STAMP海外事例の紹介: STPA-SafeSec

岡本 幸史 仙台高等専門学校/IoTシステム安全性向上技術WG委員 岡野 浩三 国立大学法人信州大学/IoTシステム安全性向上技術WG委員

本稿では、STAMP海外事例としてSTPA-SafeSecを紹介する。STPA-SafeSecは、安全性と脆弱性を統合し て分析するためのSTPA拡張である。また、とくに脆弱性分析をSTPAベースで実施する際に有用となる関連 事項を併せて紹介する。

はじめに

STAMP (System Theoretic Accident Model and Processes) は システム理論に基づく事故モデルであり、STPA (System Theoretic Process. Analysis) はSTAMPに基づくハザード分析(安全分 析) 手法である [1] [2]。STPAは既存の安全分析手法で分析が 困難であった複雑な対象に対し有効であると言われている[1]。

走行中の自動車のエンターテインメント系から走行系への 乗っ取り、コンピューター・ワームによる遠心分離機の破壊と いった、セキュリティ侵害が安全性を脅かす事例がある。これ らの事例は、STAMP/STPAの用語を用いれば、セキュリティに かかわるハザード誘発要因 (Hazard Causal Factor、HCF) が最 終的に安全制約を破るという事例である。このような事例を分 析するためには、安全分析とセキュリティ分析を統合したSTPA の拡張が必要となる。

前述の事例は、STPAのstep0準備1において安全性にかかわる アクシデント、ハザード、安全制約を識別し、step2のHCF特定の ヒントとしてセキュリティにかかわるヒントを導入するだけで、 分析できそうに思える。しかし、セキュリティ分析にはシステ ムの詳細情報が必要なことが多く、STPAで使用するコントロー ルストラクチャー図 (Control Structure Diagram、以下CSD)が セキュリティ分析に十分であるかといった検討は必要であろう。 このような背景の下に、STPAの拡張として、STPA-Sec[3]や STPA-SafeSec [4] が提唱されてきた。

本稿では、具体的な事例(マイクログリッドにおける広域電 力網と局所電力網の接続(併入)をSTPA-SafeSecで分析)を用い てSTPA-SafeSecの手順が説明されている論文を紹介する。はじ めに、STPA-SafeSecの特徴と手順を紹介し、次にSTPA-SafeSec の適用事例を紹介する。更に、とくに脆弱性分析をSTPAの拡張 で分析する際に有用な事項を紹介する。

なお本稿では、STPA-SafeSecで用いられている用語を、標準

的STAMP/STPAの用語に著者の解釈で置き換えている。

STPA-SafeSecの概説

本節では、文献[4]で提案されているSTPA-SafeSecを紹介す る。STPAは安全性分析を目的としているが、STPA-SafeSecは、 安全制約と脆弱性を統合して分析できるSTPA-SafeSecの拡張で あり、文献 [4] では、STPA-SafeSecの詳細な手順が提案されて いる。本節ではスペースの関係から、STPA-SafeSecの手順詳細 を割愛し、標準的STPAの手順[2]に合わせて解説する。

2.1 STPA-SafeSecの特徴

STPA-SafeSecでは以下の上2つが貢献として挙げられている。 また本稿では、1つ目の貢献からの派生効果であるが3つ目も 貢献として挙げる:

- 1. 機能CSDと物理CSDを持つ
- 2. Step2で使用するHCFヒントのセキュリティ拡張
- 3. 安全性・セキュリティ対策の統合
- これらの特徴について、それぞれ述べる。

機能レイヤ (Control Layer) のCSD (以下、機能CSD) 内のコン トロールループごとに構築する物理レイヤ(Component Layer) のCSD(以下、物理CSD)を用いることで、step2でセキュリティ 侵害の経路が特定しやすくなる。例えば、上位の機能CSDの時 刻同期機能は、下位の物理CSDではGPSに詳細化されたとする。 この詳細化により、GPSの既存の脆弱性をHCFとして利用できる。 また機能CSDと物理CSD間のコンポーネントを対応付けること で、機能CSDで特定したUCAから、物理CSDにおいて識別するそ のUCAへ至るHCFとハザードシナリオとの対応が容易になる。 更に、物理CSDを考えることで、既存の脆弱性分析を活用する には、抽象化した機能レベルの分析では限界があり、この事例 のような物理CSDの導入が必須となる。

