
Security Evaluation of Hash Functions: Gröbner Basis Based Cryptanalysis of SHA-1

> Makoto Sugita IPA Security Center

Part I Japanese Standardization Effort (CRYPTREC)

Security evaluation methods and the design of cryptographic algorithms

- Generally No definitive security proof of a cryptographic algorithm against the attacks
- A cryptographic algorithm is considered as a secure one only if it is secure against all known attacks

CRYPTREC

Cryptographic Technology Evaluation <u>Committee</u> hosted by the <u>Cryptographic</u> **Technology Investigative Committee** organized by MIC/METI on conjoint basis and Cryptographic Technology Monitoring **Committee and Cryptographic Module Committee organized by IPA and NICT on** conjoint basis. **MIC:** Ministry of International Affairs and Communications **METI: Ministry of Economy, Trade and Industry** Information-Technology, Promotion Agency IPA: NICT: National Institute of Information and Communications **Technology**

The Mission Assigned to The Cryptography Research Group of IPA Security Center

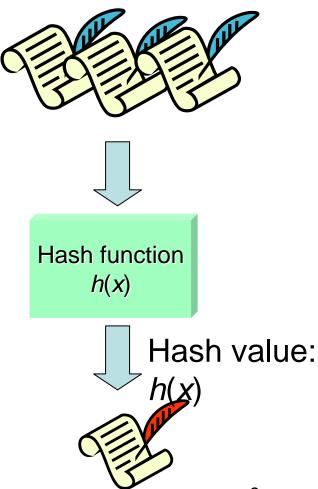
Ensuring the Security of Cryptographic Algorithms

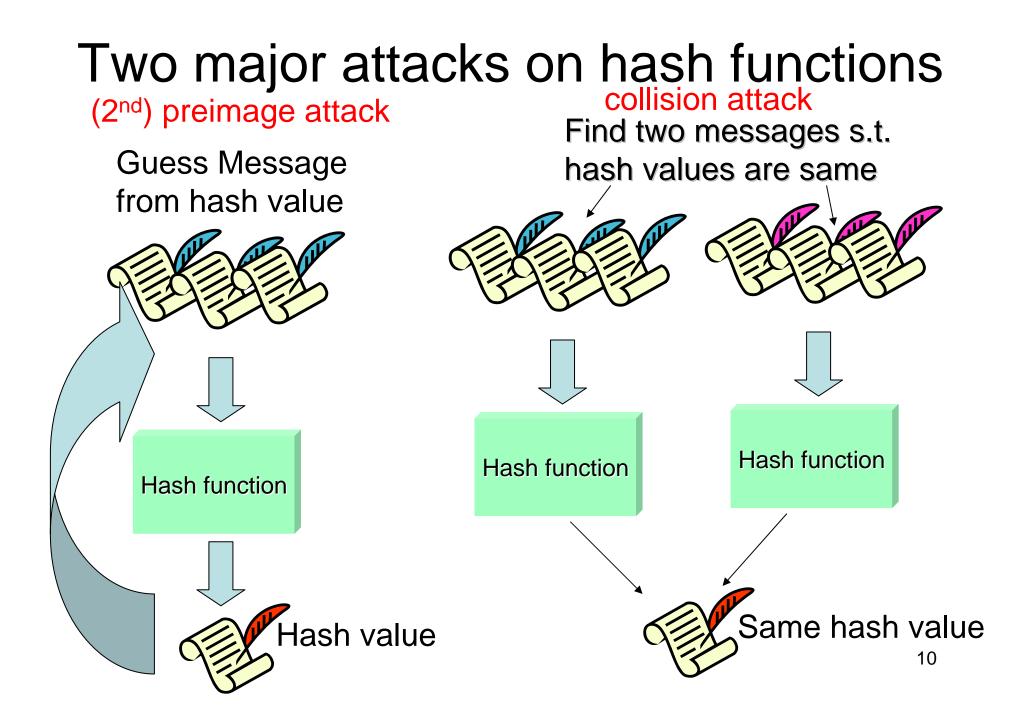
What is "Ensuring the Security of Cryptographic Algorithms"?

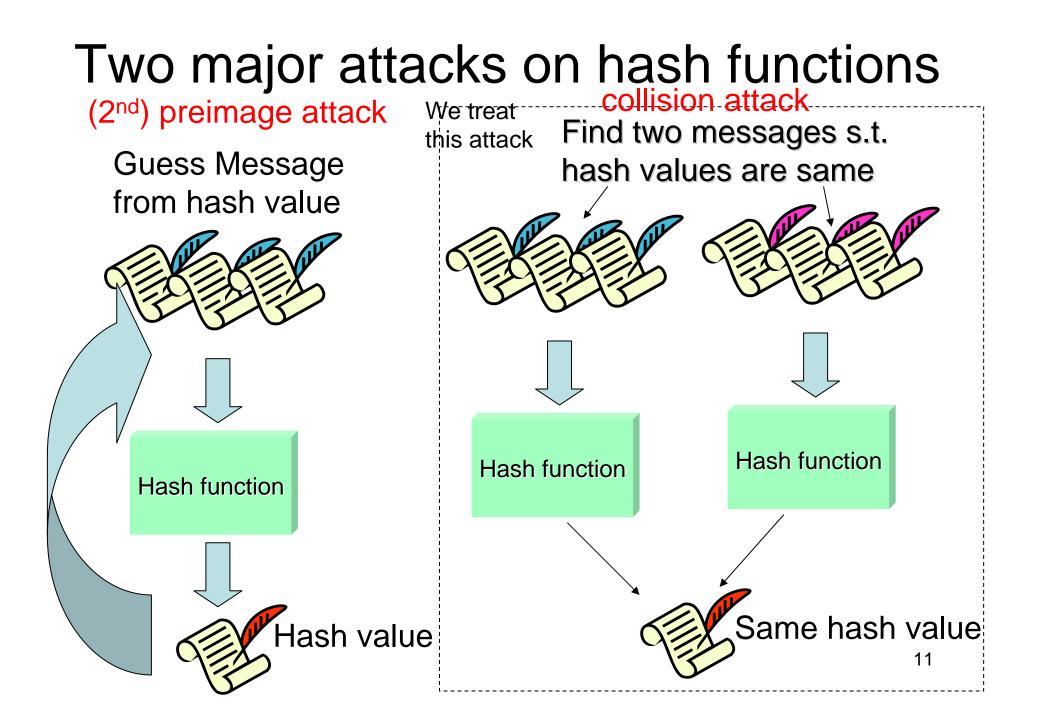
- 2000 ~ 2002: Cryptographic Technology Evaluation
- Feb. 2003: Publication of the e-Government Recommended Cipher List
- Feb. 2003: Monitoring the Current Tendency of Cryptographic Study
 - Not only study the current tendency in cryptanalyzing research for cryptosystems but also researches the ways to cryptanalyze by ourselves

What Does The e-Government Recommended Cipher List Look Like?

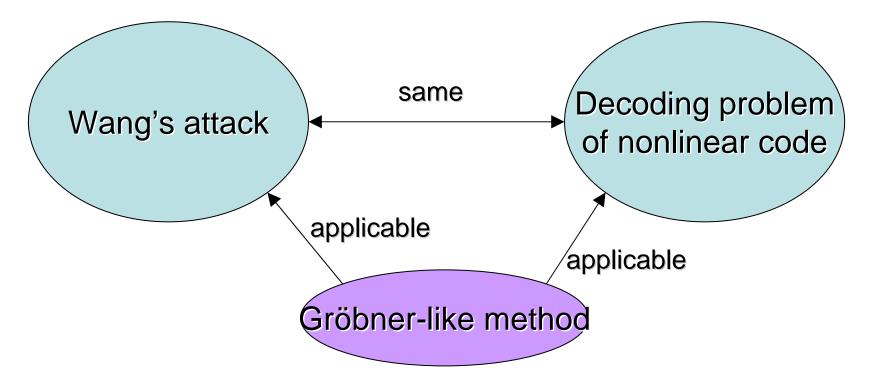
Classification in Technical		Appellation
	1	DSA
	Olivera trans	ECDSA
	Signature	RSASSA PKCS1 v1_5
		RSA-PSS
Public Key	Confidentiality	RSA-OAEP
_		RSAES-PKCS1 v1_5
		DH
	Key Agreement	ECDH
		PSEC-KEM
		CIPHERUNIORN-E
	64 Bit Block Cipher	Hierocrypt-L1
	64 Bit Block Cipher	MISTY1
		3-key Triple DES
	128 Bit Block Cipher	AES
Symmetric Key		Camellia
Symmetric Key		CIPHERUNICORN-A
		Hierocrypt-3
		SC2000
	Stream Cipher	MUGI
		MULTI-S01
		128-bit RC4
	Hash Function	RIPEMD-160
		SHA-1
Others		SHA-256
		SHA-384
		SHA-512
		PRNG based on SHA-1 in ANSI X9.42-2001 Annex C.1
	Pseude-Random Number	
	Generator	(+change notice 1) Appendix 3.1
		PRNG based on SHA-1 for general purpose in FIPS 186-2

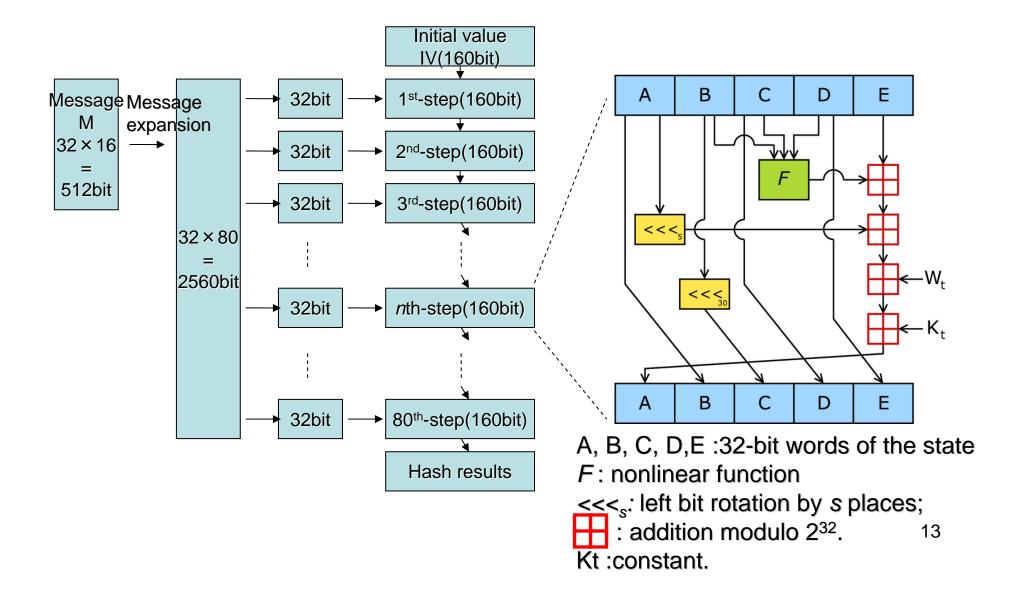

Part II Gröbner Basis Based Cryptanalysis of SHA-1


Joint work with Mitsuru Kawazoe (Osaka Prefecture university) and Hideki Imai (Chuo University and RCIS, AIST)


Hash function

- Cryptographic hash function y = h(x)
 - Take a message *x* of arbitrary length
 - Output a short value *y* of a fixed length
- Basic security property
 - One-way: given *y*, hard to find *x* s.t. $x = h^{-1}(x)$
 - Collision resistant: hard to find $x \neq y$ s.t. h(x) = h(y)
- Applications
 - Digital signature, password verification, key generation...
 - Employed in almost all security systems


Message: x



Wang's attack, nonlinear code and Gröbner basis

• Wang's attack can be considered as decoding problem of nonlinear code.

