Trends in Cryptographic Techniques in Korea

Kyunghwan Park

Senior Member of Technical Staff Cryptography Technology Team KISA(Korea Information Security Agency) khpark@kisa.or.kr

Cryptographic Techniques I

- Cryptographic techniques change rapidly due to
 - The growth of the internet
 - The development of the computer technology
- Cryptographic Techniques are needed to provide electronic security for
 - e-government
 - e-business
- The practical implementation of cryptographic techniques requires
 - Interoperability => standardization
 - Efficiency => multi-platform
 - Security => public validation

Cryptographic Techniques II

- Past
 - It is developed secretly by the government for the military use
 - Government-driven standardization / De facto standardization
- Present
 - Develop: Public researchers
 - Validation : Public researchers and Government
 - De facto standardization / Government-driven standardization

Korea

- Private Sector
 - KISA, Cryptographic Technology Team
 - Government affiliated Agency under MIC(Ministry of Information and Communication)
 - R&D of related techniques and standard with Evaluation
 - Evaluation: Firewall, IDS
 - Will evaluate all security products in the near future
 - Root CA in PKI of Korea
 - ETRI(Electronics and Telecommunications Research Institute), Information Security Technology Division
 - KIISC(Korean Institute of Information Security & Cryptology),
 SIS(Standardization for Information Security) Research Group
- Government Sector
 - NSRI(National Security of Research Institute)

Korea - Encryption standard

SEED

- A 128 bit block cipher with 128 bit key
- 16 round Feistel structure
- Faster then triple-DES
- Developer : KISA
- Developing Period : 1997.9-1998.12
- Validation : KISA and Committee(consists of public researchers from KIISC)
- Standard :
 - TTA (Telecommunications Technology Association) standard (1999.9) (=government standard)
 - Submit as ISO/IEC encryption standard (2000.9)
- Among 38 opened industrial implementations in private sector :
 SEED 71%, DES 84%, RSA 63%

Korea – Digital signature standard

- KCDSA (Korean Certificate-based Digital Signature Algorithm) based on discrete logarithm problem
 - Developer : KISA and KIISC—SIS
 - Developing period: 1994-1998
 - Standard : TTA standard(1998.10)
 - As a contribution to IEEE P1363a(1998.8)
- EC-KCDSA (Elliptic Curve version of KCDSA)
 - Developer : KIISC-SIS
 - Developing Period: 1997–2000
 - Standard: TTA standard(2000.12 expected)
 - Contained in FCD 15946-2 with EC-DSA & EC-GDSA

Korea — Hash function standard

- HAS160 (Hash Algorithm Standard with 160-bit output)
 - Developer : KISA and KIISC-SIS
 - Developing period : 1995–1998
 - Standard
 - TTA (Telecommunications Technology Association) standard (1998.10)
 - Used as hash function in KCDSA
- Sites for cryptographic standards in Korea
 - http://dosan.skku.ac.kr/~sjkim/kg_std.html
 - http://oberon.postech.ac.kr/kiisc-sis/

World

AES - Round 1

Name	Nation	Submitter	Rounds/structure
CAST256	Canada	Entrust Tech., Inc.	48(12)/Modified Feistel
Crypton	Korea	Future Systems, Inc.	12/SP
DEAL	Canada	Richard Outerbridge	6,6,8/Feistel
DFC	France	CNRS	8/Feistel
E2	Japan	NTT	12/Feistel
FROG	Costarica	TecApro Internacional S.A.	8/Key Interp.
HPC	U.S.A.	Rich Schroeppel	8/Omni
LOKI97		Lawrie Brown, Josef Pieprzyk, Jennifer Seberry	16/Feistel
MAGENDA	Germany	Deutsche Telekom AG	6, 6, 8/Feistel
MARS	U.S.A.	IBM	32(16)/Modified Feistel
RC6	U.S.A.	RSA Lab.	20(10)/Modified Feistel
RIJNDAEL	Belgium	Joan Daemen, Vincent Rijmen	10, 12, 14/SP
SAFER+	U.S.A.	Cylink Corporation	8,12,16/SP
SERPENT	English, Israel, Norway	Ross Anderson, Eli Biham, Lars Knudsen	32/SP
TWOFISH	U.S.A.	Bruce Schneier, John Kelsey, Doug Whiting, David Wagner, Chris Hall, Niels Ferguson	16/Feistel

World

ISO/IEC

- Korea submit following symmetric encryption algorithms as a candidates
 - SEED: by KISA
 - Xenon, Zodiac : by SoftForum Co.
- EC-KCDSA is included in FCD 15946-2
 "Cryptographic techniques based on elliptic curves Part 2: Digital signatures"