標準的STPAは安全性を分析するために、アクシデント、ハザー ド、安全制約を識別し、最終的にHCFとハザードシナリオを特 定する。HCFを特定する際には、コントロールループ中で安全 性にかかわるHCFヒントとして、コンポーネント故障、ヒュー マンエラー、コミュニケーションエラー、ソフトウェア不具合、 要求仕様不具合などを用いることが一般的である。STPA-SafeSecでは、これら従来のヒントにセキュリティにかかわる HCFヒントを追加し、HCFとしてなりすましなどのセキュリティ にかかわる誘発要因を特定できるようにしている。

なお、STPA-SafeSecで採用されているセキュリティにかかわ るHCFヒント以外では、例えば、セキュリティにかかわるヒン トとしてSTRIDE [5] の利用が考えられる。

STPA-SafeSecのstep2では、抽象的ハザードシナリオから具 体的ハザードシナリオを導出し、安全制約やセキュリティ制約 を特定している。この導出方法により、ハザードシナリオ(安全・ セキュリティ制約) たちは木構造となる。この木構造を分析す ることで、安全制約とセキュリティ制約間の関係が明らかになり、 これらを統合できる。例えば、機能CSDであるフィードバック が間違っていることがUCAの指示につながり、ひいてはハザー ドを引き起こすこというシナリオ1が策定できたとする。更に、 この機能CSDを詳細化した物理CSDにより、サイバー攻撃によ りそのデータが改ざんされ、同じUCAへ至るというシナリオ1.1 を特定できたとする。このとき、安全の観点から導入されたデー タチェック機構は改ざん検出にも利用できるため、シナリオ1 の安全対策がシナリオ1.1のセキュリティ対策を兼ねることに なる。

2.2 STPA-SafeSecの手順

STPA-SafeSecは詳細な手順に分割されている([4] 図3)。本 稿では、標準的STPAのプロセスである[2]で解説されている手 順にまとめSTPA-SafeSecを解説する。

Step 0準備1 (STPA-SafeSec II~IV): 対象とするシステムの ロス(アクシデント)、ハザードを定義し、各ハザードに対する 安全制約とセキュリティ制約を識別する。セキュリティ制約と いったセキュリティにかかわる事項を対象とすること以外は、 標準的step0準備1と同じである。

StepO準備2(STPA-SafeSec V):上記制約の実現に必要な、機 能コンポーネントとそれらの相互作用(コントロールアクショ ンとフィードバック)を分析して機能CSDを構築する。機能CSD は標準的step0準備2で構築するCSDに対応する。

Step1 (STPA-SafeSec VI~IX):機能CSD内の各コントロール ループに対し、トーマス博士が提案する拡張step1 [6] により、 UCA(原文Hazardous Control Action)を抽出する。拡張step1は、 コントローラの入力の組み合わせに対し網羅的にUCAか否かを 判定するため、自動化に適しているといった特徴を持つ。なお STPA-SafeSecの他手順との関連から、STPA-SafeSec step1 は標 準的step1でも良いと考えられる。他方、STPA-SafeSec step1で 用いるガイドワードは標準的STPAの4つのガイドワードと同 じである。

Step2はSTPA-SafeSecの特徴的な概念・手順を多く含むため、 [4]に従い、以下の3つの手順に分割して解説する。

Step2a(STPA-SafeSec X、XI):機能CSDの各コントロールルー プに対し、物理CSDを構築する。物理CSDは機能CSDをアーキテ クチャレベルへ詳細化した記述である。このとき、これらの構 成要素間を対応付ける。また、抽象的ハザードシナリオ(原文 Safety Related Flaws、System Flaws) を策定する。この抽象的 ハザードシナリオは、標準的STPA[1]の安全にかかわるHCFヒ ントを参考に特定される。