Structure of hash function SHA-1

Definition of SHA-1

The hash function SHA-1 generates 160-bit hash result from message of length less than 2^{64} bits. It has Merkle/Damgard structure like other hash functions, and has 160-bit chaining value and 512-bit message block, and initial chaining values (IV) are fixed. From 512-bit block of the padded message, SHA-1 divides it into 16×32 -bit words $(m_0, m_1, \dots, m_{15})$ and expands the message by

$$m_i = (m_{i-3} \oplus m_{i-8} \oplus m_{i-14} \oplus m_{i-16}) \lll 1$$

for $i = 16, \dots, 79$, where $x \ll n$ denotes *n*-bit left rotation of *x*. Using expanded messages, for $i = 1, 2, \dots, 80$,

$$a_{i} = (a_{i-1} \ll 5) + f_{i}(b_{i-1}, c_{i-1}, d_{i-1}) + e_{i-1} + m_{i-1} + k_{i}$$

$$b_{i} = a_{i-1}, \quad c_{i} = b_{i-1} \ll 30, \quad d_{i} = c_{i-1} \quad e_{i} = d_{i-1}$$

where initial chaining value $IV = (a_0, b_0, c_0, d_0, e_0)$ is

(0x67452301, 0xefcdab89, 0x98badcfe, 0x10325476, 0xc3d2e1f0)

and function f_i is defined as in Table 1. In the following, we express 32-bit words as hexadecimal numbers.

Description of SHA-1 algorithm

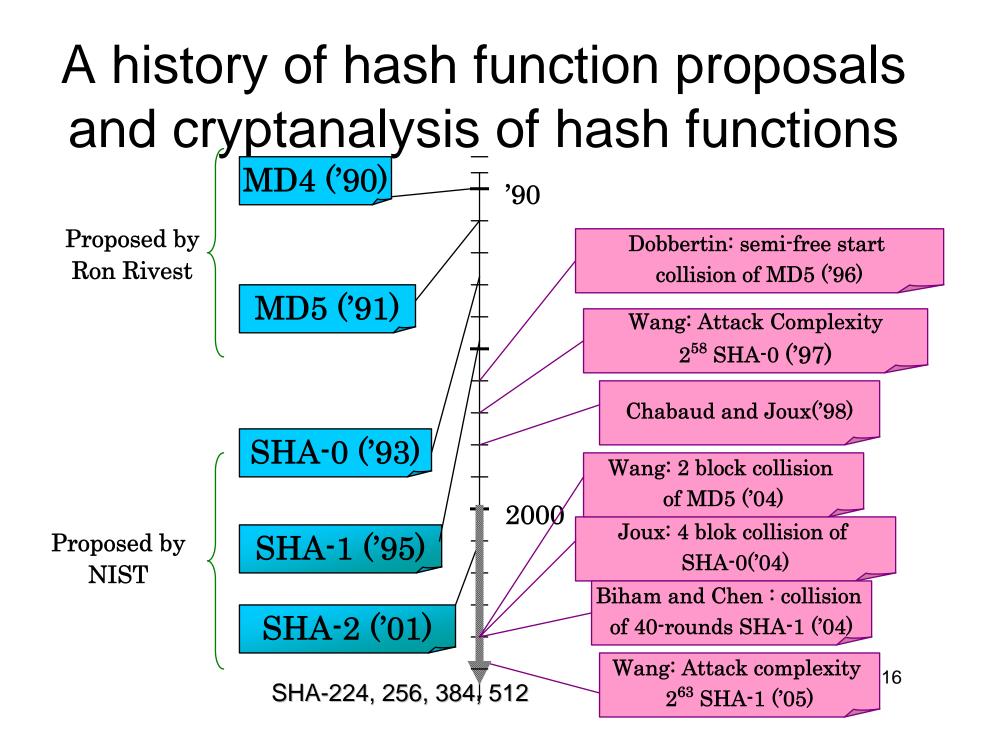
 $m_i = (m_{i-3} \oplus m_{i-8} \oplus m_{i-14} \oplus m_{i-16}) \lll 1$

for $i = 16, \dots, 79$, where $x \ll n$ denotes *n*-bit left rotation of *x*. Using expanded messages, for $i = 1, 2, \dots, 80$,

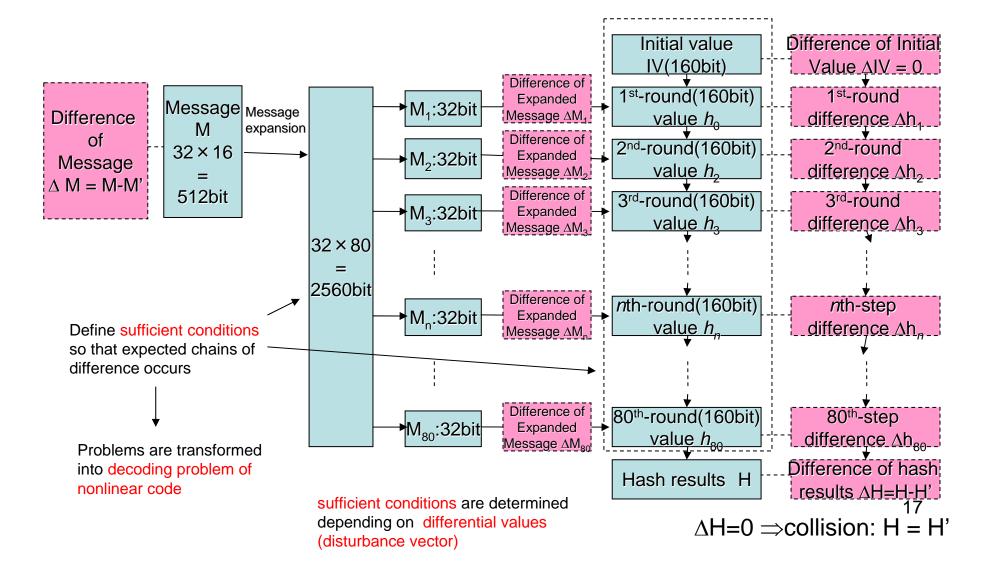
$$a_{i} = (a_{i-1} \ll 5) + f_{i}(b_{i-1}, c_{i-1}, d_{i-1}) + e_{i-1} + m_{i-1} + k_{i}$$

$$b_{i} = a_{i-1}$$

$$c_{i} = b_{i-1} \ll 30$$


$$d_{i} = c_{i-1}$$

$$e_{i} = d_{i-1}$$


where initial chaining value $IV = (a_0, b_0, c_0, d_0, e_0)$ is (0x67452301, 0xefcdab89, 0x98badcfe, 0x10325476, 0xc3d2e1f0).

[round	$_{\rm step}$	Boolean function f_i	${ m constant} k_i$
ſ	1	1 - 20	IF: $(x \land y) \lor (\neg x \land z)$	0x5a827999
	2	21 - 40	$\mathrm{XOR}:x\oplus y\oplus z$	0x6ed6eba1
	3	41 - 60	MAJ: $(x \land y) \land (x \lor z) \land (y \lor z)$	0x8fabbcdc
	4	61 - 80	$\mathrm{XOR}:x\oplus y\oplus z$	0xca62c1d6

Table 1 Definition of function f_i

Differential cryptanalysis against Hash functions

Wang's attack

Outline of the attack.

- Find differential paths characteristics (difference for subtractions modular 2³²)
- Determine certain sufficient conditions
- For randomly chosen M, apply the message modification techniques
- However, not all information is published
 - How to find such differential path (disturbance vector)?
 - Candidates are too many
 - How to determine sufficient conditions?
 - What is multi-message modification?
 - Details are unpublished

Disturbance vector and sufficient conditions

Disturbance vector

- ΔM = Disturbance vector
 - There exist messages *m*, *m*' s.t. $\Delta M = m m'$
- SD: Sufficient conditions (w.r.t. ΔM)
 - If a message *m* satisfies SD, then $h(m)=h(m+\Delta M)$

Message modification

- *M*: a randomly chosen message
- $M \rightarrow M$ such that M' satisfies SD

Sufficient condition and message modification techniques by Wang

1		14.4	1.4.	
chaining		$\operatorname{conditions}$	on bits	
variable	32 - 25	24 - 17	16 - 9	8 - 1
a_1	a00		1aa	1-0a11aa
a_2	01110	1-	0aaa-0	011-001-
a_3	0-100	-0-aaa0-	0111	01110-01
a_4	10010	a1011	10011010	10011-10
a_5	001a0	01-000	10001111	-010-11-
a_6	1-0-0011	1-1001-0	111011-1	a10-00a-
a_7	01011	1a0111	101010	-10-11-0
a_8	-0110	000000aa	001aa111	01-1-
a_9	-00	10001000	000000-	11-1-
a_{10}	0	1111111-	11100000	00-
<i>a</i> ₁₁		10	11111101	1-a0
a_{12}	0			1011
a_{13}				1110
a_{14}	-0			0-1-
a_{15}	10			1-0-
a_{16}	1			0-0-
a_{17}	0-0			1-
a_{18}	1			a
a_{19}	b			0-
a_{20}				a
a_{21}				1

Method for determining sufficient conditions is unpublished

Table 10 A set of sufficient conditions on a_i for the 80-step differential path given in Table 9. b denote the condition $a_{19,30} = a_{18,32}$

Many details are not public!!

- 1. How to find the differentials?
- 2. How to determine sufficient conditions on a_i ?
- 3. What are the details of message modification technique?

=>

We have clarified 2 and 3, and partially 1

Our Contribution:

- Developing the searching method for 'good' message differentials
- Developing the method to determine sufficient conditions
- Developing new multi-message modification technique
 - Proposal of a novel message modification technique employing the Gröbner base based method

Wang's attack and nonlinear code

- Wang's attack is decoding a nonlinear code {a_i, m_i} in GF(2)^{32x80x2}.
 - Satisfying sufficient conditions
 - Satisfying nonlinear relations between a and m

 $m_i = (m_{i-3} \oplus m_{i-8} \oplus m_{i-14} \oplus m_{i-16}) \lll 1$

for $i = 16, \dots, 79$, where $x \ll n$ denotes *n*-bit left rotation of *x*. Using expanded messages, for $i = 1, 2, \dots, 80$,

$$a_{i} = (a_{i-1} \ll 5) + f_{i}(b_{i-1}, c_{i-1}, d_{i-1}) + e_{i-1} + m_{i-1} + k_{i}$$

$$b_{i} = a_{i-1}$$

$$c_{i} = b_{i-1} \ll 30$$

$$d_{i} = c_{i-1}$$

$$e_{i} = d_{i-1}$$

where initial chaining value $IV = (a_0, b_0, c_0, d_0, e_0)$ is (0x67452301, 0xefcdab89, 0x98badcfe, 0x10325476, 0xc3d2e1f0).

How to decode nonlinear code?

