or data had to be used.

	When a prepared test case cannot be conducted,
keep records of the event, along with the reason(s)

stating explicitly why it was not executable.
Moreover, determine the reasonableness of the
stated reason(s).

(2) Conduct the test for verifying the modification to:

	Check whether the defect has been eliminated or
not by the modification;

	Check whether the modification to resolve the
defect has led to any other defects or not.

 Action

Output
• (SA204) Safety Test
Results

	 2.2.1	 Conducting the Safety Test

Outline
Conduct the Safety Test, based on
the Safety Test Specifications.

Input
• Real machine
• (SA201) Safety Test Specifications
• (SA202) Safety Test Data
• (SU601) Defect Management Ticket
(when modifications are implemented
and need to be verified)

	For supplementing the tests for confirming
safety, utilize simulation and other useful means
whenever necessary.

	Before running the test for verifying the
implemented modification, be sure to check that
the latest modified version is tested.

 Precaution

SAP2.2 Conducting the Safety Test

Conduct the Safety Test.

146 Part 2 Technical Section

Safety Testin
g

S
A
P
2

(1) Judge whether the result of the Safety Test was
satisfactory or not, by referring to the criteria
described in the Safety Test Specifications.

(2) When a defect has been detected while running the
Safety Test, investigate the root cause of the defect
(whether it was caused by or in the software or
hardware, for example), and document the findings
in Defect Management Ticket.

(3) In the Safety Test Report, state explicitly the
following set of information, among others:

Test methods, test environment, tools and data that
have been used;
Number of defects that have been detected, which
of them are considered critical, result of the defect
analysis;
Judgment of whether the Safety Test was
completed successfully or not, and the grounds
that support the stated judgment.

R ela ted processes: SUP6 Problem R esolut ion
Management

 Action

Output
• (SA205) Safety Test
Report

………
…………
…………
…………
…………

• (SU601) Defect
Management Ticket

………
…………
…………
…………
…………

………
…………
…………
…………
…………

�
Document template

sample is available.

	 2.2.2	 Reviewing the Safety Test Results

Outline
Review the results of the Safety
Test, and judge whether the tested
system has passed or failed this
test.

Input
• (SA201) Safety Test Specifications
System to be tested
• (SA204) Safety Test Results
• (SU601) Defect Management Ticket
(when modifications are implemented and
need to be verified)

	When a defect has been detected while testing,
first try reproducing the defect, and clarify the
context and the state the system was in.

 Precaution

1472.2 Process Definition Documents

S
A
P
2

Safety Testin
g

(1) Review the results of the Safety Test from the
following perspectives:

	When an unsolved issue is found:
• Evaluate the severity (level of importance) of the

issue;
• When the issue is evaluated to be a critical

problem that affects the functionality, reliability
and/or safety of the entire system, carry out
concrete measures by examining the following
points, among others:
a. Return to system development processes

(software, hardware);
b. Add restrictions to the conditions of using the

system;

c. Reconsider the resource plan.

Related processes: SUP8 Joint Review; SUP1 Project
Management
	Check whether there have been any test cases
that were not carried out, and if there were any,
investigate the reason(s) why they were not carried
out, and examine the possible solutions.

(2) Document the findings of the above check points
orderly in the form of an Internal Review Report
(SA206) where the issues raised in the internal
review and the personnel in charge of handling
these issues are stated explicitly, and distribute this
report to the relevant members of the development
project.

 Action

	Check whether the number of defects that have
been detected is acceptable or not, based on the
quality criteria.
	When the test for verifying the modification
has been conducted, check whether the scope
of the test and the test environment have been
appropriate or not.

	The review manager should make sure that the
issues raised in the internal review meetings are
included in the Internal Review Report preferably
together with possible solutions and/or actions that
address these issues (such as, holding joint review
meetings).

 Precaution

Output
• (SA206) Internal Review
Report (on Safety Test)

………
…………
…………
…………
…………

………
…………
…………
…………
…………

�
Document template

sample is available.

	 2.3.1	 Reviewing the Safety Test Results Internally

Outline
Review the contents of the Safety
Test Report, check whether or not
there have been any issues that could
not be solved, and document the
findings orderly in the form of an
Internal Review Report.

Input
• (SA104) Safety Requirements
Specifications
• (SA201) Safety Test Specifications
• (SA203) Internal Confirmation Note
(on Safety Test Specifications)
• (SA205) Safety Test Report
• (SU601) Defect Management Ticket

SAP2.3 Reviewing the Safety Test Results

Review the results of the Safety Test from the stand point of checking whether the requirements defined in the
Safety Requirements Definition are realized correctly or not.

148 Part 2 Technical Section

Su
p

p
o

rt P
ro

cess

S
U
P SUP : Support Process

Support Process (SUP) consists of supportive activities performed across all stages of the development

process (SYP, SWP and SAP) to help manage the respective activities (tasks and sub-tasks) defined in these

engineering processes and smoothen the organizational execution of embedded software development. The

table below shows the activities included in SUP.

Note that in this guidebook (ESPR Ver.2.0), the activities described in pink cells in this table are defined,

while in ISO/IEC12207 (for software engineering) and ISO/IEC15288 (for system engineering), more

detailed definitions of support process are given, by sub-dividing this process into life cycle process groups

like organizational project-enabling processes and SW support processes.

ID Activity Outline of the activity Comprising tasks
SUP1 Project

Management
Define the project for developing embedded
software and the tasks to proceed with this project
smoothly.

SUP1.1 Creating the Project Plan Description
SUP1.2 Understanding the Project Execution Status
SUP1.3 Controlling the Project
SUP1.4 Creating the Project Completion Report

SUP2 Quality
Assurance

Define the tasks for enabling elaboration of quality
in the course of software development to meet the
requirements and market needs on the quality of
embedded software currently under development.

SUP2.1 Defining the Quality Objectives
SUP2.2 Establishing the Quality Assurance Method
SUP2.3 Controlling the Quality Based on Quality

Visualization
SUP3 Risk

Management
Take measures to grasp, in the early stage of
development, the potential risks that may arise in
the course of embedded software development.

SUP3.1 Identifying and Understanding the Risks
SUP3.2 Monitoring the Risks
SUP3.2 Determining and Executing the Risk

Treatments
SUP4 Documentation

and Document
Management

Document the outcome of the activities and tasks
performed in SWP in an orderly manner, and define
the tasks for managing the created documents.

SUP4.1 Creating and Reviewing the Documents
SUP4.2 Distributing the Documents
SUP4.3 Maintaining and Managing the Documents

SUP5 Configuration
Management

Grasp and manage the individual units that structure
the embedded system and the configuration of the
design information pertaining to these units.

SUP5.1 Understanding the Objects of Configuration
Management

SUP5.2 Managing the Configuration Management /
Change Management History

SUP6 Problem
Resolution
Management

Grasp the various problems and issues that arise
in the course of development, and manage the
solutions implemented to resolve them and
the progress made to remedy the problematic
situations.

SUP6.1 Recording the Problems and Analyzing the
Causes

SUP6.2 Analyzing the Impact and Devising the
Acceptable Solution

SUP6.3 Implementing the Acceptable Solution
SUP6.4 Tracking the Implemented Solution

SUP7 Change
Management

Manage the changes to the requirements
and design that arise after commencing the
development and the actions taken to respond to
these changes.

SUP7.1 Recording the Information on Change
Requests

SUP7.2 Analyzing the Impact of Changes
SUP7.3 Devising and Executing the Change Plan
SUP7.4 Reviewing the Outcome of the Changes

Made
SUP8 Joint Review Check among the relevant stakeholders whether the

outcome of current activities and tasks performed
at various check gates of the development process
have been appropriate or not from both the
technical and administrative standpoints.

SUP8.1 Preparing for the Review
SUP8.2 Carrying Out the Review
SUP8.3 Acknowledging and Following Up on

Matters That Have Been Reviewed

SUP9 Subcontractor
Management

Define the tasks that would become necessary to
outsource any portion of the process.

SUP9.1 Preparing for Order Placement and Entering
into Contract

SUP9.2 Monitoring the Outsourced Tasks
SUP10 Preparation of

Development
Environment

Build and manage the environments that would
become necessar y for carr ying out various
development process phases ranging from
designing, creation of executable modules to testing
(environment for implementation, testing, etc).

SUP10.1 Devising the Development Environment
Preparation Plan

SUP10.2 Building the Development Environment
SUP10.3 Maintaining the Development

Environment

1492.2 Process Definition Documents

S
U
P

Su
p

p
o

rt P
ro

cess

Define the project for developing embedded software and the tasks to proceed with this project smoothly.

SUP1 Project Management

Task Input Outline of the task Output

SUP1.1
Creating the
Project Plan
Description

• Specifications of system
requirements

• Information on
development project team
members, etc

• System resource plan

See also
Project development plan

guidebooks

Create the Project Plan Description (SU101)
by carrying out the following sub-tasks:

(1) Grasp what is to be developed and the
specifications of the system requirements;

(2) Grasp the length of time that can be
allocated for the development project and
the constraints on resources, etc;

(3) Clarify the objectives of the development
project;

(4) Examine the activities (tasks and sub-
tasks) that need to be carried out in
embedded software development, create
the WBS (work breakdown structure),
and design the development process;

(5) Examine who (e.g.: engineers) should be
assigned to each of these activities (tasks
and sub-tasks).

*It is desirable to create the Project Plan
Description gradually in a step-by-
step manner whenever the information
relevant to project plan becomes specific,
starting from prior to development to
after commencing the development
(launching the project).

• (SU101) Project
Plan Description

SUP1.2
Understanding
the Project
Execution
Status

• (SU101) Project Plan
Description

Monitor the project to check whether or
not the project is progressing according to
the road map described in the Project Plan
Description (SU101).
Especially check whether or not the project
is carried out according to the scope, budget,
costs, resources and schedule of the project
described in the above document.
Also in case of embedded sof tware
development , g ive a t ten t ion to the
consistency with hardware development.

• (SU102) Project
Status Report

150 Part 2 Technical Section

Su
p

p
o

rt P
ro

cess

S
U
P

Task Input Outline of the task Output

SUP1.3
Controlling the
Project

• (SU102) Project Status
Report
• (SU603) Issue
Management Ticket

When the information in the Project Status
Report (SU102) apparently indicates that
the project is not progressing smoothly as
initially planned, analyze the cause(s) of the
delay, and implement the countermeasures
examined to be necessary.
Such impeding problems and issues that
arise while executing the project must be
recorded in the Issue Management Ticket
(SU603), which needs to be updated and
managed without fail.
Related processes:
SUP6 Problem Resolution Management
Moreover, the project plan should be re-
examined to cope better with the given
situation when deemed necessary.

• (SU101) Project
Plan Description
(in case when
the project plan
is re-examined)
• (SU603) Issue
Management
Ticket

SUP1.4
Creating
the Project
Completion
Report

• (SW105) Software
Requirements
Specifications
• (SW606) Comprehensive
Software Test Report
• (SU801) Joint
Review Records (on
Comprehensive Software
Test)
• (SY106) System
Requirements
Specifications
• (SY406) System Test
Report
• (SU801) Joint Review
Records (on System Test)
• (SA104) Safety
Requirements
Specifications
• (SA201) Safety Test
Specifications
• (SA206) Internal Review
Report (on Safety Test)
• (SU601) Defect
Management Ticket
• (SU603) Issue
Management Ticket
• (SU101) Project Plan
Description
• (SU102) Project Status
Report

Based on the test results reported in
Comprehensive Software Test Report
and System Test Report, and the findings
from the joint reviews, create a document
named Project Completion Report that
contains organized description on the final
status and outcome of software / system
development and other key information on,
such as, quality that serves as the basis for
determining the product release.
Moreover, the issues concerning the
development process and techniques applied
in the development that came to knowledge
while executing the project should also be
described in Project Completion Report in
an orderly manner, as points that can be
improved in the next development project.
Upon official issuance of the Project
Completion Report, software / system
development will leave the hands of the
organizations (department, division, etc)
in charge of development and will move
on to subsequent processes handled by the
organizations in charge of manufacturing
and product release. Therefore, when
preparing the set of information to be
entered in the Project Completion Report,
bear in mind that this document will later be
transferred to the organizations in charge of
these subsequent processes for use as one of
their primary source materials.

• Project
Completion
Report (on
Software
Development)
• (SU104) Project
Completion
Report (on
System
Development)

………
…………
…………
…………
…………

�
Document
template
sample is
available.

1512.2 Process Definition Documents

S
U
P

Su
p

p
o

rt P
ro

cess

 Reference Information

In this guidebook, the descriptions on project management are limited to matters pertaining to creating the Project
Plan Description, grasping the progress of the project and controlling the project. For general information on project
management, Project Management Institute (PMI) has put together a comprehensive document known as PMBOK
(Project Management Body of Knowledge) where basic actions in project management are laid out systematically.
This document would be a useful reference material for carrying out specific sub-tasks in project management
effectively, along with SEC’s booklet “Recommendations to Introduce Project Management”.

Furthermore, the Project Plan Description can be created efficiently by referring to the guidebook “ESMR Ver
1.0: Embedded System development Management Reference [Plan Description Edition]” organized by SEC and
using the Project Plan Description template attached to this document.

	WBS (Work Breakdown Structure) 	PERT (Program Evaluation and Review
Technique)

 <Reference> Techniques and Tools

Relationship between Project Management activity and other activities

Project Management activity controls the project by starting or restarting other activities according to the information
 in Project Plan Description (SU101).

SUP1 Project Management

Start

Activity

Activity

Activity

Restart

Activity

Activity

Activity

152 Part 2 Technical Section

Su
p

p
o

rt P
ro

cess

S
U
P

Define the tasks for enabling elaboration of quality in the course of software development to meet the require-
ments and market needs on the quality of embedded software currently under development.

SUP2 Quality Assurance

Task Input Outline of the task Output

SUP2.1
Defining
the Quality
Objectives

• Product Plan
Description
• (SY106) System
Requirements
Specifications
• (SW105)
Software
Requirements
Specifications

In order to check how elaborately the quality is refined and
predict how the quality can be further enhanced to reach
the required level of high quality, set clear quality target
levels by taking account of the users and the context in
which the system under development is likely to be used.
Examine and sort out what the quality target levels should
be from the standpoint of functionality, reliability, usability,
efficiency, maintainability, and portability, among others,
and create the Quality Assurance Plan Description (SU201)
based on the findings. The following are some examples of
quality metrics to measure the product quality target levels:
(1) Defect detection rate in design phase and manufacturing
phase (number of defects / scale of development)
(2) Review rate in design phase and manufacturing phase
(length of review time / scale of development)
(3)Test density (Number of test cases / scale of
development)
(4) Failure detection rate in test phase (Number of failures /
scale of development)
(5) Failure convergence rate in test phase ((Cumulative
number of failures that occurred during the test phase /
targeted number of failures) x 100)
Build a consensus among the stakeholders beforehand on
the quality objectives.

• (SU201)
Quality
Assurance
Plan
Description

SUP2.2
Establishing
the Quality
Assurance

• (SU201) Quality
Assurance Plan
Description

Clarify the structure of the organizations that will be
responsible of assuring quality, how these organizations will
share the reasonability of quality assurance, and what kind of
routine will be taken to assure quality. To build the mechanism
of measuring the rate of achievement of the quality objectives,
clearly define the following rules for administering quality
assurance through the mechanism to:
(1) Gather quality-related information (who gathers the
information when and how (by which means), and reports to
whom);
(2) Utilize quality-related information (who utilizes the
information based on what, and for what purposes).
Clarify who and/or which organization(s) are responsible of
promoting the quality assurance tasks, as well as who and/or
which organization(s) are held responsible of quality-related
matters.

• (SU201)
Quality
Assurance
Plan
Description

1532.2 Process Definition Documents

S
U
P

Su
p

p
o

rt P
ro

cess

Task Input Outline of the task Output

SUP2.3
Controlling
the Quality
Based on
Quality
Visualization

• Various
deliverables
(specifications,
plan descriptions,
source code, real
machine)
• (SU201) Quality
Assurance Plan
Description

(1) In the key events for assuring the system quality
(reviews and tests), measure the quality achievement
rate of the deliverables based on the quality target levels
defined in the Quality Assurance Plan Description.
(2) When a large gap is identified between the quality of
any of the reviewed deliverables and the quality target
level, devise and implement one or more measures to
bridge the gap. As for these measures, take necessary
actions by coordinating with the engineers in charge of
design and the project manager.

• (SU201)
Quality
Assurance
Plan
Description

 Reference Information

To develop a system and software as a product, there is a need to set clear targets on the level of quality to be
achieved, and determine in advance the mechanism of assuring quality. In setting the quality target levels to be
achieved by the system and software respectively, specify target values so that the quality level can be measured
quantitatively, and define the quality assurance structure and mechanism to enable the developed system and
software to achieve their pre-specified targets. Also, be sure to set the schedule and method of holding essential
events to achieve the quality objectives, including reviews and tests. In addition, promote the quality assurance
activity by taking account of the system requirements on safety.

	Reliability growth curve

 <Reference> Techniques and Tools

154 Part 2 Technical Section

Su
p

p
o

rt P
ro

cess

S
U
P SUP3 Risk Management

Task Input Outline of the task Output

SUP3.1
Identifying and
Understanding
the Risks

• Information on
case examples of
troubles and risks
in similar projects
carried out in the
past
• Product Plan
Description
• Product
Specifications

(1) Set the basic policies on risk management
of the project and define the mechanism
to put them into practice by taking the
following points into account:

 • Method of management (how to identify,
analyze, prioritize, plan, monitor and
solve the risks, among others);

 • Responsibility and authority of risk
management.

(2) Identify the potential risks that may arise in
the course of the project.

 There are various ways of extracting the
risks, including the ones below:

 • Look into the case examples of troubles
and risks that arose in similar projects in
the past;

 • Examine the potential risks through
reviews of specifications, plan descriptions
and other relevant documents;

 • Identify the risks by using cause-and-
effect diagrams and decision trees.

(3) For each risk that has been extracted,
examine the probability of occurrence,
triggers, level of impact when it arises
(extent of impact, man-hours, etc),
treatments and their order of priority,
contingency plan, among others. Sort out
the findings in the form of a risk table, for
example, and create the Risk Management
Plan Description (SU301). In case of
embedded system / software development,
give particular attention to risks that are
attributable to, such as, hardware-related
matters, operating environment, and
business environment.

• (SU301)
Risk
Management
Plan
Description

Define the tasks to implement the measures to grasp, in the early stage of development, the potential risks that
may arise in the course of embedded software development.

1552.2 Process Definition Documents

S
U
P

Su
p

p
o

rt P
ro

cess

SUP3.2
Monitoring the
Risks

• (SU301) Risk
Management Plan
Description
• Various
deliverables
(specifications,
plan descriptions,
source code, real
machine)

(1) Monitor the risks during the key events
(reviews, tests) in system development with
an eye to manage the risks by checking if
the risk treatments are put into practice as
planned, and whether the pre-defined order
of priority of the risks can be maintained or
need to be adjusted in the given conditions.

(2) Update the Risk Management Plan
Description (SU301) when new risks are
identified or when any of the risks have
been found to be successfully eliminated
and can therefore be omitted from the risk
table described in the above document, as a
result of monitoring.

 The risks to be monitored are not limited to
initial risks identified in the early stage of
the project. Risk monitoring must continue
to be carried out periodically along with the
progress of the project.

• (SU301)
Risk
Management
Plan
Description

SUP3.3
Determining and
Executing the
Risk Treatments

• (SU301) Risk
Management Plan
Description

(1) Eliminate the risk factors before the risk
arises.

(2) When there are risks that cannot be
eliminated, carry out the contingency plan
to mitigate the probability of occurrence of
such risks,

(3) When a risk arises, execute the risk
treatments according to the plan described
in the Risk Management Plan Description
(SU301).

In executing the risk treatments, take necessary
actions with the engineers in charge of
design and the project manager.

• (SU301)
Risk
Management
Plan
Description

 Reference Information

In the course of system and software development, various problems are bound to occur and impact the efforts to
achieve the quality objectives. However, many of these problems are often predictable. Therefore, there is usually
a need to investigate the hidden risk factors and identify the potential risks both before and after commencing the
project. And after the project has been launched, appropriate risk management must be carried to check whether or
not there are any problems arising at the given moment, and also whether the treatments for foreseeable risks are
put into practice to prevent those risks from actually occurring.

	Techniques applicable for risk analysis
• FTA (Fault Tree Analysis)
• FMEA (Failure Modes and Effects Analysis)

 <Reference> Techniques and Tools

Task Input Outline of the task Output

156 Part 2 Technical Section

Su
p

p
o

rt P
ro

cess

S
U
P SUP5 Configuration Management

Task Input Outline of the task Output

SUP5.1
Understanding
the Objects of
Configuration
Management

• Objects of
configuration
management
(Activity
deliverables,
development
environment,
integrated
system, etc)

(1)Clarify the policy and mechanism of configuration
management.

 • Configuration management procedure and rules
 Use, for example, a table that lists the deliverables

and shows their chronological associativity so that
they can be traced.

 • Baseline schedule and audit policy, etc
(2) Grasp and determine the objects of configuration

management. These objects are outputs from
activities, and include the following:

 • Documents (specifications, design descriptions,
reports, etc)

 • Source code, integrated system, etc
 • Development environment

• (SU501) Configuration
Management Table

SUP5.2
Managing the
Configuration
Management
/ Change
Management
History

• Objects of
configuration
management
(Activity
deliverables,
development
environment,
integrated
system, etc)
• (SU501)
Configuration
Management
Table

(1) When there are changes in the objects of
configuration management, update the baseline
and revision history, and manage the old and new
versions.