抽象レベルでのシナリオとして、ハザードシナリオのみを扱 うのは、標準的STPAが扱うシナリオに加え、セキュリティ侵害 が安全性を脅かすシナリオを扱うことを目的としているためと 考えられる。

Step2b (STPA-SafeSec XII):step0準備1で識別済みのハザー ド及びリスト1、2のセキュリティ制約を基に機能CSDのコンポー ネントへ抽象的安全・セキュリティ制約を課し、機能CSDと物理 CSDの対応に基づき、抽象的安全・セキュリティ制約を物理CSD の要素に割り振る。

物理CSDのコンポーネントに課される安全制約は、step1準備 1で識別した安全制約であり、標準的STPAの安全制約である。 他方、セキュリティ制約はSTPA-SafeSec step2bで登場する。後 の事例において、物理CSDのコンポーネントに既知の脆弱性と してスプーフィング(spoof)とジャミング(jam)が知られてい る場合に、このコンポーネントへセキュリティ制約(CSTR-A-1、 CSTR-A-2) を課すという利用法からは、リスト1、2の内容はセ キュリティにかかわるHCFヒントであるとも言える。

リスト1: 完全性に対する汎用的脅威

- CSTR-I1 コマンド・インジェクション (Command injection)
- CSTR-I2 コマンド欠落 (Command drop)
- CSTR-I3 コマンド操作 (Command manipulation)
- CSTR-I4 コマンド遅延 (Command delay)
- CSTR-I5 観測値インジェクション (Measurement injection)
- CSTR-I6 観測値欠落 (Measurement drop)
- CSTR-I7 観測値操作 (Measurement manipulation)
- CSTR-I8 観測値遅延 (Measurement delay)

リスト2: 可用性に対する汎用的脅威

- CSTR-A1 通信遅延 (Communication delay)
- CSTR-A2 通信欠落 (Communication dropped)
- CSTR-A3 ノード過負荷 (遅延) (Node overloaded (delay))
- CSTR-A4 ノード過負荷 (欠落) (Node overloaded (drop))

Step2c (STPA-SafeSec XIII):step2aで識別した抽象的ハザー ドシナリオを機能CSDに対するトップレベルのハザードシナリ オとし、それを物理CSDへ詳細化していく。このとき、詳細化関 係があるため、ハザードシナリオたちは木構造となる。

このように、抽象的ハザードシナリオを具体的ハザードシナリオ へ詳細化するアプローチは、[6] 3.4 Identifying causal factor scenariosでも紹介されている。しかし[6]では、機能CSDのみを 用いて詳細化しているのに対し、STPA-SafeSecでは2つのCSDを 用いて詳細化している点が異なる。

STPA-SafeSecによる分析事例

本節では、[4]の4、5節にある事例を解説する。文献[4]は事 例としてマイクログリッドを用いており、とくに広域電力網と 局所電力網の接続(併入)におけるハザード分析を実施している。 事例対象の簡単な解説は、本稿のstep0準備2とstep1にある。 また詳細な解説は、[4]と[7]を参照いただきたい。

3.1 Step0準備1

STPA-SafeSec StepO準備1では、安全に関する事柄に加えセ キュリティに関する事柄を考える以外は、標準的STPAと同じで ある。この事例では、次のロスを識別している:

●L1: 人間への危害

●L2: 電力機器の損傷

●L3: ユーザの電器機器の損傷

●L4: 停電

続いて、次のハザードを識別している(カッコ内は関連する ロスを表す):

●H1: 非同期での系統併入(L1、L2、L3、L4)

●H2:電力機器の運転制限外での運用(L1、L2、L3、L4)

●H3:電力品質指標の逸脱

▶ H3.1 電圧 (L1、L3)

▶ H3.2 周波数 (L3、L4)

● H4: 同期制御の不調(L4)