- A general method
 - Gröbner bases based algorithm
- Difficult to calculate Gröbner basis directly:
 - System of equations is very complex
- How to decode?
 - Employ Gröbner base based method
 - Employ techniques of error correcting code
 - Note: Nonlinear relations between a and m can be linearly approximated

Definitions of differential and disturbance vector

Definition 1. Let m_i and a_i be as in the definition of SHA-1. When we consider a_i as a vector of \mathbb{F}_2^{32} , let $a_{i,j}$ be the *j*th bit of variable a_i . Let m'_i and a'_i be another pair and consider the difference $\Delta a_i := a'_i - a_i$. Then for Δa_i , we define the following notation.

$$\Delta^+ a_{i,j} = \begin{cases} 1 & \text{if } a_{i,j}' = 1 \text{ and } a_{i,j} = 0 \\ 0 & \text{otherwise,} \end{cases} \quad \Delta^- a_{i,j} = \begin{cases} 1 & \text{if } a_{i,j}' = 0 \text{ and } a_{i,j} = 1 \\ 0 & \text{otherwise,} \end{cases}$$

We define $\Delta^{\pm}a_{i,j}$ by $\Delta^{\pm}a_{i,j} = \Delta^{+}a_{i,j} \oplus \Delta^{-}a_{i,j}$. Moreover, we define $\Delta^{+}a_{i} = (\Delta^{+}a_{i,0}, \Delta^{+}a_{i,1}, \cdots, \Delta^{+}a_{i,31})$, $\Delta^{-}a_{i} = (\Delta^{-}a_{i,0}, \Delta^{-}a_{i,1}, \cdots, \Delta^{-}a_{i,31})$ and $\Delta^{\pm}a_{i} = \Delta^{+}a_{i} \oplus \Delta^{-}a_{i}$. Similarly, for m, b, c, d, e, wedefine $\Delta^{+}m_{i,j}$, $\Delta^{-}m_{i,j}$, $\Delta^{\pm}m_{i,j}$, $\Delta^{+}m_{i}$, $\Delta^{-}m_{i}$, $\Delta^{\pm}m_{i}$, and so on. Following Wang's notation, we call a vector in the form $(\Delta^{\pm}m_{i}, \Delta^{\pm}a_{i}, \Delta^{\pm}b_{i}, \Delta^{\pm}c_{i}, \Delta^{\pm}d_{i}, \Delta^{\pm}e_{i})$ a "disturbance vector", and $(\Delta^{+}m_{i}, \Delta^{-}m_{i}, \Delta^{+}a_{i}, \Delta^{-}a_{i}, \Delta^{+}b_{i}, \Delta^{-}b_{i}, \dots, \Delta^{+}e_{i}, \Delta^{-}e_{i})$ a "differential without carry".

How to find disturbance vector?

See our preprint, but after that, some better methods have already been published by other teams.

How to calculate sufficient conditions?

Definition and proposition

Definition 2: For a message space $M = \mathbb{Z}/2^{32}\mathbb{Z}$, we define function $f: (M \times M) \to M: (x_1, x_2) \mapsto (x_1 - x_2)$ where we consider '-' as subtraction of $\mathbb{Z}/2^{32}\mathbb{Z}$. We define differential δM by $\delta M = (M \times M)/\sim$ where for $\delta m_1, \delta m_2 \in \delta M, \ \delta m_1 \sim \delta m_2$ is satisfied if and only if $f(\delta m_1) = f(\delta m_2)$.

Proposition 1: $\delta M \cong M$

proof) This is obvious from the definition of δM .

Definitions

In calculation, we use the following steps.

- Calculate $\delta m_3 = (\Delta^+ m_3, \Delta^- m_3) = \delta m_1 + \delta m_2 = (\Delta^+ m_1 + \Delta^+ m_2, \Delta^- m_1 + \Delta^- m_2).$
- Cancel the bit of $(\Delta^+ m_3, \Delta^- m_3)$: If $\Delta^+ m_{3,j} = \Delta^- m_{3,j} = 1$, change $\Delta^+ m_{3,j} = \Delta^- m_{3,j} = 0$.

We define operator - in δM as follows. For $\delta m_1 = (\Delta^+ m_1, \Delta^- m_1), \ \delta m_2 = (\Delta^+ m_2, \Delta^- m_2),$

 $\delta m_1 - \delta m_2 = (\Delta^+ m_1 + \Delta^- m_2, \Delta^- m_1 + \Delta^+ m_2)$ In calculation, we also use the steps given below.

- Calculate $\delta m_3 = (\Delta^- m_3, \Delta^- m_3) = \delta m_1 \delta m_2 = (\Delta^+ m_1 + \Delta^- m_2, \Delta^- m_1 + \Delta^+ m_2)$
- Cancel the bit of $(\Delta^+ m_3, \Delta^- m_3)$: If $\Delta^+ m_{3,j} = \Delta^- m_{3,j} = 1$, change $\Delta^+ m_{3,j} = \Delta^- m_{3,j} = 0$.

In order to check whether $\delta m_1 = \delta m_2$ or not, calculate $\delta m_1 - \delta m_2$ and check $\delta m_1 - \delta m_2 = (0, 0)$.

How to find sufficient conditions on a_i ?

Ignore message expansion in this step

We will calculate sufficient conditions of chaining variables by adjusting b_i , c_i , d_i so that

$$\delta f(i, b_i, c_i, d_i) = \delta a_{i+1} - (\delta a_i \ll 5) - \delta e_i - \delta m_i.$$

In this calculation, we must adjust carry effect by hand, where we must take into account that when $\delta a_{i+1,j} = (\delta a_i \ll 5)_j = \delta e_{i,j} = \delta m_{i,j} = 0$, $\delta f(i, b_i, c_i, d_i)_j$ must be 0, not 1. Adjusting carry effect is difficult to calculate automatically.

SHA-1 by Wang

1		14.4	1.4.	
chaining		$\operatorname{conditions}$	on bits	
variable	32 - 25	24 - 17	16 - 9	8 - 1
a_1	a00		1aa	1-0a11aa
a_2	01110	1-	0aaa-0	011-001-
a_3	0-100	-0-aaa0-	0111	01110-01
a_4	10010	a1011	10011010	10011-10
a_5	001a0	01-000	10001111	-010-11-
a_6	1-0-0011	1-1001-0	111011-1	a10-00a-
a_7	01011	1a0111	101010	-10-11-0
a_8	-0110	000000aa	001aa111	01-1-
a_9	-00	10001000	000000-	11-1-
a_{10}	0	1111111-	11100000	00-
a_{11}		10	11111101	1-a0
a_{12}	0			1011
a_{13}				1110
a ₁₄	-0			0-1-
a_{15}	10			1-0-
a_{16}	1			0-0-
a_{17}	0-0			1-
a_{18}	1			a
a_{19}	b			0-
a_{20}				a
a_{21}				1

Table 10 A set of sufficient conditions on a_i for the 80-step differential path given in Table 9. b denote the condition $a_{19,30} = a_{18,32}$

31

Sufficient conditions of message *m* in 58-round SHA-1

message				
variable	31 - 24	23 - 16	15 - 8	8 - 0
m_0	0			
m_1	-01			011-
m_2	-10			-111
m_3	0			-1
m_4	000			-01-
m_5	-11			1-
m_6	0			0
m_7				1
m_8				00
m_9	-0			-0-11-
m ₁₀	-0			-0
m_{11}	101			-1-11-
m_{12}	1-1			
m_{13}	0			-0
m_{14}	0			0
m_{15}	0			-11
m_{16}	0			0
m_{17}	-0			-10-
m_{18}	00			-101
m_{19}	-0			11-
m_{20}				11
m_{21}	-0			-01-
maa	01			-010

Sufficient conditions of chaining variables *a* in 58-round SHA-1

chaining				
variable	31 - 24	23 - 16	15 - 8	8 - 0
a_0	01100111	01000101	00100011	00000001
a_1	101			-1-a10aa
a_2	01100	0-	a	100010
a_3	0010	-101a	0-	0a-1a0-0
a_4	11010	-01	01aaa	0-10-100
a_5	10-01a	-1-01-aa	00100-	001-1
a_6	110110	-a-1001-	01100010	1-a111-1
a_7	-11110	a1a1111-	-101-001	10-10
a_8	-010	0000000a	a001a1	100-0-1-
a_9	00	11000100	0000000	101-1-1-
a ₁₀	0-1	11111011	11100000	000-1-
a_{11}	1-0	1	01111110	110-
a_{12}	0-1			-1a
a_{13}	1-0			-101-
a_{14}	1			-11
a_{15}	0			0
a_{16}	-1			a
a ₁₇	-0			1-0-
a_{18}	1-1			a-0-
a_{19}				0
a_{20}	-C			A
a_{21}				a-1-
0				

Procedures for Message modification

• Our method

Two Elimination Orders

• Elimination order of m

Here we introduce elimination order of $\{m_{i,j}\}\{i = 0, 1, \cdots, 15, j = 0, 1, \cdots, 31\}$ by

 $m'_{i',j'} \leq m_{i,j}$ if $i' \leq i$ or $(i' = i \text{ and } j' \leq j)$.

• Elimination order of a

Similarly we can consider different elimination order of $a_{i,j}$ { $i = 0, 1, \dots, 15, j = 0, 1, \dots, 31$ } by

$$a'_{i',j'} \leq a_{i,j}$$
 if $i' \leq i$ or $(i' = i$ and $j' \leq j)$.

These two orders are different but approximately similar because transformation between them is not so complicated.

Sufficient conditions of message

message				
variable	31 - 24	23 - 16	15 - 8	8 - 0
m_0	0			
m_1	-01			011-
m_2	-10			-111
m_3	0			-1
m_4	000			-01-
m_5	-11			1-
m_6	0			0
m_7				1
m_8				00
m_9	-0			-0-11-
m_{10}	-0			-0
m_{11}	101			-1-11-
m_{12}	1-1			
m_{13}	0			-0
m_{14}	0			0
m_{15}	0			-11
m_{16}	0			0
m_{17}	-0			-10-
m_{18}	00			-101
m_{19}	-0			11-
m_{20}				11
m_{21}	-0			-01-
$m_{\alpha\alpha}$	01			-010

Sufficient conditions of chaining variables a

chaining				
$\mathbf{variable}$	31 - 24	23 - 16	15 - 8	8 - 0
a_0	01100111	01000101	00100011	0000001
a_1	101			-1-a10aa
a_2	01100	0-	a	100010
a_3	0010	-101a	0-	0a-1a0-0
a_4	11010	-01	01aaa	0-10-100
a_5	10-01a	-1-01-aa	00100-	001-1
a_6	110110	-a-1001-	01100010	1-a111-1
a_7	-11110	a1a1111-	-101-001	10-10
a_8	-010	0000000a	a001a1	100-0-1-
a_9	00	11000100	0000000	101-1-1-
a ₁₀	0-1	11111011	11100000	000-1-
a_{11}	1-0	1	01111110	110-
a_{12}	0-1			-1a
a_{13}	1-0			-101-
a_{14}	1			-11
a_{15}	0			0
a_{16}	-1			a
a_{17}	-0			1-0-
a_{18}	1-1			a-0-
a_{19}				0
a_{20}	-C			A
a_{21}				a-1-
0				