(2) Control the access to the baseline.
(3) Approve the generation of deliverables from the

baseline.
(4) Distribute the configuration management

information to relevant stakeholders.
In case of embedded software development, changes
in specifications occur frequently in the course of
development. Therefore, these changes need to
be managed without fail (describe explicitly the
contents of the changes as well as the reason(s) for
the change).
*Be careful with the handling of baseline and

branch.

• Objects of
configuration
management
(Activity deliverables,
development
environment, integrated
system, etc)
• (SU501) Configuration
Management Table

• Terminology
* Baseline management : A technique in change management where a configuration item at a specific point in time is set as the

“baseline” (or the starting point), and used to manage the changes that occur from that point onward. The term “branch” refers to
the item that derived from the baseline.

Relationship between baseline and con�guration management

Con�guration
management

Con�guration
management

Con�guration
management

Baseline

Baseline

Baseline

Define the tasks to sort out and manage the outcome of the activities performed in SYP, SWP and SAP (deliver-
ables like design descriptions and source codes).

1572.2 Process Definition Documents

S
U
P

Su
p

p
o

rt P
ro

cess

 Reference Information

Recent system and software development projects are often planned to develop products in series, and tend
to have multiple system and software versions developed concurrently. In such forms of development, version
management plays a significant role, because appropriate management of information that specifically tells which
functionalities have been implemented for which version is of vital importance.

Moreover, in such cases, a database to manage all the deliverables collectively is normally prepared. Following
the “check-in / check-out” procedure is a desirable method to develop a new version derived from one of the
deliverables stored in this database. Derivative versions must be properly managed in order to prevent the users
from making mistakes like selecting the wrong files instead of the product release version files that they were
actually looking for. Especially when a defect is found and a need to search for all the related versions subject to
modification arises, confusion in version tracking may cause a serious impact on the progress of the development.
Therefore, the relationship between individual versions must be clearly understood. If necessary, create a chart
showing which versions are co-related to help understand the associativity of the versions more easily.

	Deliverables Management Database

 <Reference> Techniques and Tools

Relationship between con�guration management and change management

SUP5　Con�guration Management

Activity

Activity

DeliverablesDeliverables Deliverables

Deliverables Deliverables

Work instructions

Activity Activity

Activity

SUP7 Change Management

Work instructions

Work instructions

Requests for speci�cation change / design change

158 Part 2 Technical Section

Su
p

p
o

rt P
ro

cess

S
U
P

Grasp the various problems and issues that arise in the course of development, and manage the solutions
implemented to resolve them and the progress made to remedy the problematic situations.

SUP6 Problem Resolution Management

Task Input Outline of the task Output

SUP6.1
Recording the
Problems and
Analyzing the
Causes

• (SU601) Defect
Management Ticket
• (SU603) Issue
Management Ticket

(1) Record in the Defect Management Ticket (SU601)
all the defects found in the system or software
while reviewing or testing the deliverables created
in the course of development, assign an Item
No. to each defect, and manage these itemized
defects through the Defect Management Register
(SU602).

(2) Record in the Issue Management Ticket (SU603)
all the issues that affect the execution of the
project, assign an Item No. to each issue, and
manage these itemized issues through the Issue
Management Register (SU604).

Related processes: SUP1 Project Management

• (SU602) Defect
Management
Register

………
…………
…………
…………
…………

• (SU604) Issue
Management
Register

SUP6.2
Analyzing the
Impact and
Devising the
Acceptable
Solution

• (SU601) Defect
Management Ticket
• (SU602) Defect
Management
Register
• (SU603) Issue
Management Ticket
• (SU604) Issue
Management
Register

(1) Analyze and examine the extent of impact of the
defects and issues recorded in either the Defect
Management Ticket (SU601) or Issue Management
Ticket (SU603).

 Moreover, based on the result of the aforesaid
analysis and examination, also analyze the level
of severity and urgency of the problems caused
by these defects and issues, and categorize them
according to the findings from this subsequent
analysis.

(2) Investigate the root cause of the defects and
issues, based on the result of the analysis and
categorization carried out in (1).

(3) Devise acceptable solutions to deal with the
defects and issues, and record them in either the
Defect Management Ticket (SU601) or the Issue
Management Ticket (SU603).

• (SU601) Defect
Management Ticket
………
…………
…………
…………
…………

• (SU602) Defect
Management
Register

………
…………
…………
…………
…………

• (SU603) Issue
Management Ticket
• (SU604) Issue
Management
Register

SUP6.3
Implementing
the
Acceptable
Solution

• (SU601) Defect
Management Ticket
• (SU602) Defect
Management
Register
• (SU603) Issue
Management Ticket
• (SU604) Issue
Management
Register

Implement the acceptable solutions recorded in either
the Defect Management Ticket (SU601) or the Issue
Management Ticket (SU603).

• (SU601) Defect
Management Ticket
………
…………
…………
…………
…………

• (SU602) Defect
Management
Register

………
…………
…………
…………
…………

• (SU603) Issue
Management Ticket
• (SU604) Issue
Management
Register

1592.2 Process Definition Documents

S
U
P

Su
p

p
o

rt P
ro

cess

Relationship between Problem Resolution Management activity and other activities

(2) SU6.1 Recording the Problems
and Analyzing the Causes

(3) SU6.2 Analyzing the Impact and
Devising the Acceptable Solution

(5) SU6.4 Tracking the
Implemented Solution

SUP6 Problem Resolution Management

(SU601) Defect
Management Ticket

Activity Activity

(1) Emergence of a problem or issue
(4) SU6.3 Implementing the Acceptable Solution
 (software modi�cation and test for verifying the medication, etc)

(SU601)Defect
Management Ticket

(SU601) Defect
Management Ticket

Task Input Outline of the task Output

SUP6.4
Tracking the
Implemented
Solution

• (SU601) Defect
Management Ticket
• (SU602) Defect
Management
Register
• (SU603) Issue
Management Ticket
• (SU604) Issue
Management
Register

Check whether or not the implemented solutions have
been able to resolve the defects and issues.

• (SU601) Defect
Management Ticket
………
…………
…………
…………
…………

• (SU602) Defect
Management
Register

………
…………
…………
…………
…………

• (SU603) Issue
Management Ticket
• (SU604) Issue
Management
Register
………
…………
…………
…………
…………

�
Document
template sample
is available.

 Reference Information

The purpose of “SUP6 Problem Resolution Management” is to appropriately process the defects that are detected
or indicated in reviews and tests conducted on interim and final deliverables created in the course of system
or software development. Beside these defects, there are also various problems and issues that arise during the
execution of the development project.

Whatever the potential issues and problems may be, regardless of whether they arise during the activities and
tasks performed in the engineering process or in the support process, the important thing is to recognize and
visualize each of them as a problem, determine the severity and urgency of each problem based on the extent of
impact, and carry out concrete measures to resolve them.

“SUP6 Problem Resolution Management” should be considered as an activity that covers all the problems and
issues that not only arise during the specific activities and tasks mentioned above, but are also intrinsic to the
processes themselves. (In pointing out the problems and issues intrinsic to the processes, there may be a need to
broadly interpret the defects described in (SU601) Defect Management Ticket.)

To implement the concrete measures that have been devised as acceptable solutions to the detected problems
and issues, it is desirable to clearly define “who” these solutions are to be implemented “by when”, as well as the
criteria for determining the completion of the implemented solution (the state in which the problem or issue has
been completely resolved by the implemented solution).

	Program slicer
	Defect management tools

 <Reference> Techniques and Tools

160 Part 2 Technical Section

Su
p

p
o

rt P
ro

cess

S
U
P

Manage the changes to the requirements and design that arise after commencing the development and the
actions taken to respond to these changes.

SUP7 Change Management

Task Input Outline of the task Output

SUP7.1
Recording
the
Information
on Change
Requests

• Change request (from
external sources)

When external sources, including the customers and
hardware division, request for a change in specifications,
design or other matters after commencing the development,
record these change requests in the Change Request
Management Ticket (SU701) all after carefully reviewing
the contents of each request. Assign an Item No. to each
change request, and manage these itemized change requests
through the Change Request Management Register
(SU702).

• (SU701)
Change Request
Management
Ticket
• (SU702)
Change Request
Management
Register

SUP7.2
Analyzing
the Impact of
Changes

• (SU701) Change Request
Management Ticket
• (SU702) Change Request
Management Register

Closely analyze and evaluate each change request item
described in the Change Request Management Ticket
(SU701), mainly from the following perspectives.
If the requested change is accepted:

• Which part of the specifications and/or design will be
affected?

• Which portion of the related documents will be affected?
• What kind of impact will there be on the work carried out

by other divisions?

• (SU701)
Change Request
Management
Ticket
• (SU702)
Change Request
Management
Register

SUP7.3
Devising and
Executing the
Change Plan

• (SU701) Change Request
Management Ticket
• (SU702) Change Request
Management Register

Execute the requested change after determining the scope
of the requested change and the timing to work on it,
based on the contents described in the Change Request
Management Ticket (SU701), and notifying all the related
organizations about the changes that are going to be made.
On change requests that affect the specifications, bear in
mind the preliminary need to review and gain consensus
among the relevant stakeholders and create a document on
points that have been reviewed and agreed on. Safety

• (SU701)
Change Request
Management
Ticket
• (SU702)
Change Request
Management
Register
• (SU703) Revised
deliverables

SUP7.4
Reviewing
the Outcome
of the
Changes
Made

• (SU701) Change Request
Management Ticket
• (SU702) Change Request
Management Register
• (SU703) Revised
deliverables

Check whether the changes that have been made fully meet
the contents of the change request or not.

• (SU701)
Change Request
Management
Ticket
• (SU702)
Change Request
Management
Register

 Reference Information
In embedded software development, various changes in specifications and design tend to occur rather frequently

after commencing the development. When requests for such changes come in, there is a need to evaluate how they
affect other parts of the software before implementing the requested changes. Close attention is necessary especially
on requests for changing the internal components of the software that are highly interdependent or tightly binding
with others.

Repeated changes to the software may complicate the internal structure of the software. Therefore, those evaluating
the change requests that affect the software structurally should always be aware of the software architecture.

Intersolv PVCS/VCS (Version Control System)
 <Reference> Techniques and Tools

Safety : Work related to safety

1612.2 Process Definition Documents

S
U
P

Su
p

p
o

rt P
ro

cess

Check among the relevant stakeholders whether the outcome of current activities and tasks performed at
various check gates of the development process have been appropriate or not from both the technical and
administrative standpoints.

SUP8 Joint Review

Task Input Outline of the task Output

SUP8.1
Preparing for the
Review

• Deliverables
to be reviewed

Prepare for the review by taking account of the project
status, selecting the deliverables to be reviewed, and
determining when to hold the review meeting(s), and
who the participants of the review would be.

(Review meeting
notice, etc)

SUP8.2
Carrying Out the
Review

• Deliverables
to be reviewed

Review the deliverables selected in the preceding task
from both technical and administrative standpoints.
Preferably, distribute in advance the deliverables to be
reviewed to the participants of the review meetings,
so that they can check the contents of the distributed
deliverables beforehand. In the review meetings, focus
mainly on detecting problems in the deliverables, and
record the findings in the form of a document (SU801
Joint Review Records).

• (SU801) Joint
Review Records
………
…………
…………
…………
…………

SUP8.3
Acknowledging
and Following
Up on Matters
That Have Been
Reviewed

• (SU801)
Joint Review
Records

Distribute the Joint Review Records (SU801) in which
the review points confirmed as matters examined in the
review meetings are described in an orderly manner, not
only to the participants of the review meetings, but also
to other non-participating stakeholders.
Moreover, continue tracking the subsequent efforts to
check whether the solutions to the matters indicated in
the review have been examined and implemented or
not.

• (SU801) Joint
Review Records
………
…………
…………
…………
…………

………
…………
…………
…………
…………

 Document
template
sample is
available.

 Reference Information

Reviews can be regarded as one of the important opportunities in the course of software development to elaborate
the software quality. It is desirable to review to deliverables created in the engineering processes at every check gate of
the development process. Reviews can be held in various formats, ranging from internal reviews conducted within the
development group (such as, peer reviews and cross-checks) to joint reviews described herein as one of the activities
of SUP.

Joint reviews are opportunities not only for the engineers in charge of creating the deliverables to review them
but also for other stakeholders involved in the product development to participate and check the deliverables from
multiple perspectives. The review manager should appoint an individual to examine each issue or problem identified
in these reviews, and agree with this appointee on the due date to record the findings in the Joint Review Records, so
that follow-up actions to resolve the issues and problems can be taken smoothly.

	CBR (Checklist-based Reading)
	PBR (Perspective-based Reading)

 <Reference> Techniques and Tools

162 Part 2 Technical Section

Su
p

p
o

rt P
ro

cess

S
U
P

Build and manage the environments that would become necessary for carrying out various development process
phases ranging from designing, creation of executable modules to testing (environment for implementation,
testing, etc).

SUP10 Preparation of Development Environment

Task Input Outline of the task Output

SUP10.1
Devising the
Development
Environment
Preparation Plan

• (SU101) Project Plan
Description
• (SW105) Software
Requirements Specifications
• (SW205) Software
Architectural Design
Description
• (SW305) Software Detailed
Design Description
• (SW401) Unit Test
Specifications
• (SW501) Software
Integration Test
Specifications
• (SW601) Comprehensive
Software Test Specifications

(1) Devise a plan for preparing the various
development environments ranging from
designing to creation of executable modules
that are necessary to carry the software
development forward.

(2) Devise a plan for building the environment
for debugging and testing (ranging from unit
testing to comprehensive testing), by taking
account of the hardware development plan,
development period, budget, number of
human resources and required skills, among
others.

(3) D e v i s e a p l a n f o r p r e p a r i n g t h e
administrative work environment (for
progress management , de l iverables
m a n a g e m e n t , q u a l i t y a s s u r a n c e ,
specifications management, etc).

• (SU1001)
Development
Environment
Preparation
Plan
Description

SUP10.2
Building the
Development
Environment

• (SU1001) Development
Environment Preparation
Plan Description

(1) Build the necessary environments according
to the respective plan by the time they
become necessary.

(2) Provide training and education to the
environment users by the time they start
using their respective environments.

(3) Confirm that the environments that have
been built are fully usable.

(4) Solve all problems concerning the delay in
making the environments available, inferior
quality, insufficient volume / capacity,
among others.

• (SU1002)
Software
Development
Environment

SUP10.3
Maintaining the
Development
Environment

• (SU1002) Software
Development Environment

(1) Maintain the development environment
constantly by updating it whenever the
source code is revised, tools are upgraded
(to newer versions), and other significant
enhancements / renewals are in place.

(2) Confirm that the development environment
is fully usable after updating it.

• (SU1002)
Software
Development
Environment

 Reference Information

The preparation and building of development environment tend to be delayed. To proceed with the software
development smoothly, devise the environment construction plan early and build the environment according to the
planned schedule.

“Development environment” is a collective term that refers to various environments, including the environment for
software development, environment for debugging and testing, and administrative work environments (for progress
management, deliverables management, quality assurance, specifications management, etc).

1632.3 Document Template Samples

	 2.3 Document Template Samples

Among the documents used for organizing the outcome of individual tasks and sub-tasks as

discussed under “2.2 Process Definition Documents”, this guidebook provides template samples for

some of the key documents to help promote the efficiency of documentation at actual development

sites. (See chart below.)

The items, contents and examples of information to be entered in each document template sample

are provided just for reference and do not imply any specific ways of using them. Therefore, for

actual documentation, there is a need to arrange the items and terminology used in each document

to those that best suit the specific interests of individual development projects.

Document Template Samples

Test Speci�cations／Test Reports

Internal Review Report

Related Activities
(SY106) System Requirements Speci�cations
(SY205) System Architectural Design Description
(SA104) Safety Requirements Speci�cations
(SW105) Software Requirements Speci�cations
(SW205) Software Architectural Design Description
(SW305) Software Detailed Design Description

(SU801) Joint Review Records

Project Completion Report

(SW401) Unit Test Speci�cations
(SW501) Software Integration Test Speci�cations
(SW601) Comprehensive Software Test Speci�cations
(SY301) System Integration Test Speci�cations
(SY401) System Test Speci�cations
(SA201) Safety Test Speci�cations

(SW406) Unit Test Report
(SW506) Software Integration Test Report
(SW606) Comprehensive Software Test Report
(SY306) System Integration Test Report
(SY406) System Test Report
(SA205) Safety Test Report

(SY107)Internal Review Report (on System Requirements Speci�cations)
(SY206) Internal Review Report (on System Architectural Design)
(SA105)Internal Review Report (on Safety Requirements Speci�cations)
(SW106) Internal Review Report (on Software Requirements Speci�cations)
(SW206) Internal Review Report (on Software Architectural Design)
(SW306) Internal Review Report (on Software Detailed Design)
(SW408) Internal Review Report (on Implementation & Unit Test)
(SW507) Internal Review Report (on Software Integration Test)
(SW607) Internal Review Report (on Comprehensive Software Test)
(SY307) Internal Review Report (on System Integration Test)
(SY407) Internal Review Report (on System Test)
(SA206) Internal Review Report (on Safety Test)

(SU801) Joint Review Records (on System Architectural Design)
(SU801) Joint Review Records (on Software Architectural Design)
(SU801) Joint Review Records (on Software Integration Test)
(SU801) Joint Review Records (on System Test)

(SU601) Defect Management Ticket
(SU602) Defect Management Register

(SU103) Project Completion Report (on Software Development)
(SU104) Project Completion Report (on System Development)

SYP1 System Requirements De�nition
SYP2 System Architectural Design
SAP1 Safety Requirements De�nition
SWP1 Software Requirements De�nition
SWP2 Software Architectural Design
SWP3 Software Detailed Design

SWP4 Implementation & Unit Testing
SWP5 Software Integration Testing
SWP6 Comprehensive Software Testing
SYP3 System Integration Testing
SYP4 System Testing
SAP2 Safety Testing

SWP4 Implementation & Unit Testing
SWP5 Software Integration Testing
SWP6 Comprehensive Software Testing
SYP3 System Integration Testing
SYP4 System Testing
SAP2 Safety Testing

SYP1 System Requirements De�nition
SYP2 System Architectural Design
SAP1 Safety Requirements De�nition
SWP1 Software Requirements De�nition
SWP2 Software Architectural Design
SWP3 Software Detailed Design
SWP4 Implementation & Unit Testing
SWP5 Software Integration Testing
SWP6 Comprehensive Software Testing
SYP3 System Integration Testing
SYP4 System Testing
SAP2 Safety Testing

SYP2 System Architectural Design
SWP2 Software Architectural Design
SWP6 Comprehensive Software Testing
SYP4 System Testing

SWP4 Implementation & Unit Testing
SWP5 Software Integration Testing
SWP6 Comprehensive Software Testing
SYP3 System Integration Testing
SYP4 System Testing
SAP2 Safety Testing
SUP6 Problem Resolution Management

SUP1 Project Management
SWP6 Comprehensive Software Testing
SYP4 System Testing

164 Part 2 Technical Section

System Requirements Specifications is a document used to describe the functional and non-functional requirements
that the system has to achieve, the constraints and various other matters that have been examined in the activity to
define the system requirements.

(SY106) System Requirements Specifications

Product Plan Description
Product Specifications
(SY101) List of Functional System Requirements
(SY102) System Functionality-Operation Matrix

(SY103) List of Non-functional System
Requirements
(SY104) List of System Operational Constraints
(SY105) Prioritized List of System Requirements

 Information referenced to prepare this document

SYP1 System Requirements Definition
	 1.1 Creating the System Requirements Specifications
		 1.1.6 Creating the System Requirements Specifications

 Sub-tasks to create this document

1. Overview
2. System Structure
3. Functional Overview
4. Constraints
5. Use Cases and Use Case Scenarios

6. Functional Details
7.Detailed Non-functional Requirements on

Performance, Quality, etc
8. Others

 Example of items to be described

 Sub-tasks that make use of this document

SYP1 System Requirements Definition
	 1.2 Confirming the System Requirements

Specifications
		 1.2.1 Reviewing the System Requirements

Specifications Internally
SYP2 System Architectural Design

	 2.1 Creating the System Architectural Design
Description

		 2.1.1 Confirming the Design Conditions
		 2.1.2 Designing the System Structure
		 2.1.3 Designing the Overall System Behaviors
		 2.1.4 Designing the Interface
	 2.2 Reviewing the System Architectural Design
		 2.2.1 Reviewing the System Architectural

Design Description Internally

	 2.3 Jointly Reviewing the System Architectural
Design

		 2.3.1 Jointly Reviewing the System Architectural
Design Description

SWP1 Software Requirements Definition
	 1.1 Creating the Software Requirements

Specifications
		 1.1.1 Identifying the Constraints
		 1.1.2 Clarifying the Functional Software

Requirements
		 1.1.3 Clarifying the Non-functional Software

Requirements
	 1.2 Reviewing the Software Requirements

Specifications

1652.3 Document Template Samples

		 1.2.1 Reviewing the Software Requirements
Specifications Internally

SYP4 System Testing
	 4.1 Preparing for System Test
		 4.1.1 Creating the System Test Specifications
		 4.1.3 Reviewing the System Test Specifications

Internally
	 4.3 Reviewing the System Test Results
		 4.3.1 Reviewing the System Test Results

Internally

	 4.4 Confirming the Completion of System
Development

		 4.4.1 Confirming the Completion of System
Development

SUP1 Project Management
	 1.4 Creating the Project Completion Report

166 Part 2 Technical Section

 (SY106) System Requirements Specifications (Example)

Name of document

Document No.