●H5: 地域の電力需要への対応不可(L4)

更に、システムに対する高抽象度の安全制約を、ハザードの 否定形を取ることで識別している。このとき、制約は安全制約 (CSTR-Sn)、可用性制約(CSTR-An)、完全性制約(CSTR-In)のよ

うにどのような属性に対する制約かを分けて番号付けしている。 なおこの事例では、安全制約CSTR-S1からCSTR-S5 (H1からH5 の否定形) しか登場しないが、一般には可用性制約と完全性制 約も扱う。

3.2 Step0準備2

STPA-SafeSecのstep0準備2では機能CSDを構築する。この機 能CSDが標準的STPAのCSDに相当する。機能CSDにおけるコン ポーネント(原文Node)はNnで、接続はCnで番号付けされる。 なおstep2aで、この機能CSDを詳細化した物理CSDを構築し、2 つのCSDのコンポーネントを対応付ける。従って、対応が分か りやすい番号付けが望ましい。

この事例では、とくに速度制御器が制御するコントロールルー プ図に着目し、機能CSD(図1)を構築している。

図1について解説する。速度制御器(N1)、ローカルPMU(N4、 ローカルマイクログリッドにある電圧位相計測装置(Phasor Measurement Unit))、ホストPMU (N5)、速度制御器とローカ ル・ホストPMU間の接続(C4とC5)により接続されている。各 PMUからは、電圧 (Xm)、周波数 (ω) 、位相 (φ) が周期的に送 られてくる。速度制御器は、同期が取れているかを確認し、サー キットブレーカ(N6)へ再開が安全か否かを送信する(この事 例では、サーキットブレーカは自動ではなく、操作員が相当す る操作を実行すると仮定しているため、開閉命令ではなく、安 全か非安全かの情報が送信されている)。また速度制御器は、原 動機制御器(N2)を経由して、ジェネレータ(N3)へ運転設定値 (set point、C1)を設定する。

3.3 Step1

STPA-SafeSecのstep1では、機能CSDからトーマス博士が提 案した拡張step1 [6] を用いて、UCAを識別する。ここで、コン トローラである速度制御器(N1)が参照する変数は、ΔXm(t)(電

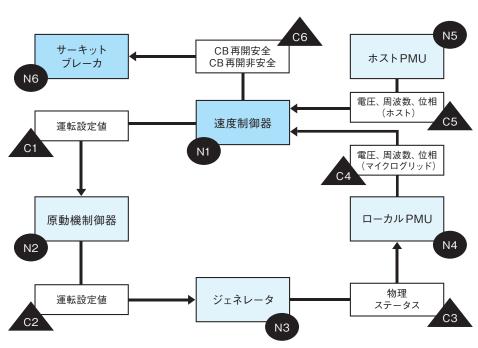


図1 機能コントロールストラクチャー図

圧差:ホストとローカルの電圧差、値は制限内、制限外)、 $\Delta \omega(t)$ (周波数差:ホストとローカルの周波数差、値は制限内、制限外)、 Δ φ (t)(位相差:ホストとローカルの位相差、値は制限内、制 限外)、St_c(サーキットブレーカの状態、値は開、閉)の4変数 であり、速度制御器は、Csp(原動機制御器(N2)への指示、値は 運転範囲内、運転範囲外)、Ccb (サーキットブレーカ(N6)への 連絡、値はCB再閉安全、CB再閉非安全)の2つのコントールア クションを指示する。

STPA-SafeSecは拡張step1を採用しているため、step1分析結 果の記述形式が、標準的な記述形式 [1] [2] と異なる。この事例 のUCA1は、速度制御器のコントールアクションCcb=CB再開安 全とハザードへ至る条件 Δ Xm(t) =制限外の組み合わせに対し、 ガイドワードProviding (Anytime)、Too early、Too lateのとき にハザード(H1、H3)へ至ると記述されている(すなわちUCA1 には、Too earlyとToo lateが一つのガイドワードであるとすれば、 2つのUCAがまとめられている)。