		1	
message	21 24 22 16 15 2 2 0	— — — —	1
variable	31 - 24 23 - 16 15 - 8 8 - 0	chaining	
m_0		variable	31 - 24 23 - 16 15 - 8 8 - 0
m_1	-01011-	<i>a</i> ₀	01100111 01000101 00100011 00000001
m_2	-10111	a ₁	1011-a10aa
m3	01	a2	011000a 100010
m_4	00001-	a 3	0010101a0- 0a-1a0-0
m_5	-111-	a_4	1101001 01aaa 0-10-100
m_6	00	a_5	10-01a1-01-aa00100- 001-1
m_7	1	a_6	110110 -a-1001- 01100010 1-a111-1
m_8	00	a_7	-11110 a1a1111101-001 10-10
m_9	-00-11-	a8	-010 0000000a a001a1 100-0-1-
m_{10}	-00	a9	00 11000100 00000000 101-1-1-
m_{11}	1011-11-	a10	0-1 11111011 11100000 000-1-
m12	1-1	a ₁₁	1-0 01111110 110-
m ₁₃	00	^a 12	0-11a
m_{14}	00	a ₁₃	1-0101-
$m_{14} m_{15}$	011	a ₁₄	111
m_{16}	00	a ₁₅	000
$m_{10} m_{17}$	-010-		-1a
	00	a ₁₆	-0
<u>m18</u>	-0	^a 17	100
m ₁₉		a ₁₈	
<i>m</i> ₂₀		<i>a</i> ₁₉	-
m_{21}	-0	a_{20}	-C A
m_{22}	01010	a_{21}	-ba-1-
m_{23}	11	a_{22}	A1-
m_{24}	0	a_{23}	0
m_{25}	-11-	a24	-c
m_{26}	10010	$^{a_{25}}$	-Ba
m_{27}	-1010-	a_{26}	A1-
m_{28}	10	a_{27}	1
m_{29}	-10-	a_{28}	-cA
m_{30}	-010-	a_{29}	-BA-O-
m_{31}	-10-	a_{30}	0-
m_{32}	1-	$^{a}31$	
m_{33}	0	a_{32}	A
m_{34}	01-	a_{33}	1-
m_{35}	0	a_{34}	
m 36	11-	a35	
m_{37}	10	a ₃₆	A
m ₃₈		a_{37}	1-
m_{39}	01	a38	A
m_{40}	1	a39	B0-
m_{40} m_{41}		a40	CA
m_{41} m_{42}	1	a41	B0-
	1		CA
m_{43}	11-	a42	B0-
<u>m44</u>		a43	C
m_{45}	1	a44	B
<i>m</i> ₄₆	-	a_{45}	_
$\frac{m_{47}}{(1-1)^{10}}$	0	$a_i \ (i \ge 46)$	
$m_i \ (i \ge 48)$			

Table 3. Sufficient condition on $\{m_{ij}\}$ and $\{a_{i,j}\}$ of 58-round SHA-1

38

Notation

In Table 2, 3

- 'a': $a_{i,j} = a_{i-1,j}$
- 'A': $a_{i,j} = a_{i-1,j} + 1$
- 'b': $a_{i,j} = a_{i-1,(j+2) \mod 32}$
- 'B': $a_{i,j} = a_{i-1,(j+2) \mod 32} + 1$
- 'C': $a_{i,j} = a_{i-2,(j+2) \mod 32}$
- 'C': $a_{i,j} = a_{i-2,(j+2) \mod 32} + 1$

Two message modification techniques

Modification of a

– Decode as codes defined by a

• Modification of *m*

– Decode as codes defined on m

• We use modification of a

Relations in 0-15-round of m

- All conditions on 0-57-round of *m* can be rewritten by 0-15-round relations
 - Using the relations derived of key expansion

 $m_i = (m_{i-3} \oplus m_{i-8} \oplus m_{i-14} \oplus m_{i-16}) <<< 1$

- Using Gaussian elimination
- Introduce elimination order of $\{m_{i,j}\}$ $\{i = 0,1,\ldots,15, j = 0,1,\ldots,31\}$ by $m'_{i,j} \le m'_{i,j}$ if $i \le i$ or $(i = i \text{ and } j' \le j)$

Relation of 0-15-round of m

 $m_{15,31} = 1, m_{15,30} = 1, m_{15,29} = 0, m_{15,28} + m_{10,28} + m_{8,29} + m_{7,29} + m_{7,29}$ $m_{4,28} + m_{2,28} = 1, m_{15,27} + m_{14,25} + m_{12,28} + m_{12,26} + m_{10,28} + m_{9,27} + m_{12,28} + m_{12,26} + m_{10,28} + m_{12,27} + m_{12,28} + m_{1$ $m_{9,25} + m_{8,29} + m_{8,28} + m_{7,28} + m_{7,27} + m_{6,26} + m_{5,28} + m_{4,26} + m_{3,25} + m_{4,26} + m_{4,26}$ $m_{2,28} + m_{1,25} + m_{0,28} = 1, m_{15,26} + m_{10,28} + m_{10,26} + m_{8,28} + m_{8,27} + m_{10,28} + m_{10,26} + m_{10,28} + m_{10,$ $m_{7,27} + m_{6,29} + m_{5,27} + m_{4,26} + m_{2,27} + m_{2,26} + m_{0,27} = 1, m_{15,25} + m_{15,25$ $m_{11,28} + m_{10,27} + m_{10,25} + m_{9,28} + m_{8,27} + m_{8,26} + m_{7,26} + m_{6,29} + m_{6,28} + m_{6,2$ $m_{5,26} + m_{4,25} + m_{3,28} + m_{2,28} + m_{2,26} + m_{2,25} + m_{1,28} + m_{0,28} + m_{0,26} =$ $0, m_{15,24} + m_{12,28} + m_{11,27} + m_{10,26} + m_{10,24} + m_{9,28} + m_{9,27} + m_{8,29} +$ $m_{8,26} + m_{8,25} + m_{7,25} + m_{6,29} + m_{6,28} + m_{6,27} + m_{5,25} + m_{4,28} + m_{4,24} + m_{4,24}$ $m_{3,28} + m_{3,27} + m_{2,27} + m_{2,25} + m_{2,24} + m_{1,28} + m_{1,27} + m_{0,27} + m_{0,25} =$ $1, m_{15,23} + m_{12,28} + m_{12,27} + m_{11,26} + m_{10,25} + m_{10,23} + m_{9,27} + m_{9,26} + \\$ $m_{8,28} + m_{8,25} + m_{8,24} + m_{7,29} + m_{7,24} + m_{6,28} + m_{6,27} + m_{6,26} + m_{5,24} + m_{6,26} + m_{5,24} + m_{6,26} + m_{5,24} + m_{6,26} + m_{6,26}$ $m_{4,27} + m_{4,23} + m_{3,27} + m_{3,26} + m_{2,26} + m_{2,24} + m_{2,23} + m_{1,27} + m_{1,26} + m_{2,26} + m_{2,26}$ $m_{0,26} + m_{0,24} = 1, \\ m_{15,22} + m_{14,25} + m_{12,28} + m_{12,27} + m_{11,25} + m_{10,27} + m$ $m_{10,24} + m_{10,22} + m_{9,28} + m_{9,27} + m_{9,26} + m_{8,27} + m_{8,24} + m_{8,23} + m_{8,24} + m_{8,23} + m_{8,24} + m_{8,24$ $m_{7,28} + m_{7,27} + m_{7,23} + m_{6,27} + m_{6,25} + m_{5,23} + m_{4,28} + m_{4,27} + m_{4,22} + m_{4,27} + m_{4,28} + m_{4,27} + m_{4,28} + m_{4,27} + m_{4,28} + m_{4,27} + m_{4,28} + m_{4,28}$ $m_{3,26} + m_{2,28} + m_{2,27} + m_{2,25} + m_{2,23} + m_{2,22} + m_{1,26} + m_{0,25} + m_{0,23} =$ $0, m_{15,6} = 1, m_{15,5} = 1, m_{15,4} + m_{12,5} + m_{10,4} + m_{4,5} + m_{4,4} + m_{2,5} + m_{2,4} = 0, m_{15,6} = 1, m_{15,5} = 1, m_{15,4} + m_{12,5} + m_{10,4} + m_{4,5} + m_{4,4} + m_{2,5} + m_{2,4} = 0, m_{15,6} = 1, m_{15,6} = 1,$

Advanced sufficient conditions of message

message		22 42	45 0	
variable	31 - 24	23 - 16	15 - 8	8 - 0
m_0	0			
m_1	-01			011-
m_2	L10			-111
m_3	-L0			-1
m_4	000			-01-
m_5	L11			1L
m_6	0L			0
m_7	LL			1L
m_8	LL			00
m_9	LOL			-0L11L
m ₁₀	LOL			-0LL
m_{11}	101			-1-11L
m_{12}	1L1			L
m_{13}	OLLLLL-L	LL		-OLLLLLL
m_{14}	LLOLLL-L	LLLL		LLLLLO
m_{15}	LLOLLLLL	LL		-11LLLLL
m_{16}	0			0
m_{17}	-0			-10-
m_{18}	00			-101
m_{19}	-0			11-
m_{20}				11
m_{21}	-0			-01-
m_{22}	01			-010
-	•			

Control sequence (I)

Control	Control	Controlled relation r_i
sequence	bit	
s _i	bi	
^s 120	$a_{16,31}$	$m_{15,31} = 1$
^s 119	$a_{16,29}$	$m_{15,29} = 0$
^s 118	a16,28	$m_{15,28} + m_{10,28} + m_{8,29} + m_{7,29} + m_{4,28} + m_{2,28} = 1$
^s 117	a _{16,27}	$\begin{array}{l} m_{15,27}+m_{14,25}+m_{12,28}+m_{12,26}+m_{10,28}+m_{9,27}\\ +m_{9,25}+m_{8,29}+m_{8,28}+m_{7,28}+m_{7,27}+m_{6,26}\\ +m_{5,28}+m_{4,26}+m_{3,25}+m_{2,28}+m_{1,25}+m_{0,28}=1 \end{array}$
^s 116	$a_{16,26}$	$\begin{array}{c} m_{15,26}+m_{10,28}+m_{10,26}+m_{8,28}+m_{8,27}+m_{7,27}\\ +m_{6,29}+m_{5,27}+m_{4,26}+m_{2,27}+m_{2,26}+m_{0,27}=1 \end{array}$
^s 115	a _{16,25}	$\begin{array}{l} m_{15,25}+m_{11,28}+m_{10,27}+m_{10,25}+m_{9,28}+m_{8,27}\\ +m_{8,26}+m_{7,26}+m_{6,29}+m_{6,28}+m_{5,26}+m_{4,25}\\ +m_{3,28}+m_{2,28}+m_{2,26}+m_{2,25}+m_{1,28}+m_{0,28}\\ +m_{0,26}=0 \end{array}$
^s 114	a _{16,24}	$\begin{array}{c} m_{15,24}+m_{12,28}+m_{11,27}+m_{10,26}+m_{10,24}+m_{9,28}\\ +m_{9,27}+m_{8,29}+m_{8,26}+m_{8,25}+m_{7,25}+m_{6,29}\\ +m_{6,28}+m_{6,27}+m_{5,25}+m_{4,28}+m_{4,24}+m_{3,28}\\ +m_{3,27}+m_{2,27}+m_{2,25}+m_{2,24}+m_{1,28}+m_{1,27}\\ +m_{0,27}+m_{0,25}=1 \end{array}$
^s 113	a _{16,23}	$\begin{array}{l} m_{15,23}+m_{12,28}+m_{12,27}+m_{11,26}+m_{10,25}\\ +m_{10,23}+m_{9,27}+m_{9,26}+m_{8,28}+m_{8,25}+m_{8,24}\\ +m_{7,29}+m_{7,24}+m_{6,28}+m_{6,27}+m_{6,26}+m_{5,24}\\ +m_{4,27}+m_{4,23}+m_{3,27}+m_{3,26}+m_{2,26}+m_{2,24}\\ +m_{2,23}+m_{1,27}+m_{1,26}+m_{0,26}+m_{0,24}=1 \end{array}$
^s 112	a _{16,22}	$\begin{array}{c} m_{15,22}+m_{14,25}+m_{12,28}+m_{12,27}+m_{11,25}\\ +m_{10,27}+m_{10,24}+m_{10,22}+m_{9,28}+m_{9,27}\\ +m_{9,26}+m_{8,27}+m_{8,24}+m_{8,23}+m_{7,28}+m_{7,27}\\ +m_{7,23}+m_{6,27}+m_{6,25}+m_{5,23}+m_{4,28}+m_{4,27}\\ +m_{4,22}+m_{3,26}+m_{2,28}+m_{2,27}+m_{2,25}+m_{2,23}\\ +m_{2,22}+m_{1,26}+m_{0,25}+m_{0,23}=0 \end{array}$
^s 111	$a_{16,21}$	$a_{18,31} = 1$