Created
by

Name of
approver

Name of
creator

Issued by
Date of issue

Approved
by

Table of Contents

Name of document

1. Overview . Page No.

2. System Structure . Page No.

3. Functional Overview . Page No.

4. Constraints . Page No.

5. Use Cases and Use Case Scenarios Page No.

6. Functional Details . Page No.

7. Detailed Non-functional Requirements

 on Performance, Quality, etc . Page No.

8. Others. Page No.

Enter the name of document.

Provide a column to enter who is
responsible of creating / approving
the document, and when it was
created / approved.

Item No.

Name of document

1

Revision History

Date Version Revised contents Remarks

2

3

4

Document No. Page No. Date of issue / Issued by

Provide a column to enter the revised
information.

Cover page

Revision
history

Table of
Contents

Document No. Page No. Date of issue / Issued by

Enter the information that makes
the document identi�able.

Date of
approval

Date of
creation

Enter the name of organization that
issued the document and the date of
issue.

1672.3 Document Template Samples

Name of document

Page No.Document No. Date of issue / Issued by

1. Overview

<Exemplary descriptions>
· Purpose of this document
· Positioning of this document
· Intended users
· Scope of description, contents, etc
· Referenced documents, etc
· De�nition (terminology, acronyms, etc)

2. System Structure

<Exemplary descriptions>
· Overall system structure
 - Name / basic functionalities of each system component
· Operating environment of the system and its external environment

3. Functional Overview

<Exemplary descriptions>
· List of functionalities achieved / provided by the system, along with
 their general description.

4. Constraints

6. Functional Details

<Exemplary descriptions>
· Detailed description of functionalities for realizing the use cases
 described above in #5.

5. Use Cases and Use Case Scenarios

<Exemplary descriptions>
· Use cases and use case scenarios written on the basis of situations and
 context in which the product is intended / assumed to be used

Text (1)

Provide the general description of this
document (its purpose, positioning,
contents, etc) and the names of
referenced documents, among others.

Describe each functionality in detail.

Take account of the interactions
between the users and the system for
each functionality constituting the
system, and describe the �ow of these
interactions in chronological order.

Provide the general description of the
functionalities in the form of a list.
Provide the detailed description of the
functionalities separately later on. (See
#6 below.)

<Exemplary descriptions>
· Length of time (development period) and budget (development costs)
 that can be allocated for product development
· Serviceable life of the product (durable years), and product life cycle
· Expected product quality (reliability, safety, usability, etc)
· Other system(s) and hardware used as the prerequisites for using the
 product (peripheral system(s) and hardware)
· Constraints on the continuity from the existing product speci�cations
· Constraints on reusing the existing system
· Constraints due to security and environmental issues
· Constraints from laws and social conventions that correspond to
 system use
· Association with intellectual properties and technologies of other

owners

Describe the structure of the system as a
whole, including both the hardware and
software, the relationship between
t h e s y s t e m c o m p o n e n t s , a n d
conditions to operate and use the
system.

Describe all the constraints without
leaving out any.

168 Part 2 Technical Section

Name of document

Document No. Page No. Date of issue / Issued by

8. Others

7. Detailed Non-functional Requirements on Performance, Quality, etc

Text (2)

Describe the matters related to
performance and quality that cannot be
expressed as functional matters.<Exemplary descriptions>

· Requirements on reliability
- System’s abnormal processing methods
- System’s recovery procedures and methods from abnormal

operating mode
· Requirements on usability

- User-friendliness of the user interface
· Requirements on e�ciency

- System’s execution performance (e.g.: processing speed, start-up
time, response time, etc)

- Degree of real-time processing
- Resource e�ciency (e.g.: memory capacity, data size)

· Requirements on maintainability
- Maintenance methods (such as, remote maintenance) and

techniques to realize them
· Requirements on portability

- Independency of system functionalities
· Requirements on security

- (Example) Data encryption, user authentication, anti-virus measures,
 etc

<Exemplary descriptions>
· Interoperability (e.g.: communication protocol, etc)
· Requirements on external interfaces (e.g.: interface with peripheral

systems, user interface, etc)

Describe miscellaneous matters that are
worthy of special mention.

1692.3 Document Template Samples

System Architectural Design Description is a document used to describe how the system can achieve its
requirements (software structure, control method, etc) that have been examined in the activity to design the system
architecture.

(SY205) System Architectural Design Description

(SY201) System Structural Diagram (Functional
Block Diagram)
(SY202) List of Common Functionalities and Data

(SY203) System Behavioral Design Description
(SY204) System Interface Design Description

 Information referenced to prepare this document

SYP2 System Architectural Design
	 2.1 Creating the System Architectural Design Description
		 2.1.5 Creating the System Architectural Design Description

 Sub-tasks to create this document

1. Overview
2. System Structure
3. General Description of Functional Blocks
4. Control Method
 4.1 Control Sequence
 4.2 Use Cases and Corresponding Functional
Blocks

 4.3 Performance Estimation
5. Detailed Description of Functional Blocks
6. Data Handled by the System
7. List of Exceptions
8. Others

 Example of items to be described

 Sub-tasks that make use of this document
SYP2 System Architectural Design

	 2.2 Confirming the System Architectural Design
		 2.2.1 Reviewing the System Architectural Design

Description Internally
	 2.3 Jointly Reviewing the System Architectural

Design
		 2.3.1 Jointly Reviewing the System Architectural

Design Description
SWP1 Software Requirements Definition

	 1.1 Crea t ing the Sof tware Requi rements
Specifications

		 1.1.1 Identifying the Constraints
		 1.1.2 Clarifying the Functional Software

Requirements

		 1.1.3 Clarifying the Non-functional Software
Requirements

	 1.2 Reviewing the Software Requirements
Specifications

		 1.2.1 Reviewing the Software Requirements
Specifications Internally

SWP2 Software Architectural Design
	 2.1 Creating the Software Architectural Design

Description
		 2.1.1 Confirming the Design Conditions
		 2.1.2 Designing the Software Structure
		 2.1.3 Designing the Overall Software Behaviors
		 2.1.4 Designing the Interface

170 Part 2 Technical Section

SYP3 System Integration Testing
	 3.1 Preparing for System Integration Test
		 3.1.1 Preparing for System Integration
		 3.1.2 Preparing for System Integration Test

	 3.3 Reviewing the System Integration Test Results
		 3.3.1 Reviewing the System Integration Test

Results Internally

1712.3 Document Template Samples

 (SY205) System Architectural Design Description (Example)

Name of document

Document No.

Issued by
Date of issue

Table of Contents

Name of document

1. Overview . Page No.
2. System Structure . Page No.
3. General Description of Functional Blocks Page No.
4. Control Method . Page No.

4.1 Operation Sequence . Page No.
4.2 Use Cases and Corresponding
 Functional Blocks . Page No.
4.3 Performance Estimation . Page No.

5. Detailed Description of Functional Blocks. Page No.
6. Data Handled by the System . Page No.
7. List of Exceptions . Page No.
8. Others. Page No.

Enter the name of document.

Enter the information that makes the
document identi�able.

Enter the name of organization that
issued the document and the date of
issue.

Item No.

Name of document

1

Revision History

Date Version Revised contents Remarks

2

3

4

Document No. Page No. Date of issue / Issued by

Provide a column to enter the revised
information.

Cover page

Revision
history

Table of
contents

Document No. Page No. Date of issue / Issued by

Created
by

Name of
approver

Name of
creator

Approved
by

Date of
approval

Date of
creation

Provide a column to enter who is
responsible of creating / approving the
document, and when it was created /
approved.

172 Part 2 Technical Section

1. Overview

<Exemplary descriptions>
· Purpose of this document
· Positioning of this document
· Intended users
· Scope of description, contents, etc
· Referenced documents, etc
· De�nition (terminology, acronyms, etc)

Name of document

2. System Structure
<Exemplary descriptions>
· Overall system structure
 - Name / basic functionalities of each system component
· Main functionalities (components) that structure the system, and the

division of roles played respectively by the hardware and software

 For example: Hardware platform (name of MPU, types of I/O connectors,
hardware interrupt levels and I/O responses, memory types and
size), software platform (OS, middleware, input / output data
formats, various performance indicators), peripheral devices (types
of external media, control methods, etc)

3. General Description of Functional Blocks
<Exemplary descriptions>
· Names of functional blocks that structure the system, their basic

functionalities, etc
· Interface between functional blocks

 For example: Show the static relationship between the functional blocks
(in terms of control and data �ow), and if necessary, also describe
the OS, memory, external storage media, and hardware mechanism.
Clarify the core system functionalities.

4. Control Method

4.1 Operation sequence

<Exemplary descriptions>
· Operation Sequence Diagrams

4.2 Use Cases and Corresponding Functional Blocks

<Exemplary descriptions>
· Use cases, use case scenarios and corresponding functional blocks

4.3 Performance Estimation

<Exemplary descriptions>
· Required performance / time: xx (ms)
· Method of achieving the required level of performance: Given conditions

and processing sequence
· Estimate processing time: Estimate processing elements and the grounds

for the estimation

Text (1)

Provide the general description of this
document (its purpose, positioning,
contents, etc) and the names of
referenced documents, among others.

Describe the structure of the system as a
whole, including the division of roles
played respectively by the hardware
and software, the names of system
components, and basic functionalities,
among others.

Provide the general description of the
functional blocks realized and provided
by the system.
Provide the detailed description of the
functional blocks later on(See #5 below).

Mainly from the standpoint of functional
blocks, describe how the system as
a whole (hardware, software, operators,
external storage media, memory, etc
ful�lls the requirements speci�ed in the
System Requirements Speci�cations
(SY106).

Describe how the functional blocks
interact to realize the functional services
 of the system.

D e s c r i b e t h e u s e c a s e s a n d t h e
corresponding functional blocks based
on the use cases examined in system
 requirements analysis.

Describe the estimate time needed for
software and hardware operations by
c o n s i d e r i n g t h e n o n - f u n c t i o n a l
system requirements and the time
constraints on system operation (such
as, the system’s response time).

Page No.Document No. Date of issue / Issued by

1732.3 Document Template Samples

Name of document

6. Data Handled by the System

5. Detailed Description of Functional Blocks

Text (2)

Describe speci�cally or in detail, the
structure / functionalities of each
function block and the interface
between the functional blocks, among
others.

Describe the data handled commonly by
the entire system, the purpose of using
such data, their read / write sources, etc

8. Others

7. List of Exceptions Describe the codes and messages
activated in abnormal / exceptional
cases , thei r de�nit ions and the
countermeasures to be taken at
respective cases in the form of a table.

Describe the types of information that
need to be shared by all the members of
the development team through the
system as a whole.

<Exemplary descriptions>
· Details on the information areas that need to be commonly controlled
 Name, structure, format, size, initial value, access restrictions of

information within the common areas, among others

<Exemplary descriptions>
· Detailed description of XX functional blocks
· Structure, functionalities, input / output interface, processing

methods, common functional areas, etc

<Exemplary descriptions>
· Common data that are exchanged between sensors, actuators and the

like (data types, volume, precision, etc)

<Exemplary descriptions>
· List of information on abnormal / exceptional cases
 Codes and messages activated in abnormal / exceptional cases, their

de�nitions, countermeasures, etc

Document No. Page No. Date of issue / Issued by

174 Part 2 Technical Section

Safety Requirements Specifications is a document used to describe the outcome of the activity to define the safety
requirements, including the safety integrity levels (SIL), that the system has to achieve,

(SA104) Safety Requirements Specifications

Product Plan Description
Product Specifications
(SA101) List of Potential System Failures

(SA102) List of System Safety Requirements
(SA103) System Safety Integrity Level

 Information referenced to prepare this document

SAP1 Safety Requirements Definition
	 1.1 Creating the Safety Requirements Specifications
		 1.1.4 Creating the Safety Requirements Specifications

 Sub-tasks to create this document

1. Overview
2. System Structure
3. System Safety Integrity Level

4. List of System Safety Requirements
5. Others

 Example of items to be described

 Sub-tasks that make use of this document

SAP1 Safety Requirements Definition
	 1.2 Reviewing the Safety Requirements

Specifications
		 1.2.1 Reviewing the Safety Requirements

Specifications Internally
SYP2 System Architectural Design

	 2.1Creating the System Architectural Design
Description

		 2.1.1 Confirming the Design Conditions
		 2.1.2 Designing the System Structure
		 2.1.3 Designing the Overall System Behaviors
		 2.1.4 Designing the Interface
	 2.2 Reviewing the System Architectural Design
		 2.2.1 Reviewing the System Architectural Design

Description Internally
	 2.3 Jointly Reviewing the System Architectural

Design
		 2.3.1 Jointly Reviewing the System Architectural

Design Description
SWP1 Software Requirements Definition

	 1.1 Creating the Software Requirements
Specifications

		 1.1.1 Creating the Software Requirements
Specifications

		 1.1.2 Clarifying the Functional Software
Requirements

		 1.1.3 Clarifying the Non-functional Software
Requirements

	 1.2 Reviewing the Software Requirements
Specifications

		 1.2.1 Reviewing the Software Requirements
Specifications Internally

SAP2 Safety Testing
	 2.1 Preparing for Safety Test
		 2.1.1 Preparing for Safety Test
	 2.3 Reviewing the Safety Test Results
		 2.3.1 Reviewing the Safety Test Results

Internally
SYP4 Reviewing the Safety Test Results Internally

	 4.4 Confirming the Completion of System
Development

		 4.4.1 Confirming the Completion of System
Development

SUP1 Project Management
	 1.4 Creating the Project Completion Report

1752.3 Document Template Samples

 (SA104) Safety Requirements Specifications (Example)

Name of document

Document number

Issued by
Date of issue

Table of contents

Name of document

1. Overview . Page No.

2. System Structure. Page No.

3. List of Potential System Failures . Page No.

4. List of System Safety Requirements Page No.

5. List of System Safety Requirements Page No.

6. Others . Page No.

Enter the name of document.

Enter the information that makes the
document identi�able.

Enter the name of organization that
issued the document and the date of
issue.

Item No.

Name of document

1

Revision History

Date Version Revised contents Remarks

2

3

4

Document No. Page No. Date of issue / Issued by

Provide a column to enter the revised
information.

Cover page

Revision
history

Table of
contents

Document No. Page No. Date of issue / Issued by

Created
by

Name of
approver

Name of
creator

Approved
by

Date of
approval

Date of
creation

Provide a column to enter who is
responsible of creating / approving the
document, and when it was created /
approved.

176 Part 2 Technical Section

1. Overview
<Exemplary descriptions>
· Purpose of this document
・Positioning of this document
・Intended users
・Scope of description, contents, etc
・Referenced documents, etc
・De�nition (terminology, acronyms, etc)

Name of document

2. System Structure

<Exemplary descriptions>
· Overall system structure
 - Name / basic functionalities of each system component

3. List of Potential System Failures
<Exemplary descriptions>
· De�nition on the system’s normally expected operating environments
 and operating modes
· Potential circumstances in which the system may deviate from safe
 operations / behaviors, and the possibility of such circumstances arising
· System hazard analysis (FTA, FMEA)

5. System Safety Integrity Level
<Exemplary descriptions>
· The level of safety (SIL) that the system is required to meet for each
 safety function

4. List of System Safety Requirements

<Exemplary descriptions>
· Operations to avoid danger by correcting the system behavior when it
 deviates from the safe state (de�nitions of automatic (system) and
 manual (human) corrective operations)
· Requirements on the functionalities to ensure safety when the system
 behavior falls into an abnormal state
 For example: Safety functions that correspond to each operating mode of
 the system (start-up, automatic, manual, semi-automatic, steady,
 non-steady, etc)
· Requirements on the mechanism to avoid system failures
 For example: · Safety mechanisms of the system like logic duplication,
 fail-safe and foolproof
　　 　 · Mechanism to maintain the safety of the system by
 minimizing the impact of possible safety-inhibiting factors
 including disturbances to the system, input data errors
 and users’ operation errors
　　　 · Mechanism to ensure safety of the system while it is
 used or in operation (such as, how the system
 administrator and the users must respond when the

 system is in abnormal state

6. Others
<Exemplary descriptions>
· Requirements on the safety check mechanism run during development.

Text (1)
Provide the general description of this
document (its purpose, positioning,
contents , etc) and the names of
referenced documents, among others.

Describe the structure of the system as a
whole, the positioning of software, and
t h e r e l a t i o n s h i p / c o n d i t i o n s
surrounding the software.
Describe the requirements, conditions
and other relevant matters in an orderly
m a n n e r b y r e f e r r i n g t o r e l a t e d
d o c u m e n t s l i k e t h e S y s t e m
Requirements Speci�cations and
Hardware Speci�cations.

Describe the level of safety (SIL: Safety
Integrity Level) that the system is
required to meet.

Describe the requirements for ensuring
the safety of the system and i ts
peripherals (including external systems
and users).

Describe the potential circumstances in
which the system may deviate from safe
operations / behaviors, and the result of
hazard analysis on each of these
potentially hazardous cases.

Describe miscellaneous matters that are
worthy of special mention.

Page No.Document No. Date of issue / Issued by

1772.3 Document Template Samples

Software Requirements Specifications is a document used to describe the functional and non-functional
requirements that the software has to achieve, the constraints and various other matters that have been examined
in the activity to define the software requirements.

(SW105) Software Requirements Specifications

(SW101) List of Constraints
(SW102) List of Functional Software Requirements
(SW103) List of Non-functional Software

Requirements
(SW104) Prioritized List of Software Requirements

 Information referenced to prepare this document

SWP1 Software Requirements Definition
	 1.1 Creating the Software Requirements Specifications
		 1.1.5 Creating the Software Requirements Specifications

 Sub-tasks to create this document

1. Overview
2. System Structure
3. Functional Overview
4. Constraints
5. Use Cases and Use Case Scenarios

6. Functional Details
7. Interface Details
8. Detailed Non-functional Requirements on
 Performance, Quality, etc
9. Others

 Example of items to be described

 Sub-tasks that make use of this document

SWP1 Software Requirements Definition
	 1.2 Reviewing the Software Requirements

Specifications
		 1.2.1 Reviewing the Software Requirements

Specifications Internally
SWP2 Software Architectural Design

	 2.1 Creating the Software Architectural Design
Description

		 2.1.1 Confirming the Design Conditions
		 2.1.2 Designing the Software Structure
		 2.1.3 Designing the Overall Software Behaviors
		 2.1.4 Designing the Interface
	 2.2 Reviewing the Software Architectural Design
		 2.2.1 Reviewing the Software Architectural

Design Description Internally
	 2.3 Jointly Reviewing the Software Architectural

Design
		 2.3.1 Jointly Reviewing the Software

Architectural Design Description

SWP3 Software Detailed Design
	 3.1 Creating the Functional Unit Detailed Design

Description
		 3.1.1 Dividing into Program Units

SWP6 Comprehensive Software Testing
	 6.1 Preparing for Comprehensive Software Test
		 6.1.1 Creating the Comprehensive Software Test

Specifications
		 6.1.2 Preparing for Comprehensive Software

Test
		 6.1.3 Reviewing the Comprehensive Software

Test Specifications Internally
	 6.3 Reviewing the Comprehensive Software Test

Results
		 6.3.1 Reviewing the Comprehensive Software

Test Results Internally
SUP1 Project Management

	 1.4 Creating the Project Completion Report

178 Part 2 Technical Section

 (SW105) Software Requirements Specifications (Example)

Name of document

Document No.

Issued by
Date of issue

Table of Contents

Name of document

1. Overview . Page No.
2. System Structure . Page No.
3. Functional Overview . Page No.
4. Constraints . Page No.
5. Use Cases and Use Case Scenarios Page No.
6. Functional Details . Page No.
7. Interface Details . Page No.
8. Detailed Non-functional Requirements
 on Performance, Quality, etc . Page No.
9. Others . Page No.

Enter the name of document.

Enter the information that makes the
document identi�able.

Enter the name of organization that
issued the document and the date of
issue.

Item No.

Name of document

1

Revision History

Date Version Revised contents Remarks

2

3

4

Document No. Page No. Date of issue / Issued by

Provide a column to enter the revised
information.

Cover page

Table of
Contents

Document No. Page No. Date of issue / Issued by

Revision
history

Created
by

Name of
approver

Name of
creator

Approved
by

Date of
approval

Date of
creation

Provide a column to enter who is
responsible of creating / approving the
document, and when it was created /
approved.

1792.3 Document Template Samples

Name of document

Page No.Document No. Date of issue / Issued by

1. Overview

<Exemplary descriptions>
· Purpose of this document
· Positioning of this document
· Intended users
· Scope of description, contents, etc
· Referenced documents, etc
· De�nition (terminology, acronyms, etc)

2. System Structure

<Exemplary descriptions>
· Overall system structure
 - Name / basic functionalities of each system component
 - Speci�cations on software requirements

3. Functional Overview

<Exemplary descriptions>
· List of functionalities extracted from the functionalities that the system
 has to realize / provide as the ones to be realized by the software, along
 with their overview

4. Constraints

<Exemplary descriptions>
· Hardware con�guration and its constraints
· Constraints from OS and middleware that are going to be used, among
 others

7. Interface Details

<Exemplary descriptions>
· Interface used, such as, for operating the product in conjunction with the
 peripheral software, system and hardware, among others.

5. Use Cases and Use Case Scenarios

<Exemplary descriptions>
· Use cases and use case scenarios written on the basis of situations and
 context in which the product is intended / assumed to be used

Text (1)

Provide the general description of this
document (its purpose, positioning,
contents , etc) and the names of
referenced documents, among others.

Describe each relevant interface in
detail.

Take account of the interactions
between the users and the system for
each functional block constituting the
system, and describe the �ow of these
interactions in chronological order.

6. Functional Details

<Exemplary descriptions>
· Detailed description of functionalities for realizing the use cases described
 above in #5.