速度制御器からのコントールアクションに対するstep1の結 果は以下の通りである:

- ●UCA1: ブレーカが解放状態のとき、電圧差が制限外であるにも かかわらず、サーキットブレーカへCB再開安全をProviding,Too early,Too lateで指示(H1、H3)
- ●UCA2: ブレーカが解放状態のとき、周波数差が制限外である にもかかわらず、サーキットブレーカへCB再開安全を Providing,Too early,Too lateで指示(H1、H3)
- ●UCA3: ブレーカが解放状態のとき、位相差が制限外であるにも かかわらず、サーキットブレーカへCB再開安全をProviding,Too early,Too lateで指示(H1、H3)
- ●UCA4: 運転節囲外の設定値を原動機制御器に指示(H2)

●UCA5: ブレーカが解放状態のとき、運転範囲内の設定値を原 動機制御器にToo late、Notで指示(つまり、設定値の更新が行 われない)(H3、H4、H5)

3.4 Step2a:物理CSDの構築

STPA-SafeSec step2aでははじめに、機能CSDを物理CSDへ詳 細化する。物理CSDは機能CSDをアーキテクチャレベルで実現 した記述である。図2は図1の機能CSDを基に作成した物理 CSDである。

元の事例では、物理CSDの要素 (node) はNnの形で、接続はCn の形で表現される。また両CSDの要素間には対応が付けられる。 本稿では、機能CSDと物理CSD間の対応の理解性向上のために、 機能CSD内のNmと対応する物理CSD内のコンポーネントは Nm-nと表記する。なお、機能CSDと物理CSDの要素は多対多対 応のため、Nm-nとNm'-n'が同じ要素を表すことがある点には注 意が必要である。

機能CSDと物理CSDの対応の一部を示す。N1(速度制御器)は、 N1-1 (速度制御器CPU)、N1-2 (アナログ・デジタル変換器)と N1-3 (N1-1とN1-2間のUSB接続)により構成される。またC5 (ホ スト電圧) は、C5-3 (ホスト電圧)、C5-2 (ファイアウォール)、 C5-1 (スイッチ)、C5-4 (ホスト電圧、ローカル電圧)により構成 される。

機能CSDと物理CSDの対応付け後に、続いて、安全にかかわる 抽象的ハザードシナリオ(この事例ではSystem Flaw)を特定し ている(STPA-SafeSec X)。抽象的ハザードシナリオは、標準的 STPA[1]の安全にかかわるHCFヒントを参考に、特定される。 この事例では、以下の6つの抽象的ハザードシナリオを特定し ている。F1: 速度制御器は電圧が制限内と誤認識、F2: 速度制 御器は周波数が制限内と誤認識、F3: 速度制御器は位相角が制 限内と誤認識、F4: 原動機制御器は運転範囲外の設定値を受け

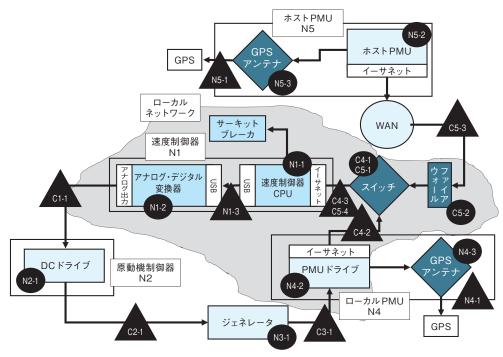


図2 物理コントロールストラクチャー図

取る、F5: 速度制御器は設定値変更が要求されていないと誤認 識、F6: 遮断機制御器は「CB再開安全」という誤情報を受信。

3.5 Step2b:制約の詳細化

標準的STPAでは、この後にハザードシナリオを導出する。他方 STPA-SafeSecでは、ハザードシナリオ導出の前に、機能CSDの要 素へ安全・セキュリティ制約を課し、機能CSDと物理CSDの対応に 基づき、安全・セキュリティ制約を物理CSDの要素に割り振っている。 この安全・セキュリティ制約を破る要因がHCFとなる。