Control Sequence (II)

Control	Control	Controlled relation r_i
sequence	\mathbf{bit}	
s_i	<i>bi</i>	
^s 82	$a_{14,30}$	$m_{14,3} + m_{11,3} + m_{11,2}$
		$+m_{8,2}+m_{7,4}+m_{7,2}+m_{7,1}+m_{6,2}+m_{5,3}$
		$+m_{4,0}+m_{3,3}+m_{2,2}+m_{1,31}+m_{1,3}=0$
^s 81	$a_{15,2}$	$m_{14,2} + m_{12,5} + m_{12,3} + m_{10,4} + m_{9,2} + m_{7,4}$
	_	$+m_{6,3}+m_{4,5}+m_{4,4}+m_{4,3}+m_{3,2}+m_{2,5}$
		$+m_{2,4}+m_{1,2}=1$
^s 80	$a_{15,1}$	$m_{14,1} + m_{12,4} + m_{11,2} + m_{10,2} + m_{9,3} + m_{8,3}$
	-	$+m_{7,2}+m_{6,2}+m_{5,5}+m_{5,2}+m_{4,4}+m_{3,31}$
		$+m_{3,4}+m_{3,2}+m_{3,1}+m_{2,4}+m_{2,3}+m_{0,3}=0$
^s 79	$a_{14,27}$	$m_{14,0} = 0$
^s 78	$a_{13,26}$	$m_{13,31} = 0$
^{\$} 77	$a_{13,25}$	$m_{13,30} = 0$
^s 76	$a_{14,29}$	$m_{13,29} + m_{8,29} = 0$
^{\$75}	$a_{14,28}$	$m_{13,28} + m_{8,28} + m_{2,28} + m_{0,28} = 0$
^s 74	$a_{13,22}$	$m_{13,27} + m_{11,28} + m_{8,29} + m_{8,27} + m_{6,29}$
		$+m_{5,28} + m_{3,28} + m_{2,27} + m_{0,27} = 1$
^{\$73}	$a_{13,21}$	$m_{13,26} + m_{11,27} + m_{9,28} + m_{8,28} + m_{8,26}$
		$+m_{6,28}+m_{5,27}+m_{3,28}+m_{3,27}+m_{2,26}$
		$+m_{1,28} + m_{0,26} = 1$
^s 72	$a_{14,24}$	$m_{13,24} + m_{12,28} + m_{11,27} + m_{11,25} + m_{10,28}$
	-	$+m_{9,27}+m_{9,26}+m_{8,29}+m_{8,26}+m_{8,24}$
		$+m_{7,29}+m_{7,28}+m_{6,26}+m_{5,25}+m_{4,28}$
		$+m_{3,28}+m_{3,26}+m_{3,25}+m_{2,28}+m_{2,24}$
		$+m_{1,28} + m_{1,26} + m_{0,24} = 0$
^s 71	$a_{14,23}$	$m_{13,23} + m_{12,27} + m_{11,26} + m_{11,24} + m_{10,28}$
		$+m_{10,27}+m_{9,26}+m_{9,25}+m_{8,29}+m_{8,28}$
		$+m_{8,25}+m_{8,23}+m_{7,29}+m_{7,28}+m_{7,27}$
1	l	$+m_{6,05} + m_{5,09} + m_{5,04} + m_{4,09} + m_{4,07}$

Control Sequence (III)

Control	Control	Controlled relation r_i
sequence	bit	
s_i	b_i	
^s 22	$a_{5,25}$	$m_{5,30} = 1$
^s 21	$a_{6,29}$	$m_{5,29} = 1$
^s 20	$a_{6,1}$	$m_{5,1} = 1$
^s 19	$a_{3,27}$	$m_{5,0} + m_{3,0} + m_{1,31} = 1$
^s 18	$a_{4,26}$	$m_{4,31} = 0$
^s 17	$a_{4,25}$	$m_{4,30} = 0$
^s 16	$a_{5,29}$	$m_{4,29} = 0$
^s 15	$a_{5,6}$	$m_{4,6} = 0$
^s 14	$a_{5,1}$	$m_{4,1} = 1$
^s 13	$a_{3,25}$	$m_{3,30} = 1$
^s 12	$a_{3,24}$	$m_{3,29} = 0$
^s 11	$^{a_{4,6}}$	$m_{3,6} = 1$
^s 10	$a_{2,26}$	$m_{2,31} = 0$
<i>s</i> 9	$a_{2,25}$	$m_{2,30} = 1$
^s 8	$a_{2,24}$	$m_{2,29} = 0$
^{\$} 7	$a_{3,5}$	$m_{2,6} = 1$
^s 6	$a_{2,6}$	$m_{2,6} = 1$
^s 5	$a_{3,1}$	$m_{2,1} = 1$
s_4	$a_{2,5}$	$m_{1,5} = 0$
^s 3	$a_{1,28}$	$m_{1,1} = 1$
s_2	$a_{1,25}$	$m_{1,30} = 0$
^s 1	$a_{1,24}$	$m_{1,29} = 1$
^s 0	$a_{1,23}$	$m_{1,29} = 1$
G . 11	• •	

Table 6Control bit and controlled relations of 58-round SHA-1 (III)

Improvement of Message Modification technique

- Success probability is not 1
 - Control sequences sometimes rotate and do not end
 - Changing control bits may not affect leading term properly
- New method
 - Multiple control bits
 - Use iterative decoding technique
 - Use list decoding technique
 - Controlling non-leading terms

Advanced sufficient conditions of chaining variables a

chaining				
variable	31 - 24	23 - 16	15 - 8	8 - 0
a_0	01100111	01000101	00100011	0000001
a_1	101VvV	Ү		-1-a10aa
a_2	01100vVv	0-	a	1-w00010
a_3	0010Vv	-101a	0-	0aX1a0W0
a_4	11010vv-	-01	01aaa	OW10-100
a_5	10w01aV-	-1-01-aa	00100-	0w01W1
a_6	11W-0110	-a-1001-	01100010	1-a111W1
a_7	w1x-1110	a1a1111-	-101-001	10-10
a_8	h0Xvvv10	0000000a	a001a1	100X0-1h
a_9	00XVrrvV	11000100	0000000	101-1-1y
a ₁₀	Ow1-rv-v	11111011	11100000	00hW0-1r
a_{11}	1w0V-V	1	01111110	11x0Y
a_{12}	Ow1-rV-V			-1XWa-Wh
a_{13}	1w0vv-	-rr		-101y
a_{14}	1rhhvvVh	hh		-1hhh1hh
a_{15}	OrwhhhVh	hhhh		hh0hh0
a_{16}	W1whhhhh	hhq-q-q-	qq-qqq	-WWhahhh
a_{17}	-0			1-0-
a_{18}	1-1			0-
a_{19}				0
a_{20}				
a_{21}				1-
~				4_

Advanced sufficient conditions and new message modification techniques

chaining				
variable	31 - 24	23 - 16	15 - 8	8 - 0
a_0	01100111	01000101	00100011	0000001
a_1	101VvV	Y		-1-a10aa
a_2	01100vVv	0-	a	1-w00010
a_3	0010Vv	-101a	0-	0aX1a0W0
a_4	11010vv-	-01	01aaa	0W10-100
a_5	10w01aV-	-1-01-aa	00100-	0w01W1
a_6	11W-0110	-a-1001-	01100010	1-a111W1
a_7	w1x-1110	a1a1111-	-101-001	10-10
a_8	h0Xvvv10	0000000a	a001a1	100X0-1h
a 9	00XVrrvV	11000100	00000000	101-1-1y
a ₁₀	Ow1-rv-v	11111011	11100000	00hW0-1r
a_{11}	1w0V-V	1	01111110	11x0Y
a_{12}	Ow1-rV-V			-1XWa-Wh
a_{13}	1w0vv-	-rr		-101y
a_{14}	1rhhvvVh	hh		-1hhh1hh
a_{15}	OrwhhhVh	hhhh		hh0hh0
a_{16}	W1whhhhh	hhq-q-q-	qq-qqq	-WWhahhh
a_{17}	-0			1-0-
a_{18}	1-1			0-
a_{19}				0
a_{20}				
a_{21}				1-

1, 0, a: Wang's sufficient conditions w: adjust $a_{i+1,j}$ so as $m_{i,j} = 0$ W: adjust $a_{i+1,j}$ so $asm_{i,j} = 1$ v: adjust $a_{i,j-5}$ so as $m_{i,j} = 0$ V: adjust $a_{i,j-5}$ so as $m_{i,j} = 1$...