Describe each functionality in detail.

Provide the general description of the
functionalities in the form of a list.
Provide the detailed description of the
functionalities separately later on. (See
#6 below.)

Describe all the constraints without
leaving out any.

Describe the structure of the system as a
whole, the positioning of software, and
t h e r e l a t i o n s h i p / c o n d i t i o n s
surrounding the software.
Describe the requirements, conditions
and other relevant matters in an orderly
m a n n e r b y r e f e r r i n g t o r e l a t e d
d o c u m e n t s l i k e t h e S y s t e m
Requirements Speci�cations and
Hardware Speci�cations.

180 Part 2 Technical Section

Name of document

Document No. Page No. Date of issue / Issued by

9. Others

8. Detailed Non-functional Requirements on Performance, Quality, etc

Text (2)

Describe the matters related to
performance and quality that cannot be
expressed as functional matters.<Exemplary descriptions>

· Requirements on reliability
- System’s abnormal processing methods
- System’s recovery procedures and methods from abnormal

operating mode
· Requirements on usability

- Required usability achieved by the software
- Interface with the hardware portion that is used to achieve the

required usability
· Requirements on e�ciency

- System’s execution performance (e.g.: processing speed, start-up
 time, response time, etc)
- Resource e�ciency (e.g.: memory capacity, data size)

· Requirements on maintainability
- Maintenance methods (such as, remote maintenance) and

techniques to realize them
· Requirements on portability

- Independency of software units
· Requirements on security

- Data encryption, user authentication, anti-virus measures, etc

<Exemplary descriptions>
· Requirements on security (e.g.: data encryption, user authentication,
 anti-virus measures, etc)
· Interoperability (e.g.: communication protocol, etc)
· Requirements on external interfaces (e.g.: function interface with
 linked software , communication protocol, user interface, etc)

Describe miscellaneous matters that are
worthy of special mention.

1812.3 Document Template Samples

Software Architectural Design Description is a document used to describe how the software can achieve its
requirements (software structure, control method, etc) that have been examined in the activity to design the
software architecture.

(SW205) Software Architectural Design Description

(SW201) Software Structure Design Description
(SW202) Functional Unit Design Description
(SW203) Software Behavioral Design Description
(SW204) Software Interface Design Description

(Materials for estimating the performance)
(Materials for estimating the amount of memory
used)

 Information referenced to prepare this document

SWP2 Software Architectural Design
	 2.1 Creating the Software Architectural Design Description
		 2.1.6 Creating the Software Architectural Design Description

 Sub-tasks to create this document

1. Overview
2. System Structure
3. Software Structure
4. Control Method
 4.1 Memory layout

 4.2 Software Control Method
 4.3 Performance Estimation
5. Details on Functional Units
6. Others

 Example of items to be described

 Sub-tasks that make use of this document
SWP2 Software Architectural Design

	 2.2 Reviewing the Software Architectural Design
		 2.2.1 Internally Reviewing the Software

Architectural Design Description
	 2.3 Jointly Reviewing the Software Architectural

Design
		 2.3.1 Jointly Reviewing the Software

Architectural Design Description
SWP3 Software Detailed Design

	 3.1 Creating the Functional Unit Detailed Design
Description

		 3.1.1 Dividing into Program Units
		 3.1.2 Designing the Program Units
		 3.1.3 Defining the Interface in Detail
		 3.1.4 Estimating the Amount of Memory Used
	 3.2 Reviewing the Software Detailed Design

		 3.2.1 Internally Reviewing the Software Detailed
Design Description

	 3.3 Checking the Consistency with Hardware
Specifications

		 3.3.1 Checking the Consistency with Hardware
Specifications

SWP5 Software Integration Testing
	 5.1 Preparing for Software Integration Test
		 5.1.1 Preparing for Software Integration
		 5.1.2 Preparing for Software Integration Test
	 5.2 Conducting the Software Integration Test
		 5.2.1 Software Integration
	 5.3 Reviewing the Software Integration Test Results
		 5.3.1 Internally Reviewing the Software

Integration Test Results

182 Part 2 Technical Section

 (SW205) Software Architectural Design Description (Example)

Name of document

Document No.

Issued by
Date of issue

Table of Contents

Name of document

1. Overview . Page No.
2. System Structure . Page No.
3. Software Structure. Page No.
4. Control Method . Page No.
 4.1 Memory Con�guration / Layout Page No.
 4.2 Software Control Method . Page No.
 4.3 Performance Estimation. Page No.
5. Details on Functional Units. Page No.
6. Data Handled by the System . Page No.
7. List of Exceptions . Page No.
8. Others. Page No.

Enter the name of document.

Enter the information that makes the
document identi�able.

Enter the name of organization that
issued the document and the date of
issue.

Item No.

Name of document

1

Revision History

Date Version Revised contents Remarks

2

3

4

Document No. Page No. Date of issue / Issued by

Provide a column to enter the revised
information.

Cover page

Revision
history

Table of
Contents

Document No. Page No. Date of issue / Issued by

Created
by

Name of
approver

Name of
creator

Approved
by

Date of
approval

Date of
creation

Provide a column to enter who is
responsible of creating / approving the
document, and when it was created /
approved.

1832.3 Document Template Samples

1. Overview
<Exemplary descriptions>
· Purpose of this document
· Positioning of this document
· Intended users
· Scope of description, contents, etc
· Referenced documents, etc
· De�nition (terminology, acronyms, etc)

Name of document

Document No. Page No. Date of issue / Issued by

2. System Structure
<Exemplary descriptions>
· Overall system structure

- Name / basic functionalities of each system component
- Basic speci�cations of external elements related to the software

· Main software components that constitute the system

 For example: Name of MPU, types of I/O connectors, hardware interrupt
levels and I/O responses, memory types and size, communication
protocol, input/output data formats, various performance
indicators, types of external media, control methods, etc

3. Software Structure
<Exemplary descriptions>
· Overall Software Structure

- Name / basic functionality / operating modes of functional units that
structure the software
　　(Operating modes include task/non-task, task priority, operation in
 system space/user space, resident/non-resident　common
 functions, maintenance, etc)
- Interface between software functional units
For example: Show the static relationship between the functional blocks
 (in terms of control and data �ow), and if necessary, also describe the
 OS, memory, external storage media, and hardware mechanism.

4. Control Method

4.1 Memory layout

<Exemplary descriptions>
· Types of ROM/RAM and segment allocated for SRAM/cache, memory

area for software, location of hardware register area, among others,
based on memory address space

· Layout of memory area for software (code segment, data segment,
segment used for OS)

· Layout of memory area for software used to control common
information, linkage with table/bu�er, etc

4.2 Software Control Method

<Exemplary descriptions>
· Recovery method: Flow of control from when the error occurred to

restart
· Performance realization method: Concurrent processing control to

realize the required equipment performance
· Language support: Method of switching from one language to another
 for multiple languages
· Method of updating the software after shipping: Method of refreshing
 the software after shipping it to the �eld
· Method of acquiring troubleshooting data: Flow from storing trace data
 to retrieving / using it for analysis

4.3 Performance Estimation

<Exemplary descriptions>
· Required performance / xx(ms)
· Performance realization method: Conditions and processing sequence
· Estimation of each processing time: Estimate of each processing element
 and the grounds for the calculation

Text (1)

Provide the general description of this
document (its purpose, positioning,
contents, etc) and the names of
referenced documents, among others.

Describe the structure of the system as a
whole, the positioning of software, and
t h e r e l a t i o n s h i p / c o n d i t i o n s
surrounding the software.
Describe the requirements, conditions
and other relevant matters in an orderly
m a n n e r b y r e f e r r i n g t o r e l a t e d
d o c u m e n t s l i k e t h e S y s t e m
Requirements Speci�cations and
Hardware Speci�cations.

Describe the structure and basis
relationship of the software that is going
to be developed.

Describe mainly about how the software
functional units realize the requirements
de�ned in the Software Requirements
Speci�cations (SW105) through the
entire system (hardware, operator,
external storage media, memory, etc).

Clarify the layout, types and size of
memory used, based on System
Architectural Design Description or
hardware speci�cations, among other
relevant documents, and describe how
the memory area for software is used.
(However, in case of OS and SoC with
high-performance 32 bit MPU and VM
functionality, either the memory area is
�xed or virtual memory is used. In such
case, it would be su�cient to clarify only
the portions required for the software.)

By using the diagram that shows the
p r o c e s s i n g s e q u e n c e b e t w e e n
functional units, describe how the
signals, commands and data are
detected, controlled, converted,
processed, noti�ed and stored in each
use case (scenario). Moreover, it is also
desirable to describe important matters
that are not stated explicitly in the
requirements but should be shared
among the developers (for example, OS
operation, internal state transition, etc).

Estimate the performance quantitatively.

Note : The term “software” used here refers to both the software that is currently developed and the existing software that is already
available for use.

184 Part 2 Technical Section

Name of document

5. Details on Functional Units

<Exemplary descriptions>
· Details on XX functional units
· Structure, functionalities, input/output interface, processing methods,
 common functional areas, etc

6. Data Handled by the System

<Exemplary descriptions>
· Common data that requires exclusive processing, etc

Document No. Page No. Date of issue / Issued by

Text (2)
Describe the structure / functionalities of
each functional unit and the interface
used between the functional units in
detail that is speci�c enough to create
the detailed design.
As to how low-leveled the detailed
design should be, describe the intended
detail level by taking account of the
scale of development and the number of
human resources available to the
project.
The description should su�ce if it covers
all the information that the designers
need to create the detailed design.

Describe the data handled commonly by
the entire system, the purpose of using
such data, their read/write sources, etc

7. List of Exceptions

<Exemplary descriptions>
· List of information on abnormal / exceptional cases
 Codes and messages activated in abnormal /exceptional cases, their
 de�nitions, countermeasures, etc

8. Others

<Exemplary descriptions>
· List of errors / information on abnormalities
　Error / abnormal codes, messages, meaning, countermeasures, etc
· Details of the memory area for software used to control common
 information
　Name, structure, type, size, default values, access restrictions, and
 other attributes of each information table in the memory area for
 common use

Describe the codes and messages
activated in abnormal /exceptional
c a s e s , t h e i r d e � n i t i o n s a n d t h e
countermeasures to be taken at
respective cases in the form of a table.

Describe the information on matters
related to all aspects of the software that
should be shared among a l l the
members of the development group.

1852.3 Document Template Samples

Software Detailed Design Description is a document used to describe the structure of program units, the details of
what they process, and the interfaces between the program units that have all been examined and defined to be
implementable in the course of detailed designing of the software.

(SW305) Software Detailed Design Description

(SW301) Program Unit Functional / Structural
Design Description
(SW302) Program Unit Design Description
(SW303) Program Unit Interface Design Description

(SW304) Amount of Memory Used (Notes)
(SW309) Report on Hardware Specifications
Consistency Check Result (after the indicated matters
are reflected)

 Information referenced to prepare this document

SWP3 Software Detailed Design
	 3.1 Creating the Functional Unit Detailed Design Description
		 3.1.5 Creating the Software Detailed Design Description

 Sub-tasks to create this document

1. Overview
2. Program Unit Functional / Structural Design
 Description
 2.1 List of Program Units
 2.2 Structural Diagram of Program Units
3. Program Unit Design Description
 3.1 Detailed Processing by Program Units
 3.2 State Management

 3.3 Resource Definition
 3.4 Hardware Control Method
 3.5 System Initialization
 3.6 Common Definitions
4. Program Unit Interface Design Description
 4.1 Sequence Diagram
 4.2 Interface Details
5. Amount of Memory Used

 Example of items to be described

 Sub-tasks that make use of this document

SWP3 Software Detailed Design
	 3.2 Reviewing the Software Detailed Design
		 3.2.1 Internally Reviewing the Software Detailed
			 Design Description
	 3.3 Checking the Consistency with Hardware
			 Specifications
		 3.3.1 Checking the Consistency with Hardware
			 Specifications

SWP4 Implementation & Unit Testing
	 4.1 Preparing for Implementation and Unit Test
		 4.1.2 Preparing for Unit Test
	 4.2 Conducting the Implementation and Unit Test
		 4.2.1 Implementing the Program Units
	 4.3 Reviewing the Implementation and Unit Test

			 Results
		 4.3.1 Reviewing the Source Code
		 4.3.2 Reviewing the Unit Test Results Internally

186 Part 2 Technical Section

 (SW305) Software Detailed Design Description (Example)

Name of document

Document No.

Issued by
Date of issue

Table of Contents

Name of document

1. Overview . Page No.
2. Program Unit Functional /
 Structural Design Description . Page No.
 2.1 List of Program Units . Page No.
 2.2 Structural Diagram of Program Units Page No.
3. Program Unit Design Description Page No.
 3.1 Detailed Processing by Program Units. Page No.
 3.2 State Management . Page No.
 3.3 Resource De�nition. Page No.
 3.4 Hardware Control Method . Page No.
 3.5 System Initialization . Page No.
 3.6 Common De�nitions . Page No.
4. Program Unit Interface Design Description Page No.
 4.1 Sequence Diagram . Page No.
 4.2 Interface Details . Page No.
5. Amount of Memory Used . Page No.

Enter the name of document.

Enter the information that makes the
document identi�able.

Enter the name of organization that
issued the document and the date of
issue.

Item No.

Name of document

1

Revision History

Date Version Revised contents Remarks

2

3

4

Document No. Page No. Date of issue / Issued by

Provide a column to enter the revised
information.

Cover page

Revision
history

Table of
Contents

Document No. Page No. Date of issue / Issued by

Created
by

Name of
approver

Name of
creator

Approved
by

Date of
approval

Date of
creation

Provide a column to enter who is
responsible of creating / approving the
document, and when it was created /
approved.

1872.3 Document Template Samples

Name of document

1. Overview

<Exemplary descriptions>
· Purpose of this document
· Positioning of this document
· Intended users
· Scope of description, contents, etc
· Referenced documents, etc
· De�nition (terminology, acronyms, etc)

Text (1)

Document No. Page No. Date of issue / Issued by

Provide the general description of this
document (its purpose, positioning,
contents, etc) and the names of
referenced documents, among others.

2. Program Unit Functional / Structural Design Description

2.1 List of Program Units

<Exemplary descriptions>
 · Name of program unit
 · Functional Overview

2.2 Structural Diagram of Program Units

<Exemplary descriptions>
 · Name of program unit
 · Interrelationship between program units (start method, general description
 of the interface, etc)

3. Program Unit Design Description

3.1 Detailed Processing by Program Units

3.3 Resource De�nition

<Exemplary descriptions>
 · Name of resource
 · Usage
 · Structure
 · Values and their respective meanings
 · Capacity (size)
 · Allocation／release

3.2 State Management

Event A

State A

Event B

Event C

<Exemplary descriptions>

State B State C State D

Enter the name of
the transitioned state.

State Transition Table

Create a list showing all the program
units with their names and functional
overviews.

Create a diagram il lustrating the
structure of the program units and their
interrelationship.

Describe what each program unit is
designed to process. Include the
functionality used for analyzing defects
also in the description of what each
program unit is designed to process.
Desirably, the description should cover
all the information necessary for
implementation.

Describe the de�ned states of the
software, and how the state transitions
to a di�erent state when an event
occurs. (State Transition Table)

Describe the commonly used resources
(memory, databases, etc) in details.

<Exemplary descriptions>
 · Name of program unit
 · Argument
 · Return value
 · Processed contents (hardware control method, timing, error processing,

OS to be used, system calls, argument values of generic libraries,
conditions and techniques for high-speed processing when needed,
etc)

 · Constraints (processing time, interrupt, etc)
 · Remarks (on referenced design descriptions, etc)

188 Part 2 Technical Section

5. Amount of Memory Used

4. Program Unit Interface Design Description

3.5 System Initialization

3.6 Common De�nitions

4.1 Sequence Diagram

4.2 Interface Details

Name of document

<Exemplary descriptions>
· Initialization sequence
· Initial value of the hardware
· Vector address / interrupt
· Initial values of the resources (memory, database, etc)
· Initialization of OS
· Initialization of generic libraries
· Initialization of external devices

<Exemplary descriptions>
· Error values
· Conditions for compiling
· Resource capacity (memory, database, etc)

Program unit A

Message A

Message B

Result B
Result A

<Exemplary descriptions>

<Exemplary descriptions>
· Call method (values, meaning)
· Result (values, meaning)
· Data format (structure, values, meaning, size)
· Constraints

3.4 Hardware Control Method

<Exemplary descriptions>
· Method of writing to / reading from the hardware
 Set values
 Address . Port No.
 Constraints (access sequence, restrictions, etc)

Document No. Page No. Date of issue / Issued by

Text (2)

Program unit B Program unit C

Describe the speci�c methods of
controlling each hardware.

Describe the method of initializing the
hardware and software.

Describe the values that are used
commonly throughout the software.

This diagram shows the interaction
b e t w e e n t h e p r o g r a m u n i t s i n
chronological order.
The vertical axis stands for the course of
time that moves forward from top to
bottom.

Describe the interfaces in detail.

Describe the amount of memory used
by each type of memory.
Desirably, the description should
indicate the amount of memory used
respectively by each unit and resource
so that the total memory usage can be
easily broken down for analysis.

<Exemplary descriptions>
· ROM (list of the unit names ＋ amount of memory used by each unit)
· RAM (list of the resource names ＋ amount of memory used by each

resource)
· Stack area (list of the unit names ＋ amount of memory used by each

unit)

1892.3 Document Template Samples

Test Specifications is a document used for describing the test cases and test data.
Test Report is a document used for describing how the test results have been evaluated. The description of the
evaluation of test results normally include the information on the issues captured through the evaluation, the
countermeasures to deal with these issues, the number of inquiries on uncertain matters regarding the test results,
the responses to these inquiries, the number of defects that have been detected, and the judgment on whether
there is a need to revise the software or not, among others.

(SW401, SW501, SW601, SY301, SY401, SA201) Test Specifications
(SW406, SW506, SW606, SY306, SY406, SA205) Test Reports

Unit Testing
(SW305) Software Detailed Design Description
(SW405) Unit Test Results (notes)
(SU1002) Software Development Environment
(SU601) Defect Management Ticket (when
modifications are implemented and need to be
verified)

Software Integration Testing
(SW205) Software Architectural Design
Description
(SU1002) Software Development Environment
(SW505) Software Integration Test Results
(SU601) Defect Management Ticket (when
modifications are implemented and need to be

verified)
Comprehensive Software Testing

(SW105) Software Requirements Specifications
Information necessary to create the test
specifications (deliverables)

See also
Comprehensive Software Test Specifications
created in the past
(SW504) Final executable source code
(SW605) Comprehensive Software Test Results
(SU601) Defect Management Ticket (when
modifications are implemented and need to be
verified)

 Information referenced to prepare this document

SWP4 Implementation & Unit Testing
	 4.1 Preparing for Implementation and Unit Test
		 4.1.2 Preparing for Unit Test
	 4.2 Conducting the Implementation and Unit Test
		 4.2.3 Reviewing the Unit Test Results
SWP5 Software Integration Testing
	 5.1 Preparing for Software Integration Test
		 5.1.2 Preparing for Software Integration Test
	 5.2 Conducting the Software Integration Test
		 5.2.3 Reviewing the Software Integration Test

Results
SWP6 Comprehensive Software Testing
	 6.1 Preparing for Comprehensive Software Test
		 6.1.1 Creating the Comprehensive Software Test

Specifications
	 6.2 Conducting the Comprehensive Software Test
		 6.2.2 Reviewing the Comprehensive Software

Test Results

SYP3 System Integration Testing
	 3.1 Preparing for System Integration Test
		 3.1.2 Preparing for System Integration Test
	 3.2 Conducting the System Integration Test
		 3.2.2 Reviewing the System Integration Test

Results
SYP4 System Testing
	 4.1 Preparing for System Test
		 4.1.1 Creating the System Test Specifications
	 4.2 Conducting the System Test
		 4.2.2 Reviewing the System Test Results
SAP2 Safety Testing
	 2.1 Preparing for Safety Test
		 2.1.1 Preparing for Safety Test
	 2.2 Conducting the Safety Test
		 2.2.2 Reviewing the Safety Test Results

 Sub-tasks to create this document

190 Part 2 Technical Section

 Sub-tasks that make use of this document

SWP4 Implementation & Unit Testing
	 4.2 Conducting the Implementation and Unit Test
		 4.2.2 Conducting the Unit Test
		 4.2.3 Reviewing the Unit Test Results
	 4.3 Reviewing the Implementation and Unit Test

Results
		 4.3.2 Reviewing the Unit Test Results Internally

SWP5 Software Integration Testing
	 5.2 Conducting the Software Integration Test
		 5.2.2 Conducting the Software Integration Test
		 5.2.3 Reviewing the Software Integration Test

Results
	 5.3 Reviewing the Software Integration Test Results
		 5.3.1 Reviewing the Software Integration Test

Results Internally
SWP6 Comprehensive Software Testing

	 6.1 Preparing for Comprehensive Software Test
		 6.1.2 Preparing for Comprehensive Software Test
		 6.1.3 Reviewing the Comprehensive Software

Test Specifications Internally
	 6.2 Conducting the Comprehensive Software Test

		 6.2.1 Conducting the Comprehensive Software
Test

		 6.2.2 Reviewing the Comprehensive Software
Test Results

	 6.3 Reviewing the Comprehensive Software Test
Results

		 6.3.1 Reviewing the Comprehensive Software
Test Results Internally

	 6.4 Confirming the Completion of Software
Development

		 6.4.1 Confirming the Completion of Software
Development

SYP3 System Integration Testing
	 3.2 Conducting the System Integration Test

		 3.2.1 Conducting the System Integration Test
		 3.2.2 Reviewing the System Integration Test

Results
	 3.3 Reviewing the System Integration Test Results
		 3.3.1 Reviewing the System Integration Test

Results Internally

1. Overview
2. Test Overview
 2.1 Test Policy
 2.2 Development Phase & Test Period
 2.3 Scope of Test
3. Evaluation Facilities & Environment
 3.1 System Structure
 3.2 Test Environment & Facilities

4. Test Cases
5. Test Data
6. Test Procedure
7. Evaluation Result*

7.1 General Description of the Test Results*
7.2 Detailed Description of the Test Results*

 * Items described in the Test Report

 Example of items to be described

System Integration Testing
(SY205) System Architectural Design Description
(SY305) System Integration Test Results
(SU601) Defect Management Ticket (when
modifications are implemented and need to be
verified)

System Testing
(SY106) System Requirements Specifications
Product manuals
Information necessary to create the test
specifications (deliverables)

See also
System Test Specifications created in the past

System to be tested
(SY405) System Test Results
(SU601) Defect Management Ticket (when
modifications are implemented and need to be
verified)

Safety Testing
(SA104) Safety Requirements Specifications

See also
Safety Test Specifications created in the past

System to be tested
(SA204) Safety Test Results
(SU601) Defect Management Ticket (when
modifications are implemented and need to be
verified)

1912.3 Document Template Samples

SYP4 System Testing
	 4.1 Preparing for System Test
		 4.1.2 Preparing for System Test
		 4.1.3 Reviewing the System Test Specifications

Internally
	 4.2 Conducting the System Test
		 4.2.1 Conducting the System Test
		 4.2.2 Reviewing the System Test Results
	 4.3 Reviewing the System Test Results
		 4.3.1 Reviewing the System Test Results

Internally
	 4.4 Confirming the Completion of System

Development

		 4.4.1 Confirming the Completion of System
Development

SAP2 Safety Testing
	 2.2 Conducting the Safety Test
		 2.2.1 Conducting the Safety Test
		 2.2.2 Reviewing the Safety Test Results
	 2.3 Reviewing the Safety Test Results
		 2.3.1 Reviewing the Safety Test Results

Internally
SUP1 Project Management

	 1.4 Creating the Project Completion Report

192 Part 2 Technical Section

 (SW401, SW501, SW601, SW406, SW506, SW606, SY301, SY401, SY306, SY406,

 SA201, SA205) Test Specifications/ Test Reports

Name of document

Document No.

Issued by
Date of issue

Table of Contents

Name of document

1. Overview . Page No.
2. Test Overview . Page No.
 2.1 Test Policy. Page No.
 2.2 Development Phase & Test Period Page No.
 2.3 Scope of Test . Page No.
3. Evaluation Facilities & Environment Page No.
 3.1. System Structure. Page No.
 3.2 Test Environment & Facilities . Page No.
4. Overview of the Test Results . Page No.
5. Attachments. Page No.
 5.1 Detailed Description of Test Cases Page No.
 5.2 Bug Curve . Page No.
 5.3. Others . Page No.

Enter the name of document.

Enter the information that makes the
document identi�able.

Enter the name of organization that
issued the document and the date of
issue.

Item No.

Name of document

1

Revision History

Date Version Revised contents Remarks

2

3

4

Document No. Page No. Date of issue / Issued by

Provide a column to enter the revised
information.

Cover page

Revision
history

Table of
Contents

Document No. Page No. Date of issue / Issued by

Created
by

Name of
approver

Name of
creator

Approved
by

Date of
approval

Date of
creation

Include a column to which responsibility
and con�rmation of creation and
approval information can be added.

1932.3 Document Template Samples

2.1 Test Policy

2.2 Development Phase & Test Period

2.3 Scope of Test

Development
phase

<Exemplary descriptions>

SW
Version

Inspection
start date

Inspection
end date Remarks

<Exemplary descriptions>

Functionality
to be inspected

Conditions
for inspection

1. Overview

2. Test Overview

<Exemplary descriptions>
· Purpose of this document
· Positioning of this document
· Intended users
· Scope of description, contents, etc
· Referenced documents, etc
· De�nition (terminology, acronyms, etc)

Name of document

Document No. Page No. Date of issue / Issued by

Provide the general description of this
document (its purpose, positioning,
contents, etc) and the names of
referenced documents, among others.

Describe the basic concept of the test.

Describe the software development
phase in which the test is conducted, the
version of the software and hardware
that are tested, and the period taken to
complete the test.

Describe the scope of the software test
(software functionality that is tested)
conducted according to the Test
Speci�cations (Match each test case with
the corresponding check points
described in the Software Requirements
S p e c i � c a t i o n s o r t h e S o f t w a r e
Architectural Design Description) .

Text (1)

HW
Version

Software Requirements
Speci�cations

Software Architectural
Design Description

194 Part 2 Technical Section

3. Evaluation Facilities & Environment

3.1. System Structure

5. Attachments

5.1 Detailed Description of Test Cases

<Exemplary descriptions>
(Continued to next page)

Text (2)
Name of document

Document No. Page No. Date of issue / Issued by

3.2 Test Environment & Facilities

Equipment Manufacturer Model
 No. Quantity Usage

<Exemplary descriptions>

Serial No.

Describe the system structure and the
relationship with the test object
(software) in an easy-to-understand
manner by using a diagram or other
means.

Describe the environment (including the
method of connecting the test tools)
used to carry out the test (hardware
environment in case of Comprehensive
Software Test) in an easy-to-understand
manner by using a diagram or other
means.
In case of Comprehensive Software Test,
also provide additional information
about the test equipment (such as, their
version) and the purpose of using them.

Describe the test data, expected output
and results , and other re levant
information regarding each test case.

4. Overview of the Test Results

<Exemplary descriptions>

Classi�
-cation

ID
Classi�ca

-tion

Number of
test cases
that have

been tested

Inspection
start date

Inspection
end date

Number of
 test cases
 that are

not tested yet

Number of
defects

Number of
defects that

are not
solved yet

Remarks

Total bug count

Time

5.2 Bug Curve

<Exemplary descriptions>

5.3 Others

Describe the test contents and the
expected results. Number each test case
for administrative purpose, enter the test
dates, and describe the test results.

Show the transition in the number of
bugs detected over time during the
testing phase by using a graph where
the vertical axis stands for the total bug
count and horizontal axis stands for the
course of time. <Related Information>
Related Techniques (P73)

Describe the information on software
related matters that should be shared
a m o n g a l l t h e m e m b e r s o f t h e
development group, including the test
trails.

<Exemplary descriptions>
· Criteria for classifying the test cases (normal value inputs, abnormal value

inputs, past defects, load test, durability test, etc)
· Criteria for judging the acceptance or rejection of the test results (OK, NG,

OB, No Check)
· Attachments that can be used as objective evidences of the test results

(waveform data, etc)

1952.3 Document Template Samples

D
et

ai
le

d
 D

es
cr

ip
ti

o
n

 o
f T

es
t

C
as

es

U
pd

at
ed

 o
n

U
pd

at
ed

 b
y

P
ro

je
ct

 n
am

e
Te

st
p

h
as

e
In

sp
ec

ti
o

n
 it

em
(L

ar
ge

 c
la

ss
i�

ca
tio

n)
In

sp
ec

ti
o

n
 it

em
(M

id
dl

e
cl

as
si�

ca
tio

n)

M
an

ag
em

en
t

N
o

.

C
o

m
p

le
ti

o
n

d

at
e

R
em

ar
ks

Te
st

 c
as

e
ID

Te
st

 d
es

cr
ip

ti
o

n
En

vi
ro

n
m

en
ta

l
co

n
d

it
io

n
In

p
u

t
d

at
a

(E
xp

ec
te

d
) o

u
tp

u
t

In
sp

ec
ti

o
n

re

su
lt

D
es

cr
ib

e
th

e
te

st
 d

at
a,

 e
xp

ec
te

d
 o

u
tp

u
t,

 a
ct

u
al

 r
es

u
lt

,
an

d

o
th

er

re
le

va
n

t
in

fo
rm

at
io

n

p
er

ta
in

in
g

to

ea

ch

te
st

ca

se
.

If
 n

ec
es

sa
ry

,
al

so
 d

es
cr

ib
e

th
e

to
le

ra
n

ce
 d

e�
n

it
io

n
 (

g
ro

u
n

d
s

fo
r

ju
d

g
in

g
 t

h
e

ac
tu

al
ly

 m
ea

su
re

d
 v

al
u

es
),

te
st

 p
ro

ce
d

u
re

(in

cl
u

d
in

g
 t

h
e

d
es

cr
ip

ti
o

n
 o

f
te

st
 e

q
u

ip
m

en
t,

 m
et

h
o

d
 o

f
u

si
n

g

th
e

te
st

 t
o

o
ls

 a
n

d
 p

o
in

ts
 t

o
 b

e
ca

re
fu

l
o

f
w

h
en

 u
si

n
g

 t
h

em
),

te
st

 c
as

es
 t

h
at

 h
av

e
n

o
t

b
ee

n
 t

es
te

d
 y

et
,

th
e

re
as

o
n

(s
)

w
h

y
 t

h
ey

 w
er

e
p

en
d

ed
, a

m
o

n
g

 o
th

er
s.

En
te

r
th

e
p

ro
je

ct
 n

am
e

an
d

 a
d

m
in

is
tr

at
iv

e
in

fo
rm

at
io

n

196 Part 2 Technical Section

Internal Review Report is a document used to describe the issues found while reviewing the specifications, design
descriptions and reports on test results internally, the measures to address these issues, the personnel in charge of
carrying out these measures, and the outcome of these actions, including the results of the tests for verifying the
implemented modifications.

(SY107, SY206, SA105, SW106, SW206, SW306, SW408, SW507,
SW607, SY307, SY404, SY407, SA206) Internal Review Report

 Sub-tasks to create this document

SYP1 System Requirements Definition
	 1.2 Reviewing the System Requirements

Specifications
		 1.2.1 Reviewing the System Requirements

Specifications Internally
SYP2 System Architectural Design

	 2.2 Reviewing the System Architectural Design
		 2.2.1 Reviewing the System Architectural Design

Description Internally
SAP1 Safety Requirements Definition

	 1.2 Reviewing the Safety Requirements
Specifications

		 1.2.1 Reviewing the Safety Requirements
Specifications Internally

SWP1 Software Requirements Definition
	 1.2 Reviewing the Software Requirements

Specifications
		 1.2.1 Reviewing the Software Requirements

Specifications Internally
SWP2 Software Architectural Design

	 2.2 Reviewing the Software Architectural Design
		 2.2.1 Reviewing the Software Architectural

Design Description Internally
SWP3 Software Detailed Design

	 3.2 Reviewing the Software Detailed Design
		 3.2.1 Reviewing the Software Detailed Design

Description Internally
SWP4 Implementation & Unit Testing

	 4.3 Reviewing the Implementation and Unit Test
Results

		 4.3.2 Reviewing the Unit Test Results Internally

SWP5 Software Integration Testing
	 5.3 Reviewing the Software Integration Test Results
		 5.3.1 Reviewing the Software Integration Test

Results Internally
SWP6 Comprehensive Software Testing

	 6.1 Preparing for Comprehensive Software Test
		 6.1.3 Reviewing the Comprehensive Software

Test Specifications Internally
	 6.3 Reviewing the Comprehensive Software Test

Results
		 6.3.1 Reviewing the Comprehensive Software

Test Results Internally
SYP3 System Integration Testing

	 3.3 Reviewing the System Integration Test Results
		 3.3.1 Reviewing the System Integration Test

Results Internally
SYP4 System Testing

	 4.1 Preparing for System Test
		 4.1.3 Reviewing the System Test Specifications

Internally
	 4.3 Reviewing the System Test Results
		 4.3.1 Reviewing the System Test Results

Internally
SAP2 Safety Testing

	 2.3 Reviewing the Safety Test Results
		 2.3.1 Reviewing the Safety Test Results

Internally

1972.3 Document Template Samples

System Requirements Definition

(SY106) System Requirements Specifications
System Architectural Design

(SY106) System Requirements Specifications
(SA104) Safety Requirements Specifications
(SY205) System Architectural Design Description
(SY201) System Structural Diagram (Functional
Block Diagram)
(SY203) System Behavioral Design Description
(SY204) System Interface Design Description

Software Requirements Definition

Product Plan Description
(SY106) System Requirements Specifications
(SY205) System Architectural Design Description
(SA104) Safety Requirements Specifications
(SW105) Software Requirements Specifications

Software Architectural Design

(SW105) Software Requirements Specifications
(SW205) Software Architectural Design
Description
(SW201) Software Structure Design Description
(SW202) Functional Unit Design Description
(SW203) Software Behavioral Design Description
(SW204) Software Interface Design Description

Software Detailed Design

(SW205) Software Architectural Design
Description
(SW305) Software Detailed Design Description

Implementation & Unit Testing

(SW401) Unit Test Specifications
(SW403) Internal Confirmation Note (on Unit Test
Specifications)
(SW406) Unit Test Report

(SW407) Internal Confirmation Note (on Source
Code)
(SU601) Defect Management Ticket

Software Integration Testing

(SW501) Software Integration Test Specifications
(SW503) Internal Confirmation Note (on Software
Integration Test Specifications)
(SW506) Software Integration Test Report
(SU601) Defect Management Ticket

Comprehensive Software Testing

(SW601) Comprehensive Software Test
Specifications
(SW604) Internal Confirmation Note (on
Comprehensive Software Test Specifications)
(SW606) Comprehensive Software Test Report
(SU601) Defect Management Ticket

System Integration Testing

(SY301) System Integration Test Specifications
(SY303) Internal Confirmation Note (on System
Integration Test Specifications)
(SY306) System Integration Test Report
(SU601) Defect Management Ticket

System Testing

(SY401) System Test Specifications
(SY404) Internal Confirmation Notes (on System
Test Specifications)
(SY406) System Test Report
(SU601) Defect Management Ticket

Safety Testing

(SA201) Safety Test Specifications
(SA203) Internal Confirmation Note (on Safety
Test Specifications)
(SA205) Safety Test Report
(SU601) Defect Management Ticket

 Information referenced to prepare this document

198 Part 2 Technical Section

	Project name
Object to be reviewed
Date & time; Location

Attendees
Reviewed documents
Issues; Countermeasures; Person in charge; Due
date; Modification verified

 Example of items to be described

 Sub-tasks that make use of this document

SYP2 System Architectural Design
	 2.3 Jointly Reviewing the System Architectural

Design
		 2.3.1 Jointly Reviewing the System Architectural

Design Description
SWP2 Software Architectural Design

	 2.3 Jointly Reviewing the Software Architectural
Design

		 2.3.1 Jointly Reviewing the Software Architectural
Design Description

SWP6 Comprehensive Software Testing
	 6.4 Confirming the Completion of Software

Development
		 6.4.1 Confirming the Completion of Software

Development

SYP4 System Testing
	 4.4 Confirming the Completion of System

Development
		 4.4.1 Confirming the Completion of System

Development
SUP1 Project Management

	 1.4 Creating the Project Completion Report

1992.3 Document Template Samples

 (SY107, SY206, SA105, SW106, SW206, SW306, SW408, SW507, SW607, SY307, SY404,
SY407, SA206) Internal Review Report

Modi�cation
veri�ed

Management
No.

Approved by

Internal Review Report

Project name

Object to be reviewed

Date & time

Location

Attendees

Reviewed
documents

No Issue Countermeasures
Due date

Person in charge

 / / () : - :
Organization

Checked by Created by

Enter the project
name, date & time,
location, attendees
and other
administrative
information relevant
to the internal review.

Provide a column to
enter who is
responsible of
creating / approving
the document, and
when it was created
/ approved.

Enter the name of the
documents reviewed
internally.

Describe the issues
raised in the internal
review, the
countermeasures
that can be possible
solutions, personnel
in charge of
executing the
countermeasures
(including
modi�cations), due
date by when the
corrective actions
need to be
completed, and
whether the
modi�cation has
been veri�ed as
successful in solving
the issue or not.

200 Part 2 Technical Section

ISO/IEC 15288 Systems engineering - System life cycle processes (JIS X 0170)

Year of establishment / revision :	 ISO/IEC 2002, JIS 2004

Purpose :	 Standardization of the concepts of (IT) system life cycle processes

Scope :	 (IT) System development process

URL :	 http://www.iso.org/

Source in Japan :	 Japanese Standards Association

Overview:

Standard that defines the processes to develop a system with multiple software and hardware that work

together. It is positioned as the standard that extended the scope of “ISO/IEC 12207 Software life cycle

processes” to the system level.

In this standard, the processes ranging from the initial planning stage to the final retirement stage when

the users stop using the system are sorted out orderly according to the life cycle of the system, in addition to

grouping the processes and defining the terminology related to respective processes.

Moreover, in this standard, the processes are described separately by “purpose(s)”, “outcome” and “actions

necessary to fulfill the defined purpose(s)”.

Process description

- Process name

 - Purpose of the process

 - Outcome of the process

 - Actions necessary to fulfill the purpose(s).

Related Standards

2012.3 Document Template Samples

Joint Review Records is a document used to describe the matters indicated in the joint reviews, modifications to
resolve the indicated matters, personnel in charge of implementing the modifications, and the result of verification
of the modifications, among others.

(SU801) Joint Review Records

System Architectural Design

(SY205) System Architectural Design Description
(SY106) System Requirements Specifications
(SA104) Safety Requirements Specifications

Software Architectural Design

(SW205) Software Architectural Design
Description
(SW206) Internal Review Report (on Software
Architectural Design)

See also

(SY106) System Requirements Specifications
(SY205) System Architectural Design Description
(SW105) Software Requirements Specifications

Comprehensive Software Testing

(SW106) Software Requirements Specifications
(SW601) Comprehensive Software Test
Specifications

(SW606) Comprehensive Software Test Report
(SW607) Internal Review Report (on
Comprehensive Software Test)
(SU101) Project Plan Description
(SU601) Defect Management Ticket

System Testing

(SY106) System Requirements Specifications
(SY401) System Test Specifications
(SY406) System Test Report
(SY407) Internal Review Report (on System Test)
(SA104) Safety Requirements Specifications
(SA201) Safety Test Specifications
(SA206) Internal Review Report (on Safety Test)
(SU101) Project Plan Description
(SU601) Defect Management Ticket

 Information referenced to prepare this document

 Sub-tasks to create this document

SYP2 System Architectural Design
	 2.3 Jointly Reviewing the System Architectural Design
		 2.3.1 Jointly Reviewing the System Architectural Design Description

SWP2 Software Architectural Design
	 2.3 Jointly Reviewing the Software Architectural Design
		 2.3.1 Jointly Reviewing the Software Architectural Design Description

SWP6 Comprehensive Software Testing
	 6.4 Confirming the Completion of Software Development
		 6.4.1 Confirming the Completion of Software Development

SYP4 System Testing
	 4.4 Confirming the Completion of System Development
		 4.4.1 Confirming the Completion of System Development

SUP8 Joint Review
	 8.2 Carrying Out the Review
	 8.3 Acknowledging and Following Up on Matters That Have Been Reviewed

202 Part 2 Technical Section

	Project name
	Object to be reviewed
	Date & time; Location
	Attendees

	Reviewed documents
	Issues; Countermeasures; Person in charge; Due
date; Modification verified

 Example of items to be described

 Sub-tasks that make use of this document

SUP1 Project Management
	 1.4 Creating the Project Completion Report

SUP8 Joint Review
	 8.3 Acknowledging and Following Up on

Matters That Have Been Reviewed

2032.3 Document Template Samples

 (SU801) Joint Review Records (Example)

 / / () : - :

Enter the review
manager’s
comments.

Joint Review Records

Issue closed
con�rmedReview manager’s commentsCon�rmation of the

result of
implemented

corrective actions

No

Summary

Review outcomes Review closed Re-review

Reviewed
documentss

Reviewees

Reviewers

Review manager

Project name

Object to be reviewed

Date & time

Location

Management
No.

Organization

Approved by Checked by Created by

Modi�cation
veri�edIssue Countermeasure

Due date
Person in charge

Describe the project
name, date & time,
location, attendees,
and administrative
information.

Provide a column to
enter who is
responsible of
creating / approving
the document, and
when it was created
/ approved.

Enter the name of the
documents that are
reviewed.

Summarize the
outcome of the
review, and also
indicate whether the
review can be closed
or there is a need to
review again.

Describe the issue(s)
raised in the joint
review, the
countermeasures
that can be possible
solutions, personnel
in charge of
executing the
countermeasures
(including
modi�cations), due
date by when the
corrective actions
need to be
completed, and
whether the
modi�cation has
been veri�ed as
successful in solving
the issue or not.

A
tt

en
de

es

204 Part 2 Technical Section

Defect Management Ticket is a form used to record the defective condition detected in a test and the result of
the investigation of its cause(s) and impact analysis, as well as to describe the countermeasures and/or policy of
corrective actions to be taken to resolve the defect.
Each Defect Management Ticket is managed by Defect Management Register (SU602).

(SU601) Defect Management Ticket

Unit Testing

(SW401) Unit Test Specifications
(SW405) Unit Test Results

Software Integration Testing

(SW501) Software Integration Test Specifications
(SW505) Software Integration Test Results

Comprehensive Software Testing

(SW601) Comprehensive Software Test
Specifications
(SW605) Comprehensive Software Test Results

Safety Testing

(SA201) Safety Test Specifications
(SA204) Safety Test Results

System Integration Test

(SY301) System Integration Test Specifications
(SY305) System Integration Test Results

System Testing

(SY401) System Test Specifications
(SY405) System Test Results

 Information referenced to prepare this document

 Sub-tasks to create this document

SWP4 Implementation & Unit Testing
	 4.2 Conducting the Implementation and Unit Test
		 4.2.3 Reviewing the Unit Test Results

SWP5 Software Integration Testing
	 5.2 Conducting the Software Integration Test
		 5.2.3 Reviewing the Software Integration Test Results

SWP6 Comprehensive Software Testing
	 6.2 Conducting the Comprehensive Software Test
		 6.2.2 Reviewing the Comprehensive Software Test Results

SAP2 Safety Testing
	 2.2 Conducting the Safety Test
		 2.2.2 Reviewing the Safety Test Results

SYP3 System Integration Testing
	 3.2 Conducting the System Integration Test
		 3.2.2 Reviewing the System Integration Test Results

SYP4 System Testing
	 4.2 Conducting the System Test
		 4.2.2 Reviewing the System Test Results

SUP6 Problem Resolution Management
	 6.1 Recording the Problems and Analyzing the Causes
	 6.2 Analyzing the Impact and Devising the Acceptable Solution
	 6.3 Implementing the Acceptable Solution
	 6.4 Tracking the Implemented Solution

2052.3 Document Template Samples

	Project name
	Management No.
	Circumstances (When (date & time), where
(location) and in which phase the defect was

detected, phenomenon, etc)
	Cause(s) / Impact
	Description of the treatment
	Response policy (Priority level, due date, etc)

 Example of items to be described

 Sub-tasks that make use of this document

SWP4 Implementation & Unit Testing
	 4.1 Preparing for Implementation and Unit Test
		 4.1.2 Preparing for Unit Test
	 4.2 Conducting the Implementation and Unit Test
		 4.2.1 Implementing the Program Units
		 4.2.2 Conducting the Unit Test
		 4.2.3 Reviewing the Unit Test Results
	 4.3 Reviewing the Implementation and Unit Test

Results
		 4.3.2 Reviewing the Unit Test Results Internally

SWP5 Software Integration Testing
	 5.1 Preparing for Software Integration Test
		 5.1.2 Preparing for Software Integration Test
	 5.2 Conducting the Software Integration Test
		 5.2.2 Conducting the Software Integration Test
		 5.2.3 Reviewing the Software Integration Test

Results
	 5.3 Reviewing the Software Integration Test

Results
		 5.3.1 Reviewing the Software Integration Test

Results Internally
SWP6 Comprehensive Software Testing

	 6.1 Preparing for Comprehensive Software Test
		 6.1.2 Preparing for Comprehensive Software Test
	 6.2 Conducting the Comprehensive Software Test
		 6.2.2 Reviewing the Comprehensive Software

Test Results
	 6.3 Reviewing the Comprehensive Software Test

Results
		 6.3.1 Reviewing the Comprehensive Software

Test Results Internally
	 6.4 Confirming the Completion of Software

Development

		 6.4.1 Confirming the Completion of Software
Development

SAP2 Safety Testing
	 2.1 Preparing for Safety Test
		 2.1.1 Preparing for Safety Test
	 2.2 Conducting the Safety Test
		 2.2.1 Conducting the Safety Test
		 2.2.2 Reviewing the Safety Test Results
	 2.3 Reviewing the Safety Test Results
		 2.3.1 Reviewing the Safety Test Results

Internally
SYP3 System Integration Testing

	 3.1 Preparing for System Integration Test
		 3.1.2 Preparing for System Integration Test
	 3.2 Conducting the System Integration Test
		 3.2.1 Conducting the System Integration Test
		 3.2.2 Reviewing the System Integration Test

Results
	 3.3 Reviewing the System Integration Test Results
		 3.3.1 Reviewing the System Integration Test

Results Internally
SYP4 System Testing

	 4.1 Preparing for System Test
		 4.1.2 Preparing for System Test
	 4.2 Conducting the System Test
		 4.2.2 Reviewing the System Test Results
	 4.3 Reviewing the System Test Results
		 4.3.1 Reviewing the System Test Results

Internally
	 4.4 Confirming the Completion of System

Development
		 4.4.1 Confirming the Completion of System

Development

206 Part 2 Technical Section

SUP1 Project Management
	 1.4 Creating the Project Completion Report

SUP6 Problem Resolution Management
	 6.1 Recording the Problems and Analyzing the

Causes

	 6.2 Analyzing the Impact and Devising the
Acceptable Solution

	 6.3 Implementing the Acceptable Solution
	 6.4 Tracking the Implemented Solution

2072.3 Document Template Samples

 (SU601) Defect Management Ticket (Example)

Enter the project
name and
administrative
information.

Describe the cause
(s) and the extent
of impact of the
defect.

Also describe when
the defect was
implanted.

Describe how the
defect is treated,
who / which team
is in charge of
implementing the
treatment, and the
estimate
man-hours
required to
complete the
treatment.

Describe the
response policy
(whether to take
the corrective
action or not), the
priority of
implementing the
action, and the due
date when the
corrective action
must be completed
by.

Prepare columns to
enter the status of
defect
management
(veri�cation and
approval of the
treatment).

Defect Management Ticket

Project name Management
No.

Function nameDetector/ / ,

Team

Team
Team

Person in charge

Person in charge
Person in charge

[For classi�cation of the cause]
Main cause

Development phase when
the defect was implanted

［Extent of impact / (Also describe if necessary) the impact when no
　corrective actions were taken］

Estimate
man-hours

Treatment �x date
Date of completion

Due datePriority levelAction / no action

Veri�cation
completed

Treatment
approved

*Con�rmation columns

Attachment: 　Yes 　No

Impact

Test case ID

Enter the date and
time, and the
circumstances
when the defect
was detected.

Also describe
where and when
the defect was
detected.

Detection date

Date of investigation
Cause(s)

Title

Ci
rc

um
st

an
ce

s
 C

au
se

(s
)/

 Im
pa

ct
Re

spo
nse

 po
licy

Re
m

ar
ks

A
ct

io
n

to
 b

e
ta

ke
n

［Describe the contents of the deftect / procedure to reproduce the defect / incidence rate, etc］

Software version

Development phase when
the defect was detected

Attachment: 　Yes 　No

Attachment: 　Yes 　No

Attachment: 　Yes 　No D
es

cr
ip

tio
n

of
 th

e
tr

ea
tm

en
t

208 Part 2 Technical Section

ISO 9241 Ergonomic requirements for office work with visual display terminals
(VDTs)
Part 10: Dialogue principles (JIS Z 8520)
Part 11: Guidance on usability (JIS Z 8521)

Year of establishment / revision :	 ISO 1996 (9241-10), 1998 (9241-11), JIS 1999 (JIS Z 8520, 8521)

Purpose :	 Defining the levels of user satisfaction of office systems that make use of visual display

terminals (VDTs)

Scope :	 Organizations and institutions that design, manufacture and/or evaluate visual display

terminals (VDTs) used in office environment

URL :	 Ihttp://www.iso.org/

Source in Japan :	 Japanese Standards Association

Overview:

This standard sorts out the matters pertaining to office work using visual display terminals (VDTs) from the

standpoint of ergonomics. ISO 9241 is comprised of seventeen parts in all, of which Part 10 and Part 11 are

the two sections of this standard that deal with usability.

 “ISO 9241-10: Dialogue principles” provides the perspectives for examining the desirable forms of

interaction between users and computers that can be applied when designing or evaluating software. “ISO

9241-11: Guidance on usability” defines usability in more concrete terms, and provides a set of information

that should be taken into account when establishing or assessing the levels of usability. Other international

standards that discuss about usability in the context of software quality include ISO 9126.

Usability :

In general, this is a term used to express the level of ease in using software or hardware. In Japanese, there

are various alternative expressions that refer to the concept of usability, including “user-friendliness”, “easiness

to use”, “availability”, “applicability”, and “quality use”. In the context of embedded system, the growing trend is

to position usability as one of the characteristics of quality perceived by the users.

Related Standards

2092.3 Document Template Samples

Defect Management Register is a document that displays a table listing all the reported defects along with related
information excerpted from the Defect Management Ticket (SU601) prepared for each. This document is used as the
basis for managing defects.

(SU602) Defect Management Register

(SU601) Defect Management Ticket

 Information referenced to prepare this document

 Sub-tasks to create this document

SUP6 Problem Resolution Management
	 6.1 Recording the Problems and Analyzing the Causes
	 6.2 Analyzing the Impact and Devising the Acceptable Solution
	 6.3 Implementing the Acceptable Solution
	 6.4 Tracking the Implemented Solution

The table consists of the following information
related to defects excerpted from the Defect
Management Ticket (SU601).

 Project name
 Management No.

 Circumstances
 Date when the investigation of the cause(s) and

impact have been completed
 Treatment
 Date when verification was completed

 Example of items to be described

 Sub-tasks that make use of this document

SUP6 Problem Resolution Management
	 6.2 Analyzing the Impact and Devising the Acceptable Solution
	 6.3 Implementing the Acceptable Solution
	 6.4 Tracking the Implemented Solution

210 Part 2 Technical Section

 (SU602) Defect Management Register (Example)

D
ef

ec
t M

an
ag

em
en

t R
eg

is
te

r

Ti
tle

 o
r o

ve
rv

ie
w

Pr
oj

ec
t n

am
e

De
fe

ct
 M

an
ag

em
en

t
Ti

ck
et

 N
o.

Da
te

 w
he

n
ve

ri�
ca

tio
n

wa
s c

om
ple

te
d

Fu
nc

tio
na

l n
am

e

De
ve

lo
pm

en
t

 p
ha

se

Da
te

co
mp

let
ed

De
te

ct
ed

 da
te

Da
te

wh

en
 inv

est
iga

tion
 of

 ca
us

e(s
)/

im
pa

ct
wa

s c
om

pl
et

ed
Te

am
Pr

io
rit

y
le

ve
l

D
ue

 d
at

e
St

at
us

Ci
rc

um
st

an
ce

s

D
es

cr
ib

e
th

e
de

fe
ct

iv
e

ci
rc

um
st

an
ce

s
(is

su
e,

 w
he

n
an

d
w

he
re

 th
e

de
fe

ct
 w

as

de
te

ct
ed

),
da

te
 w

he
n

th
e

in
ve

st
ig

at
io

n
of

 t
he

 c
au

se
(s

)
/

im
pa

ct
 w

as

co
m

pl
et

ed
, t

re
at

m
en

t (
te

am
, p

rio
rit

y
le

ve
l,

du
e

da
te

, s
ta

tu
s,

 d
at

e
co

m
pl

et
ed

,
an

d
th

e
da

te
 w

he
n

ve
ri�

ca
tio

n
w

as
 c

om
pl

et
ed

 in
 th

e
fo

rm
 o

f a
 ta

bl
e.

Up
da

te
 d

at
e

Up
da

te
d

by
M

an
ag

em
en

t
N

o.

En
te

r t
he

 p
ro

je
ct

 n
am

e
an

d
ad

m
in

is
tr

at
iv

e
in

fo
rm

at
io

n.

Tr
ea

tm
en

t

2112.3 Document Template Samples

Project Completion Report is a document used to report the final status and outcome of system development based on
the information gained from System Test Report and Joint Review Report, provide quality-related information that will
be used as the basis for determining whether to head on to product release or not, and describe the points that could be
improved in the next development project.

(SU103, SU104) Project Completion Report

(SW105) Software Requirements Specifications
(SW606) Comprehensive Software Test Report
(SU801) Joint Review Records (on Software
Integration Test)
(SY106) System Requirements Specifications
(SY406) System Test Report
(SU801) Joint Review Records (on System Test)

(SA104) Safety Requirements Specifications
(SA201) Safety Test Specifications
(SA206) Internal Review Report (on Safety Test)
(SU601) Defect Management Ticket
(SU101) Project Plan Description
(SU102) Project Status Report

 Information referenced to prepare this document

 Sub-tasks to create this document

SUP1 Project Management
	 1.4 Creating the Project Completion Report

1. Overview
2. Project Overview
	 2.1 Project Profile
	 2.2 System Structure
3. Analysis and Feedback
	 3.1 Engineering on the Overall
	 3.2 Planned vs. Actual Distribution of Effort and

Duration

	 3.3 Actual Quality
	 3.4 Actual Productivity
	 3.5 Difference Between the Estimated and Actual

Effort
4. Constraints in Operating / Using the System
5. Orderly Disposition of Issues
6. Attachments

 Example of items to be described

 Sub-tasks that make use of this document

(Product inspection, similar next development projects, etc)

212 Part 2 Technical Section

 (SU103, SU104) Project Completion Report (Example)

Name of document

Document No.

Issued by
Date of issue

Table of contents

Name of document

1. Overview . Page No.
2. Project Overview . Page No.
 2.1 Project Pro�le . Page No.
 2.2. System Structure. Page No.
3. Analysis and Feedback . Page No.
 3.1 Engineering on the Overall . Page No.
 3.2 Planned vs. Actual Distribution
 of E�ort and Duration . Page No.
 3.3 Actual Quality . Page No.
 3.4 Actual Productivity . Page No.
 3.5 Di�erence Between the Estimated
 and Actual E�ort . Page No.
4. Constraints in Operating / Using the System Page No.
5. Orderly Disposition of Issues . Page No.
6. Attachments . Page No.

Enter the name of document.

Enter the information that makes the
document identi�able.

Enter the name of organization that
issued the document and the date of
issue.

Item No.

Name of document

1

Revision History

Date Version Revised contents Remarks

2

3

4

Document No. Page No. Date of issue / Issued by

Provide a column to enter the revised
information.

Cover page

Revision
history

Table of
 Contents

Document No. Page No. Date of issue / Issued by

Created
by

Name of
approver

Name of
creator

Approved
by

Date of
approval

Date of
creation

Provide a column to enter who is
responsible of creating / approving the
document, and when it was created /
approved.

2132.3 Document Template Samples

Name of document

1. Overview

<Exemplary descriptions>
·Purpose of this document
·Positioning of this document
·Intended users
·Scope of description, contents, etc
·Referenced documents, etc
·De�nition (terminology, acronyms, etc)

Text (1)

Provide the general description of this
document (its purpose, positioning,
contents, etc) and the names of
referenced documents, among others.

2. Project Overview

2.1 Project Pro�le

<Exemplary descriptions>
· Duration, actual e�ort, constraints, etc

2.2. System Structure

<Exemplary descriptions>
· Overall system structure
 - Name / basic functionalities of each system component
· Operating environment of the system and its external environment

Describe the basic project matters.

Describe the structure of the entire
system including both the hardware
and software.

Page No.Document No. Date of issue / Issued by

214 Part 2 Technical Section

3. Analysis and Feedback

Name of document

3.1 Engineering on the Overall

<Exemplary descriptions>
· Measures to realize the product vision and embody the concept
· Measures to meet the system requirements
· Measures to deal with the constraints in realizing the product (delivery
 due date, quality, costs, reuse, knowledge / experience of development
 members, etc).

3.2 Planned vs. Actual Distribution of E�ort and Duration

<Exemplary descriptions>
· Distribution of e�ort per phase (planned)
· Distribution of e�ort per phase (actual)
· Evaluation of the distribution of e�ort
· Future issues

3.3 Actual Quality

3.4 Actual Productivity

<Exemplary descriptions>
· Targeted level of productivity
· Actual level of productivity
· Evaluation on productivity
· Future issues

3.5 Di�erence Between the Estimated and Actual E�ort

<Exemplary descriptions>
· Di�erence between the estimated and actual e�ort
· Di�erence between the estimated and actual costs
· Evaluation of the accuracy between the estimated and actual results
· Future issues

Text (2)
Provide a concise description of the
inventive approaches and measures that
have been taken to realize the product
vision, embody the concept and deal with
constraints, as well as the e�ectiveness and
the level of achievement of these measures.

Compare the e�ort actually taken to
complete the activities with the planned
e�ort, and enter the result of evaluation of
the current level of achievement.
If the di�erence between the actual and
planned e�ort is large, or if the actual e�ort
of the current project di�ers greatly from
the result of similar projects in the past,
analyze what led to this big di�erence
and organize the �ndings as issues to be
addressed in the future.

Compare the actual level of quality
achieved with the targeted level of quality,
and enter the result of evaluation of the
current level of achievement.
If the di�erence between the actual and
targeted level of quality is large, analyze
what led to this big di�erence and organize
the �ndings as issues to be addressed in
the future.

Compare the actual level of productivity
achieved with the targeted level of
productivity, and enter the result of
evaluat ion of the current level of
achievement.
If the di�erence between the actual and
targeted level of productivity is large,
or if the actual productivity of the current
project di�ers greatly from the result of
similar projects in the past, analyze what
led to this big di�erence and organize the
�ndings as issues to be addressed in the
future.

Compare the estimated e�ort and costs
with the actual e�ort and costs, and enter
the result of evaluation of the current level
of achievement.
Analyze what led to the di�erence between
the estimated and actual results, and
organize the �ndings as issues to be
addressed in the future.

Page numberDocument number Issue date/Issuer

<Exemplary descriptions>
· Targeted level of quality (quantitative indicators)
· Actual level of quality (quantitative indicators)
· Mechanism of assuring quality
· Evaluation on quality
· Future issues

<Examples of quantitative indicators to measure quality against the
 targeted levels>
· Functionality, reliability, usability, e�ciency, maintainability, portability
· Defect detection rate and review rate in requirement de�nition,

designing and implementation phases
· Test density, failure detection rate, and failure convergence rate in
 test phase

2152.3 Document Template Samples

4. Constraints in Operating / Using the System

5. Orderly Disposition of Issues

6. Attachments

<Exemplary descriptions>
· List of deliverables

Text (3)

Describe the constraints in operating or
using the system that became necessary
as a result of treatment of the defects
found in the system.

Sort out the issues in development
process and techniques that have been
identi�ed in the course of development,
and describe them as points to be
improved in the next development
project.

Sort out the issues in development
process and techniques that have been
identi�ed in the course of development,
and describe them as points to be
improved in the next development
project.

Name of document

Page No.Document No. Date of issue / Issued by

Practical Section

3.1 Procedure for Practical Use∙ ∙ 218

3.2 Tailoring the Development Process

 for the Organization / Department∙ ∙ 221

3.3 Designing the Process Phases

 of the Development Project ∙ ∙ 222

3.4 Planning the Development Project Management (Designing
the development process phases in detail) ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ 227

Part3

218 Part3 Practical Section

	 3.1	 Procedure for Practical Use

	
Tailoring the Process

By using the process definition provided in Part 2 of this guidebook, the development process can

be easily tailored to best suit the characteristics of each organization or project.

The development process defined in Part 2 of this guidebook consists of processes, activities,

tasks and sub-tasks that are considered to be the standard types of work required in embedded

software development. However actually, in order to move the product development forward with

high efficiency in the real world, there is a need to make necessary arrangements to build a most

suitable development process by taking account of the distinctive features of the targeted product

itself as well the characteristics of the organization or department in charge of development.

Described here in Part 3 are various practical methods of utilizing the development process

defined in this guidebook.

The practical methods described below are general examples intended to provide the readers of

this guidebook a set of useful references to help customize their own development process.

	
Utilizing the Development Process

The development process described in Part 2 of this guidebook is defined as the standard

development process that consists of various clusters of work deemed necessary to proceed with the

development.

It is, however, easily foreseeable that the required set of work for actual product development or

the level of importance placed on each work may vary from the process definition provided in this

guidebook, depending on the specific characteristics of the targeted product.

Therefore, in order to effectively utilize the standard development process defined in this

guidebook for the actual product development, the following three types of work have to be carried

out (See Fig. 3.1):

(1) Tailoring the Development Process for the Organization / Department;

2193.1 Procedure for Practical Use

(2) Designing the Process Phase of the Development Project;

(3) Planning the Development Project Management

(1) Tailoring the Development Process for the Organization / Department

The development process defined in this guidebook should, in practice, be tailored or tuned to
meet the characteristics of the targeted product and/or the organization in charge of development.

(2) Designing the Process Phases of the Development Project
In actual product development, there are constraints imposed on each development project, such

as, on the delivery deadline, quality and costs, that must be taken into account.
Based on the development process tailored according to product and organizational

characteristics, the description of required activities (that may be tasks or sub-tasks in some cases)
and the weight of each activity must be all examined. After considering these points, there is a
need to place these activities along the actual timeline of the overall development project. Upon
completion of this work placement process, referred here to as “process phase designing”, the
activities placed on the project timeline will form the project’s “development process phases”.

(3) Planning the Development Project Management (Designing the
Development Process Phases in Detail)

Then comes the decision-making process to determine specifically how, when and by whom the
various types of work grouped in development process phases should be carried out. Questions, such
as, when to kick off the development, when the development must be completed, which department,
section or team within the organization in charge of development is responsible of specific activities,
tasks or sub-tasks, and who (which member or members belonging to these departments, sections or
teams) are assigned to each of these development-related jobs need to be answered and clarified at
this stage. Through this clarification process, the development process phases are designed in detail,
and the decisions made in this process will serve as the basis for project scheduling and resource
allocation.

The process of designing the development process phases in detail is referred to as “project
management planning” and the outcome of this project management planning process is called the
“development project plan”.

Please note that the description on project management planning provided here is limited to
general information, since it is categorized as a part of project management, which is not the main
subject matter of this guidebook.

220 Part3 Practical Section

Development
process phases

Development
project plan

Applying the tailored development
process to each development project

 Development process
 that takes account

 of the targeted product

Product
 characteristics

Departmental
 characteristics

Standard
 development

process

Tailoring the development
process

Process de�nition documents
provided in this guidebook
Other process standards

Development process and
standard process phases
adopted by organization /
department

(1) Tailoring the Development
 Process for the Organization

/Department

(2) Designing the Process Phases of
the Development Project

(3) Planning the Development
 Project Management
 (Designing the development

process phases in detail)

 Delivery deadline

Costs

Quality

 Time constraints

Constraints on resources

Figure 3.1 Example of How to Utilize the Development Process

	 3.2 Tailoring the Development Process for the
Organization / Department

 Tailoring the Development Process According to the
Characteristics of the Organization / Department

As earlier mentioned, the development process described in Part 2 of this guidebook is defined as
the standard development process consisting of an organized set of work deemed necessary to

2213.2 Tailoring the Development Process for the Organization / Department

 proceed with the development.
This standard development process, however, often cannot be adopted as it is, since the targeted

products to which the software are planned to be embedded come in wide variety, requiring the
development process to be tailored according to the characteristics of the organization / department
in charge of development and the targeted product.

Tailoring the Development Process
Tailoring of the development process includes the renaming of the general names given to

processes, activities, tasks, sub-tasks and deliverables in Part 2 of this guidebook to the names that
are actually used in or familiar to the organization / department(s) in charge of development, and
adjusting and/or adding extra steps / items to sub-task procedures and precautions according to the
characteristics of the targeted product.

Preparing the Organization / Department-specific Standard Process Phases
Organization- or department-specific standard development process phases (shortened to “standard

process phases” hereafter) have to be prepared, so that the development process becomes applicable
and usable in actual development projects.

product.

…………

Departmental
characteristics

Product characteristics Product characteristics

Other process standards, etc.

Organization / Department

Development project - nDevelopment project - 2Development project - 1

Organization / Department-speci�c
 development process

…………
Organization / Department-speci�c

 standard process phase - n
Organization / Department-speci�c

 standard process phase – 2
Organization / Department-speci�c

 standard process phase - 1

Types of development process described in this guidebook

System Engineering Process/Safety Engineering Process/Software Engineering Process

Support Process

Figure 3.2 Tailoring the Development Process for the Organization / Department

222 Part3 Practical Section

	 3.3 Designing the Process Phases of the Development Project

Designing the Process Phases of Embedded Software
Development Project

The objectives of designing the process phases of the development project are to examine and
decide which work is executed at which level of the organization, by taking account of the product
requirements (both functional and non-functional) and the structural levels of the organization
(department and project team levels) in charge of development, and identifying the different types
of work required for development.

Points That Should Be Considered
In designing the process phases of software development project, the following matters should be

taken into consideration, especially when the project is to develop embedded software:

(1) Be aware of the development of hardware and gain a clear understanding of its relationship

with the software development project. Also, clarify the interfaces between hardware and

software development areas;

(2) Clarify the inputs, procedures and outputs (IPO) of each process (at various work levels);

(3) Clarify the conditions for starting / ending each process (at various work levels);

(4) Clarify the deliverables of each process (at various work levels);

(5) Clarify the dependency relationship of information referenced in each process (at various

work levels);

(6) Group the various types of work into units that can be handled;

(7) Gain a clear understanding on how milestones for checking the progress of the development

should be set.

How to Use This Guidebook for Process Phase Designing
Process phase designing can be facilitated by using the process definition documents provided in

this guidebook and following the steps described below:

Step 1: Grasp the characteristics of the software to be developed and the organization in
charge of its development.

Step 2: Gain a rough idea of the necessity and importance of the processes and activities
included in the standard development process.

2233.3 Designing the Process Phases of the Development Project

Step 3: By referring to the relevant information provided in Part 2 of this guidebook under “2.2
Process Definition Documents”, examine the procedure for more specific (lower-leveled)
types of development work (tasks and sub-tasks), including how much weight (focus)
should be given to each work.

Step 4 : Examine what kind of deliverables should be expected as the outcome of each
development effort. If necessary, also use the information described in Part 2 of this
guidebook under “2.3 Document Template Samples” as your reference.

This guidebook has defined two engineering processes, System Engineering Process (SYP)
and Software Engineering Process (SWP) that are directly related to development, and two
other processes, Support Process (SUP) and Safety Engineering Process (SAP), that support the
engineering processes. In selecting the particular types of work required in actual development,
there is a need to clarify which work should be carried out in which of these processes, and also
examine the combination that best works for the given development scheme.
	
Examining the Overall Process Phase Design

One of the actions performed in process phase designing is the examination and formulation
of the overall development schedule for carrying out the activities required for the development,
based on the organization / department-specific development process. In this guidebook, the act of
creating the overall development schedule is called “overall process phase designing”.

The purpose of overall process phase designing is to clarify the project milestones and the
interfaces between the activities, and the output (deliverables) resulting from these activities (See
Fig. 3.4). These clarifications as well as the sharing of information on the formulated overall process
phase design among all the members of the development project team are important in proceeding
with the development as planned “on schedule”.

This guidebook assumes that, in practice, the organization or department in charge of actual
development will go through the process of selecting, revising, reshuffling and/or recursively
iterating the processes, activities, tasks and sub-tasks included in the development process tailored
according to organizational / departmental characteristics and the organization / department-specific
standard phases to meet the individual development needs.

Matters That Should Be Clarified
Through overall process phase designing, the following matters should be clarified:

(1) Development process phases of the development project

(2) Output (deliverables)

(3) External interfaces (for coordination and correspondence with external organizations)

224 Part3 Practical Section

Development Process Phases of Development Project
Development process phase refers to a group of activities lined in chronological order (and

allocated on a timeline).Select the activities to be included in the development process phase and
clarify the order to carry them out, by taking account of the development model that is applied
(waterfall development model, spiral development model, etc), the scope of work (the range of
activities responsible of), whether the project is a new development or additional development of an
existing product, and any other points of consideration (See Fig. 3.3).

Detailed
Design

Integration
Testing

Detailed Design Integration
Testing

Requirements
De�nition

Detailed Design Integration
Testing

(1) In case of small-scaled development project

(2) In case of large-scaled development project where multiple functionalities are developed concurrently

Functionality B

Functionality A

Requirements
De�nition

Architectural
Design

Implementation
& Unit Testing

Comprehensive
Testing

Comprehensive
Testing

Implementation
& Unit Testing

Implementation
& Unit Testing

Architectural
Design

Figure 3.3 Example of Development Process Phases

Output (Deliverables)
Output refers to main deliverables produced in each activity.
Clarify the output (deliverables) by taking account of the timeframe when deliverables from

external sources can be received, and the inputs and outputs between activities.

External Interfaces (for Coordination and Correspondence with External Organizations)
External interfaces refer to inputs from external sources, outputs to external destinations and

collaboration with external partners, among others.
Clarify the development milestones by taking account of concurrent development of hardware,

among others.

2253.3 Designing the Process Phases of the Development Project

Development process phases

External
interfaces

Development
process phases

Output
(Deliverables)

Date (yyyy/mm/dd)

Hardware speci�cations

Joint Review on Architectural Design Joint Review on
Comprehensive
Test Results

Tested software
(handed over to
 veri�cation team)

Real machine for
 comprehensive test

Architectural Design Description

Detailed Design Description

Development Project Plan Description

Program unit

Integration Test Report

Comprehensive
Test Report

Functional unit

Detailed
Design

Integration
Testing

Requirements
De�nition

Architectural
Design

Implementation
& Unit Testing

Comprehensive
Testing

Requirements Speci�cations

Figure 3.4 Example of Overall Process Phase Planning

	
Case Examples of Development Process Phases

Described below are some case examples of development process phases:

Case Example That Places Testing as High Priority (Conducting Tests in Advance)
In development projects that place importance on the development of user interfaces, the task to

create the test specifications is often scheduled to be carried out at an early stage (normally during
the requirements definition phase and architectural design phase). This schedule (see Fig. 3.5 below)
reflects the consideration that many issues in the user interface (points that need to be improved) are
normally found through trial use (i.e.: through testing).

Detailed
Design

Integration
Testing

Requirements
De�nition

Architectural
Design

Implementation
& Unit Testing

Comprehensive Testing
Task for creating

Test Speci�cations ………

Figure 3.5 Example of Development Process Phases (Testing as High Priority)

226 Part3 Practical Section

Case Example of Concurrent Development
In software development projects where new hardware has to be developed concurrently, more

importance is placed on holding joint review meetings between software and hardware developers
in the course of development, updating and sharing the latest hardware specifications with software
developers without delay, and assuring the quality of the real machine used for testing. In such
concurrent development projects (see Fig. 3.6 below.), consideration should also be given on
clarifying the timing to interface externally with the hardware team on matters including:

(1) Collaboration with the hardware team (holding joint reviews, joint tests, joint problem analysis, etc);

(2) Provisions to the hardware team (software for debugging hardware, user manual, etc);

(3) Receipt from the hardware team (updated hardware specifications, real machine for debugging /

testing, etc).

System
 Engineering

 Process

System
 Engineering

 Process

Detailed
Design

Implementation
& Unit Testing

Comprehensive
 Testing

g

Requirements
De�nition

Architectural
Design

Coding &
unit testing

Hardware Development Process

(1) Collaboration (3) Receipt(2) Provisions

Figure 3.6 Example of Development Process Phases (Concurrent Development)

Case Example of Outsourcing
In development projects that are partially outsourced, the scheduling of activities and tasks

pertaining to subcontractor management, including order placement duties, acceptance tests,
progress management, quality assurance, and deliverables management are of critical importance.

Especially, the synchronization of internal processes with the processes adopted by the
subcontractors is a key matter that requires careful coordination during the process phase stage
designing (see Fig. 3.7) designing

Subcontractor Management

Acceptance
TestProgress Management

Subcontractor

Detailed
Design

Implementation
& Unit Testing

Detailed
Design

Integration
Testing

Comprehensive
Testing

Requirements
De�nition

Architectural
Design

Implementation
& Unit Testing

Order
Placement

Figure 3.7 Example of Development Process Phases (Outsourcing)

2273.4 Planning the Development Project Management (Designing the development process phases in detail)

	 3.4 Planning the Development Project Management
(Designing the development process phases in detail)

	 �
Planning the Embedded Software Development Project Management
(Designing the development process phases in detail)

The project management planning for embedded software development must basically not

only take account of software development elements but also include the development elements

of hardware that constitutes a part of the system to be developed for the targeted product. In this

context, project management planning refers to the act of breaking down the high-level (activity-

level) work units examined and deemed necessary in advance in overall process phase designing

into lower-level work units, placing them on the actual timeline of the development project,

allocating them to the organization (department, section, or team), and assigning them respectively

to individual engineers. The outcome of all these actions is called the development project plan.

Please note that the description on project management planning provided here is limited to

general information, since it is categorized as a part of project management, which is not the main

subject matter of this guidebook. For more detailed information on project management planning,

please refer to “ESMR Ver 1.0: Embedded System development Management Reference [Plan

Description Edition]”.

Points That Should Be Taken Into Account in Embedded Software
Development Project Management Planning

During embedded software development project management planning, particular attention
should be given to the following matters:

(1) Consistency with the processes adopted in hardware development and incorporation of the

points (timing) to interface with the counterparts at the hardware side;

(2) Arrangements to carry out multiple work units concurrently where possible by considering

the sequential relationship of these work units;

(3) Distribution and allocation of work units to individual engineers by bearing their skill levels in

mind.

228 Part3 Practical Section

Basic Procedure for Project Management Planning
The basic procedure for embedded software development project management planning is as follows

(see Fig. 3.8).

Step 1: Determine in which order to carry out each work (decide on the working sequence).

 (1) WBS (Work Breakdown Structure): Estimate the workload of each work unit.

 (2) PERT (Program Evaluation and Review Technique): Clarify the relationship between work

units, and determine in which order to carry out each work.

 (3) Set the milestones of the development project.

Step 2: Divide the work and responsibilities.

 (1) Decide which organization and person is going to be responsible of each work.

 (2) Decide who to assign each work to, by taking account of resource constraints.

Clarify the sequence
and timing

to carry out each work
Divide the work

 into smaller units
Clarify the description of

each work unit.

Share the roles.
Allocate the resources

optimally.
Balance the workload.

Estimate the workload and
 time required for each work.
 Analyze the critical path.Extract the required works.

Examine to what extent automation
is possible.

Examine to what extent multiple
works can be carried concurrently.

Analyze the risks.

Figure 3.8 Points to Keep in Mind in Development Project Management Planning

	
Deciding on the Working Sequence

While the main task in overall process phase designing is to clarify the execution level of each
work and the logical sequential relationship between the work units, the main task in project
management planning is to place these work units on the actual timeline within the specific
development period.

Estimating the Workload
The most fundamental information gained during development project management planning

is the estimate workload of each work. The workload of each work is estimated by considering
the rough amount of man-hours needed to complete each work or the rough volume of the
deliverable(s) expected to be outputted from each work. For workload estimation, past data showing
the amount of workload required for each work in similar system development projects is often a

2293.4 Planning the Development Project Management (Designing the development process phases in detail)

useful reference source.
To gain a clearer picture and better understanding of the estimated workloads and how they

compare with each other, it is desirable to tabulate them in the form of WBS (see Fig. 3.9).

Deciding on the Working Sequence
The actual order in which each work is carried out is determined, based on the workload of each

work and the logical sequential relationship between the work units. Below are some important
points that need to be considered in deciding on the working sequence:

(1) Be aware of the pre-agreed delivery deadline, and see if all the required works can fit in the

given timeframe.

(2) Assuming that there are some types of work that can be handled by multiple departments or

engineers, consider the possibility of engaging in concurrent development wherever feasible.

(3) Give attention to how the development process phases of the software development project

are aligned with the development process phases adopted by the developers of hardware

and peripherals.

(4) Also analyze and evaluate the critical path, and identify the risks that may become the

bottleneck of the workflow.

In working on the above points of consideration, PERT can serve as an effective tool (See Fig.
3.9).

PERT
(1) Clarify the relationship between the

work units and decide on the working
sequence.

(2) If necessary, consider the possibility of
engaging in concurrent development.

WBS
(1) Break down the high-level work units

into smaller lower-level work units that
can be handled,

 (2) Estimate the required workload.

D
ev

el
op

m
en

t o
f a

 m
ob

ile
 p

ho
ne

 te
rm

in
al

A. Milestones

B. Project management

C. System

D. Application program

E. Application data

F. Hardware

A 01 Completion of requirements analysis
A 02 Completion of overall design
A 03 …..

C 01 Overall design
C 02 System installation
C 03 System quali�cation testing
D 01 Screen D 011 Design
 D 012 Creation
D 02 D 021 Design
 D
E 01 Own product E 011 Image data E 0111 Photographing
 E E 0112 Digitization
 E 012 Manual E 0121 Creation
 E
E 02 Other company's product

F 01 Processor F 011

F 02 ….. F 021

Overall design (20)
Application
screen creation (5)

Application I/F
de�nition (5)

Application
screen design (8)

System
quali�cation
testing(10)Manual

creation (10)

Application
data creation (3)

Application
data design (3)

Application
screen testing (5)

Figure 3.9 WBS and PERT

230 Part3 Practical Section

	
Deciding on the Work Distribution

To determine which organization (department, team, or subcontractor) should be responsible
of which work, or who to assign the individual work, the skill level and workload of engineers

available in or out of the organization must be taken into account.

Determining the Organization / Person Responsible of Individual Work
Before assigning the individual engineers what work to take up, there is a need to determine

which organization (department, team, or subcontractor) should be in charge of which group
of works and who should be responsible of each of them. In deciding these matters, careful
consideration must be given to the description of each work to prevent mismatches from occurring
at both the organizational level and leadership level.

Allocating the Resources
In large-scaled development projects that require multiple engineers to be engaged in each

activity, there is a need to assign them respectively the right amount of work and utilize the
available human resources as efficiently as possible.

Another point to think about is the different levels of skill required at different stages of the
development process phases, and the adequate number of resources with the right skill level in each

5

Oct Nov Dec Jan Feb Mar Apr May June July

Oct Nov Dec Jan Feb Mar Apr May June July

Baseline development
 process phases

Human resource allocation
34 man-months

358 man-months

230 man-months

Require
-ments

De�nition

Architectural
design

Architectural
Design

Implemen
-tation

Unit
Testing

Integration
Testing Comprehensive Testing

55 2454544444

203954788029221713

8 2 2 2 2 24 4 8

180

15

- Examine the number of resources required at
peak periods

- Examine the timing when to allocate the
resources

- Also consider the skill level of the engineers

Speci�cations design (head count)

Software design (head count)

Evaluation (head count)

60

Figure 3.10 Example of Work Distribution

2313.4 Planning the Development Project Management (Designing the development process phases in detail)

 stage. Resource allocation must be handled very carefully especially during the high-demand
periods in development when the overall workload reaches the peak, and likewise, at the initial
stage of development.

In general, many of the engineers who are already busy engaging in various assignments for
other projects are often not available right away. Therefore, in practice, it is normally very important
to have a well-managed resource allocation plan that takes full account of the latest workload and
work schedule of engineers expected to be called to the project that is being planned (see Fig. 3.10).

	
Conceptualizing the Planning the Development Project
Management

Below are some simple case examples to help understand how development project management
planning should be thought out.

Example 1: Small-scaled Development (New)
In case of developing an optical mouse newly

Software characteristics:

Scale of software development: Approximately several hundred lines (newly)
User interface: About three buttons
Number of engineers in charge of development: One or two engineers

In this case, the scale of new development is small. Therefore, it may be reasonable to consider
the following adjustments to lighten the overall workload:

• SWP1.2 (1.2.1 Reviewing the Software Requirements Specifications Internally)

Conduct a simplified review process within the development group rather than carrying out the
internal review rigidly in an official style.

• SWP4.1 (4.1.1 Preparing for Implementation)

In a completely new development project, there is no need to consider about reusable program
units because they do not exist.
Moreover, in a project like this case where the targeted product for development is a mouse, the
quality characteristics of the mouse as a functional device (i.e.: performance-related attributes like
response time) tend to be weighed relatively more heavily than other aspects. Therefore, in the
following tasks:

• SWP2.1 (2.1.1 Confirming the Design Conditions)

232 Part3 Practical Section

Focus particularly on examining the methods of meeting the non-functional requirements on,
such as, the operating environment and performance.

•SWP3.3 (3.3.1 Checking the Consistency with Hardware Specifications)

Focus on aligning the software specifications and the hardware specifications so that adequate
level of performance of the optical hardware components that control the main functionalities of
the mouse can be achieved.

In short, determine the intensity and contents of activities, tasks and sub-tasks to be carried
out in the project according to their respective level of importance placed on the basis of various
considerations (like those above) that reflect the particular characteristics of the targeted product.

Example 2: Large-scaled Development (Additional)
In case of developing a new car navigation system with additional new functionalities, based on

the existing car navigation system

Software characteristics:

Scale of software development: Large scale (several million lines)
User interface: Complex interfaces mainly related to display
Number of engineers in charge of development: 100 engineers or more

In this case, the scale of development is extremely large. Therefore, the following activities
should be carried out intensively:

• SUP1 Project Management

• SUP8 Joint Review

Moreover, by considering the fact that the targeted software to be developed is large-scaled and
that the software development will be based on existing software with various assets that can be
carried over:

• SWP2.1 (2.1.2 Designing the Software Structure)

Design the software structure to be easily adaptable for reuse in the future by aligning it as closely
as possible to the structure of the entire system and deliberately separating the core components,
among others.

Furthermore, to reflect the complexity and usability of the user interface:

• SWP1.1 (1.1.2 Clarifying the Functional Software Requirements)

	 (1.1.3 Clarifying the Non-functional Software Requirements)

Considerations on system usability and human-centered design process should also be included.

Appendices

Appendix 1 Terminology∙ ∙ 234

Appendix 2 Standards Correspondence Table

 (Between This Guidebook and X0160)∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ 238

Appendix 3 List of Activities / Tasks / Sub-tasks ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ 239

234 Appendices

	 Appendix 1 Terminology

 A

Activity
Activity is a high-level work unit that constitutes a part of the group of specific actions that are performed to

complete a process.
For example, the activities to be performed to complete the software engineering process (SWP) are defined in

this guidebook to be as follows:
• Software Requirements Definition	 • Implementation & Unit Testing
• Software Architectural Design		 • Software Integration Testing
• Software Detailed Design		 • Comprehensive Software Testing

 F

Functional requirements
Functional requirements refer to capabilities like “Can input the data named xxx” and “Can send emails” that the

software is required to provide as functionalities to meet the needs of the targeted product and intended users.

Related terminology Non-functional requirements

 I

Internal review
Internal review is a form of review held within a group of members in the development project, including the

engineers in charge of creating the deliverables, to check from time to time whether appropriate outcome has
been produced or not in the course of development. Internal reviews are typically more oriented towards checking
the technical aspects, and held without the participation of non-technical stakeholders involved in the product
development.

Related terminology Joint review

 J

Joint review
Joint review is a form of review held by the members of the development project to check whether appropriate

outcome has been produced or not at each milestone of the development process from both the technical and
administrative standpoints. This is an opportunity not only for the engineers in charge of creating the deliverables to
cross-check them, but also for other stakeholders involved in the product development to participate and check the
deliverables from multiple perspectives.

Related terminology Internal review

235Appendix 1.Terminology

 N

Non-functional requirements
Non-functional requirements refer to requirements on, such as, efficiency (eg: “Complete processing within nn

seconds”), usability (eg: “Enable the users to operate without relying on manuals”) and portability (eg: “Can be
reused”) that are required by the software.

Related terminology Functional requirements

 P

Process phase designing
Process phase designing is a part of the planning process to place the individual work required for development

on the actual timeline of the development project. Upon completion of this work placement process, the activities
placed on the project timeline will form the project’s “development process phases”.

The decisions on work placement made in process phase designing are based on the examination of the sequential
relationship between each work, the feasibility of concurrent development, and the availability of resources who
can be assigned to each work.

PERT (Program Evaluation and Review Technique)
PERT is a technique used to draw up a plan to perform the various types of work identified as required

development work through WBS (Work Breakdown Structure) in the most efficient combination to minimize the
time required to complete the development project. Through PERT, the project schedule is set on the basis of the
best order to carry out the required set of work (analyzed by determining which can be carried out concurrently
with others and which must be executed sequentially).

By creating a PERT chart, the project’s critical path can be defined. Critical path is a series of work required to
complete a project that altogether determines the total length of time needed to complete the given project. If any of
the work on the critical path is delayed, the period required to complete the project will be delayed.

Defining this critical path and managing all the work on the critical path to be executed on time are decisive
factors for successful project management.
Process

Generally in any type of work, various tasks need to be performed in the course of meeting the purposes and
objectives aimed at achieving through that work. In addressing “what kind of tasks need to be performed”, various
inputs and outputs, and the overall contents of these tasks are defined and organized in an orderly manner, which
are collectively referred to as the “process”.

In this guidebook, the various types of work that need to be performed in order to proceed with the development
of embedded software have been largely divided into the following four processes (or work clusters), which are
collectively referred to as the “software development process”:

(1) System Engineering Process
This process mainly consists of the various types of work for developing the embedded system built on the basis

of the software that would be embedded.
(2) Software Engineering Process

This process mainly consists of the various types of work related to the actual software development.
(3) Safety Engineering Process

236 Appendices

This process consists of the various types of work that should be carried out to develop an embedded system that
can be used safely and without anxiety.
(4) Support Process

This process consists of the various types of work for providing a wide range of support that becomes necessary
in the course of the development (e.g.: documentation).

 S

Safety Engineering Process (SAP: SAfety engineering Process)

Safety Engineering Process is a process that consists of an orderly set of work that should be carried out to
develop an embedded system that can be used safely and without anxiety.

The following activities are included in this process:
SAP1 Safety Requirements Definition
SAP2 Safety Testing

Software Engineering Process (SWP: SoftWare engineering Process)
Among the various types of work pertaining to embedded software development, the activities and tasks ranging

from Software Requirements Definition directly related to software production to Comprehensive Software Testing
are defined in this process.

The following activities are included in this process:
SWP1 Software Requirements Definition	 SWP4 Implementation & Unit Testing
SWP2 Software Architectural Design	 SWP5 Software Integration Testing
SWP3 Software Detailed Design	 SWP6 Comprehensive Software Testing

Stakeholder
Stakeholders are individuals with interest in the product, ranging from those belonging to corporate entities to

end users.
Stub

Stub is a placeholder for substituting the lower-level module that is called by the tested component (program
unit).

Related terminology Test driver
Support Process (SUP: SUpport Process)

Support Process (SUP) consists of supportive activities performed across all stages of the development process
(SYP, SWP and SAP) to help manage the respective activities (tasks and sub-tasks) defined in these engineering
processes and smoothen the organizational execution of embedded software development.

While in ISO/IEC12207 (for software engineering) and ISO/IEC15288 (for system engineering), more
detailed definitions of support process are given by sub-dividing this process into life cycle process groups like
organizational project-enabling processes and SW support processes, this guidebook (ESPR Ver.2.0) has focused on
defining the following support activities: SUP1, SUP6, SUP7, SUP8, and SUP10.

The following activities are included in this process:
SUP1 Project Management	 SUP5 Configuration Management
SUP2 Quality Assurance	 SUP6 Problem Resolution Management
SUP3 Risk Management	 SUP7 Change Management
SUP4 Documentation & Document Management	 SUP8 Joint Review

237Appendix 1.Terminology

SUP9 Subcontractor Management	 SUP10 Preparation of Development Environment
System Engineering Process (SYP: SYstem engineering Process)

System Engineering Process mainly consists of the activities for defining the system requirements for the
embedded system that operates by the workings of the software that is embedded, and for verifying the behaviors
as the system.

The following activities are included in this process:
SYP1 System Requirements Definition	 SYP3 System Integration Testing
SYP2 System Architectural Design	 SYP4 System Testing

 T

Task
Task is a lower-level work unit that constitutes a part of the cluster of specific actions grouped by activity that are

required to execute the given activity and achieve its pre-defined objectives.
For example, the activity named “Software Requirements Definition” is defined in this guidebook to be

composed of the following two tasks:
• Creating the Software Requirements Specifications;
• Reviewing the Software Requirements Specifications.

Test driver
Test driver is a placeholder for substituting the higher-level module that transmits the test data to the tested

component (program unit).
			 Stub

 W

WBS (Work Breakdown Structure)
WBS is a technique to decompose the entire project into specific types of work. It is used to break down

the project goal (product to be developed) into small pieces of deliverables that are arranged systematically in
hierarchical order, and to allocate the necessary work to develop each of these partial deliverables.

Building the WBS involves the sub-dividing of deliverables as detailed as possible to define concrete outputs that
can be visualized as direct outcome in response to requirements of particular importance to the project.By building
the WBS, the detailed set of work required to achieve the objectives of the project can be identified. Moreover, once
the WBS for the given project is established, it will be a useful tool for the stakeholders of the project (sponsors,
personnel in charge of marketing, project members, etc) to gain clear preliminary knowledge about the scope
of their development project, and help them prevent the project plan from leaving out any elements of required
development that may lead to delays in the project schedule due to inevitable later additions of extra work to make
up for the missing elements.

Furthermore, by following the WBS closely throughout the project, the extent of impact on the ongoing project
caused by the changes in requirement that become necessary after commencing the development can be well-
controlled.

Related terminology

238 Appendices

Appendix 2 Standards Correspondence Table
(Between This Guidebook and X0160)

ESPR (This guidebook) X 0160-1996 (ISO/IEC12207: 1995)
Software life cycle processes

− Acquisition Process
− Supply Process

−
Development Process
 Process Implementation

 System Requirements Analysis
 System Architectural Design

 Software Requirements Analysis
 Software Architectural Design
 Software Detailed Design
 Software Coding and Testing
 Software Integration
 Software Qualification Testing

 System Integration
 System Qualification Testing
 Software Installation
 Software Acceptance Support

SYP : System Engineering Process
 SYP1 System Requirements Definition
 SYP2 System Architectural Design
SWP : Software Engineering Process
 SWP1 Software Requirements Definition
 SWP2 Software Architectural Design
 SWP3 Software Detailed Design
 SWP4 Implementation & Unit Testing
 SWP5 Software Integration Testing
 SWP6 Comprehensive Software Testing
SYP : System Engineering Process
 SYP3 System Integration Testing
 SYP4 System Testing

−
−
− Operation Process
− Maintenance Process

SUP : Support Process
 SUP4 Documentation & Document Management Documentation Process
SUP : Support Process
 SUP5 Configuration Management Configuration Management Process
SUP : Support Process
 SUP7 Change Management −

SUP : Support Process
 SUP2 Quality Assurance Quality Assurance Process

− Verification Process
− Validation Process

SUP : Support Process
 SUP8 Joint Review Joint Review Process

− Audit Process
SUP : Support Process
 SUP6 Problem Resolution Management Problem Resolution Process
SUP : Support Process
 SUP1 Project Management Management Process
SUP : Support Process
 SUP3 Risk Management −

SUP : Support Process
 SUP10 Preparation of Development Environment Infrastructure Process

− Improvement Process
− Training Process
− Tailoring Process

SUP : Support Process
 SUP9 Subcontractor Management −

SAP : Safety Engineering Process
 SAP1 Safety Requirements Definition
 SAP2 Safety Testing −

 : Processes defined in this guidebook

239Appendix 3. List of Activities / Tasks / Sub-tasks

Appendix 3 List of Activities / Tasks / Sub-tasks

 SYP : System Engineering Process

SYP1 System Requirements Definition 22

	 1.1 Creating the System Requirements Specifications
		 1.1.1 Understanding the Product Plan Description
		 		 and Product Specifications
		 1.1.2 Analyzing and Sorting the Functional System
			 	 Requirements
		 1.1.3 Analyzing and Sorting the Non-functional
				 System Requirements
		 1.1.4 Clarifying the System Operational Constraints
		 1.1.5 Prioritizing the System Requirements
		 1.1.6 Creating the System Requirements
				 Specifications
	 1.2 Reviewing the System Requirements Specifications
		 1.2.1 Reviewing the System Requirements
				 Specifications Internally
SYP2 System Architectural Design. 32

	 2.1 Creating the System Architectural Design
		 Description
		 2.1.1 Confirming the Design Conditions
		 2.1.2 Designing the System Structure
		 2.1.3 Designing the Overall System Behaviors
		 2.1.4 Designing the Interface
		 2.1.5 Creating the System Architectural Design
				 Description
	 2.2 Reviewing the System Architectural Design
		 2.2.1 Reviewing the System Architectural Design
				 Description Internally
	 2.3 Jointly Reviewing the System Architectural Design
		 Description
		 2.3.1 Jointly Reviewing the System Architectural
				 Design Description

SYP3 System Integration Testing. 43

	 3.1 Preparing for System Integration Test
		 3.1.1 Preparing for System Integration
		 3.1.2 Preparing for System Integration Test
	 3.2 Conducting the System Integration Test
		 3.2.1 Conducting the System Integration Test
		 3.2.2 Reviewing the System Integration Test
				 Results
	 3.3 Reviewing the System Integration Test Results
		 3.3.1 Reviewing the System Integration Test
				 Results Internally
SYP4 System Testing. 51

	 4.1 Preparing for System Test
		 4.1.1 Creating the System Test Specifications
		 4.1.2 Preparing for System Test
		 4.1.3 Reviewing the System Test Specifications
				 Internally
	 4.2 Conducting the System Test
		 4.2.1 Conducting the System Test
		 4.2.2 Reviewing the System Test Results
	 4.3 Reviewing the System Test Results
		 4.3.1 Reviewing the System Test Results Internally
	 4.4 Confirming the Completion of System

Development
		 4.4.1 Confirming the Completion of System
				 Development

240 Appendices

 SWP : Software Engineering Process

SWP1 Software Requirements Definition. 63

	 1.1 Creating the Software Requirements Specifications
		 1.1.1 Identifying the Constraints
		 1.1.2 Clarifying the Functional Software Requirements
		 1.1.3 Clarifying the Non-functional Software

Requirements
		 1.1.4 Prioritizing the Requirements
		 1.1.5 Creating the Software Requirements

Specifications
	 1.2 Reviewing the Software Requirements Specifications
		 1.2.1 Reviewing the Software Requirements

Specifications Internally
SWP2 Software Architectural Design. 76

	 2.1 Creating the Software Architectural Design
		 Description
		 2.1.1 Confirming the Design Conditions
		 2.1.2 Designing the Software Structure
		 2.1.3 Designing the Overall Software Behaviors
		 2.1.4 Designing the Interface
		 2.1.5 Estimating the Performance / Amount of Memory

Used
		 2.1.6 Creating the Software Architectural Design

Description
	 2.2 Reviewing the Software Architectural Design
		 2.2.1 Reviewing the Software Architectural Design

Description Internally
	 2.3 Jointly Reviewing the Software Architectural Design
		 2.3.1 Jointly Reviewing the Software Architectural

Design Description
SWP3 Software Detailed Design. 89

	 3.1 Creating the Functional Unit Detailed Design
		 Description
		 3.1.1 Dividing into Program Units
		 3.1.2 Designing the Program Units
		 3.1.3 Defining the Interface in Detail
		 3.1.4 Estimating the Amount of Memory Used
		 3.1.5 Creating the Software Detailed Design

Description
	 3.2 Reviewing the Software Detailed Design
		 3.2.1 Reviewing the Software Detailed Design

Description Internally
	 3.3 Checking the Consistency with Hardware
		 Specifications

		 3.3.1 Checking the Consistency with Hardware
Specifications

SWP4 Implementation & Unit Testing. 99

	 4.1 Preparing for Implementation and Unit Test
		 4.1.1 Preparing for Implementation
		 4.1.2 Preparing for Unit Test
	 4.2 Conducting the Implementation and Unit Test
		 4.2.1 Implementing the Program Units
		 4.2.2 Conducting the Unit Test
		 4.2.3 Reviewing the Unit Test Results
	 4.3 Reviewing the Implementation and Unit Test Results
		 4.3.1 Reviewing the Source Code
		 4.3.2 Reviewing the Unit Test Results Internally
SWP5 Software Integration Testing 109

	 5.1 Preparing for Software Integration Test
		 5.1.1 Preparing for Software Integration
		 5.1.2 Preparing for Software Integration Test
	 5.2 Conducting the Software Integration Test
		 5.2.1 Software Integration
		 5.2.2 Conducting the Software Integration Test
		 5.2.3 Reviewing the Software Integration Test Results
	 5.3 Reviewing the Software Integration Test Results
		 5.3.1 Reviewing the Software Integration Test Results

Internally
SWP6 Comprehensive Software Testing. 120

	 6.1 Preparing for Comprehensive Software Test
		 6.1.1 Creating the Comprehensive Software Test

Specifications
		 6.1.2 Preparing for Comprehensive Software Test
		 6.1.3 Reviewing the Comprehensive Software Test

Specifications Internally
	 6.2 Conducting the Comprehensive Software Test
		 6.2.1 Conducting the Comprehensive Software Test
		 6.2.2 Reviewing the Comprehensive Software Test

Results
	 6.3 Reviewing the Comprehensive Software Test Results
		 6.3.1 Reviewing the Comprehensive Software Test

Results Internally
	 6.4 Confirming the Completion of Software Development
		 6.4.1 Confirming the Completion of Software

Development

241Appendix 3. List of Activities/Tasks/Subtasks

 SAP : Safety Engineering Process

SAP1 Safety Requirements Definition. 132

	 1.1 Creating the Safety Requirements Specifications
		 1.1.1 Understanding the Product Plan Description and

Product Specifications
		 1.1.2 Examining the Potential System Failures
		 1.1.3 Examining the Requirements to Achieve the

Required Safety
		 1.1.4 Creating the Safety Requirements Specifications
	 1.2 Reviewing the Safety Requirements Specifications
		 1.2.1 Reviewing the Safety Requirements Specifications

Internally

SAP2 Safety Testing. 141

	 2.1 Preparing for Safety Test
		 2.1.1 Preparing for Safety Test
	 2.2 Conducting the Safety Test
		 2.2.1 Conducting the Safety Test
		 2.2.2 Reviewing the Safety Test Results
	 2.3 Reviewing the Safety Test Results
		 2.3.1 Reviewing the Safety Test Results Internally

 SUP : Support Process

SUP1 Project Management. 149

	 1.1 Creating the Project Plan Description

	 1.2 Understanding the Project Execution Status

	 1.3 Controlling the Project

	 1.4 Creating the Project Completion Report

SUP2 Quality Assurance . 152

	 2.1 Defining the Quality Objectives

	 2.2 Establishing the Quality Assurance Method

	 2.3 Controlling the Quality Based on Quality
Visualization

SUP3 Risk Management . 154

	 3.1 Identifying and Understanding the Risks

	 3.2 Monitoring the Risks

	 3.3 Determining and Executing the Risk Treatments

 SUP4 Documentation & Document Management

	 4.1 Creating and Reviewing the Documents

	 4.2 Distributing the Documents

	 4.3 Maintaining and Managing the Documents

SUP5 Configuration Management . 156

	 5.1 Understanding the Objects of Configuration
Management

	 5.2 Managing the Configuration Management / Change
Management History

SUP6 Problem Resolution Management. 158

	 6.1 Recording the Problems and Analyzing the Causes

	 6.2 Analyzing the Impact and Devising the Acceptable
Solution

	 6.3 Implementing the Acceptable Solution

	 6.4 Tracking the Implemented Solution

SUP7 Change Management. 160

	 7.1 Recording the Information on Change Requests

	 7.2 Analyzing the Impact of Changes

	 7.3 Devising and Executing the Change Plan

	 7.4 Reviewing the Outcome of the Changes Made

SUP8 Joint Review. 161

	 8.1 Preparing for the Review

	 8.2 Carrying Out the Review

	 8.3 Acknowledging and Following Up on Matters That
Have Been Reviewed

SUP9 Subcontractor Management

	 9.1 Preparing for Order Placement and Entering into
Contract

	 9.2 Monitoring the Outsourced Tasks

SUP10 Preparation of Development Environment. 162

	 10.1 Devising the Development Environment
Preparation Plan

	 10.2 Building the Development Environment

	 10.3 Maintaining the Development Environment

242 Appendices

243Afterword

Afterword

In order to complete the development of software as a product, various types of work need to be

performed in layers. The question is, “What exactly are the types of work that need to be performed

to fully develop a software as a product, especially when the product is embedded software?” As

one of the responses to this question, the members of Development Process Technical Working

Group of Embedded Software Development Improvement and Promotion Committee under

Ministry of Economy, Trade and Industry (METI) took over two years to study and define the

specific set of work required in embedded software development, and organized their findings in

the form of a document titled “ESPR: Embedded System development Process Reference –

Development Process Guide for Embedded Software” , that was released in the fall of 2006.

This 2006 fall version, commonly known as ESPR Ver.1.0, focused on defining the mandatory set

of work directly related to software engineering, and on describing the procedures and precautions

for each of these works in an orderly manner, using expressions that can be well comprehended by

the engineers at the development sites.

Although needless to say, successful software development project involves more than just

carrying out the set of work directly related to software engineering, and various other types of

work related to management and support are also equally important. In light of this recognition, the

contents of ESPR Ver.1.0 have been enriched by including descriptions on three additional processes

– System Engineering Process, Support Process, and Safety Engineering Process – and issued this

revised version as ESPR Ver.2.0. It is the sincere hope of everyone who contributed to the making

of this new document to see ESPR Ver.2.0 being used as widely as or even more than its preceding

version 1.0.

Lastly but not least, the names of all the contributors of this publication have been listed on the

final page as a sign of our profound gratitude to them all.

November 2007

Embedded Software Development Improvement and Promotion Committee

Authors and editors
	 ABE Koji		 CSK SYSTEMS CORPORATION
	 ASAI Makio		 NIPPON ELECTRIC CONTROL EQUIPMENT INDUSTRIES ASSOCIATION
	 CHENG Zixue		 THE UNIVERSITY OF AIZU
	 FUJIMURA Hiroshi		 NEC Communication Systems, Ltd.
	 HIRAO Yuji		 Nagaoka University of Technology
	 HIRAYAMA Masayuki		 IPA/SEC(TOSHIBA CORPORATION)
	 IGARI Hideo		 IPA/SEC(Yokogawa Digital Computer Corporation)
	 IWAHASHI Masami		 Mitsubishi Electric Mechatronics Software Corporation
	 KANEDA Mitsunori		 TOSHIBA SYSTEM TECHNOLOGY CORPORATION
	 KANEMOTO Shigeru		 THE UNIVERSITY OF AIZU
	 MIURA Kunihiko		 YAZAKI Corporation
	 MIZUGUCHI Daichi		 National Institute of Advanced Industrial Science and Technology
	 MUKAIDONO Masao		 MEIJI UNIVERSITY
	 MURAMATSU Akio		 FUJITSU LIMITED
	 MURO Shuji 		 IPA/SEC(Yokogawa Digital Computer Corporation)
	 NAGATOMO Yuji		 VeriServe Corporation
	 NAKAGAWA Masamichi	 Matsushita Electric Industrial Co., Ltd.
	 NONAKA Makoto		 PA/SEC(TOYO UNIVERSITY)
	 OHNO Katsumi		 TOYOTA TECHNICAL DEVELOPMENT CORPORATION
	 OHTA Takashi		 NEC Corporation
	 SATO Yoshinobu		 Tokyo University of Marine Science and Technology
	 SUGIYAMA Hidetoshi		 Canon Inc.
	 SUNAZUKA Toshihiko	 Sunazuka Consulting Service, Inc.
	 SUZUKI Toshihiko		 VeriServe Corporation
	 TAKANO Taiko		 Hitachi, Ltd.
	 TAMARU Kiichiro		 IPA/SEC(TOSHIBA CORPORATION)
	 TANABE Yasuo		 Japan Functional Safty Inc.
	 TATSUNO Yukio		 Oki Information Systems Co., Ltd.
	 TOMOBE Masaaki		 Yokogawa Electric Corporation
	 TSAI Kuangchih 		 Business Cube & Partners,Inc.
	 WATANABE Masato		 CSK SYSTEMS CORPORATION
	 YAMAZAKI Taro 		 IPA/SEC(Nihon Unisys, Ltd.)
	 YOSHIOKA Ritsuo		 Japan Functional Safety Laboratory

			 (Affiliations are as of the publication of Japanese edition)

ESPR
Embedded System development Process Reference guide
Ver.2.0

October 31, 2012
Written and edited by Software Engineering Center,
Technology Headquarters,
Information-technology Promotion Agency, Japan

http://www.ipa.go.jp/english/sec/

Copyright © 2012, IPA/SEC

Contributors to English translation version
	 SHIMIZU Tatsuo		 IPA/SEC
	 MIURA Atsuko		 IPA/SEC
	 MATSUDA Mitsuhiro		 IPA/SEC
	 MIHARA Yukihiro		 IPA/SEC

	000i_PG_mae_1s_en1017
	001_PG_Part1_1s_en
	017_PG_Part2-1_1s_en
	021_PG_Part2-2_SYP1_1s_en
	032_PG_Part2-2_SYP2_1s_en
	043_PG_Part2-2_SYP3_1s_en
	051_PG_Part2-2_SYP4_1s_en
	ESPR_062-130_e
	131_PG_Part2-2_SAP1_1s_en
	141_PG_Part2-2_SAP2_1s_en
	148_PG_Part2-2_SUP_1s_en
	163_PG_Part2-3_2s_en
	217_PG_Part3_1s_en
	233_PG_PartApp_1s_en