物理CSDの要素に対し、安全・セキュリティ制約を課す利点と しては、例えば以下の利点が挙げられている。物理CSDのコン ポーネントとしてGPSが使用されていることが決まれば、GPS の既知の脆弱性としてスプーフィング(spoof)とジャミング(jam) が知られているため、これらに対するセキュリティ制約(CSTR-A-1、 CSTR-A-2) を要素N4-3、N4-1 に課す必要があることが分かる。 しかし、機能CSDではGPSが使用されるか否かは決定されてい ないため、これらの制約を課すべきか否かは決定できない。

STPA-SafeSec step2bでは、はじめに、安全・セキュリティ制 約と機能CSDの要素を対応付ける。このとき、安全制約として 識別済ハザードを用い、セキュリティ制約としてリスト1、2の 制約を用いる。正確にはハザードやリスト中記述の否定形が制 約である。

次にSTPA-SafeSec step2bでは、step2cで策定するハザードシ ナリオの理解容易性を高めるため、機能CSDの制約を物理CSD へ詳細化する。この事例では、幾つかのデバイスに対して制約 の詳細化が示されているが、本稿では速度制御器(N1)に対す る制約の詳細化のみを紹介する。

はじめに、ハザードより安全制約を導出し、リスト1、2より セキュリティ制約を導出する。速度制御器に対しては、H1(非 同期での系統併入)、H2 (電力機器の運転制限外での運用)、H3 (電力品質指標の逸脱)とH5 (地域の電力需要への対応不可)が 課される。次に、これらの安全制約とセキュリティ制約を、速度 制御器の構成要素である、速度制御器CPU N1-1、アナログ・デ ジタル変換器N1-2とUSB接続N1-3に割り当てる。ここでは、 H1、H3とH5は速度制御器CPUに、H2はアナログ・デジタル変 換機に割り当てられる。

3.6 Step2c ハザードシナリオ策定

はじめに、トップレベルのハザードシナリオ(シナリオ1)を 策定する。トップレベルのハザードシナリオは、step2aで識別 した抽象的ハザードシナリオであり、それに関連するUCA (Hazardous Control Action) と機能CSDのコンポーネント及び 物理CSDのコンポーネントから構成される。次に、トップレベ ルのハザードシナリオに含まれる各層の要素に着目し、ハザー ドシナリオを詳細化していく。このとき、詳細化されたハザー ドシナリオのHCFに対応する制約を合わせて記述する。下位シ ナリオ(シナリオ1.1以降)は、機能CSDのコンポーネント、物 理CSDのコンポーネントに加え、安全制約、セキュリティ制約 から構成される。

トップレベルのハザードシナリオから詳細化して策定された ハザードシナリオたちは、木構造を成す。木構造の上位ノード はより抽象的ハザードシナリオが対応する。すなわち、あるノー ドの子ノードには当該ノードに割り当てられたシナリオのサブ シナリオが付される。このような木構造にすることで、あるハザー ドシナリオへの対応策は、木構造におけるそのノードの下位ノー ドの対応策になる。

本稿では、一部のハザードシナリオのみ紹介する。

シナリオ1:速度制御器は、(ローカル・ホスト間の)電圧差が 制限値内と誤認識する。「ハザード:H1(非同期での系統併入)、 H3 (電力品質指標の逸脱)、抽象的ハザードシナリオ:F1 (電圧 差が制限内と誤認識)、UCA: UCA1(ブレーカが解放状態のとき、 電圧差が制限外であるにもかかわらず、サーキットブレーカへ CB再開安全をProviding,Too early,Too lateで指示(H1、H3))、 機能CSD関連コンポーネント:N1、N4、C4、N5、C5、物理CSD関 連コンポーネント: N1-1、N4-2、C4-2、C5-1、C5-2、N5-2、C5-3、 C5-4)