Proposition of the method to determine sufficient conditions and new message modification technique using Gröbner basis

message variable	31 - 24 23 - 16 15 - 8 8 - 0	Г
$\frac{m_0}{m_0}$	0	
$\frac{m_0}{m_1}$	-01011-	
m_1	L10111	
<u>m2</u> m3	-L01	
	00001-	
<u>m4</u>	L111L	-
m 5	0L0	- -
<i>m</i> ₆	LLL	- -
<i>m</i> ₇	LLL	- -
<i>m</i> ₈		- -
m_9	LOLOL11L	
m_{10}	LOLOLL	
m_{11}	1011-1-1L	
m_{12}	1L1L	Ļ
m_{13}	OLLLLL-L LLOLLLLLL	
m_{14}	LLOLLL-L LLLLLLLLLO	Ļ
m_{15}	LLOLLLLL LL11LLLLL	L
m_{16}	00	L
m_{17}	-010-	
m_{18}	0001	L
m_{19}	-011-	L
m_{20}	11	L
m_{21}	-01-	
m_{22}	0110	
m_{23}	110-	Γ
m_{24}	0	
m_{25}	-11-	Г
m_{26}	10010	Г
m_{27}	-1010-	Г
m_{28}	10	Г
$m_{29}^{$	-10-	
m_{30}	-010-	
m_{31}	-10-	
m ₃₂	1-	
m ₃₃	0	
m_{34}	01-	
m35	0	
m 36	11-	
<u>30</u>	10	
<u></u>		- H
	01	- F
$\frac{m_{39}}{m_{40}}$	1	- H
m ₄₀	1	- F
m ₄₁	1	⊢
<u>m42</u>	1	⊢
<u>m 43</u>		⊢
m ₄₄		- -
m_{45}		- -
m_{46}	1	-
<u>m47</u>	0	6
$m_i \ (i \ge 48$		

chaining				
variable	31 - 24		15 - 8	
<i>a</i> ₀	01100111			
a_1	101VvV	Ү		-1-a10aa
a_2	01100vVv	0-	a	1-w00010
a_3	0010Vv	-101a	0-	0aX1a0W0
a_4	11010vv-	-01	01aaa	OW10-100
a_5		-1-01-aa	00100-	0w01W1
a ₆	11W-0110	-a-1001-	01100010	1-a111W1
a_7	w1x-1110	a1a1111-	-101-001	10-10
a_8	hOXvvv10	0000000a	a001a1	100X0-1h
a_9	00XVrr-V	11000100	00000000	101-1-1y
a_{10}	Ow1-rv-v	11111011	11100000	00hW0-1h
a ₁₁	1w0V-V	1	01111110	11x0Y
a_{12}	Ow1-rV-V			-1XWa-Wh
a_{13}	1w0vv-	-rr		-1-qq01y
a ₁₄	1rhhvvVh	hh		
a_{15}	OrwhhhVh	hhhhN	qNNqqNqN	NNhh0hh0
a_{16}	W1whhhhh	hhqNqNqN	NNqNNqqq	qWWhahhh
a_{17}	-0			100-
a_{18}	1-1			00-
a_{19}				0
a_{20}	-C			A
^a 21	-			a-1-
a22				0
a23				
^a 24	-c			
a25				a A1-
a26				1
a ₂₇	-c			A
a28	-B			A-0-
a29				0-
a ₃₀				
a_{31} a_{32}				A
a32 a33				1-
$\frac{\sim 34}{a_{35}}$				
35 a36				A
a37				1-
a38				A
38 a39	В			0-
<u>a40</u>	 C			A
a ₄₀	B			0-
a42	 C			A
a_{43}	B			0-
a44	 C			
a_{45}	B			
$\frac{40}{a_i \ (i \ge 46)}$				
•				

Table 6. 'Advanced' sufficient condition on $\{m_{i,j}\}$ and $\{a_{i,j}\}$

Notation

In Table 6,

- 'w': adjust $a_{i,j}$ so that $m_{i+1,j} = 0$
- 'W': adjust $a_{i,j}$ so that $m_{i+1,j} = 1$
- 'v': adjust $a_{i,j}$ so that $m_{i,(j+27) \mod 32} = 0$
- 'V': adjust $a_{i,j}$ so that $m_{i,(j+27) \mod 32} = 1$
- 'h': adjust $a_{i,j}$ so that corresponding controlled relation including $m_{i+1,j}$ as leading term holds
- 'r': adjust $a_{i,j}$ so that corresponding controlled relation including $m_{i,(j+27) \mod 32}$ as leading term holds

Neutral bit

- Introduced by Biham and Chen
- Some bits do not affect relations
 - Increase the probability of collision

Semi-neutral bit

- We introduce new notion 'Semi-neutral bit'
- Change of some bits can easily be adjusted in a few steps of control sequence
 - Which means that noise on semi-neutral bits can be easily decoded

Sufficient conditions and new message modification techniques

chaining		
variable		
a_0	01100111 01000101 00100011 000000)01
a_1	101VvV Y1-a10)aa
a_2	01100vVv0a 1-w000	
a_3	0010Vv -101a0- 0aX1a0)WO
a_4	11010vv01 01aaa 0W10-1	.00
a_5	10w01aV1-01-aa00100- 0w01	.W1
a_6	11W-0110 -a-1001- 01100010 1-a111	.W1
a_7	w1x-1110 a1a1111101-001 10-	·10
a_8	h0Xvvv10 0000000a a001a1 100X0-	·1h
a_9	00XVrr-V 11000100 00000000 101-1-	·1y
a_{10}	0w1-rv-v 11111011 11100000 00hW0-	·1h
a ₁₁	1w0V-V1 01111110 11x	٠OY
a_{12}	0w1-rV-V1XWa-	
a_{13}	1w0vvrr1-qq0	
a_{14}	1rhhvvVh hh qNNNNNqN N1hhh1	hh
a_{15}	OrwhhhVh hhhhN qNNqqNqN NNhhOh	nh0
a_{16}	W1whhhhh hhqNqNqN NNqNNqqq qWWhah	ìhh
a_{17}	-010)0-
a ₁₈	1-10)0-
<i>a</i> ₁₀		0

1, 0, a: Wang's sufficient conditions w: adjust $a_{i+1,j}$ so that $m_{i,j} = 0$ W: adjust $a_{i+1,j}$ so that $m_{i,j} = 1$ v: adjust $a_{i,j-5}$ so that $m_{i,j} = 0$ V: adjust $a_{i,j-5}$ so that $m_{i,j} = 1$ N: semi-neutral bit

. . .

Proposal of the method to determine sufficient conditions and new message modification technique using Gröbner basis

Algorithm 1

Algorithm 1 (Basic Message Modification) Procedures for message modification: Preset the maximal number of trials M.

- 1. Set r = 0.
- 2. Generate $(a_1, a_2, \cdots, a_{16})$ randomly.
- 3. Set i = 0.
- 4. Increment i until the controlled relation r_i of s_i is not satisfied. If all relations are satisfied go to final step. If r > M, give up and return to Step 2.
- 5. Adjust control bits $a_{i,j}$ of s_i so that corresponding controlled relation and sufficient condition on $\{a_{i,j}\}$ hold. After adjusting, set i = 0 and r = r + 1 and go to Step 3 and repeat the process until all controlled relations hold.
- 6. If all controlled relations are satisfied, check whether modified message yields collision or not. If it does not generate collision, return to Step 2. If it generates collision, finish.

Algorithm 2

Algorithm 2 (Improved Message Modification) Procedures for message:

- 1. Generate $(a_1, a_2, \cdots, a_{16})$ randomly.
- 2. Using the basic message modification described in Algorithm 1, modify $(a_1, a_2, \dots, a_{16})$ so that all message conditions and some chaining variable conditions from the 17-th round to the 23-rd round hold. If this step fails, return to Step 1.
- 3. If remaining changing variable conditions from the 17-th round to the 23-th round are not satisfied, return to Step 1 and repair until all conditions are satisfied (It can be satisfied probabilistically).
- 4. Change values of semi-neutral bits and modify chaining variables using our control sequence, and check whether chaining variable conditions from the 24-th round to the final round are satisfied.
- 5. Repeat all procedure above until all chaining variable conditions are satisfied.

New collision example of 58-step SHA-1

M = 0x

1ead6636 319fe59e 4ea7ddcb c7961642 0ad9523a f98f28db 0ad135d0 e4d62aec 6c2da52c 3c7160b6 06ec74b2 b02d545e bdd9e466 3f156319 4f497592 dd1506f93

M = 0x

ead6636 519fe5ac 2ea7dd88 e7961602 ead95278 998f28d9 8ad135d1 e4d62acc 6c2da52f 7c7160e4 46ec74f2 502d540c 1dd9e466 bf156359 6f497593 fd150699

• Note that the proposed method is the first fully-published method that can cryptanalyze 58-round SHA-1

Cryptanalysis of 58-round SHA-1

- We can achieve all message conditions and 8 chaining value conditions in 17 – 23 round (success probability is 0.5)
- 29 conditions remained
 - > exhaustive search (2²⁹ message modification)
- Constant is practical?
 - Utilization of Groebner base based method
 - 2²⁹ message modification -> 2⁸ message modification (symbolic computation)
 - However, complexity is exactly same
 - 2²⁹ SHA-1 -> 2²⁹ SHA-1
 - Complexity can be reduced employing a suitable technique of error correcting code and Groebner basis?

Using Groebner base based method (Algorithm 3)

variable $31 - 24$ $23 - 16$ $15 - 8$ $8 - 0$ a_0 01100111010001010010001100000001 a_1 $101V - vV$ Y		1
a_0 01100111 01000101 00100011 0000001 a_1 101VvV Y	chaining	
a_1 $101V - vV$ V	variable	
a_2 01100vVv0a 1-w00010 a_3 0010Vv -101a0 0aX1a0W0 a_4 11010vv - 01 01aaa 0W10-100 a_5 10w01aV1-01-aa00100 0w01W1 a_6 11W-0110 -a-1001 - 01100010 1-a111W1 a_7 w1x-1110 a1a1111101-001 10-10 a_8 h0Xvvv10 0000000a a001a1 100X0-1h a_9 00XVrr-V 11000100 0000000 101-1-1y a_{10} 0w1-rv-v 11111011 11100000 00hW0-1h a_{11} 1w0V-V 01XWa-Wh a_{12} 0w1-rV-V	a_0	01100111 01000101 00100011 00000001
a_3 0010Vv -101a0 0aX1a0W0 a_4 11010vv - 0101aaa0W10-100 a_5 10w01aV1-01-aa00100 0w01W1 a_6 11W-0110 -a-1001 01100010 1-a111W1 a_7 w1x-1110 a1a1111 - 101-001 10-10 a_8 h0Xvvv10 0000000a a001a1 100X0-1h a_9 00XVrr-V 11000100 0000000 101-1-1y a_{10} 0w1-rv-v 11111011 1100000 00hW0-1h a_{11} 1w0V-V	a_1	101VvV Y1-a10aa
a_4 11010vv0101aaa0W10-100 a_5 10w01aV1-01-aa -00100-0w01W1 a_6 11W-0110 -a-1001-01100010 1-a111W1 a_7 w1x-1110 a1a1111101-001 1-a-0-10 a_8 h0Xvvv10 0000000a a001a1100X0-1h a_9 00XVrr-V 11000100 00000000 101-1-1y a_{10} 0w1-rv-v 1111011 1100000 00hW0-1h a_{11} 1w0V-V	a_2	01100vVv0a 1-w00010
a_5 10w01aV1-01-aa00100- 0w01W1 a_6 11W-0110 -a-1001- 01100010 1-a111W1 a_7 w1x-1110 a1a1111101-001 10-10 a_8 h0Xvvv10 000000a a001a1 100X0-1h a_9 00XVrr-V 11000100 00000000 101-1-1y a_{10} 0w1-rv-v 11111011 11100000 00hW0-1h a_{11} 1w0V-V1 01111110 11x0Y a_{12} 0w1-rV-V	a_3	0010Vv -101a0- 0aX1a0W0
a_6 11W-0110 -a-1001- 01100010 1-a111W1 a_7 w1x-1110 a1a1111101-001 10-10 a_8 h0Xvvv10 000000a a001a1 100X0-1h a_9 00XVrr-V 11000100 0000000 101-1-1y a_{10} 0w1-rv-v 11111011 11100000 00hW0-1h a_{11} 1w0V-V1 01111110 11x0Y a_{12} 0w1-rV-V1 01111110 11x0Y a_{13} 1w0vvrr	a_4	11010vv01 01aaa 0W10-100
a_7 w1x-1110 a1a1111101-001 10-10 a_8 h0Xvvv10 000000a a001a1 100X0-1h a_9 00XVrr-V 11000100 0000000 101-1-1y a_{10} 0w1-rv-v 11111011 11100000 00hW0-1h a_{11} 1w0V-V1 01111110 11x0Y a_{12} 0w1-rV-V	a_5	10w01aV1-01-aa00100- 0w01W1
a_8 hOXvvv10 000000a a001a1 100X0-1h a_9 00XVrr-V 11000100 0000000 101-1-1y a_{10} 0w1-rv-v 11111011 11100000 00hW0-1h a_{11} 1w0V-V1 01111110 11x0Y a_{12} 0w1-rV-V	a_6	11W-0110 -a-1001- 01100010 1-a111W1
a_9 00XVrr-V 11000100 0000000 101-1-1y a_{10} 0w1-rv-v 11111011 11100000 00hW0-1h a_{11} 1w0V-V 1 01111110 11x0Y a_{12} 0w1-rV-V -1XWa-Wh a_{13} 1w0vv- -rr -1-qq01y a_{14} 1rhhvvVh hh qNNNNqN N1hhh1hh a_{15} 0rwhhhVh hhhhN qNNqqNqN NNhh0hh0 a_{16} W1whhhhh hhqNqNqN NNqNqqq qWwhahhh a_{17} -0 a_{18} 1-1	a_7	w1x-1110 a1a1111101-001 10-10
a_{10} $0w1-rv-v$ 11111011 11100000 $00hW0-1h$ a_{11} $1w0V-V$ 1 01111110 $11x0Y$ a_{12} $0w1-rV-V$ 1 01111110 $11x0Y$ a_{12} $0w1-rV-V$ $$	<i>a</i> ₈	h0Xvvv10 0000000a a001a1 100X0-1h
a_{11} $1w0v-v$ $v-1$ 01111110 $11x0Y$ a_{12} $0w1-rv-v$ $v1$ -1111110 $11x0Y$ a_{12} $0w1-rv-v$ $v1$ $-11x0Y$ a_{13} $1w0vvrr1xWa-Wh$ a_{13} $1w0vvrr1-qq01y$ a_{14} $1rhhvvVh$ $hhqNNNNqN$ a_{14} $1rhhvvVh$ $hhnqNNqNqNqN$ a_{15} $0rwhhhVh$ $hhhhNqNNqNqNqN$ a_{16} $W1whhhhh$ $hhqNqNqN$ a_{17} -0	a_9	00XVrr-V 11000100 00000000 101-1-1y
a ₁₂ 0w1-rV-V -1XWa-Wh a ₁₃ 1w0vv- -rr -1-qq01y a ₁₄ 1rhhvvVh hh qNNNNqN N1hhh1hh a ₁₅ 0rwhhhVh hhhN qNNqqNqN NNhh0hh0 a ₁₆ W1whhhhh hhqNqNqN NNqNqqq qWwhahhh a ₁₇ -0 100- a ₁₈ 1-1 00-	a_{10}	0w1-rv-v 11111011 11100000 00hW0-1h
a_{13} $1w0vvrr$	a_{11}	1w0V-V1 01111110 11x0Y
a ₁₄ 1rhhvvVh hh qNNNNqN N1hhh1hh a ₁₅ 0rwhhhVh hhhhN qNNqqNqN N1hhh1hh a ₁₆ W1whhhh hhqNqNqN NNqNNqqq qWWhahhh a ₁₇ -0 a ₁₈ 1-1	a_{12}	
a ₁₅ OrwhhhVh hhhhN qNNqqNqN NNhhOhhO a ₁₆ W1whhhhh hhqNqNqN NNqNNqqq qWWhahhh a ₁₇ -0 a ₁₈ 1-1	a_{13}	1w0vvrr1-qq01y
a16 W1whhhhh hhqNqNqN NNqNNqqq qWWhahhh a17 -0 a18 1-1	a ₁₄	1rhhvvVh hh qNNNNqN N1hhh1hh
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	a_{15}	OrwhhhVh hhhhN qNNqqNqN NNhhOhhO
<i>a</i> ₁₈ 1-100-	a ₁₆	W1whhhhh hhqNqNqN NNqNNqqq qWWhahhh
	a_{17}	-0100-
<i>a</i> ₁₀ 0	a ₁₈	1-1 00-
	<i>a</i> 10	0

Problem to determine semi-neutral bits denoted as 'N' is equivalent to calculating Groebner basis from algebraic equations on variable denoted as 'q' or 'N'

Calculation of Groebner basis

Algorithm 3

Algorithm 3 Procedures for message modification: Preset the maximal number of trials M.

- 1. Set r = 0.
- 2. Generate $(a_1, a_2, \dots, a_{16}) \in (\mathbb{F}_2^{32})^{16}$ randomly.
- 3. Set i = 0.
- 4. Increment i until $f_i \not\equiv 0 \mod I$. If all f_i are contained in I, go to the final step. If r > M, give up and return to Step 2.
- 5. For control polynomials $\{g_{j,l}\}$ associated to f_i , replace appropriate $g_{j,l}(X_{j,l})$ by $g_{j,l}(X_{j,l}+1)$ in I to satisfy $f_i \equiv 0 \mod I$. After adjusting, set r = r + 1 and go to Step 3.
- 6. Solve a system of polynomial equations in R_2 consists of all equations with respect to advanced sufficient conditions on $\{a_{i,j}\}$ by using Gröbner basis algorithm.
- 7. Check whether modified message yields collision or not. If it does not generate collision, return to Step 2. If it generates collision, finish.

In the case of full round SHA-1

- Success probability of message modification is smaller?
 - Control bits are insufficient
 - Success probability is very small?
- No semi-neutral bit remained?
- Complexity is 2⁶³ message modification, not 2⁶³ SHA-1

– Message modification is too heavy?

• Message modification can be improved?

A message differential of full SHA-1 slightly different from Wang's (first iteration)

	$\Delta^{\pm}m \Delta^{+}m$		$\Delta^{-}m$
		—	
i = 0	a0000003	00000001	a0000002
i = 1	20000030	20000020	00000010
i = 2	60000000	60000000	00000000
i = 3	e000002a	40000000	a000002a
i = 4	20000043	20000042	00000001
i = 5	b0000040	a0000000	10000040
i = 6	d0000053	d0000042	00000011
i = 7	d0000022	d0000000	00000022
i = 8	20000000	00000000	20000000
i = 9	60000032	20000030	40000002
i = 10	60000043	60000041	00000002
i = 11	20000040	00000000	20000040
i = 12	e0000042	c0000000	20000042
i = 13	60000002	00000002	60000000
i = 14	80000001	0000001	80000000
i = 15	00000020	00000020	00000000
i = 16	0000003	00000002	00000001
i = 17	40000052	00000002	40000050
i = 18	40000040	00000000	40000040
i = 19	e0000052	00000002	e0000050
i = 20	a0000000	00000000	a0000000
i = 21	80000040	80000000	00000040
i = 22	20000001	00000001	20000000
1 - 02	20000060	00000000	20000060

	$\Delta^{\pm a}$	$\Delta^+ a$	$\Delta^{-}a$
i = 0	00000000	00000000	00000000
i = 1	e0000001	a0000000	4000001
i = 2	20000004	20000000	00000004
i = 3	c07 fff84	803 fff 84	40400000
i = 4	800030e2	800010a0	00002042
i = 5	084080b0	08008020	00400090
i = 6	80003a00	00001a00	80002000
i = 7	0 f f f 8001	08000001	07 f f 8000
i = 8	0000008	0000008	00000000
i = 9	80000101	80000100	00000001
i = 10	00000002	00000002	00000000
i = 11	00000100	00000000	00000100
i = 12	00000002	00000002	00000000
i = 13	00000000	00000000	00000000
i = 14	00000000	00000000	00000000
i = 15	00000001	00000001	00000000
i = 16	00000000	00000000	00000000
i = 17	80000002	80000002	00000000
i = 18	00000002	00000002	00000000
i = 19	80000002	80000002	00000000
i = 20	00000000	00000000	00000000
i = 21	00000002	00000002	00000000
i = 22	00000000	00000000	00000000
1 - 02	0000000	00000009	0000000

SHA-1 (first iteration)

message		chaining	
variable	$31 - 24 \ 23 - 16 \ 15 - 8 \ 8 - 0$	variable	31 - 24 23 - 16 15 - 8 8 - 0
m_0	1-110	a_0	01100111 01000101 00100011 00000001
m_1	001	a_1	0100 -0-01-0- 10-0-10a0101
m_2	-00	a_2	-1001 0aa10a1a 01a1a011 1a11a1
m_3	1011-1-1-	a_3	010111000000 00000000 01a0a1
m_4	001	a_4	0-101a10000 00101000 01010
m_5	0-011	a_5	0-0101-1 -1-11110 00111-00 10010100
m_6	00-00-101	a6	1-0a1a0a a0a1aaa1001001-0
m_{7}	00-0	a_7	0-0111 11111111 111-010- 0-0-0110
m_8	1	a8	-1001 11110000 010-111- 1000-
m_{9}	-10001-	a9	0011 11111111 11101-01
m_{10}	-0010	^a 10	-11a11-0-
m_{11}	11	a ₁₁	1001 -10
m_{12}	0011-	a_{12}	10-
m_{13}	-110-	a_{13}	010
m_{14}	10	a14	11
m_{15}	0	a_{15}	00
m_{16}	01	^a 16	-11-A-
m_{17}	-11-10-	a_{17}	000-0-
m_{18}	-11	^a 18	1-1a-0-
m_{19}	1111-10-	a_{19}	0-b0-
m_{20}	1-1	a_{20}	0a
m_{21}^{20}	01	a_{21}	b0-
m_{22}^{21}	10	a_{22}	aa
m_{23}^{22}	111	a_{23}	00
20		20	+

Control sequence of full SHA-1 (first iteration)

ctrl. seq.	control bits	controlled relation
s168	a15,8	$a_{30,2} + a_{29,2} = 1$
s167	a16,6	$a_{26,2} + a_{25,2} = 1$
^s 166	$a_{15,7}$	$a_{25,3} + a_{24,3} = 0$
^s 165	$a_{13,7}$	$a_{24,3} + a_{23,3} = 0$
^s 164	$a_{13,9}$	$a_{23,0} = 0$
^s 163	a16,10	$a_{22,3} + a_{21,3} = 0$
^s 162	a16,11	$a_{21,29} + a_{20,31} = 0$
^s 161	$a_{16,8}$	$a_{21,1} = 0$
^s 160	$a_{16,9}$	$a_{20,29} = 0$
^s 159	$a_{15,10}$	$a_{20,3} + a_{19,3} = 0$
s158	$a_{15,11}$	$a_{19,31} = 0$
^s 157	$a_{15,9}$	$a_{19,29} + a_{18,31} = 0$
^s 156	$a_{14,8}$	$a_{19,1} = 0$
^s 155	$a_{14,11}$	$a_{18,31} = 1$
^s 154	$a_{15,14}$	$a_{18,29} = 1$
s153	$a_{13,8}$	$a_{18,1} = 0$
^s 152	$a_{13,11}$	$a_{17,31} = 0$
^s 151	$a_{13,10}$	$a_{17,30} = 0$
^s 150	$a_{13,13}$	$a_{17,1} = 0$
^s 149	$a_{16,31}$	$m_{15,31} = 0$
^s 148	$a_{16,29}$	$m_{15,29} = 1$
^s 147	$a_{16,28}$	$m_{15,28} + m_{10,28} + m_{4,28} + m_{2,28} = 0$
^s 146	$a_{16,27}$	$m_{15,27} + m_{10,27} + m_{8,28} + m_{4,27} + m_{2,28} + m_{2,27} + m_{0,28} = 1$
^s 145	$a_{16,26}$	$m_{15,26} + m_{10,28} + m_{10,26} + m_{8,28} + m_{8,27} + m_{7,27} + m_{5,27} + m_{4,26} + m_{2,27} + m_{2,26} + m_{2,27} + m_{2,2$
		$m_{0,27} = 0$
^s 144	$a_{16,25}$	$\begin{array}{l} m_{15,25} + m_{11,28} + m_{10,27} + m_{10,25} + m_{9,28} + m_{8,27} + m_{8,26} + m_{7,26} + m_{5,26} + m_{4,25} + m_{3,28} + m_{2,28} + m_{2,26} + m_{2,25} + m_{1,28} + m_{0,28} + m_{0,26} = 0 \end{array}$
^s 143	a16,24	$m_{15,24} + m_{12,28} + m_{11,27} + m_{10,26} + m_{10,24} + m_{9,28} + m_{9,27} + m_{8,26} + m_{8,25} + m_{7,25} + m_{6,27} + m_{5,25} + m_{4,28} + m_{4,24} + m_{3,28} + m_{3,27} + m_{2,27} + m_{2,25} + m_{2,24} + m_{1,28} + m_{1,27} + m_{0,27} + m_{0,25} = 1$
^s 142	a _{16,23}	$\begin{array}{l} m_{15,23}+m_{12,28}+m_{12,27}+m_{11,26}+m_{10,25}+m_{10,23}+m_{9,27}+m_{9,26}+m_{8,28}+m_{8,25}+m_{8,24}+m_{7,24}+m_{7,0}+m_{6,27}+m_{6,26}+m_{5,24}+m_{4,27}+m_{4,23}+m_{3,27}+m_{3,26}+m_{2,26}+m_{2,24}+m_{2,23}+m_{1,30}+m_{1,27}+m_{1,26}+m_{1,0}+m_{0,26}+m_{0,24}=0 \end{array}$

Advanced sufficient conditions and semi-neutral bits of full-round SHA-1

message	
variable	$31 - 24 \ 23 - 16 \ 15 - 8 \ 8 - 0$
m_0	1-110
m_1	L-001
m_2	L00L
m_3	1011-1-1L
m_4	LLO001
m_5	0L01L
m_6	00L00-101
m_{7}	00-01L1-
m_8	L-1LL
m_9	L1000-L1L
m_{10}	L000LLL10
m_{11}	LL11LLLLLL
m_{12}	0011LLL-1L
m_{13}	L11LLLLL LLLLLLL L-LLLLLOL
m_{14}	1LLLLLL LLLLLLL L-LLLLLLLO
m_{15}	LLLLLLL LLLLLLL LL-L L-OLLLLL
m_{16}	01
m_{17}	-11-10-
m_{18}	-11
m_{19}	1111-10-
m_{20}	1-1
m_{21}	01
m_{22}	10
m_{23}	111
m_{24}	11

	-			
chaining	21 04	00 10	15 0	8 0
variable		23 - 16		
<i>a</i> ₀	01100111			
a_1	010-FrF0	y0-01-0-	10-0-10-	F-Fa0101
a_2	F100-Vv1	0aa10a1a	01a1a011	1-wa11a1
a_3	01011VFV	-1000000	00000000	01FFa0a1
a_4	0w101v-a	y10000	00101000	010XWF10
a_5	0w0101y1	V1-11110	00111-00	10010100
a_6	1w0a1a0a	a0a1aaa-	10010F	-W01F0Fh
a_7	ww0w0111	11111111	111-010F	0w0W0110
a_8	w10wvv01	11110000	010-111F	1-Wh000F
a_9	00WV11	11111111	1110	F1F01
a_{10}	W11x-Vvv		a	-1ww1h0w
a_{11}	100V		1	-1hhOh\\w
a_{12}	wwWF-v			-1hhhhOh
a_{13}	O₩WV	-F-F-F	FNqNqqqq	q1hhhOWW
a_{14}	1WWhhhhh	hhhhhhh	hNhNqNNq	NNhhh1wh
a_{15}	WWwhhhhh	hhhhhhh	hqhhqqqq	qNwh0hh0
a_{16}	w1Whhhhh	hhhhhhh	hhNhqqqq	hqwh1hAh
a_{17}	00			0-0-
a_{18}	1-1			a-0-
a_{19}	0-ъ			0-
a_{20}	0			a
a_{21}	b			0-
a_{22}				aa
a_{23}				00
a_{24}	-c			a

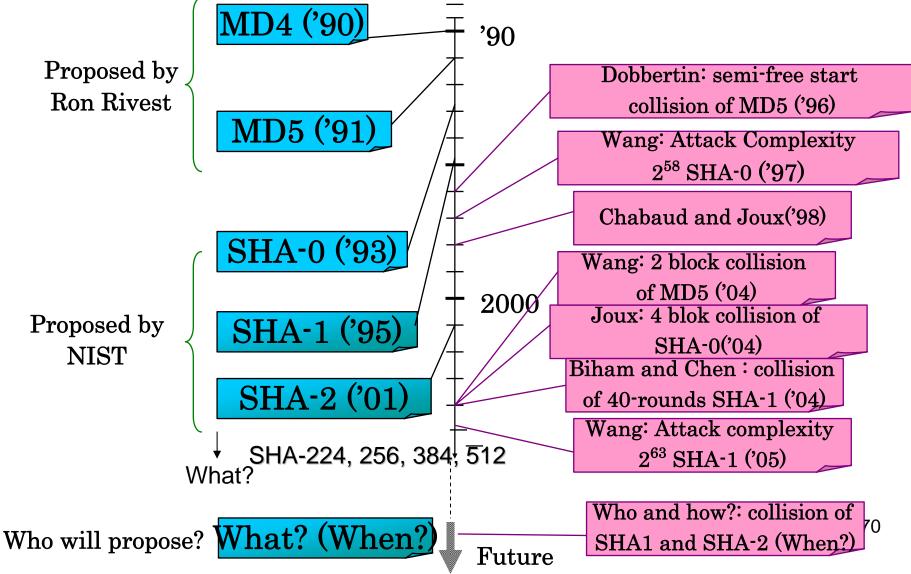
Cryptanalysis of full-round SHA-1 (first iteration)

- We can achieve all message conditions and all chaining variable conditions in 17 – 26 round
- 64 conditions remained
 - > exhaustive search (2⁶⁴ message modification)
- Constant is practical?
 - Utilization of Groebner base based method
 - 2⁶⁴ message modification -> 2⁵¹ message modification (symbolic computation)
 - However, total complexity is still same
 - Complexity can be reduced employing a suitable technique of error correcting code and Groebner basis?

Example which satisfies sufficient conditions until 28-th round

M = 0x

aa740c82 9f91e819 84c3e50f a898306b 1e5b4111 1867d96b 0616ea95 014a2f32 7ae92980 d5e4d6c6 9d49d0ba 3b8087d3 32717277 edcec899 dc537498 63bca615


 The above M satisfies all message conditions of 0-80 rounds and all chaining variable conditions of 0-28 rounds

Summary of Part II

- Proposed the novel method for finding the differential pattern, method for determining sufficient conditions and the novel method for the message modification using Gröbner-like method
- Succeeded in finding collisions of 58-step SHA-1
 - Showed by experiments the efficiency of proposed method

Part III Hash Functions: What's the Future?".

A history of hash function proposals and cryptanalysis of hash functions

Hash functions in the future

- NIST admit to use SHA-1 for 5 years as it is
- NIST is considering SHA-256 as a replacement of SHA-1 and to be secure until 2015
- Timeline was published by NIST

Timeline published by NIST

• Year 1 (2008?):

- 1Q Draft and publish the minimum acceptability requirements, evaluation criteria, and submission requirements for public comments. Announce a public workshop to discuss these requirements.
- 2Q Public comment period ends.
- 2Q Host a workshop to discuss these requirements.
- 3Q Finalize and publish the minimum acceptability requirements, evaluation criteria and submission requirements. Request submissions for new hash algorithms.

• Year 2 (2009?):

- 2Q Review submitted algorithms, and select candidates that meet basic submission requirements.
- 3Q Host the First Hash Function Candidate Conference. A nnounce first round candidates
- 3Q Call for public comments on the first round candidates.

• Year 3 (2010?):

- 1Q Hold the Second Hash Function Candidate Conference. Discuss analysis results on the first round candidates.
- 2Q Public comment period on the first round candidates ends.
- 3Q Address public comments; select the second round finalists. Prepare a report to explain the selection.
- 3Q Announce the second round finalists. Publish the selection report, and call for public comments on the second round candidates.

• Year 4 (2011?):

- 2Q Host the Third Hash Function Candidate Conference. Submitters of the second round finalists discuss comments on their algorithms. 2QPublic comment period ends.
- 3Q Address public comments, and select the finalist. Prepare a report to describe the final selection(s).
- 4Q Announce the new hash function(s).
- Year 5 (2012?):
 - 1Q Publish draft standard for public comments.
 - 2Q Public comment period ends
 - 3Q Address public comments.
 - 4Q Publish new hash function standard.

What's the difficulty to find collision of 58-round reduced SHA-1?

- Wang found the collisions of 58-round
- Many researcher in the world failed to find similar collisions, why?
 - Wang does not publish all the details of her attack
 - Attack is essentially mathematical
 - Need the knowledge of Gröbner basis
 - Need the programming technique
 - Sometimes need super programmer
 - Need so many human resources
 - I spent 2000 hours to experiment and implement

What's the problem in standardization of hash function?

- No one could not implement Wang's attack of SHA-1 properly
 - Therefore no one can evaluate the complexity accurately
 - No one knows whether Wang's attack can be applicable to SHA-2 or not
 - No one can propose new algorithms immune to Wang's attack

Gröbner cryptanalysis of SHA-1

- Gröbner base based cryptanalysis (simplification of Wang's attack) of SHA-1 can be easily implemented by everyone
 - Everyone can evaluate the complexity accurately
 - Everyone can easily evaluate the immunity of SHA-2 against Gröbner base based attack (or Wang's attack)
 - Everyone can propose new algorithms immune to our attack (or Wang's attack)

(Near) Future Work

- Find the collision of full-round SHA-1
 - Use Gröbner base based cryptanalysis
 - As an improvement of Wang's attack
 - Community of symbolic computation has so many good techniques
 - Wang (probably) does not use such techniques e.g. iterative decoding, list decoding, Sudan algorithm, Groebner basis based method

Question:

Who and when will find the collision of full-round SHA-1?

- My (only personal, not public) conjecture
 - Someone in the crypto community or the community of symbolic computation
 - In a few years, not in 10 years as NIST considers

Future work: Application to SHA-2

- Finding good sufficient conditions
 - Difficult to find?
 - Hint: Sufficient conditions do not need to be linear relations on $\{m_{ij}\}$ or $\{a_{ij}\}$
- Once good sufficient conditions are determined, problems are degenerated into symbolic computation