シナリオ1.1: 速度制御器(N1)は、正しいフィードバックを間違っ て認識する。「機能CSD関連コンポーネント:N1(速度制御器)、 物理CSD関連コンポーネント:N1-1 (速度制御器CPU)、安全制 約:デバイス(速度制御器CPU)とアルゴリズムの信頼性、アルゴ リズムの正しさ、セキュリティ制約: CSTR-I5 Measurement injection(フィードバック(以下FB)信号へのインジェクション攻撃)、 CSTR-I7 Measurement manipulation (FB信号の操作)」

シナリオ1.2: 速度制御器は、ホストPMUからの間違った信 号を受け取るが、それを正しいと認識する。「機能CSD関連コン ポーネント:N1、N5、C5、物理CSD関連コンポーネント:N1-1、 C5-1、C5-2、N5-2、C5-3、C5-4(注意:C4-3と同じ対象を指す)、 安全制約:N5の信頼性、セキュリティ制約:CSTR-I5 (FB信号へ のインジェクション攻撃)、CSTR-I7 (FB信号の不正操作)」

シナリオ1.2.1: ホストPMUが間違ったFB信号を送る。「機能 CSD関連コンポーネント:N5、物理CSD関連コンポーネント: N5-2、安全制約:N5-2の信頼性、セキュリティ制約:CSTR-I5 (FB信号へのインジェクション攻撃)、CSTR-I7 (FB信号の不正 操作)、N5-2への脆弱性攻撃成功(Successful exploit)」

シナリオ1.2.2: リモートPMUからの正しいFB信号が、ホス ト電圧(C5)で改ざんされる、またはインジェクション攻撃さ れる。N1-3の通信は正常であるとする。「機能CSD関連コンポー ネント:C5、物理CSD関連コンポーネント:C5-3、N5-1、N5-2、 安全制約:なし、セキュリティ制約:CSTR-I5(FB信号へのイン ジェクション攻撃)、CSTR-I7 (FB信号の不正操作)」

シナリオ1.2.3: リモートPMUからの正しいFB信号が、ホス ト電圧(C5)で改ざんされる、またはインジェクション攻撃さ れる。N1-3の通信は異常だが受け入れられるとする。「機能 CSD関連コンポーネント:N1、C5、物理CSD関連コンポーネン ト:N1-1、C5-3、N5-1、N5-2、安全制約:なし、セキュリティ制 約:CSTR-I5 (FB信号へのインジェクション攻撃)、CSTR-I7 (FB 信号の不正操作)」

今後の課題

本節では、STPAをベースに脆弱性分析を行う際の課題として、

step2で用いるHCF導出のヒントに関する課題を述べる。また STPAでは分析時に妥当な仮定を置かずに分析を実施すると、分 析対象が肥大化したり、分析者により分析結果が大きく異なっ たりといった状況に陥りがちである。そこでSTPA一般の課題 として、分析時の仮定について述べる。

4.1 セキュリティにかかわるHCFヒントに関する課題

STPA-SafeSecでは、標準的STPA step2で利用されるHCFのヒ ントに加え、セキュリティにかかわるHCFを導出するために、リ スト1、2にあるヒントを利用する。他方、STAMP Workbenchや SafetyHATといったSTAMP/STPA支援ツールでは、HCFヒント を分析対象領域に依存して適切に変更でき、更に分析者が独自 に編集できる。例えば、[8]にあるHCFヒントは機械のコントロー ラを想定しており、機械のコントローラに対しては適切なヒン トであるが、人間のコントローラに対しては異なるヒントのほ うがHCFを導出しやすいであろう。従って、セキュリティにか かわるHCFヒントも、適宜修正・変更することで、HCFを導出し やすくなると考えられる。

STPA-SafeSecで採用されているセキュリティにかかわるHCF ヒント以外にも、例えば、セキュリティにかかわるヒントとして STRIDE [5] の利用が考えられる。STRIDEは、Spoofing (スプーフィ ング)、Tampering (改ざん)、Repudiation (否認)、Information Disclosure (情報漏えい)、Denial of Service (サービス拒否)、 Elevation of Privilege (特権の昇格)の頭文字から成り、それぞれ は代表的な脅威、すなわちセキュリティにかかわるHCFヒントを表す。

4.2 分析時の仮定に関する課題

STAMP/STPAで解析を行うときに一般に難しい点は、どの抽 象度とどの仮定のもとでコントールストラクチャやHCFの設定 を行うかであろう。モデル化を行う際にはある程度のドメイン 知識を暗黙裏に仮定する。この仮定の妥当性は解析とモデル化 を繰り返すことにより補強するのが現在の標準的な手順である。 この際にknown-unknownsやunknown-knownsなどの仮定の境 界上の事項[9]を意識することが強く望まれる。

STPA-SafeSecでは物理CSDの導入によりunknown-knownsの 気づきに貢献している。例えば、「物理CSDのコンポーネントと してGPSが使用されていることが決まれば、GPSの既知の脆弱 性としてスプーフィング (spoof) とジャミング (jam) が知られ ている」というのは「GPSの既知の脆弱性としてスプーフィング (spoof)とジャミング(jam)が知られている」というドメイン知 識を解析者のunknown-knownsからknown-knowsへの変換に 寄与しているとみなすことができる。

一方、known-unknownsについては次のような対策が取れる。 known-unknownsについては典型的には定性的要因が分かって いるが、定量的な値が不明であるという特徴を持つことが多い。 その場合は値に関する変数を不定値とみなしたり、あるいは統計 的量として捉えることによりモデル化できることがある。その場合 はそれぞれに適した数理モデルや解析手法の活用が可能となる。

まとめ

本稿では、STAMP海外事例として、STPA-SafeSecを紹介した。 STPA-SafeSecは、安全性とセキュリティを統合して分析するた めのSTPA拡張であり、機能CSDと物理CSDを持ち、STPA step2 で使用するHCFヒントをセキュリティ拡張したという特徴を持 つ。併せて紹介したSTPA-SafeSecの適用事例はSTPA-SafeSecの 有用性を示している。しかし、セキュリティにかかわるHCFヒ ントはリスト1、2のヒント以外にもSTRIDEを活用するといっ たことも考えられる。また、既存のセキュリティ分析手法と STPA-SafeSecを統合し、分析結果を充実させるといった点にも 改善余地はあると考えられる。

【参考文献】

- [1] LevesonG.Nancy. (2011). Engineering a Safer World: Systems Thinking Applied to Safety. MIT Press.
- [2] システム安全性解析WG. (2016). はじめてのSTAMP/STPA. 情報処理推進機構.
- [3] YoungWilliam, Leveson Nancy. (2013). Systems Thinking for Safety and Security. In Proceedings of the 29th Annual Computer.
- [4] Ivo FriedbergMcLaughlin, Paul Smith, David Laverty, Sakir SezerKieran. (2017). STPA-SafeSec: Safety and security analysis for cyberphysical systems. Journal of Information Security and Applications.
- [5] マイクロソフト. (日付不明). モノのインターネットのセキュリティ アーキテクチャ. 参照先:https://docs.microsoft.com/ja-jp/azure/iot-hub/iot-hub-security-architecture
- [6] ThomasJohn. (2013). EXTENDING AND AUTOMATING A SYSTEMS-THEORETIC HAZARD ANALYSIS FOR REQUIREMENTS GENERATION AND ANALYSIS. Ph.D Thesis, MASSACHUSETTS INSTITUTE OF TECHNOLOGY.
- [7] IvoFriedberg, DavidLaverty, Kieran MacLaughlin, Paul Smith. (2015). A Cyber-Physical Security Analysis of Synchronous-Islanded Microgrid Operation. Proceedings of 3rd International Symposium for ICS & SCADA Cyber Security Research.
- [8] LevesonG.Nancy, ThomasJohn. (2013). An STPA Primer.
- [9] Sebastian ElbaumS. RosenblumDavid. (2014). Known unknowns: testing in the presence of uncertainty. Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering.