SEC BOOKS =

ESC /R

Embedded System development
Coding Reference guide
[C Language Edition]

Written and edited by
Software Reliability Enhancement Center,
Technology Headquarters,
Information-technology Promotion Agency, Japan

A

ii

This document is the English edition of ESCR (Embedded System development Coding
Reference) [C language edition] Version 3.0 published by IPA/SEC* in Japan. It is the revised
English edition of ESCR [C language edition] Version 2.0 made available in July 2014 in
pdf format. Aimed at improving the quality of the source code written in C language, ESCR
collects the important points to be noted as part of the know-how for coding and organizes
them as practices and rules.

The purpose of this document is to be used as a reference guide for establishing coding
conventions in organizations and groups developing embedded software using C language,

and for promoting the standardization of coding styles and uniformity of source code quality.

March 2018
Software Reliability Enhancement Center, Technology Headquarters,
Information-technology Promotion Agency, Japan

Copyright © 2018, IPA/SEC

Permission to copy and distribute this document is hereby granted provided that this notice is retained on all copies, that

copies are not altered, and that IPA/SEC is credited when the material is used to form other copyright policies.

* Software Reliability Enhancement Center, Technology Headquarters, Information-technology Promotion Agency, Japan

Preface y

On publication of ESCR [C language edition] Ver. 3.0

This document is the English edition of ESCR (Embedded System development Coding Reference) [C
language edition] Version 3.0, with the aim to improve the quality of the source code written in C language
by collecting the important points to be noted as a part of the know-how for coding and organizing them as
practices and rules.

ESCR was first released in June 2006. Exactly a year later (in June 2007), Version 1.1 was released with
minor changes to reflect the feedback from various users and reviewers who pointed out some areas that
lacked in accuracy or clarity. Then in March 2014, Version 2.0 was released mainly to comply with C99, the
most widely used C language standard at the time, as well as to align with the extensively revised version of
MISRA C (MISRA C:2012) issued in March 2013.

ESCR Version 3.0 is the immediate successor of Version 2.0. Along with supplementary explanatory texts,
additional compliant and non-compliant coding examples, and warnings specifically focused on reminding
the coders about the growing importance of taking security into consideration more carefully when they
write the code, Version 3.0 contains new rules and descriptions that mainly consist of the following:

* Rules on CERT C Coding Standard that have been developed by the Software Engineering Institute in
Carnegie Mellon University (CMU/SEI)

+ Rules proposed by IPA IT Security Center as important points to keep in mind to eliminate vulnerabilities
during development

Furthermore, the rules and descriptions revised in ESCR C++ Version 2.0 (the latest ESCR edition for
C++ language) that also apply to C language have been updated in this document.

To maintain the continuity from the previous release, ESCR Version 3.0 follows the same 3-part structure
as Version 2.0, including the same numbering system applied to practices and rules carried over from the
previous version.

The primary purpose of this document remains consistent from the initial release in 2006. It is intended
to be used as a reference guide for establishing coding conventions in organizations and groups developing
embedded software using C language, and for promoting the standardization of coding styles and uniformity
of source code quality. In addition to that, Version 3.0 has introduced a set of new rules and descriptions
that mainly address the growing need for more security-conscious implementation in embedded products
and solutions that could effectively help eliminate vulnerabilities in software at the coding level for safer
deployment and adoption of IoT that is becoming increasingly widespread.

We sincerely hope that the effective use of ESCR Version 3.0 will lead to the improvement of embedded
software productivity and contribute to the attainment of high-quality software development.

Spring of 2018

Yukihiro Mihara, Keisuke Toyama
Software Reliability Enhancement Center, Technology Headquarters
Information-technology Promotion Agency, Japan

Fusako Mitsuhashi
Coding Practice Guide Revision Working Group

Preface

iii

iv

Table of Contents

Preface ... iii
Part 1
How to Read the Coding Practices Guide 1
A OB I EWoe et 2
1.1 Whatare CodiNG PracCtiCeS?couiiiiiiiie e 2
1.2 Purpose and Position of Coding Practices and the Target Users.........ccccccocveviiiiiennenne 3
1.3 Characteristics of the Coding PractiCes.ooiuiiiiiiiiiii e 4
1.4 Notes on USING thiS GUIEeiiiiiiiiee e 6
2 Understanding Source Code QUalitycceeeeiiiiiiiiiiiiiiiiieeieeee e 9
21 Quality CharaCteriStiCS........ccuuriiiiiieiiiee e 9
2.2 Quality Characteristics, Coding Practices and RuUlesccceoiriiiiiiiiiiiec 16
3 HOW t0 USE this GUIAEevveeeeeereeeeeeeeeceeeeseeee e 18
3.1 Scenarios for USING thisS GUIEooiiiiiiieiiiei e 18
3.2 Creating a New Coding Cone ntion
3.3 Enhancing Ek sting Coding Cone ntions....
3.4 sern ng as a Learning Material for Programmers' Training and Self-Study................... 22
Part

2 Coding Practices for Embedded Software: Practices Chart 23

How to Read the Practices Chartcccccoiiiiiiiiiiiiiee e, 24
Terminology Used in the Practices Chartccooooiiiiiiiiiee . 28
Coding Practices for Embedded Software..................cccoooooiiiiiiiiieenie, 29
@ REl@DIlity ..ottt ettt enn 31
@ Maintainabilityccoiuiiiiiiiice e 71
@ POMabIlitycovitiiiiiieiei ettt ettt ettt ettt et eaeere et e s ere et enesre et enas 131
@ EMfICIENCY ..ot ettt e e e e et e et e e e s eree st eeaeeseaeeseneeeneeeeaeesneas 147

Table of Contents

Part
3 Typical Coding Errors in Embedded Software 151

Typical Coding Errors in Embedded Softwareccccooiiiiiiiiiiiiien 152

1 Meaningless ep ressions and statements .152
2 Wrong ep ressions and StatemMeNtS............oouiiiiiiiiiiie e 154
3 VWrONQG MEMOTY USAQEeiuteeiieeiite it ettt ettt ettt ettt ettt sttt eeeaeenneeseneenen 156
4 Errors due to misunderstandings in logical 0perationsccccceeoiiiieiiienie e 158
5 Mistak s dueto BYPOS e 159
6 Wrong descriptions that do not cause errors in some compilersccccceeeiieeiniieenns 159
Appendices 161
Appendix A List of practices and rulesccccoooeeiiiiiiiiiiiiiiieieeee e, 162
Appendix B Rule classification based on C language grammar 176
Appendix C Regarding the implementation-defined behav ors..................... 189
Citations and REFEIENCEScoiuiiiii it 196

Table of Contents

v

Part

How to Read the
Coding Practices Guide

1.1 What are Coding Practices?

1.2 Purpose and Position of Coding Practices and the Target Users
1.3 Characteristics of the Coding Practices

1.4 Notes on Using this Guide

2 Understanding Source Code Qualit
2.1 Quality Characteristics
2.2 Quality Characteristics, Coding Practices and Rules

3 How to Use this Guide

3.1 Scenarios for Using this Guide

3.2 Creating a New Coding Convention

3.3 Enhancing Existing Coding Conventions

3.4 Serving as a Learning Material for Programmers’

Training and Self-Study

1.1 What are Coding Practices?

Creating source code (code implementation) is an inevitable task for developing embedded soft-
ware. Success or failure of this task greatly affects the quality of the resulting software. C language,
the most commonly used programming language for embedded software development, is said to
give the programmers a relatively extensive writing flexibility. The quality of programs written in
C thus tends to reflect quite clearly the difference in coding skill level between seasoned and less-
experienced programmers. It is undesirable to have source code varying largely in quality, depending
on the programmers’ individual coding skills and experience. To prevent this risk from leading into
serious quality issues, forward-thinking companies are working proactively toward standardization
of their source codes by establishing coding standards or conventions to be followed organization-
wide or group-wide.

g Issues Regarding Coding Conventions

Coding convention is generally regarded as the organized set of “styles of (or rules in) writing
code that need to be followed to maintain quality.” However, it is becoming a common understand-
ing that various issues exist in the current usage of coding conventions, including those mentioned
below.

1) The necessity of rules is not understood. The appropriate methods to deal with rule violations are
also not widely shared.

2) There are too many rules to learn. Yet, the existing rules are not compr ehensive enough to cover
the entire scope of coding.

3) Since highly reliable tools that can thoroughly and accurately check whether the written code is
complying with the relevant rules or not are unavailable, the engineers have to review the code
manually through visual check, which is a heavy burden for them.

Due to such circumstances, there are, in fact, some coding conventions established at the organi-
zation or department level that have lost their significance and are no longer strictly observed.
Nevertheless, organizations that have coding conventions, no matter what kind of format they

Part1 How to Read the Coding Practices Guide

prepare them in, are at least better than those without any. There are still quite a few that cannot
reach a consensus of the coding convention to be followed internally, and are relying largely on the
programmers’ individual judgments to decide how the source code should be written.

? What are Coding Practices?

This guide aims at solving on-site issues related to coding conventions, by providing a collection
of practical coding techniques considered important from the standpoint of software quality that
conform to the basic way of thinking (concept) to be followed in various coding situations. They are
referred to as “coding practices” in this guide, and are presented with detailed description and spe-
cific examples of related coding conventions (or rules) for reference.

This guide is intended to enable the users to solve the above-mentioned issues in coding conven-
tions by “establishing a concrete and effective coding convention for their own organization”, using
the set of relevant information provided herein as their reference.

1.2 Purpose and Position of Coding Practices and
Target Users

ﬂ Purpose and Position of Coding Practices

ESCR Ver. 3.0 is a guide on coding practices intended to help enable those who create and/or
operate the coding conventions to establish them in their companies or projects. This document is
characteristic for regarding coding conventions as “ways of writing code that should be followed by
all the programmers in a given project to maintain quality” and organizing the basic rule concepts
as practices. These practices are broken down into outline and details, based on the quality concept
that complies with “ISO/IEC 25010:2011 Systems and software engineering -- Systems and software
Quality Requirements and Evaluation (SQuaRE) -- System and software quality models”. They are
respectively explained with corresponding C programming rules and the rationale for using them.
Through these practices and rules, ESCR Ver. 2.0 aims at enabling the users to easily establish their
own “coding convention” that meets their practical needs and also clearly explain why the included
practices and rules are significant and necessary.

1-0e rivew

4

E Target Users

This guide has been written on the assumption that it will be read by the following types of users:

Creators of the Coding Conventions

This document can be used as a reference guide to create a new coding convention or to review
and reorganize existing coding conventions.

Programmers and Program Reviewers

Highly reliable and maintainable code can be produced with reasonable effort by learning and un-
derstanding the practices and rules provided in this guide.

3 Benefits Gained

The benefits that the users can expect to gain directly from using this guide are as mentioned
above. Moreover, as a result of these benefits, the users may also be able to expect the following
positive effects:

- Can remove the bottleneck in maintaining software quality caused by inconsistent performance of
implementation engineers;

- Can eliminate obvious errors in the source code at an early stage, such as, during the coding phase
or in subsequent reviews.

1.3 Characteristics of the Coding Practices

The coding practices in this guide have the following characteristics.

Systematically Organie d Practices and Rules

This guide considers that code quality can also be classified like software quality, according to
quality characteristics, such as, “reliability”, “maintainability” and “portability”, and organizes the
coding practices and rules systematically based on “ISO/IEC 25010:2011 Systems and software en-

gineering -- Systems and software Quality Requirements and Evaluation (SQuaRE) -- System and

Part1 How to Read the Coding Practices Guide

software quality models”. The coding practices described in this guide are customs and ideas on
implementation that have been developed to maintain source code quality, and they reflect the basic
concepts of individual coding rules. The coding rules included in this guide have been selected based
on the needs of the current conditions (actual situation with the language specifications and process-
ing systems) after closely examining the various coding conventions existing in the world, and are
presented in the form of established information that supports the corresponding practices. Classi-
fication of practices and rules according to quality characteristics makes it easy for the users of this
guide to understand their respective purpose of use in terms of which aspect of quality each of them
is primarily focused on maintaining.

The coding conventions referenced in this guide range from local conventions used in companies
to which the writers and reviewers of this guide belong, to sets of coding rules established and used
widely in different industries, including “MISRA C” and “Indian Hill C Style and Coding Stan-
dards”. For details, refer to “Citations and References” at the end of this document.

Ready-to-use Reference Rules

This guide presents specific rules for C language as reference information for creating coding
conventions. These rules can be used directly as coding conventions. By referring to “3. How to Use
this Guide”, the users of this guide can easily create their own coding conventions for C language by
choosing the rules that meet their respective needs and adding any other rules that they feel are also
necessary to cover the areas that are not sufficiently addressed.

Presenting the Necessity of Each Rule

The coding rules covered in this guide are respectively described with explanation of correspond-
ing practices and examples of how the code should be written (to be compliant with the given rule)
or should not be written (because that would be non-compliant), to enable the users of this guide
to understand clearly why each of them is necessary. Rules considered to be already well-known
among experienced programmers are so indicated in the “Preference guide” to help the users of this
guide determine whether they need to include these rules in their conventions or not.

Correspondence with Other Coding Conventions

Where applicable, this guide indicates the relationship of each coding rule provided herein with
corresponding coding conventions used widely in the world to make it easy for the users of this
guide to check the inclusive relations, among others. Corresponding coding conventions referenced
in this guide include “MISRA C” and “Indian Hill C Style and Coding Standards”.

1-0e rivew

6

1.4 Notes on Using this Guide

Keep the following points in mind when using this guide.

ﬂ Scope of the Rules

In this guide, the rules related to any of the following are considered out of scope of C language
reference rules:

- Library functions
- Metrics (numbers of lines in functions/complexity of functions, etc.)
- Errors in writing possibly classified as coding errors

Although “Errors in writing possibly classified as coding errors” have been excluded from the ref-
erence rules, some frequently observed coding errors collected while preparing this guide are exem-
plified in “Part 3 Typical Coding Errors in Embedded Software.” This section (Part 3) is especially
recommended to those who are still new to C language and prone to many of these errors. Moreover,
it should also be a useful reference to project teams that find it meaningful to establish rules to pre-
vent coding errors from being caused by such common pitfalls in programming.

‘E Cited or Referenced Standards in this Guide

In this guide, the following standards have been cited or referenced.

C90

This is the C language standard defined in “ISO/IEC 9899:1990 Programming Language C”. It is
often called C90, where “90” stands for the year ISO/IEC 9899:1990 was published. The C language
standard has been revised and is now C99, making C90 an older version.

Part1 How to Read the Coding Practices Guide

C99

This is the C language standard defined in “ISO/IEC 9899:1999 Programming Language C”. It is
the current standard widely used. Since ISO/IEC 9899:1999 was published in 1999, it is often called
GGC99”'

c1

This is the most recent C language standard defined in “ISO/IEC 9899:2011 Programming Lan-
guage C” and thereby is the current C language standard. Since ISO/IEC 9899:2011 was published
in 2011, it is often called “C11”.

C++

This is the C++ language standard defined in “ISO/IEC 14882:2003 Programming language C++”.

MISRA C

It refers collectively to the coding guidelines for C language defined by The Motor Industry Soft-
ware Reliability Association (MISRA) in UK, which include MISRA C:1998, MISRA C:2004 and
MISRA C:2012.

MISRA C:1998

The convention in Citations and References [5].

MISRA C:2004
The convention in Citations and References [6]. This is the revised version of MISRA C:1998.

MISRA C:2012
The convention in Citations and References [7]. This is the revised version of MISRA C:2004.

E Naming Conventions for Variables and Functions

For the names of variables and functions used in code examples, this guide uses notations that are
as simple as possible to prevent the users from becoming confused or misunderstanding the rules un-
necessarily.

1-0e rivew

8

E Using static code analysis tools

The method of using static code analysis tools designed to detect bugs through the static analysis
of the source code is not included in the scope of this guide. But this is an effective means to ensure
that coding rules are fully met while coding, and is therefore highly recommended as a reliable tool
to prevent coding errors. In MISRA C and CERT C, which are both referenced in this guide, there
are descriptions indicating the rules where the static code analysis tools can report the violations.

A compiler can be considered as the simplest form of static code analysis tool available. Many
compilers can detect problems in the source code if the warning levels are appropriately set. By uti-
lizing the warnings generated from the compiler, the programmers can often eliminate problems in
the source code at an early stage.

E Difference from Ver. 2.0

This document (Ver. 3.0) has been updated from the previous version (Ver. 2.0) primarily by add-
ing rules on secure coding. Along with supplementary explanatory texts, additional compliant and
non-compliant coding examples, and warnings specifically focused on reminding the programmers
about the growing importance of taking security into consideration more carefully when they write
the code, Version 3.0 contains new rules and descriptions that mainly address the growing need for
more security-conscious implementation in embedded products and solutions that could effectively
help eliminate vulnerabilities in software at the coding level. Furthermore, the revisions made in
ESCR C++ Version 2.0 (the latest ESCR edition for C++ language) that are common to both C and
C++ are also updated in this document. There are also descriptions that deal with the same matters
explained in Ver. 2.0 but have been rewritten in this document with more clarity or in a way that
would be easier to understand.

The rules carried over from Ver. 2.0 without any changes in the description are numbered the
same in this document so that the ESCR users who are already familiar with the structure of the pre-
vious version can find this updated version easy to use.

The practices and rules that have been newly added to this document are R3.1.5, R3.11, R3.11.1,
R3.11.2 and P1.5.2.

Part1 How to Read the Coding Practices Guide

2.1 Quality Characteristics

For many, speaking of software quality would remind them of “bugs.” However, in the field of
software engineering, the quality of software as a product is grasped in a broader perspective. This
concept of software product quality is defined in detail and organized systematically in ISO/IEC
25010:2011[1].

ﬂ ISO/IEC 25010 and Source Code Quality

ISO/TEC 25010:2011 defines the quality of software product by breaking it down into eight char-
acteristics (quality characteristics): “reliability”, “maintainability”, “portability”, “efficiency”, “secu-
rity”, “functionality”, “usability” and “compatibility”

Among them, “functionality”, “usability” and “compatibility”” are considered to be the three qual-
ity characteristics that should be addressed at an early stage, preferably before moving on to the
design phases in the upstream process. Whereas, “reliability”, “maintainability”, “portability”, and
“efficiency” are considered to be the quality characteristics that have close relevance with the devel-
opment of high-quality source code and should therefore be examined in depth during the coding
phase. “Security”, which has been defined as the quality subcharacteristic of “functionality” in the
previous standard, ISO/IEC 9126-1, is considered basically as a quality characteristic that is relevant
in the design phase, but coding such as for avoiding stack overflow can also affect security. For more
information on coding practices related to security, please refer to the outline of the column below
and “CERT C Coding Standard”[18].

Based on the above broad categorization, this guide has adopted the latter four quality charac-
teristics - “reliability”, “maintainability”, “portability”, and “efficiency” - as the main focus, and
gathered the coding practices that are primarily concerned with any of these four. Table 1 shows the
relationship between the “quality characteristics” defined in ISO/IEC 25010 and the “code quality”
proposed in this guide, along with the “quality subcharacteristics”.

LEINT3 CEINT3 9% <

LT3

CEINNT

2+How to grasp source codes quality

9

10

Column: Points to keep in mind in coding when
taking security into consideration

o

Software vulnerabilities, often associated with security concerns, may be generated by program-
ming flaws, including buffer overflow, insufficient input validation and race condition. Careful valida-
tion is necessary when writing code for handling data that may not be trusted, such as, some URL or
sensitive information like the password.

In this column, the points to keep in mind in secure coding are explained in the context of when the
programmers (1) use the string libraries, (2) handle sensitive information and (3) handle data that may
not be trusted.

In the following explanations, some paragraphs end with a number like “(STR07-C)”. They are rule
numbers that correspond with CERT C.

e Using string libraries

A program that allows some kind of input to be entered may receive an inappropriate data that
exceeds the region in the physical memory storage known as buffer and overwrites the data in other
region. This state is called the buffer overflow. If a region next to the buffer that stores the address of
an execution code, such as, the return address of a function is overwritten with a start address of a dif-
ferent function due to buffer overflow, it may lead to the execution of an illegal code.

The input may often be a string. Buffer overflow may occur when a string handling function is writ-
ten in a program, since string length check mechanism is not incorporated in many of these functions
used to handle the strings in conventional libraries. For example, strcpy function writes the string of
the copy source as it is. There is a risk of buffer overflow being caused by this string when it is longer
than the size of the destination of strcpy. The programmers should avoid the use of standard string
handling functions in C language standards that are older than C11 and use bounds-checking interface
for string manipulation. (STR07-C)

C11 defines alternative functions that are designed to be safer to use than these old standard string
handling functions. For example, strcpy_s() is introduced in C11 as a replacement for strcpy().
In CERT C, the use of Managed String Library is recommended as a library of strings that are safer to
use, as they are more likely to prevent buffer overflow from occurring. (STR08-C)

e Handling sensitive information
Sensitive information must be handled carefully to prevent it from leaking or being falsified. A rep-
resentative example of sensitive information handled by program code is password. But depending on
what the program is intended to process, sensitive information can range widely, including confiden-
tial data of an organization and personal data of an individual.
It is important to keep the following points in mind when writing code to manipulate sensitive in-
formation.
- Do not store sensitive information in plain text. (If you need to store sensitive information, en-
crypt it first. (MEMO06-C)
- Ensure that sensitive information that the program has finished using is not written out to disk.
(MEMO06-C)

Part1 How to Read the Coding Practices Guide

- Clear sensitive information stored in reusable resources (e.g. dynamic memory). (MEMO03-C,
MSC06-C)
Moreover, if a function to clear sensitive information is going to be prepared, it should be de-
clared as volatile, since there is a risk of its call being optimized out. (Refer to M1.11.2)

eHandling data that may not be trusted

When you need to receive and process input from an information source that is not under your man-
agement and therefore cannot be trusted, there is a risk of buffer overflow being caused, for example,
by an incoming value that exceeds the upper bound of an array index. When you acquire an integer
value from an external input source that cannot be trusted, you would need to take precautionary mea-
sures, such as, to determine the range if the incoming value is an integer or normalize the pathname if
the incoming value is a pathname. Keep the following points in mind when the input is:

- Integer value: All integer values originating from tainted sources should be evaluated to deter-
mine if they have identifiable upper and lower bounds. (INT04-C)

- Format string: When an externally controllable format string is called as an argument like
printf function, it may be a cause of buffer overflow. For example, %n specifies the conversion
of a value for defining the number of bytes of the data to be written through output formatting
into an integer variable. This can be used to specify the address of a malicious code to a variable
that has the address of an exception handler. Be careful not to process the input as it is and output
it as a format string. (FIO30-C)

Be sure also to check that all the format string functions are static strings that cannot be con-
trolled by the user, and that an argument of an appropriate value is always passed to these func-
tions. (FI047-C)

If possible, use a function that does not support %n in format strings. In C11, %n format has been
abolished.

- Filename or pathname: Specifying by relative path or access through a symbolic link may
lead to the access to an unintended file. To prevent it, there is a need to normalize the acquired
pathname and use this pathname after verifying its validity. (FIO12-C)

- File identity: There is no guarantee that a file opened as a read-only file is always the same as
the file opened as a file for writing. The sameness of the file can be determined with more cer-
tainty by saving the file attributes gained when the file is opened and comparing them with the
attributes of the file when it is opened again. (FIO05-C)

It is important not to misjudge whether the data is under your control or not. The cookies of a da-
tabase (DB) or website that can be manipulated by other systems as well or data that has once being
placed outside your control may be overlooked by misunderstanding it to be still under your control.

2+How to grasp source codes quality

11

12

Table 1 Quality Characteristics of Software and Code Quality

Quality Characteristics

(ISO/IEC 25010)

Degree to which a
system, product or
component performs
specified functions
under specified condi-
tions for a specified
period of time

Aqelay

Quality Subcharacteristics Code Quality
(ISO/IEC 25010)
Maturity Degree to which a system meets needs for reli- | Low oc-
ability under normal operation currence of
bugs through
continued use
Availability Degree to which a system, product or component
is operational and accessible when required for
use
Fault Toler- Degree to which a system, product or component | Tolerance for
ance operates as intended despite the presence of hard- | bugs and inter-
ware or software faults face violations,
etc
Recoverability | Degree to which, in the event of an interruption

or a failure, a product or system can recover the
data directly affected and re-establish the desired
state of the system

Part1 How to Read the Coding Practices Guide

Quality Characteristics | Quality Subcharacteristics

(ISO/IEC 25010)

=
il
5
-
s
5
o
(=3
E
<

Degree of effective-
ness and efficiency
with which a prod-
uct or system can

be modified by the
intended maintainers

Code Quality
(ISO/IEC 25010)
Modularity Degree to which a system or computer program Degree to
is composed of discrete components such that a which the
change to one component has minimal impact on | components
other components are composed
such that a
change to one
component of
the code has
minimal im-
pact on other
components.
Reusability Degree to which an asset can be used in more Degree to
than one system, or in building other assets which a code
can be used in
other pro-
grams
Analysability | Degree of effectiveness and efficiency with Easiness of
which it is possible to assess the impact on a understanding
product or system of an intended change to one | the code
or more of its parts, or to diagnose a product for
deficiencies or causes of failures, or to identify
parts to be modified
Modifiability | Degree to which a product or system can be Easiness of
effectively and efficiently modified without modifying
introducing defects or degrading existing product | the code, and
quality lowness of
impact from
modifications
Testability Degree of effectiveness and efficiency with Easiness of

which test criteria can be established for a
system, product or component and tests can be
performed to determine whether those criteria
have been met

testing and
debugging the
modified code

2+How to grasp source codes quality

13

14

Quality Characteristics | Quality Subcharacteristics

Code Quality

(ISO/IEC 25010) (ISO/IEC 25010)
'OU Degree of Adaptability | Degree to which a product or system can effec- | Easiness of
& effectiveness and tively and efficiently be adapted for different or | adapting to
% efficiency with which evolving hardware, software or other operational | different
< | a system, product or or usage environments environments
component can be *Including
transferred from one conformance
hardware, software or to standards
other operational or
usage environment to
another Installability | Degree of effectiveness and efficiency with
which a product or system can be successfully
installed and/or uninstalled in a specified envi-
ronment
Replaceability | Degree to which a product can be replaced by
another specified software product for the same
purpose in the same environment
Performance relative | Time Behav- | Degree to which the response and process- Efficiency
to the amount of iour ing times and throughput rates of a product or with regard

Aouaioiyyg souewiopad

resources used under
stated conditions

system, when performing its functions, meet
requirements

to processing
time

Resource Utili-
zation

Degree to which the amounts and types of
resources used by a product or system when
performing its functions meet requirements

Efficiency
with regard to
resources

Capacity

Degree to which the maximum limits of a prod-
uct or system parameter meet requirements

Part1 How to Read the Coding Practices Guide

Quality Characteristics | Quality Subcharacteristics

(ISO/IEC 25010)

ISR EETS

Degree to which a
product or system
protects information
and data so that persons
or other products or
systems have the
degree of data access
appropriate to their
types and levels of
authorization

(ISO/IEC 25010)

Code Quality

Confidentiality | Degree to which a product or system ensures that | Degree of cer-
data are accessible only to those authorized to tainty that data
have access are accessible

only to those
authorized to
have access

Integrity Degree to which a system, product or component | Degree of
prevents unauthorized access to, or modification | prevention of
of, computer programs or data unauthorized

access to, or

modification
of, computer
programs or

data

Non- Degree to which actions or events can be proven

repudiation to have taken place, so that the events or actions

cannot be repudiated later

Accountability

Degree to which the actions of an entity can be
traced uniquely to the entity

Authenticity

Degree to which the identity of a subject or
resource can be proved to be the one claimed

2+How to grasp source codes quality

15

16

2.2 Quality Characteristics, Coding Practices and
Rules

E Overall Structure

In this guide, the basic matters to be followed when creating source code are organized as “prac-
tices”. For each “practice”, this guide introduces “rules” that are more specific reference information
to keep in mind at the time of coding.

These “practices” and “rules” provided in this guide are classified and arranged in order, accord-
ing to their association to any of the four quality characteristics described earlier in 2.1. The follow-
ing section defines what “practice” and “rule” actually mean in this guide (see also Figure 1):

Practice

A “practice” is a custom or a set of ideas on implementation to maintain source code quality. Each
practice reflects the basic concept of individual coding rule. These practices are broken down into
outline and details.

Rule

A “rule” is a specific agreement that must be followed and constitutes a part of coding convention.
This guide presents these rules as reference information. In this guide, a “rule” is also sometimes
used as a collective term that represents a group of relevant rules.

Correspondence of Practices and Rules

Most practices and rules are related to multiple quality characteristics, but in this guide, they are
respectively discussed in the section of the characteristic to which they are most strongly related.
Associating each practice with a particular quality characteristic makes it possible and easy for the
users of this guide to understand how each practice strongly affects which aspect of quality.

Part1 How to Read the Coding Practices Guide

Quality Concepts | 111 1E 1511114 Maintainability Portability
“.‘ _—r
: 3 : — i3
Practices: Q Initialize areas and use them Write i}\{style that is not ‘Write in a style that takes 5‘:&)
Specific way of 3 by taking their sizes into dependenton the pil t of resource and time g%
ki 2 consideration. efficiencies. x5
. g ; 82
constantly E [® &3
applied in g Write in a style that can Werite in a unified style. 23
implementation to prevent modification errors. i g‘g
improve quality. é
B
5'5 K;z'
aQ S
@ Q | Clarify the grouping of Localize access ranges and s
o} Q
%& structured data and blocks. related data. %
3
o
@
=
b
Rules: a
The body of if, else if, else. q A S
Reference while, do, forz and swi;cch ’ Varla.bles usedionIyinione v Q
q 9 a function shall be declared within @
information of statements shall be enclosed into q a
T the function. @
specific coding . '§
rules that take 5
language Functions that are called only by -
dependency into e fll:nlcltil;mstd:iﬁned in the same file
consideration. Shafl be static.

., Use the rules as reference to establish...

A coding convention for each project

Variables used only in one
function shall be declared
within the function.

Functions called only from
the functions defined in the
identical file shall be static

The number of lines per file
shall be within 1000 lines.

- Added as

project-specific rule

v

Figure1. Relationship Between Quality Concepts, Practices, and Rules

2+How to grasp source codes quality

17

18

3.1 Scenarios for Using this Guide

3 Usage Scenarios

This guide intends to support the creation of coding conventions, and assumes that it will be used
in the following three scenarios:

1) Creating a new coding convention;
2) Enhancing existing coding conventions;
3) Serving as a learning material for programmers’ training and self-study.

Creating a New Coding Convention

Organizations or departments that have not been able to organize any coding conventions
to be followed internally can use this guide for reference to establish their own coding con-
vention that suits their respective needs.

Enhancing Existing Coding Conventions

Even in organizations and departments that have already established their coding conventions,
it is effective to maintain them regularly. Using this guide as a reference will help them review the
contents of their existing coding conventions more efficiently.

Serving as a Learning Material for Programmers’ Training and Self-Study

There are many books published on C language. Unlike those existing ones, this guide focuses on
implementation quality, and provides an organized set of information on how to create source code
that can maintain and improve its quality. In this sense, this guide can also be an excellent material

for the users to learn about source code quality from a more practical point of view.

Part1 How to Read the Coding Practices Guide

3.2 Creating a New Coding Convention

This section presents the procedure for creating a new coding convention by using this guide. It is
intended for projects that do not have any coding conventions of their own.

ﬂ When to Create

Create the coding convention before proceeding to the program design stage. While a coding
convention is a group of rules that are referred to during coding, some rules, such as, the naming
convention applied to function names are associated with program design, and therefore need to be
decided before starting the program design.

E How to Create

Projects creating a new coding convention of their own are recommended to follow the procedure
described below, step by step:

Step-1 Decide on the policy for creating a coding convention.

Step-2 Choose the rules based on the creation policy that has been decided.
Step-3 Define the project-dependent parts of the rules.

Step-4 Determine the procedure for setting exceptions to the rules if necessary.

After following these steps in order, add any other rules as needed.

Step-1 Decide on the policy for creating a coding convention

In creating a coding convention, the first thing to do is to decide on its policy. A creation policy
defines how the code should be written for the project, based on, such as, the characteristics of the
software developed in the project and the members of the project. For example, should the prior-
ity be placed on safety and write code that avoids using features that are not safe, even if they are
convenient to use? Or, should the code be written in a way that makes careful use of such unsafe but
convenient features? These are some of the questions that need to be addressed in the creation poli-
cy. When deciding on the creation policy, each project should consider which quality characteristics
are particularly important for its software development, and examine what kind of coding practices
it should adopt from the following perspectives:

- Coding that takes account of fail-safe;

- Coding that improves the program readability;

- Coding that makes debugging easy, etc.

3+How to use this guide

19

20

Also consider using the static code analysis tool for preventing rule violations. Static code analy-
sis tools are effective means to ensure that the code is written according to coding rules. It would
be beneficial to think at this point about which static code analysis tool would be most effective and
helpful to prevent writing any code against the set rules.

Step-2 Choose the rules based on the creation policy that has been decided

The next step is to choose the suitable rules from the Practices Chart in Part 2, based on the cre-
ation policy decided in Step-1. If the project decides on the policy that prioritizes on portability, for
example, efforts should be made to include many rules that address the portability issues in its cod-
ing convention.

In “Part 2 - Coding Practices for Embedded Software” of this guide, some rules are marked with
either “o” or “e®” as a guide to facilitate the selection process. A rule marked with “o” indicates that
it is regarded so important for the particular quality characteristic it addresses, that if this rule is not
adopted as a part of the coding convention, that quality aspect may be seriously impaired. Whereas,
“e” indicates that it is a rule that is already so well-known among those who are very knowledgeable
about C language specifications that it may not necessarily be included in the coding convention.
The simplest way of creating a coding convention would therefore be to choose only the rules indi-
cated with “o”, which would result in a set of widely applied rules.

Step-3 Define the project-dependent parts of the rules

In this guide, the rules are treated as one of the following three types:

1) Rules that can be used as a part of the coding convention without making any changes (In the
“Rule specification” field, these rules are not marked.)

2) Rules that need to be chosen from several alternatives, according to the project characteris-
tics (In the “Rule specification” field, these rules are marked as “Choose”.)

3) Rules that need to be prescribed more specifically in a document (In the “Rule specification”
field, these rules are marked either as “Define” or “Document”.)

The rules treated either as type 2) or type 3) cannot be included in the coding convention as they
are. For rules treated as type 2) to be adopted as a part of the newly created coding convention, they
must be first chosen from the multiple alternatives presented in this guide. To adopt the rules treated
as type 3) as a part of the coding convention, they must be more fine-tuned so that they can address
the specific needs of each project. In doing so, the supplementary explanation provided to each prac-
tice described in this guide should serve as a useful reference on rule definition.

Part1 How to Read the Coding Practices Guide

Step-4 Determine the procedure for setting exceptions to the rules

The quality characteristics that should be focused at the time of coding may differ, depending on
the feature the project is intending to realize through implementation. (For example, “In this project,
efficiency should be prioritized over maintainability...”). There may be cases when writing code that
is fully compliant with a certain rule included in the coding convention causes difficulty in achieving
the project-specific objective. To deal with such cases, it is necessary to have a procedure to allow
partial exceptions to this rule

The important points to be covered in this procedure are as follows:

- Describe what problems may occur by writing code that is compliant with the rule;
- Have experts review the problems and possible solutions;
- Record the review result.

Be sure not to allow exceptions too easily. The substance of the rule will be lost when there
are too many exceptions.
The following is an example of the procedure for allowing exceptions.

[Example procedure]
(1) Prepare a form describing the reason for the exception.
(This form should, for example, contain the following items.) - Rule number;
- Location of the code at issue (file name, line number);
- Problem(s) caused by complying with the rule;
- Impact of deviation from the rule.
(2) Have experts review the problems and possible solutions. — Enter the review result in the
form.
(3) Gain approval from the head person (manager, project leader, etc) responsible of the coding
process. — Record the approval in the form.

3.3 Enhancing Existing Coding Conventions

For projects where coding conventions already exist, this guide can be a useful reference to re-
view and enhance the contents of their coding conventions.

ﬂ Preventing Oversights and Omissions

By sorting the rules in existing coding conventions based on the concept of practices described in

3-How to use this guide 21

22

this guide, the project members will be able to identify and supplement the elements that have been
overlooked or omitted, and see in a fresh light which tasks they have been placing importance on in
their project.

ﬂ Clarifying the Necessity for Rules

For those who have been feeling compelled to follow some rules without knowing why, this guide
will serve as a useful tool to understand clearly why they are necessary by referring to the practices
and compliant examples showing how they should be used.

3.4 Serving as a Learning Material for Program-
mers’ Training and Self-Study

This guide is a good learning material for programmers who have studied C language but are still
not used to or have little experience in practical coding.

ﬂ Target Users

This guide is targeted at the following group of programmers:

- Programmers who have studied and acquired the basic skills in C language
- Programmers who have experience in other programming languages but are beginners in C
language

ﬂ What The Users Can Learn

By reading this guide, which is organized from the standpoint of quality characteristics like reli-
ability, maintainability and portability, the users can learn:

- How to write code that can improve reliability;

- How to write code that can prevent bugs from being produced;

- How to write code that can facilitate debugging and testing;

- How to write code that is easy to read, and the reasons why good readability is necessary.

Part1 How to Read the Coding Practices Guide

Part 2

Coding Practices
for Embedded Software:
Practices Chart

- How to Read the Practices Chart
- Terminology Used in the Practices Chart

O Reliability
O Maintainability
O Portability
O Efficiency

24

How to Read the Practices Chart

3 Organizational Structure of the Practices

Coding practices shown in Part 2 are classified according to four software quality characteristics
(reliability, maintainability, portability, efficiency).

Practices in Outline

Practices closely related to each characteristic are largely divided into “practices in outline”.
For example, the practices closely related to maintainability are largely divided into five practices
in outline from “Maintainability M1: Keep in mind that others will read the program” to
“Maintainability M5: Write in a style that makes testing easy”.

Practices in Detail
Each practice in outline is broken down into more specific subsets called “practices in detail”. For
example, the practice in outline “Maintainability M3: Write programs simply” has four practices in

detail, which are:

Do structured programming.

Limit the number of side effects per statement to one.
Write expressions that differ in purpose separately.

Do not use complicated pointer operation.

3 Layout of the Practices Chart

For each practice, reference information on rules to be noted during actual coding is provided in
a chart form. The following diagram shows the layout of a sample chart, which is followed by the
description of each field composing the chart:

Part2 Coding Practices for Embedded Software:Practices Chart

@ Quality concept @ Practice in detail

‘ (@ Practice in outline ‘ @ Rule number @ Rule

_ Initialize areas and u:
taking their sizes into c

fables are used in progr

m

;i Use areas after initializing them.

® Preference guide

in C language. Without considering the
ed

by

® Rule specification
orte
arcas they point to. Since the misuse of pointers may cause serious problems to the m‘\‘uc
system, particular caution is necessary when using them.
“Reliability 1 consists of the following three practices.
Useares o iazing thm. @ Compliant example
Describe initializations without excess or deficiency. @ Non_com pl ia nt
Pay attention to the range of the area pointed by example
a pointer.
(@ Remarks
32 | ot et S ——
(D Quality concept

Quality concepts are related to the main quality characteristics of “ISO/IEC 25010”. This guide
uses the following four quality concepts:

Reliability Maintainability Portability Efficiency

@ Practice
Describes the practice to be followed by programmers during coding:

- In outline — Defines the general concept of the practice. It is not dependent on programming
languages.

- In detail — Elaborates the general concept of the practice with more specific points that should

be noted. Like practices in outline, it is basically programming language-independent,
but some are stated as C language-specific.

3 Rule number

Identification number of each rule

How to Read the Practices Chart 25

26

@ Rules

Specific reference rule or rules for C language corresponding to the practice that must be
followed. The rules cited from MISRA C are written in the following format.

Examples: [MISRA C:2004 1.3], [MISRA C:2012 R8.14]

® Preference guide

Provides supportive information (marks) to indicate whether the corresponding rule described
under eachpractice should be chosen as a part of the newly created coding convention or not.

No mark: Rules considered to be appropriate to choose, based on the project characteristics.
{] Rules considered unnecessary to be included in the coding convention,
when seen from the eyes of those who are very knowledgeable about the
language specification (i.e.: rules that are already too common and obvious to

experienced programmers).

@) Rules considered to significantly impair the quality characteristics if they are not
followed.

® Rule specification

Provides supportive information (verbal indicators) to indicate which rule need to be defined
more specifically in detail or not, depending on the project policy, or should be prescribed in
a document, such as, when it is recommended to “record the behavior and usage of compiler-
dependent language specification as a document” (the latter is referred to as the “documentation
rule” which can be used as it is, but is strongly recommended to be documented in more detail for

various reasons).

No mark: Rules that do not need to be defined further in depth or prescribed in a documen with
more specific details

Choose: Rules required to be chosen from a list of multiple alternatives. Each alternative is
numbered, using a parenthesized numeral (e.g.: (1), (2), ...).

Define: Specific rules that need to be defined for each project. The part to be defined is
enclosed by {)

Document: Rules that need to be prescribed in a document. The part to be documented is
enclosed by {)

Part2 Coding Practices for Embedded Software:Practices Chart

@ Compliant example

Example of source code written in compliance with the rule.

Non-compliant example

Example of source code violating the rule.

® Remarks

Provides notes pertaining to C language specification, and explanation on why the particular rule
is necessary and what kind of problem(s) may be caused by violation of that rule, among others.

Terminology in the Practices Chart 27

Terminology Used in the Practices Chart |

The meaning of the terms used in the chart is as respectively explained in the table below:

Term Meaning

Access Reference to variables or the reference with modification.

Type specifier Specifies a data type. There are two type specifiers, one that specifies basic
types such as char, int and float and the other that specifies types defined with
typedefs by the programmer for their own.

Type qualifier Adds specific attributes to types. There are three type qualifiers: const, restrict
and volatile.

Storage class specifier | Specifies the location where data are stored. There are four specifiers; auto,
register, static, and extern.

Boundary alignment Indicates methods for the compiler to allocate data into memory. For example, if
int type is 2 bytes, be sure to allocate such data from an even address of the
memory and not to allocate from an odd address.

Trigraph sequence Defined seguences of three characters such as ‘??=’, ??/’, ‘>?(*for the compiler
to replace with single character.
2=, 22/, 22(’ are interpreted into ‘#, ‘\’, ‘[’ respectively.

Lifetime Duration that the references to a variable from the program is guaranteed after it
is generated.

Multibyte character A character expressed by data of two or more bytes. Chinese characters,
Japanese characters, and Unicode characters are included.

Null pointer A pointer that is not equivalent to any pointers that point to data or functions.
Null character A character that express the end of a string. Expressed with \@’.
Scope The part of the program within which an identifier can be used to indicate, such

as, the variable it defines.
File scope refers to the scope up to the end of the file.

Side effect Processing that cause changes to a state of execution environment. The
following processings appliy: reference and change to volatile data, change to
data, change to files, and function-calls that perform these operations.

Block Arange that is enclosed with braces ‘{’, ‘}’ in data declarations and programs etc.
Enumeration type enum type. Constructed with several enumerated members.
Enumerator Members of an enumerated type (enum type).

28 Part2 Coding Practices for Embedded Software:Practices Chart

Coding Practices for Embedded Software

This part presents coding practices for embedded software. As explained carlier, The coding
practices are categorized according to the perspective of four characteristics (quality concepts):
“reliability”, “maintainability”, “portability” and “efficiency”, which have been adopted from
the software quality characteristics defined in ISO/IEC 25010. Please note, however, that these
practices have been categorized in this way basically for the sake of convenience of the users of this
guide, and that there are actually some useful practices and corresponding rules that can be applied
to improve more than one characteristic (e.g.: both reliability and maintainability).

Moreover, the coding practices respectively related to these quality characteristics and the
reference rules that support the correct ways of executing these practices are also described in this

part of the guide.

Practices to improve the reliability of software that has been developed fall under this
category. Main points taken into consideration include:

Reliability 1| Main points considered include:

- Minimizing problems arising while using the software;

- Increasing tolerability against bugs and interface violation.

Practices to create source code that is easy to modify and maintain fall under this category.
Main points taken into consideration include:

V' ETLETELTTARL | - Making the code easy to understand and modify;

- Minimizing the impact of modifications on the entire code;

- Making the modified code easy to check.

Practices to port the software program that has been created on the assumption of being
Portability + | used to operate under a certain environment to another environment as efficiently as
possible without error fall under this category.

Practices to effectively utilize the performance and resources of the software that has been
developed fall under this category. Main points taken into consideration include:

- Coding that is processing time-conscious;

- Coding that takes account of memory size.

Efficiency E

Coding Practices for Embedded Software

29

Reliability

A large number of embedded software is incorporated into prod-
ucts and used to support our daily lives in various situations. Con-
sequently, the level of reliability demanded to quite a number of
embedded software is extremely high. Software reliability requires
the software to be capable of not behaving wrongly (not causing
failure), not affecting the functionality of the entire software and
system in case of malfunction, and promptly restoring its normal
behavior after a malfunction occurs.
At the source code level, the point to be noted in regard to soft-
ware reliability is the need of contriving methods to avoid coding
that may cause such malfunctions as much as possible. '

@ Reliability 1: Initialize areas and use them by taking
their sizes into consideration.

@ Reliability 2: Use data by taking their ranges, sizes

and internal representations into
consideration.

@ Reliability 3: Write in a way that ensures intended be-
havior.

A
W,
5
S
Ed
<

32

Initialize . areas and use the
takmg their S|zes into conside

Various variables are used in programs written in C language. Without considering the
areas to be reserved in the computer and ensuring that these areas are already initialized by
the time these variables are used, unexpected malfunctions may occur.

Moreover, the pointers in C language need to be used carefully by being conscious of the
areas they point to. Since the misuse of pointers may cause serious problems to the entire
system, particular caution is necessary when using them.

“Reliability 1” consists of the following three practices.

Reliability 1.1 Use areas after initializ ng them.

Reliability 1.2 Describe initializations without excess or deficiency.

Pay attention to the range of the area pointed by
a pointer.

Reliability 1.3

Part2 Coding Practices for Embedded Software:Practices Chart

i1l Use areas after initializing them.

Automatic variables shall be initialized at the time GRS

: - : guide
of declaration, or the initial values shall be assigned Rule
ust before using them. specification

Compliant example Non-compliant example

void func() { void func() {
int varl = @; // Initialize at the time of int varl;
// declaration varl++;
int i; // Do not initialize at the
// time of declaration }
varl++;
// Assign the initial value just before
// using it
for (1 = 0; i < 10; i++) {
}
}

If automatic variables are not initialized, their values become undefined and the operation results may
differ depending on the environment. The initialization must be either at the time of declaration or just
before using the variable.

Preference
const variables shall be initialized at the time of guide

declaration. Rule
specification

Compliant example Non-compliant example

const int N = 10; const int N;

const variables must be initialized at the time of declaration as values cannot be assigned to them sub-
sequently. If not initialized, 0 will be assigned for external variables and the values are undefined for au-
tomatic variables, which may cause unexpected behavior. Note that missing initialization at declaration
does not cause a compile error.

With C++, uninitialized const is a compile error.

[Related rules] M1.11.1, M1.11.3

Reliability1 @ R1 nitializ areas and use them in consid eration of their sie s.

33

A
1
o
5
g

A
o
5
=3
=
<

34

:v) | Describe initializations without excess or deficiency.

Arrays with specified number of elements shall be REEEEI

tialized with values that match the number of the f:::le
SRS specification

Compliant example Non-compliant example
char var[] = "abc"; char var[3] = "abc";
_or -

char var[4] = "abc";

Initializing an array with a string will not cause an error at declaration even if a space for a null charac-
ter is not ensured in the array size. This is not a problem if described intentionally. However, when the
array is used as an argument for a string handling function etc., the absence of a null character indicating
the end of the string is more likely to cause unexpected behavior. When initializing a string, it is neces-
sary to ensure a space for the null character at the end. It would be also helpful to refer to STR31-C in
CERT C regarding the points to keep in mind when using the null character.

[Related rule] M2.1.1

Preference

nitialization of enumeration type (enum type) mem- quide

bers shall be by either: not specifying any con- Rule

“stants; specifying all the constants; or specifying Bty
only the first member.

// A different value is assigned respectively // Both E3 and E4 become 11 unintentionally
// from E1 to E4 enum etag { E1l, E2=10, E3, E4=11 };

enum etag { E1=9, E2, E3, E4 }; enum etag varl;

enum etag varl; varl = E3;

varl = E3; // It will be true despite the intention
// E3 and E4 in varl will never be equal // because E3 and E4 are equal

if (varl == E4) if (varl == E4)

If an initial value is not specified to a member of an enumeration type, the value of the immediately
preceding member plus 1 (the value of the first member is 0) will be specified to this member. If some
initial values are specified while others are not, the same value may unintentionally be assigned to dif-
ferent members and may become the cause of unexpected behavior. To prevent the same value from
being assigned to different members, initialization of the members must be by either not specifying any
constants, specifying all the constants, or specifying only the first member, depending on the usage.

Part2 Coding Practices for Embedded Software:Practices Chart

Pay attention to the range of the area pointed by a pointer.

A
1
o
5
g

(1) Integer addition to or subtraction from (includ- P’e;izggce
ing ++ and --) pointers shall not be made; Array i
format with [] shall be used for references and EEEEEETN
assignments to the allocated area.

(2) Integer addition to or subtraction from (including ++ and --) point-
ers shall be made only when the pointer points to the array and the
result must be pointing within the range of the array.

#define N 10 #define N 10
char buf[N]; char buf[N];
char *p = buf; char *p = buf;
int 1 = 1;

Non-compliant example of (1)
Compliant example of (1) and (2) *(p + 1) = 'a'; // Non-compliant
buf[i] = 'a'; // Compliant p += 2; // Non-compliant
buf[i+3] = 'c'; // Compliant

Non-compliant example of (2)
Compliant example of (2), non-compliant to (1) *(p + 20) = 'z'; // Non-compliant
for (; p < buf+N & *p != '\@'; p++) {
*p = 'z'; // Compliant

¥

Performing operations on pointers can blur the destinations pointed by the pointers. It raises the pos-
sibility of implanting bugs that is likely to refer or write to unsecured areas. Rather, using an array name
that points to the beginning of the area and to access elements of the array with indices will make the
program safer. A dynamic memory area obtained by malloc should be treated as an array, and a pointer
to the starting address of the area should be handled as the array name.

For multi-dimensional array, this rule applies to each partial array.

Regarding rule (2), it is permissible to point to the area directly after the last element of the array as long
as the array element is not accessed. In other words, in the case where int data[N] and p=data, p+N
complies with the rule as long as it is not used for accessing the array elements, whereas, using, such as,

*(p+N) that accesses an array element is non-compliant.

Reliability1 ® R1 nitialie areas and use them in consid eration of their sie s. 35

A
o
5
=3
=
<

36

Preference

- &2#(Subtraction between pointers shall only be applied

guide
to pointers that address elements of the same array. Rule
- [MISRA C:2012 R18.2] specification

Compliant example Non-compliant example

#define N 10 #define N 10

ptrdiff_t off; // ptrdiff_t is a type of result of ptrdiff_t off; // ptrdiff_t is a type of result of
// subtraction between pointers // subtraction between pointers
// defined in <stddef.h> // defined in <stddef.h>

int vari[N]; int vari[N];

int *pl = &varl[e]; int var2[N];

int *p2 = &vari[N-1]; int *pl = &vari[e];

int *p2 = &var2[N-1];
// Process that includes the change in where p1, p2

// point at (within the range of varl[N]) // Process that includes the change in where pl, p2

// point at (within the range of varl[N], var2[N]
off = p2 - pl; // respectively)

off = p2 - p1;

In C language, subtraction between pointers expresses how many elements exist between the two ele-
ments pointed by each pointer. In this case, if each pointer points to a different array, the way the vari-
ables are laid out between them is implementation-dependent and the execution result is not guaranteed.
This implies that subtraction between pointers is meaningful only when both pointers are pointing to
elements in the same array. Therefore, before subtracting one pointer from another pointer, the program-
mer must ensure that both pointers are addressing elements of the same array.

[Related rule] R1.3.3

Part2 Coding Practices for Embedded Software:Practices Chart

'Comparison between pointers shall be used only
when the two pointers are both pointing at either the
elements in the same array or the members of the RERRStE

same structure.

Compliant example

#define N 10
char vari[N];
char* p = vari;
... // Operations performed on p

if (p < varl+N) { ... } // Compliant

Preference
guide

Rule

Non-compliant example

#define N 10
char varl[N];
char var2[N];
char* p = varl;

... // Operations performed on p

if (p < var2+N) { ... } // Non-compliant

Comparing addresses of different variables does not cause a compile error, but is meaningless because
the address of the variable is implementation-dependent. In addition, the behavior of such a comparison

is not defined (undefined behavior).

[Related rules] R1.3.2, R2.7.3

he restrict type qualifier shall not be used. guide
(MISRA C:2012 R8.14)

Compliant example

Preference

Rule
specification

Non-compliant example

void f(int n, int * restrict p,
int * restrict q) {
while (n-- > @) {
p = *qH;
}
}

void g(void) {
extern int d[100];

(50, d+l1, d); // Undefined behavior

By using restrict type qualifier, efficient code can be generated by a compiler and the accuracy of
static analysis by using such as the code checker will improve. However, the use of restrict type
qualifier will require the programmer to guarantee that the targeted areas will not overlap, and there is a
risk involved because the compiler will not output an error.

Reliability1 @ R1 nitializ areas and use them in consid eration of their sie s.

37

A
1
o
5
g

X
w,
5
g
=
<

38

Use data by taking

heir ranges, sizes §
into |

and internal representations
considera 2 gy 1
e

Y& N A

The data used in programs vary in how they are represented internally and in the range they
can be operated, depending on their types. When using these different types of data for opera-
tion, they must be written carefully by paying attention to various aspects, including precision
and size. Otherwise, unexpected malfunctions may occur when they are processed in, such
as, arithmetic operations. Therefore, there is a need to handle data with care, by taking their
ranges, sizes and internal representations, among others, into consideration.

Make comparisons that do not depend on internal

Reliability 2.1 .
vy representations.

When values such as logical values are defined as a

___ range, do not make a judgment by finding whether or not
Reliability 2.2 a value is equivalent to any value (representative value
that is implemented) within this range

Reliability 2.3 Use the.same data type to perform operations or
comparisons.

Describe code by taking operation precision into

Reliability 2.4
consideration.

Do not use operations that have the risk of information

Reliability 2.5
ty loss.

Reliability 2.6 Use types that can represent the target data.

Reliability 2.7 Pay attention to pointer types.

Write in a way that will enable the compiler to check
Reliability 2.8 that there are no conflicting declarations, usages and
definitions.

Part2 Coding Practices for Embedded Software:Practices Chart

Make comparisons that do not depend on internal

R2.1 representations.

Preference
Floating-point expressions shall not be used to per- guide

form equality or inequality comparisons. Rule
a y q ty P specification

Compliant example Non-compliant example

#define LIMIT 1.0e-4 void func(double di, double d2) {
void func(double di, double d2) { if (d1 == d2) {

double diff = di1 - d2;

if (-LIMIT <= diff && diff <= LIMIT) {

In case of a floating-point type, values written in the source code do not exactly match with those actu-
ally implemented. Therefore, the comparison results must be judged by taking account of tolerance.

[Reference materials for those wanting to know more in detail about this rule]
- CERT C FLP00-C

[Related rule] R2.1.2

Preference
Floating-point variable shall not be used as a loop guide

counter. Rule
specification

Compliant example Non-compliant example

void func() { void func() {

int i; double d;

for (1 = 0; 1< 10; i++) { for (d = 0.0; d < 1.0; d += 0.1) {
.~ If operations are repeatedly performed to a floating-point variable used as a loop counter, the
. intended result may not be achieved due to accumulated calculation errors. Therefore, inte-
. ger type (int type) should be used for loop counters.
|
|
: [Reference materials for those wanting to know more in detail about this rule]
- - CERTC FLP00-C
|
u
. [Related rule] R2.1.1

Reliability2 ® R2 Use data in consideration of ranges,sie s and internal representations.

39

A
1
o
5
g

A
o
5
=
=
<

I
P Preference

- memcmp shall not be used to compare structures guide

Rule
specification

Compliant example Non-compliant example

struct TAG { struct TAG {
char c; char c;
long w; long w;
s B3]
struct TAG varl, var2; struct TAG varl, var2;
void func() { void func() {

if (varl.c == var2.c & varl.w == var2.w) { if (memcmp(&varl, &var2, sizeof(varl)) == 0) {

Memories for structures and unions may contain unused areas. Since the values in the areas are un-
known, memcmp should not be used. When making comparisons of structures or unions, they should be
made between the corresponding members.

[Related rule] M1.6.2

When values such as logical values are defined as a

range, do not make a judgment by finding whether or
not a value is equivalent to any particular value (rep-
resentative value) within this range

: : : Preference
¥® Comparison with a value defined as true shall not guide
. #(‘ be made in expressions that examine true or false. Rule
specification
#define FALSE © #define TRUE 1
// funcl may return a value other than @ and 1 // funcl may return a value other than © and 1
void func2() { void func2() {
if (funcl() != FALSE) { if (funcl() == TRUE) {
- or -

if (funci()) {

In C language, true is represented by any non-zero value, not necessarily 1.

[Related rule] M1.5.2

Part2 Coding Practices for Embedded Software:Practices Chart

Use the same data type to perform operations or
comparisons.

A
1
o
5
g

Preference

nsigned integer constant expressions shall be

guide
described within the range that can be represented Rule
with the result type. specification

Compliant example Non-compliant example

#define MAX oxffffUL // Specify long type #define MAX @xffffu

unsigned int i = MAX; unsigned int i = MAX;

if (i < MAX + 1) if (1 < MAX + 1)

// If long is 32 bits, there is no problem even // The result varies depending on whether the int is
// when the number of bits of int is not 32. // 16bits or 32bits. If int is 16bits, the operation

// result will wrap around and the comparison result
// will be false. If int is 32bits, the operation
// result will be within the range of int and the
// comparison result will be true

Unsigned integer operations in C language wrap around without overflow (the result will be the re-
mainder of the maximum representable value). Because the overflow is not flagged, there is a risk of
not noticing when the operation result differs from the intended result. For example, when there are two
environments that differ in the number of bits of int, the same constant expression produces different

operation results, depending on whether they exceed the representable value range or not.

-R2 3%2 When using conditional operator (?: operator), the Pre;‘:ggce
logical expression shall be enclosed in parentheses =
() and both return values shall be the same type. specification

Compliant example Non-compliant example
void func(int i1, int i2, long wil) { void func(int i1, int i2, long wl) {
= (i1 > 10) ? i2 : (int)wl; i1 = (i1 > 10) ? i2 : wi;

When writing code using different types, perform a cast to specify which type is expected as
the result.

[Related rule] M1.4.1

Reliability2 ® R2 Use data in consideration of ranges,sie s and internal representations. 41

A
o
5
=
=
<

Preference
Loop counters and variables used for comparison etz

s g o Rule
of loop iteration conditions shall be the same type. specification

void func(int arg) { void func(int arg) {
int i; unsigned char i;
for (i = 0; i < arg; i++) { for (1 = 0; i < arg; i++) {
. Using comparison between variables with different ranges of representable values as a loop iteration
" condition may produce unintended results and end up in an infinite loop.

Describe code by taking operation precision into con-
sideration.

’; When the type of an operation and the type of the RS

" destination to which the operation result is assigned gutg
Rule
specification

" (assignment destination) are different, the operation
shall be performed after casting them to the type of
expected operation precision.

int i1, i2; int i1, i2;
long w; long w;
double d; double dj
void func() { void func() {
d = (double)il / (double)i2; // floating-point d = i1 / i2; // integer division

// division w
w = ((long)il) << i2; // Shift using long

il << i2; // shift using int

The type used in operation is determined by the type of the expression (operand) used for the operation,
and the type of the assignment destination is not taken into consideration at compile time. Therefore, do
not expect the operation to output its result in the type of the assignment destination if the operating type
differs from the destination type. When there is a need to execute an operation in the type that differs
from the operand type, perform a cast to convert the type of operand to the intended type before opera-
tion.

[Related rule] R2.5.1

42 Part2 Coding Practices for Embedded Software:Practices Chart

2 % When performing arithmetic operations or com- Preference
parisons of expressions mixed with signed and guide

.] Rule

nsigned, an explicit cast to the expected type shall SIS

be performed.

Compliant example Non-compliant example

int i; int i;

unsigned int ui; unsigned int ui;

void func() { void func() {
i=1/ (int) ui; i=1/ ui;

if (i < (int) ui) { if (i < ui) {

Some operations, such as, size comparison, multiplication and division output different results, depend-
ing on whether they are performed with signed or unsigned. If an operation is written for a mixture
of signedness, unsigned operation is not always executed because it is the compiler that determines
which type to execute the operation in (whether with signed or unsigned) by taking account of the
respective data sizes. Therefore, when performing an arithmetic operation of mixed signedness, there is
a need to check whether the intended operation is with signed or unsigned, and perform an explicit
cast to change the operating type to the desired type before operation so that the intended operation re-
sult can be expected.

Note: If there are data types that may have to be changed for use in intended operation, it is often

better to change them rather than performing a cast mechanically. Therefore, in such a situation,
first consider changing the data type.

Reliability2 ® R2 Use data in consideration of ranges,sie s and internal representations.

43

A
o
g
5
g

Ayngerey

44

Do not use operations that have the risk of informa-
tion loss.

When performing assignments (=operation, actual
arguments passing of function calls, function re-
turn) or operations to data types that may cause
information loss, they shall be first confirmed that

there are no problems, and a cast shall be described to explicitly

state that they are problem-free.

// Assignment examples // Assignment examples
short s; // 16 bits short s; // 16 bits
long w; // 32 bits long w; // 32 bits
void func() { void func() {

s = (short)l; s = w;

s = (short)(s + 1); s=s+1;

// Operation examples

// Operation examples

Preference
guide
Rule

specification

unsigned int varl, var2; // int size is 16 unsigned int varl, var2; // int size is 16

// bits // bits
varl = 0x8000; varl = 0x8000;
var2 = 0x8000; var2 = 0x8000;
if ((long)varl + var2 > oxffff) { // The result if (varl + var2 > Oxffff) { // The result is
// is true // false

When a value is assigned to a variable that differs in type, the value may change (i.e. information may
be lost). The assignment destination, therefore, should be the same type whenever possible. When a
value is assigned to a different type intentionally in cases, such as, where there is no risk of information
loss or no impact even if information is lost, perform a cast to explicitly state the intention.

When performing an operation that outputs a result that exceeds the representable value range of the
type used, the result may become an unintended value. Therefore, for safety, carry out the operation
after verifying that the operation result is within the representable value range of the type used, or after
converting it to the type that could adequately accommodate larger values.

Note: In many cases, it is better to change data types used rather than casting mechanically.
Changing data types should be considered first.

[Related rule] R2.4.1

Part2 Coding Practices for Embedded Software:Practices Chart

Preference
Unary operator '-' shall not be used in unsigned guide

expressions. Rule
specification

Compliant example Non-compliant example

int i; unsigned int ui;
void func() { void func() {
i= -i ui = -ui;

If a unary operator ° - is used in unsigned expression and the operation result falls out of represent-
able value range of the original unsigned type, unintended behavior may occur.

For example, writing “if (- ui < ©) ” in the non-compliant example will not make this « if »
true.

When one’s complement (~) or left shift (<<) is ap- EEELES
plied to unsigned char or unsigned short type gRU|Ide
data, an explicit cast to the type of the operation Speciﬁc‘:ﬁon

result shall be performed.

Compliant example Non-compliant example

uc = Oxof; uc = oxof;

if((unsigned char)(~uc) >= @xef) if((~uc) >= exef) // It is not true

The result of operation using unsigned char or unsigned short type will be signed int type.
When the sign bit turns on due to operation, the intended result may not be achieved. This is why cast-

ing to the type of the intended operation is necessary. The above non-compliant example shows that ~uc
always becomes false as it produces a negative value.

[Related rule] R2.5.4

Reliability2 ® R2 Use data in consideration of ranges,sie s and internal representations.

45

P
ol
5
=
g

A
o
=
S
=
<

46

The right-hand side of a shift operator shall be zero Pregfiﬁzw

or more, and less than the bit width of the left-hand Rule
specification

unsigned char a; // 8 bits unsigned char a; // 8 bits

unsigned short b; // 16 bits unsigned short b; // 16 bits

b = (unsigned short)a << 12; // Clearly b = a << 12; // There may be an error in the

// indicated that the operation is 16 bits // shift count

.
= The behavior of a shift operator whose right-hand side (shift count) specifies a negative value or a value
n
= equal to or larger than the bit width* at the left-hand side (value to be shifted) is not defined in C lan-
. guage standard and will vary depending on the compiler used. (* This bit width will be that of int type
. if the size is smaller than int)
. The intention of specifying a value up to the bit width of int type as the shift count will be unclear if
. the left-hand side (value to be shifted) is of a type that is smaller in size, even though its behavior is de-
- .
. fined in the language standard.
|
|
- [Related rule] R2.5.3
u

m Use types that can represent the target data.

) The types used for bit field shall only be signed Pfe;z:ggce
int or unsigned int. If a bit field of 1 bit width is i
required, unsigned int type shall be used, and BEEEEEE

not the unsigned int type.

Choose

(2) The types used for bit field shall be signed int, unsigned int or
_Bool. If a bit field of 1 bit width is required, unsigned int type or

_Bool type shall be used.

. (3) The types used for bit field shall be signed int, unsigned int, _
Bool, or those allowed by the compiler that are either enum or the
type that specifies signed or unsigned. If a bit field of 1 bit width
is required, the type that specifies unsigned or _Bool type shall
be used.

Part2 Coding Practices for Embedded Software:Practices Chart

Compliant example

Compliant example of
struct S {
signed int ml1:2;

unsigned int m2:1;
unsigned int m3:4;

})
Compliant example of
struct S {

_Bool ml:1;
b

Compliant example of
struct S {
unsigned char ml:2;

enum E m2:2;

s

(1)

(2)

(3)

// If char is defined by the
// compiler as allowable:
// conpliant

// If enum is defined by the
// compiler as allowable:
// conpliant

Non-compliant example

Non-compliant example of (1)

struct S {
int ml:2; // Non-compliant: (1)(2)(3)
// Without sign specification
signed int m2:1; // Non-compliant: (1)(2)(3)

// Use of signed int type of

// 1-bit width

// Non-compliant:(1)(2)

// Use of char type.

// Compliant in (3) if char type
// is allowed by the compiler
// Non-compliant:(1)(2)

// Use of enum type.

// Compliant in (3) if enum type
// is allowed by the compiler

unsigned char m3:4;

enum E mé:2;

_Bool m5:1; // Non-compliant: Use of _Bool
// type. Compliant in (2),(3)
b
Non-compliant example of (2)
struct S {
int ml:2; // Non-compliant: (1)(2)(3)

// Without sign specification

// Non-compliant: (1)(2)(3)

// Use of signed int type of

// 1-bit width

// Non-compliant:(1)(2)

// Use of char type.

// Compliant in (3) if char type
// is allowed by the compiler
// Non-compliant:(1)(2)

// Use of enum type.

// Compliant in (3) if enum type
// is allowed by the compiler

signed int m2:1;

unsigned char m3:4;

<

enum E m4:2;

-

b3
Non-compliant example of (3)
struct S {
int ml:2; // Non-compliant: (1)(2)(3)
// Without sign specification
signed int m2:1; // Non-compliant: (1)(2)(3)
// Use of signed int type of
// 1-bit width
4

Reliability2 ® R2 Use data in consideration of ranges,sie s and internal representations. 47

o
(R
2
(=

g

(1) To be compatible with C90, use only the int type defined in C90, which is the “int type that has
specified the signedness to either signed or unsigned”. Do not use the “signedness-unspecified int
type” that may become signed or unsigned, depending on the compiler used.

A
o
5
=
=
<

(2) Use only the “int type that specifies the signedness as signed” or unsigned defined in C99, or the
_Bool type, and do not use the “int type that does not specify the signedness” because the interpreta-
tion of signedness or unsignedness may vary depending on the compiler used.

(3) In addition to the types defined in C99 language specification, the types defined in processing systems
can also be used. However, do not the integer type that does not specify the signedness, because the
interpretation of signedness and unsignedness may vary depending on the compiler. Moreover, for
the bitfield of 1-bit integer type, specify unsigned because the values that can be expressed by 1-bit
signed integer type are only -1 and 0.

[Related rules] R3.11.2, P1.3.3

Preference
- Data used as bit sequences shall be defined with guide

-unsigned type, and not with the signed type. Rule
secification

Compliant example Non-compliant example

unsigned int flags; signed int flags;
void set_x_on() { void set_x_on() {
flags |= ox01; flags |= oxe1;
: The result of bitwise operation (~, <<, >>,&, ", |) to signed type may vary, depending on the compiler used.
| |

48 Part2 Coding Practices for Embedded Software:Practices Chart

27 Pay attention to pointer types.

X
ol
5
=
g

1) Pointer type shall not be converted to other prww=——"
pointer type or integer type, and vice versa, with guide
the exception of mutual conversion between F?;"et_ eho

n
“pointer to data” type and “pointer to void*” specticato

type.

(@)

type with less data width than that of the pointer type, with the ex-
ception of mutual conversion between “pointer to data” type and
“pointer to void*” type.

~ (3) Pointer type shall not be converted to other pointer type or integer
D type with less data width than that of the pointer type, with the ex-
ception of mutual conversion between “pointer to data” type and
“pointer to other data” type, and between “pointer to data” type

and “pointer to void*” type.

int *ip; int *ip;

int (*fp)(void) ; int (*fp)(void) ;
char *cp; char c;

int 1i; char *cp;

void *vp;

Non-compliant example of (1)
Compliant example of (1) ip = (int*)cp;
ip = (int*)vp;

Non-compliant example of (2)

Compliant example of (2) c =(char) ip;
i = (int)ip;
Non-compliant example of (2)
Compliant example of (3) ip =(int*) fp;
i = (int)fp;

cp = (char*)ip;

Reliability2 ® R2 Use data in consideration of ranges,sie s and internal representations. 49

If a pointer type variable is casted or assigned to another pointer type, it is difficult to identify what
kind of data is contained in the area the pointer points to. With some MPUs, runtime errors occur if the
destination of a pointer that is not at word boundaries is accessed as int type; thus changing pointer
types may cause a risk of unexpected bugs. It is safer not to cast or assign pointer type variables to
other pointer types. Converting pointer types to integral types is also risky, involving the same problem
stated above. Such conversions, therefore, should be reviewed with experts, whenever deemed neces-
sary. Moreover, attention must also be given to the value ranges of int type and pointer type. Be sure
to check the specifications of the compiler beforehand, because there may be cases where the size of the
pointer type is 64 bits even though the size of int type is 32 bits.

<stdint.h> defines intptr_t and uintptr_t, which respectively represents signed and unsigned
integral types with data width capable of holding a value converted from a pointer type and be converted
back to that type with a value that equals to the original pointer. These types should be used when con-
verting between pointer type and integrer type.

A
w,
5
=
Ed
<

‘g Pointer conversion rules

As explained in the rule under R.2.7.1, it is a risk to convert (assign) pointer type variable to other pointer
type more than is necessary, because the intended result may not gained. The rules on pointer conversion
have been organized in the form of a table, as shown below.

In the following table, the origin to convert from are listed in the rows, and the destination to convert to
are listed in the columns. o indicates that the conversion can be made, and X indicates that the conversion

should not be performed.

50 Part2 Coding Practices for Embedded Software:Practices Chart

Details (1)

Conerted to
Pointer to|Pointer to|Pointer to
data type [function type void type CLTETIETED
Pointer to data type X X O
Con- Pointer to function type X X X
Y efrr;):ne d Pointer to void type O X - X
Other type X X X _
Details (2)
Conerted to
. Pointer to|Pointer MSRISIAUDY
Pointer to function|to void With less data|With more data
data type type type width than that of | width that than of
the pointer type | the pointer type
Pointer to data type X O
Pointer to function type X X X O
Pointer to void type O - X O
Con- With less data
verted width than that of X X X
from | |ntegrer| the pointer type
type |With more data
width that than of O O O
the pointer type
Details (3)
Converted to
Pointer to | Pointer to|Pointer |With less data|With more data
data type |function|to void |width than that of | width that than of
type type the pointer type | the pointer type
Pointer to data type O X O
Pointer to function type X X X O
Pointer to void type O - X O
Con- With less data
verted width than that of X X X
from Integrer | the pointer type
type |With more data
width that than of O O O
the pointer type

Reliability2 ® R2 Use data in consideration of ranges,sie s and internal representations.

g
5
=
=

A
o
5
=
=
<

52

- A cast shall not be performed that removes any Preference

const or volatile qualification from the type ad- i‘j:’:

" dressed by a pointer. [MISRA C:2012 R11.8] syl

Compliant example Non-compliant example

void func(const char *); void func(char *);
const char *str; const char *str;
void x() { void x() {

func(str); func((char*)str);
} }

Be careful when accessing the areas qualified by const or volatile, because they are only for refer-
ence and must not be optimized. If a cast that removes any const or volatile qualification from the
type addressed by a pointer is performed, the compiler will not be able to check and detect error descrip-
tions in the program even if there are any, or may perform an unintended optimization.

{ Preference
Comparison of whether a pointer is larger or small- guide

-er than 0 shall not be performed. Rule
specification

Compliant example Non-compliant example

— int * funcl() {
"r.etur‘n -1;
¥
int func2() {

ifm(-Funcl() < @) { // Comparison intended to
// check whether negative or
// not

-

return 0;

¥

It is meaningless to compare whether a pointer is larger or smaller than 0.

When the subject of comparison is a pointer, the compiler will convert 0 into a null pointer. Therefore,
even when the comparison of pointer against 0 is intended, the comparison will actually be between two
pointers, and the intended behavior may not be achieved.

As shown in the non-compliant example, error check should not be performed by comparing whether
the pointer is negative or not when a function that returns a pointer returns a negative value other than a
null pointer as an error.

[Related rule] R1.3.3

Part2 Coding Practices for Embedded Software:Practices Chart

Write in a way that will enable the compiler to check that
there are no conflicting declarations, usages and defini-

Preference
Functions with no parameters shall be declared glige

: : Rule
with a void type parameter. spedification

Compliant example Non-compliant example

int func(void) ; int func();

The declaration int func() does not mean that a function has no parameters. It is an old-styled (K&R
style) declaration that means that a function has unknown number and types of parameter. Therefore,
when declaring functions with no parameters, write void explicitly.

[Related rule] R2.8.3

(1) Functions shall not be defined with a variable [JJFT=E—_
number of arguments. [MISRA C:2004 16.1] guide

(2) When using functions with a variable number of Rule
specification

arguments, (they shall be used after document-
ing the intended behaviors based on the com-
piler used.)

Compliant example Non-compliant example

Compliant example of (1) Non-compliant example of (1)
int func(int a, char b); int func(int a, char b, ...);

Without understanding the behavior of functions with a variable number of arguments in the processing
system, their use may cause stack overflow or other unexpected results.

In addition, when the number of arguments is variable, the number and the types of the arguments are
not explicitly specified, and it will lower readability of the code.

MISRA C:2012 prohibits the use of functions defined in <stdarg.h>.

When defining a variadic function that uses va_list type variable to reference an argument, there is a
need to be careful not to make the va_list type variable an indeterminate value. If you want to learn
more about this warning, MSC39-C in CERT C should serve as a good source of reference.

[Related rule] R2.8.3

Reliability2 ® R2 Use data in consideration of ranges,sie s and internal representations.

53

A
1
o
5
g

“One prototype declaration shall be made at one Preéizjzce

. place from where it can be referenced by both the Rule

A
o
=
=2
= function calls and function definition. specification

Compliant example Non-compliant example

-- filel.h -- -- filel.c --

void f(int i); void f(int i); // Declared in each file
void f(int i) { .. }

-- filel.c --

#include "filel.h" -- file2.c --

void f(int i) { .. } void f(int i); // Declared in each file
void g(void) { f(10); }

-- file2.c --

#include "filel.h"
void g(void) { f(10); }

This rule is for preventing the prototype declaration and function definition from becoming inconsistent.

[Related rules] R2.8.1, R2.8.2

54 Part2 Coding Practices for Embedded Software:Practices Chart

| Write in a way that ensures inte
behavior. o

It is essential to be consistent with the description on how to handle all the potential errors,
by also taking account of unexpected events that may occur in cases that are even conceived
as highly unlikely from the standpoint of program specifications. Moreover, writing code in
ways that do not rely on language specifications, such as, explicit indication of operator prece-
dence can also improve safety. To achieve high reliability, it is desirable to make every effort
to avoid coding that leads to malfunction and write in a way that ensures intended behavior
and safety as much as possible.

Reliability 3.1 Write in a way that is conscious of area sie .

— Prevent operations that may cause runtime error
Reliability 3.2 from falling into error cases.

Check the interface restrictions when a function is
called.

Reliability 3.3

Reliability 3.4 Do not perform recursive calls.

Pay attention to branch conditions and describe
Reliability 3.5 how to handle cases that do not follow the predefined
conditions when they occur.

Reliability 3.6 Pay attention to the order of evaluation.

Be careful with how to access the shared data in
programs that use threads or signals.

Reliability 3.11

$% R3.7 ~ R3.10 described in ESCR C++ edition are deleted from C language edition as they are not applicable as C language rules.

Reliability3 ® R3 Write in a way to ensure behavior. 55

E
5
=
=

. Write in a way that is conscious of area size.

A
o
5
=
=
<

_ 1 ’((1) In an extern declaration of an array, the number EESEES

) O
of elements shall always be specified. guide

Rule

" (2) In an extern declaration of an array, the number o Choose

specification
of elements shall always be specified, except for

extern declarations of arrays that correspond to
the array definition that includes initialization and has omitted the
number of elements.

Compliant example Non-compliant example

Compliant example of (1) Non-compliant example of (1)

extern char *mes[3]; extern char *mes[];

char *mes[] = {"abc", "def", NULL}; char *mes[] = {"abc", "def", NULL};
Compliant example of (2) Non-compliant example of (1) and (2)
extern char *mes[]; extern int varl[];

char *mes[] = {"abc", "def", NULL}; int vari[MAX];

Compliant example of (1) and (2)
extern int varl[MAX];

int varl[MAX];

Making an extern declaration without specifying the size of an array will not cause an error. However, if
the size is not specified, it may cause problems in checking outside the array range. Therefore, it is bet-
ter to explicitly specify the array size in its declaration. However, there are cases where it is better not to
specify the array size in the declaration, such as, when the size of the array is determined by the number
of initial values and is not fixed in the declaration.

[Related rule] R3.1.2

56 Part2 Coding Practices for Embedded Software:Practices Chart

Iteration conditions for a loop to sequentially ac- gEr==——"
cess array elements shall include the decision to guide

whether the access is within the range of the array Rule
or not specification

Compliant example Non-compliant example

char vari[MAX]; char varil[MAX];

for (1 = @; i < MAX && varil[i] != 0; i++) { for (i = @; varl[i] != 0; i++) {
// Even if @s are not set in the varl array, // If @s are not set
// there is no risk of accessing outside the // in the varl array, there is a risk
// array range // of accessing outside the array range

This rule is to prevent accessing outside the range.

[Related rule] R3.1.1

Preference
The size of the array initialized with a designated guide

nitializer shall be clearly indicated. ey
specification

Compliant example Non-compliant example

intaf[5]={[06]=1} intb[J={[0]1=11};

Unless the size of the array is clearly indicated when defining the array, the largest index among the ele-
ments that will be initialized will be determined as the size. When a designated initializer is used, there
are times when it is not clear which index is the largest and should be initialized.

[Related rule] R3.1.1

Reliability3 ® R3 Write in a way to ensure behavior.

57

7
iy
t
S
g

A
o
5
=
=
<

Variable length array type shall not be used. guide

[MISRA C:2012 R18.8])

(of T T IETN A €T [)

#define MAX 1024
void func(void) {
int a[MAX]; // Compliant Secured an array of
// largest length

Preference

Rule
specification

Non-compliant example

void func(int n) {

// Non-compliant Variable
// length array

int a[n];

The use of variable length array type has the following problems:

« Risk of stack overflow

Variable length array can be assigned to a stack area. Therefore, if the variable length array size is big,

there is a risk of stack overflow.

« Behavior that is not defined in C language standard
The behavior when the variable length array size is not a positive value is not defined in C language

standard.
+ Misconceived array size

int y = 10;
typedef int INTARRAY[y];
y = 26;

INTARRAY z; // Array size of z is 10, and not 20.

CERT C also provides a warning regarding the need to be careful when using the variable length array
type. If you find it inevitable to use the variable length array type, the warning described in ARR32-C

should serve as a good source of reference.

' (1) sizeof operator shall not be applied to pointer-

type variable.

(2) sizeof operator shall not be applied to array-type

argument.

Compliant example

Compliant examples of (1) and (2)
void funcl(char *cp) {
size_t x;
x = sizeof(*cp); // Compliant: *cp is not
// pointer-type variable
size_t y;
y = sizeof(int *); // Compliant: int* is not
// pointer-type variable

void func2(int arg[MAX], size_t n) {
size_t argsize;
argsize = sizeof(arg[@]) * n; // Compliant:
// arg[@] is not array-type argument

Part2 Coding Practices for Embedded Software:Practices Chart

Preference
guide

Rule
specification

Non-compliant example

Non-compliant example of (1)
void funcl(char *cp) {
size_t x;
x = sizeof(cp); // Non-compliant: cp is
// pointer-type variable
// (argument)

Non-compliant examples of (1) and (2)
void func2(int arg[MAX], size_t n) {
size_t argsize;
argsize = sizeof(arg); // Non-compliant:
// arg is array-type argument

The first rule (1) is for preventing the misconception that sizeof (pointer-type variable) yields the size
of the space the pointer points to.

Since sizeof(array-type variable) yields the size of the array, it is sometimes misconceived as
sizeof (pointer-type variable) also yields the size of the space the pointer points to. But actually, it
yields the size of a pointer. The use of this rule will also be helpful, for example, to prevent the program-
mers from writing sizeof(p) by mistake, by misconceiving p in p[@] = ©; to be a type of array
without checking the variable declaration.

The second rule (2) is for preventing the misconception that sizeof (array-type argument) yields the

A
1
o
5
g

size of an array.
Since the array-type argument is treated as pointer type, sizeof (array-type argument) yields the size
of a pointer.

[Reference materials for those wanting to know more in detail about this rule]
» CERT ARRO1-C

- CWE-467

+ MISRA C:2012 Amendment 12.5

[Related rules] R3.6.3, P1.5.2

Prevent operations that may cause runtime error

2 from falling into error cases.

Operations shall be performed after confirming that JEEEEIS

id
the right-hand side expression of division or remain- ?::I:

der operation is not 0. specification

Compliant example Non-compliant example

if (y != 0){ ans = x/y;
ans = x/y;

Apart from when the value is obviously not 0, the operations should be performed after checking that
the right-hand side expression of division or remainder is not 0. Otherwise, division by zero error may
occur at runtime.

[Related rules] R3.2.2, R3.3.1

Reliability3 @ R3 Write in a way to ensure behavior. 59

A
o
5
=
=
<

60

Preference
Memory pointed by a pointer shall be referenced to guide

- after checking that the pointer is not the null pointer. Rule
specification

Compliant example Non-compliant example
if (p !'= NULL) { *p = 1;

*p =1
¥

Hardware trap or memory corruption will occur when the memory is accessed via a null pointer or a

pointer that points to an invalid memory. They can be prevented, such as, by:

(1) Assigning a null pointer to a pointer that has already been used. By making it a rule to find out
where the pointer will point to before it is referenced, you can prevent the memory from being used
after it is freed or from being double freed.

(2) In recent years, some embedded operating systems, such as, AUTOSAR OS, provide a system ser-
vice that checks whether the value of the pointer is valid or not. If such type of OS is used, be sure
to always use this system service. By confirming that the value of the pointer is valid before the
memory is accessed through the pointer, you can prevent the memory from being accessed unjustly.

[Related rules] R3.2.1, R3.3.1

Check the interface restrictions when a function is
called.

Preference
If a function returns error information, then that er- guide

ror information shall be tested. [MISRA C:2012 D4.7) Rule

specification

Compliant example
p = malloc(BUFFERSIZE); p = malloc(BUFFERSIZE);
if (p == NULL){ *p o= '\@';

// Error handling
else{

*p = "\@';
¥

When a function returns a value, the code that does not use that return value may cause an error. If it is
not necessary to reference the return value, consider setting a project-specific rule to clearly indicate the
unnecessity of referencing, such as, by casting to void.

Regarding the rules on standard library errors, CERT C ERR30-C and ERR32-C explain about how to
use errno and ERR33-C provides a list of return values in the library and explains how to handle them
properly. These rules should serve as a good source of reference.

[Related rules] R3.2.1, R3.2.2, R3.5.1 R3.5.2

Part2 Coding Practices for Embedded Software:Practices Chart

Preference
The function shall check if there are constraints guide

on parameters before starting to process. Rule
specification

Compliant example Non-compliant example

int func(int para) { int func(int para) {
if (!((MIN <= para) && (para <= MAX))) // Normal processing
return range_error;

// Normal processing }

Whether the constraints on parameters are checked by the function that calls or the function that is called
depends on how the interface is designed. However, in order to prevent checking from being over-
looked, the same check should be performed in one place. Therefore, the check should be performed by
the function that is called. As another guideline, CERT C also recommends checking at the side that is
called. (See CERT C API00-C.)

In case the function that is called cannot be changed, such as, when it is in a library, create a wrapper
function.

Example of wrapper function:

int func_with_check(int arg) {
// If arg is violating the parameter constraints, return range_error
// If not, call func and return the result

¥
// Use a wrapper function to make the function call
if (func_with_check(para) == range_error) {
// Error processing
}

C99 allows the specification of the lower limit of array size by using a static qualifier in an array decla-
ration of a formal parameter. For example, in the following function declaration, the lower limit of ele-
ments of an argument of array a is specified as 3.

void func(int a[static 3]);

By specifying such constraints on parameters, tools like the compiler would quite likely check the re-
strictions applied to arguments.

Reliability3 @ R3 Write in a way to ensure behavior.

61

A
1
o
5
g

A
o
=
S
=
<

%~ Do not perform recursive calls.

: : : Preference
Functions shall not call themselves, either directly guide

or indirectly. [MISRA C:2012 R17.2] Rule

specification

Compliant example Non-compliant example

unsigned int calc(unsigned int n)

if (n<=1) {
return 1;

¥

return n * calc(n-1);

¥

Since the stack size used at runtime for recursive calls cannot be predicted, there is a risk of stack over-

flow.

62 Part2 Coding Practices for Embedded Software:Practices Chart

;%51 to handle cases that do not follow the predefined

Pay attention to branch conditions and describe how

conditions when they occur.

The else clause shall be written at the end of an =SS

if-else if statement. If it is known that the else e ©
condition does not normally occur, the description Spegfll‘(';ﬁon Define
of the else caluse shall be either one of the follow-
ing:
¢ (i) An exception handling process shall be written in the else clause.
(ii) A comment specified by the project shall be written in the else
clause.)
// else clause of an if-else if statement where // if-else if statement without the else clause
// the else condition does not normally occur if (varl == 0) {

if (varl == @) {

¥
¥

¥

} else if (@ < varl) {

}

elgé if (@ < varl) {

else {
// Write an exception handling process

If (varl == 0) {

¥
¥
¥

elgé if (@ < varl) {

else {
// NOT REACHED

If there is no else clause in an if-else if statement, it is not clear whether the programmer has for-
gotten to write the else clause or deliberately left out the else clause be cause the else condition dose
not occur. Even if it is known that the else condition does not normally occur, the behavior of the pro-
gram when an unexpected condition occurs can be specified by writing the else clause as follows:

(i) Write the behavior under unexpected conditions in the else condition (How program behaves

in case of occurrence of the else condition should be determined.)

Or, the program is much easier to understand by just writing a comment that the else condition does
not occur.

(ii) Write a comment specified by the project such as // NOT REACHED clearly indicating that the

else condition does not occur to express that the else clause has not been forgotten.

[Related rules] R3.3.1, R3.5.2

Reliability3 @ R3 Write in a way to ensure behavior.

63

A
1
o
5
g

(The default clause shall be written at the end of [l

. a switch statement. If it is known that the default Rule
condition does not normally occur, the description Rl
of the default clause shall be either one of the following:

A
o
=
S
=
<

{(i) An exception handling process shall be written in the default
clause.

(ii) A comment specified by the project shall be written in the default
clause.)

Compliant example Non-compliant example

// Default clause in a switch statement where // Switch statement without the default clause
// the default condition does not normally occur switch(varl) {
switch(varl) { case 0:
case O: -
- break;
break; case 1:
case 1: -
- break;
break; }
default:
/* Write an exception handling process */

break;

}

switch(varl) {
case 0:

break;
case 1:

break;
default:

// NOT REACHED

break;

64 Part2 Coding Practices for Embedded Software:Practices Chart

If there is no default clause in a switch statement, it is not clear whether the programmer has for-

gotten to write the default clause or deliberately left out the default clause because the default

condition does not occur. Even if it is known that the default condition does not normally occur, the

behavior of the program when an unexpected condition occurs can be specified by writing the default

clause as follows:

(1) Write the behavior under unexpected conditions in the default condition (Predefine the behavior of
theprogram if by any chance the default condition occurs).

Or, the program is much easier to understand by just writing a comment that the default condition

does not occur.

(i) Write a comment like // NOT REACHED that clearly indicates that the default condition does not
occur to express that the default clause was not written because it was forgotten. Such comment
will improve the readability of the program.

[Related rules] R3.3.1, R3.5.1, M3.1.4

Preference
Equality operators (==, !=) shall not be used for guide

comparisons of loop counters. Rule
specification

Compliant example Non-compliant example

void func() { void func() {
int i; int i;

for (1 =0; i <9;1+=2){ for (1 =0; i !=9; 1i+=2) {

If the amount of change for the loop counter is not 1, an infinite loop may occur. Therefore, for compari-
son to determine the number of loop iterations, do not use the equality operators (==, !=). (Instead use

<=,>=,<,>))

Reliability3 @ R3 Write in a way to ensure behavior.

65

A
1
o
5
g

A
o
5
=
=
<

66

% Pay attention to the order of evaluation

Variables whose values are changed in an expres- REEECIE

. e 5 uide
ion shall not be referred to or modified in the gR |
8 ule
same expression. specification

Compliant example Non-compliant example

f (% x); f (X, X++);
X++;

- or -

f(x+ 1, x);

X++;

Compilers do not guarantee the execution (evaluation) order of each actual argument in functions with
multiple parameters. The arguments may be executed from the right or from the left. In addition, com-
pilers do not guarantee the execution order of the left-hand and the right-hand side of binary operations
such as + operation. Therefore, if the same object is updated and referenced in a sequence of arguments
or binary operation expressions, the execution result is not guaranteed. Such a problem, where the ex-
ecution result is not guaranteed, is called a side effect problem. Do not write code that causes such side
effect problems.

This rule, however, does not prohibit descriptions, such as, those shown below which do not cause the
side effect problem.

X =X+ 1;

x = f(x);

[Related rules] R3.6.2, M1.8.1

Part2 Coding Practices for Embedded Software:Practices Chart

unction calls with side effects and volatile vari- EEEC

ables shall not be described more than once in a GUIEE

A a Rule

sequence of actual arguments or binary operation specification
expressions.

Compliant example Non-compliant example

ilg 1.
extern int G_a; extern int G_a;
x = funcl(); x = funcl() + func2(); // With side effect
X += func2(); // problem
int funcl(void) { int funcl(void) {
G_a += 10; G_a += 10;
¥ }
int func2(void) { int func2(void) {
G a -= 10; G_a -= 10;
} }
2 2o
volatile int v; volatile int v;
y =V (v, v);
fly, v);

Compilers do not guarantee the execution (evaluation) order of each actual argument for functions with
multiple parameters. The arguments may be executed from the right or flom the left. In addition, com-
pilers do not guarantee the execution order of the left-hand and the right-hand side of binary operations
such as + operation. Therefore, the execution results of two or more function calls with side effects and
volatile variables in a sequence of arguments or binary operation expressions may not be guaranteed.
Such unsafe descriptions must be avoided.

[Related rules] R3.6.1, M1.8.1

Reliability3 @ R3 Write in a way to ensure behavior.

67

A
1
o
5
g

A
o
5
=
=
<

Preference
sizeof operator shall not be used in expressions guide

that have side effect. Rule
specification

Compliant example Non-compliant example

X = sizeof(i); X = sizeof(i++);
it++; y = sizeof(int[i++]);
y = sizeof(int[i]);

it++;

Until C90, the expression in parenthesis of sizeof operator was used only for finding the size of the
expression type, and was not executed.
Therefore, even when ++ operator like sizeof(i++) was described, i was not incremented. However,
in C99, if the type is a variable length array, there are cases when the expression is evaluated. In those
cases, 1 in sizeof(int[i++]) will be incremented by ++ operator. Such description should not be used
because it can easily be misunderstood.

[Related rules] R3.1.5, P1.5.2

Be careful with how to access the shared data in
programs that use threads or signals.

: : Preference
For concurrent processing, volatile shall not be guide

used as synchronization primitive. Rule
specification

Compliant example Non-compliant example

In case of C11 volatile int v = @; // Non-compliant
#include <threads.h>
v++; // Not processed indivisibly.
int v = 0;
mtx_t flag; // mutex is used for exclusive

// control

mtx_lock(&flag);

V4+; // In the critical section.
// Processed indivisibly

mtx_unlock(&flag);

Part2 Coding Practices for Embedded Software:Practices Chart

For concurrent processing or asynchronous signal processing, there is a need to properly reflect the result
of updated data to other threads. Using volatile to guarantee the indivisibility and visibility of data
refreshed by other threads is a mistake. volatile is used for preventing the compiler from optimizing
the data and does not guarantee indivisibility, etc., in concurrent processing. To guarantee the indivisibil-
ity of a single data, use mutex, etc., as the synchronization primitive.

It is preferable to acquire and release synchronization primitives at the same level of abstraction in the

same translation unit.

Compliant example

In case of Ci1
#include <threads.h>

struct {
unsigned int flagl : 1;
unsigned int flag2 : 1;
1s;

mtx_t lock; // mutex is used for exclusive
control

void funcl() {
mtx_lock(&lock); // Compliant: Exclusively
// controlled properly
s.flagl = 1;
mtx_unlock(&lock);
}

void func2() {
mtx_lock(&lock); // Compliant: Exclusively
// controlled properly
s.flag2 = 1;
mtx_unlock(&lock);
}

// funcl and func2 are executed by different
// threads

Preference
guide
Rule

specification

Non-compliant example

struct {
unsigned int flagl : 1;
unsigned int flag2 : 1;
}s;
// Non-compliant: Not exclusively controlled

// properly
void funcl() {

s.flagl = 1;
}
void func2() {
s.flag2 = 1;
}

// funcl and func2 are executed by different
// threads

If multiple threads access bit fields allocated in the same memory space, the result of data referenced or
refreshed in the adjacent bit fields may become incorrect. To avoid this problem, allocate the data sepa-
rately in different memory spaces or perform the exclusive control or mutual exclusion properly.

[Reference materials for those wanting to know more in detail about this rule]

+ CERT C CON32-C

[Related rules] R2.6.1, P1.3.3

Reliability3 @ R3 Write in a way to ensure behavior.

69

A
o8
5
=
F

Maintainability

Many embedded software developments require mainte-
nance tasks, including the modification of the software that
has already been developed. '
There are various reasons for maintenance. For example, f
maintenance becomes necessary: :
+When a bug is found in one part of the released software :
and must be modified; :
+ When a new function is added to existing software in re-
When any kind of additional work is carried out on the f
already developed software as in the above examples, it
is important to perform such work as accurately and effi-
ciently as possible to maintain the quality of the software. :
This is called “maintainability” in the field of system devel- f
opment. '
This section clarifies the practices to keep and improve the f
maintainability of embedded software source code. :

@ Maintainability 1: Keep in mind that others will read the
program.

@ Maintainability 2: Write in a style that can prevent
modification errors.

@ Maintainability 3: Write programs simply.

@ Maintainability 4: Write in a unified style.

@ Maintainability 5: Write in a style that makes testing
easy.

=
o
=]
—*
o
=]
)
=z
E
<

It is easily conceivable that source code is reused and maintained by engineers who are not
the original creators. Therefore, it is necessary to write source code that is easy to understand
by taking account of others who will read it later.

72 | Part2 Coding Practices for Embedded Software:Practices Chart

\/i%¥N Do not leave unused descriptions.

Unused functions, variables, parameters, typedefs, P'eéigzgce
tags, labels or macros shall not be declared (de- Bl
fi ned) 0 specification

Compliant example Non-compliant example

void func(void) { void func(int arg) {
// arg is unused
}

When necessary in case of callback function }
int cbfunc2(int argl, int);

// In case the callback function types are fixed

// to be int(*)(int,int), the second argument

// is necessary even when it is not used

Declarations (definitions) of unused functions, variables, parameters labels, etc. impairs maintainability
because it makes it difficult to determine whether the programmer has forgotten to delete them or has
made a description error.

However, when writing a call back function, make it explicit that parameter is not used, by not describ-
ing the name of the parameter to keep the function types consistent.

[Related rules] M1.9.1, M4.7.2

’; (1) Sections of code should not be “commented Preference
out”. [MISRA C:2012 D4.4] guide

(2) For commenting out sections of code, (the coding Rule
i specification

rule shall be specified.)

Compliant example Non-compliant example

Compliant example of (2) (the coding rules are Non-compliant example of (1)
specified;// comment for commenting out)
EEERET RS EY

jo=3*i; j=3%*1i;

Normally, invalidated sections of the code should not be left in the code as it may impair the code read-
ability.

However, if there is a need to invalidate certain sections of the code by commenting them out, set a rule,
for example, to use only // comment for commenting out. Any section of the code can also be invali-
dated without using comment out by specifying that section in between #if 0 and endif#.

[Related rules] M1.12.1, M4.7.2

Maintainability1 @ M1 Consider that others will read the program.

73

=
o
3
=
il
5
)
e
E
<

Do not writing confusingly.

(1) Only one variable shall be declared in one Proferance

declaration statement (avoid multiple declara- guide
tions.) Rule
(2) Automatic variables of the same type used for

specification

the similar purposes may be declared in one declaration
statement, but variables with initialization and variables
without initialization shall not be mixed.

=

o

g' Compliant example of (1) Non-compliant example of (1)

= int i; int i, j;

= int j;

< Non-compliant example of (2)
Compliant example of (2) int i, j, k = 0;
int i, j; // Non-compliant: A variable with initialization
int k = @; // and variables without initialization are mixed
int *p; int *p, i;
int i; // Non-compliant: Variables of different types

// are mixed

If the declaration is int *p;, the type of p is int*. However, if the declaration is int *p, q;, the type
of g becomes int instead of int*.

[Related rule] M1.6.1

74 Part2 Coding Practices for Embedded Software:Practices Chart

Suffixes shall be added to constant descriptions that REEECIE
can use them to indicate appropriate types. Only an
uppercase letter “L” shall be used for a suffix indi- [

guide
Rule

cating a long type integer constant.

Compliant example

void func(long int);

float f;
long int w;
unsigned int ui;

f =f + 1.0F; // Explicitly state that it is a
// float operation
func(lL); // Description of L should be an
// uppercase letter
if (ui < @x8000U) { // Explicitly state that it
// is an unsigned comparison

Basically, when there is no suffix, an integer constant will be an int type and a floating constant will be
a double type. However, when an integer constant value that cannot be expressed with an int type is
described, its type will be the one that can express that value. Therefore, @x8000 will be unsigned int
if int is 16 bits, and signed int if int is 32 bits. If you would like to use it as unsigned, it is neces-
sary to explicitly describe “U” as the suffix. In addition, in case of a target system where the operation
speed differs between floating point number of float type and that of double type, when performing
operations between a float type variable and a floating constant without a suffix “F,” constant, it should

be noted that the operation will be a double type.

For floating constants, writing at least one digit on both sides of the decimal point will make them easily

recognizable as floating constants.

[Related rule] M1.8.5

' When expressing a long string literal, successive [l

: : : . guide
string literals shall be concatenated without using =l
“- newlines within the string literal. specification

Compliant example

char abc[] = "aaaaaaaa¥n"
"bbbbbbbb¥n"
"cccececec¥n';

Long strings that extend to multiple lines will become easier to read by describing them as concatena-

tion of multiple string literals.

Non-compliant example

void func(long int);

float f;
long int w;
unsigned int ui;

f=Ff+1.0;

func(11l); // 11 (numeral 1 and letter 1) can get
// confused with 11 (number 11)

if (ui < 0x8000) {

Non-compliant example

char abc[] = "aaaaaaaa¥n¥
bbbbbbbb¥n¥
cccceec¥n”;

Maintainability @ M1 Coné der that others will read the program.

75

=
o
3
=
il
5
)
e
E
<

=
o
=
—*
o
5
)
S
E
<

76

\iB Do not write in an unconventional style.

. . Preference
Expressions evaluating to true or false shall not be guide

_described in switch (expression). Rule
4 specification

Compliant example Non-compliant example

= switch (i_varl == 0) {
case 0:
i_var2 = 1;
break;
default:
i_var2 = 0;
break;

¥

When an expression evaluating to true or false is used in a switch statement, the number of branch
directions will be two, and the necessity of using the switch statement as a multiway branch command
becomes low. Compared to if statements, switch statements have a higher possibility of errors, such as,
writing the default clause wrongly or missing break statements. Therefore, it is recommended to use
if statements unless the number of branch directions is three or more. When there will be two branch
directions like in case of the non-compliant example, write the if statement in the way shown below.

if (i_varl == 09) {
i_var2 = 0;
} else {
i_var2 = 1;
}
[Related rule] E1.1.4

_.}" '®. The case labels and default label in a switch state- [JE =,
Jo4 7. ment shall be described only in the compound state- guide

" ment (excluding nested compound statements) with- Rule
- in the body of the switch statement. specification
switch (x) { switch (x) { // Compound statement of the
case 1: // switch statement body
case 1:
{ // Nested compound statement
} case 2: // Do not describe case label in
// nested compound statement
break;
case 2: }
Ereak; Break;
default: default:
Er‘eak; gr‘eak;

[Reference materials for those wanting to know more in detail about this rule]
* MISRA C:2012 R16.2
« CERT C MSC20-C

Part2 Coding Practices for Embedded Software:Practices Chart

Preference
The types shall be explicitly described for definitions guide

and declarations of functions and variables. Rule
specification

Compliant example Non-compliant example
extern int global; extern global;

int func(void) { func(void) {

} }

If data types are not described in definitions and declarations of functions or variables, they are inter-
preted as int type. Explicitly specifying data types improves readability. In C99 language standard,
these descriptions that do not explicitly specify the data types are prohibited and will be detected as error
by the compiler.

[Related rule] M4.5.1

Write in a style that clearly specifies the operator
precedence.

Expressions described at the right hand and left FEAEES
hand of & and || operations shall be either simple gt

. A . Rule
variables or expressions enclosed with (). How- spedification

ever, if only & operations or only || operations are
successively combined, it is not necessary to en-
- close each && and || expression with ().

if ((x > @) && (x < 10)) if (x > 0 & x < 10)

if ((x = 1) && (x != 4) && (x != 10)) if (x 1= 18& x != 4 && x != 10)
if (flag_tb[i] && status)

if (I || y)

The objective of this rule is to write an expression that prevents confusion in understanding the order of
precedence of each operand in & or | |. Its aim is to highlight the operation of each operand in && or | |
to improve the readability by enclosing the expression that contains an operator other than unary, postfix
and cast operators with () . Another rule that may be considered is to enclose ! operation with () be-
cause the order of precedence may be confusing to beginners.

[Related rules] R2.3.2 M1.5.2

Maintainability1 @ M1 Consider that others will read the program.

77

=
o
3
=
il
5
)
e
E
<

=
=,
=
—*
4,
5
)
=
E
<

78

Preference
{Usage of parentheses to explicitly indicate operator guide

precedence shall be defined.) Rule
specification

Compliant example Non-compliant example

a=(b<< 1) +c; a=b << 1+ c; // There is a possibility that
- or - // the operator precedence is
a=b< (1+c); // misunderstood

Operator precedence in C language is difficult to capture. Therefore, set a rule as exemplified below to
improve its readability. If an expression contains multiple binary operators that differs in the order of
operation priority, parentheses () shall be used to explicitly indicate the operator precedence, provided
that the parentheses () may be omitted in four arithmetic operations.

To learn more about the operator precedence and its interpretation, refer to MISRA C:2012 Rule 12.1

(p.103).
[Related rule] M1.5.1

Explicitly describe operations that may lead to mis-
understanding when omitted.

* A function identifier (function name) shall only be =
used with either a preceding “&”, or with a parenthe- guide
sized parameter list, which may be empty. Rule

specification
[MISRA C:2004 16.9]

Compliant example Non-compliant example

void func(void); void func(void);

void (*fp)(void) = &func; void (*fp)(void) = func; // Non-compliant:
// There is no &

if (func()) { if (func) { // Non-compliant: Address is

// obtained rather than calling the
// function. It might be mistakenly
// written as afunction call without
// arguments.

In C language, if a function name is written alone, it means obtaining the function address, and not call-
ing the function. This means that, for obtaining the function address, there is no need of placing & in
front of the function name. However, the function name without a preceding &, in some cases, may be
misunderstood that it is for a function call (for example, when using languages like Ada and Ruby that
write only the name to call a subprogram without arguments). By following the rule to add & when ob-
taining the function address, it will become easier to detect mistakes in function names written as they
are without & and subsequent () .

[Related rule] M1.4.2

Part2 Coding Practices for Embedded Software:Practices Chart

Preference
Comparisons with zero (0) shall be explicitly written guide

in conditional expressions. Rule
specification

Compliant example Non-compliant example

int x = 5; int x = 5;
if (x != @) { if (x) {
}... }...

In conditional expressions, when the result of the expression is zero (0), it is treated as false, and non-
zero is treated as true. Therefore, comparative operations may be omitted in conditional expressions.
However, such description may cause unintended behavior. For this reason, the comparisons should not
be omitted to make the intention of the program explicit. Moreover,since bool, true and false are
defined as macros in <stdbool.h>, any of them should be used to describe a type that represents true
or false, or a constant that represents a true or false value.

[Related rules] R2.2.1 M1.4.1

Vil:l Use one area for one purpose.

Preference
guide

Rule
specification

Variables shall be prepared for each purpose.

Compliant example Non-compliant example

// Counter variable and work variable for // Counter variable and work variable for
// replacement are different // replacement are the same
for (i = @; i < MAX; i++) { for (i = @; i < MAX; i++) {
) data[i] = i; data[i] = i;
}

if (y > x) { if (y > x) {

wk = Xx; il =545

X =Y; X =Y;

y = wk; y =i
} }

Maintainability1 @ M1 Consider that others will read the program.

79

=
o
3
=
il
5
)
e
E
<

=
=,
=
—*
4,
5
)
=
E
<

80

Reusing variables should be avoided as it impairs readability and increases the risk of causing errors

during modification.

[Related rule] M1.2.1

(1) Unions shall not be used. [MISRA C:2004 18.4]
(2) If unions are used, the same members that are
assigned values shall be referenced.

Compliant example

compliant example of (2)
// When the typ is INT, i_var is valid
// When the type is CHAR, c_var[4] is valid
struct stag {
int type;
union utag {
char c_var[4];
int i_var;
} u_var;
} s_var;

int i;
if (s_var.type == INT) {

s_var.u_var.i_var = 1;
}

i = s_var.u_var.i_var;

Preference
guide

Rule
specification

Non-compliant example

Non-compliant example of (2)
// When the typ is INT, i_var is valid
// When the type is CHAR, c_var[4] is valid
struct stag {
int type;
union utag {
char c_var[4];
int i_var;
} u_var;
} s_var;

int i;

if (s_var.type == INT) {
s_var.u_var.c_var[e]
s_var.u_var.c_var[1]
s_var.u_var.c_var[2]
s_var.u_var.c_var[3]

¥

i = s_var.u_var.i_var;

Union allows the same memory space to be declared with areas of different sizes. However, since the

way bits of data overlap among members is implementation-dependent, unexpected behavior may occur.

Therefore, if union is going to be used, follow rule (2) as a precautionary measure.

[Related rule] R2.1.3

Part2 Coding Practices for Embedded Software:Practices Chart

ViWwa Do not reuse names.

Preference
The rules below shall be followed for name unique- guide

ness. R.’l.JIe .
specification

1. An identifier declared in an inner scope shall not hide an identifier
declared in an outer scope. [MISRA C:2012 R5.3]

2. A typedef name shall be a unique identifier. [MISRA C:2013 R5.6)

3. A tag name shall be a unique identifier. [MISRA C:2012 R5.7]

4. Identifiers that define objects or functions with external linkage
shall be unique. [MISRA C:2012 R5.8]
. Identifiers that define objects or functions with internal linkage
should be unique. [MISRA C:2012 R5.9]
. No identifier in one name space should have the same spelling as
an identifier in another name space, with the exception of structure
member and union member names. [MISRA C:2004 5.6]

=
o
3
=
il
5
)
e
E
<

int vari; int varl;
void func(int argl) { void func(int argl) {
int var2; int vari; // The same name of a variable
var2 = argl; // outside the function is used
varl = argl;
int var3; {
var3 = var2; int varl; // The same name of a variable
// in the outer scope is used
}
} varl = @; // Intention of which varl is

// assigned is unclear

The program will become easier to read by using unique names within the program, except for cases like
automatic variables where the scope is limited.
In C language, in addition to the scope defined by file and block, names have the following four name
spaces that vary according to the category they belong to:

1.Label 2.Tag 3.Member of structure or union 4. Other identifiers

*Macro has no name space.
The language specification allows using the same name to different identifiers if their name spaces dif-
fer, but this rule restricts such usage for the purpose of improving the readability of the program.

Maintainability1 @ M1 Consider that others will read the program. 8 1

As the exception of rule 2., the typedef name may be the same as the name of the structure member,
union member or tag related to that typedef. As the exception of rule 3., the tag name may be the same
as the name of the typedef related to that tag.

[Related rule] M4.3.1

; . . . Preference
% Names for functions, variables and macros in the quide
= standard library shall not be redefined or reused. In Rule
B addition, those macro names shall not be undefined. K
)
=
Q
g
g
#include <string.h> #undef NULL
void *my_memcpy(void *argl, const void *arg2, #define NULL ((void *)@)
size_t size) {
#include <string.h>
} void *memcpy(void *argl, const void *arg2, size_
t size) {
}

Redefining names for functions, variables and macros defined in the standard library degrades the read-
ability of the program.

[Related rule] M1.8.2

82 Part2 Coding Practices for Embedded Software:Practices Chart

. . Preference
Names (variables) that start with an underscore shall guide

ot be defined. Rule
specification

Compliant example Non-compliant example

- int _Max1; // Reserved
int __max2; // Reserved
int _max3; // Reserved

struct S {
int _meml; // Not reserved, but shall not be
// used
};

C language standard defines the following names as reserved.

(1) Name that starts with an underscore and is followed by either an uppercase letter or another
underscore;
Examples : _Abc, __abc

(2) Names that start with an underscore
These names are reserved for variables or functions with file scope and for tag names.
When the reserved names are redefined, the behavior of the compiler will not be guaranteed.
Names that start with an underscore and are followed by a lowercase letter are not reserved for use
outside the file scope. But to make it easy to remember, this rule restricts the use of all names
starting with an underscore.

[Related rule] M1.8.2

Maintainability1 @ M1 Consider that others will read the program.

83

=
o
3
=
il
5
)
e
E
<

Do not use language specifications that are likely
to cause misunderstanding.

Preference
The right-hand operand of a logical & or || operator guide

shall not contain side effects. [MISRA C:2012 R13.5] Rule
specification

volatile int *io_port = ...; // Address for volatile int *io_port = ...; // Address for
// memory mapped I/0 // memory mapped I/O
int io_result = *io_port; // Whether I/0 is processed or not varies,
§ // I/0 is processed, regardless of the // depending on the conditions of the if
S // conditions of the if statement // statement
= if ((x != @) && (io_result > 0)) { if ((x != @) && (*io_port > 0)) {
& ¥ ¥
E
. The right-hand side of & or || operators may not be executed, depending on the result of the condi-
= tion of their left-hand side. Take, for example, an expression with a side effect of incrementing. It this
o expression is written on the right-hand side, whether the increment is executed or not will be difficult to
: understand, because it depends on the condition of the left-hand side. Therefore, expressions with side
= effects shall not be described on the right-hand side of & or | | operators.
| |
| |
| |

[Related rules] R3.6.1, R3.6.2

C macros shall only expand to a braced initializer, a ==,
constant, a parenthesised expression, a type quali- guide
er, a storage class specifier, or a do-while-zero con- Rule
specification
struct. [MISRA C:2004 19.4]

Compliant example Non-compliant example
#define START 0x0410 #define BIGIN {
#define STOP ©0x0401 #define END

}
#define LOOP_STAT for(;;) {
#define LOOP_END }

Macro definitions can be leveraged to make the code look like it is written in a language other than C, or
greatly reduce the amount of code. However, using macros for these purposes will degrade readability.
It is important to use macros only where coding and modification errors can be avoided. For do-while-
zero, see MISRA C:2004.

Furthermore, in CERT C, there is a rule that says, “Do not conclude macro definitions with a semicolon”
(PRE11-C). The programmers should also keep this recommendation in mind when defining the macros
since inserting a semicolon at the end of a macro definition may unexpectedly change the control flow of
the program.

[Related rule] M1.7.2

84 Part2 Coding Practices for Embedded Software:Practices Chart

Preference
line shall not be used, unless it is automatically guide
db | Rule
generated by a tool. specification

#1line serves as the means to intentionally modify file names or line numbers of warning or error mes-

sages output from the compiler. It is provided under the assumption that code is generated by tools, and
is not intended to be used directly by the programmers.

Preference
Sequences of three or more characters starting with guide

?? and alternative tokens shall not be used. o egﬁ;‘zﬁ on

Compliant example Non-compliant example

s = "abc?(x)"; s = "abc??(x)"; // Compilers that can process

// trigraph sequences interpret
// this as “abc[x)”

C language standard defines trigraph sequences and alternative tokens, assuming that there may be cases
where some characters cannot be used for coding, depending on the environment used for development.
The following nine three-character patterns, known as trigraph sequences:

PP= 22(2/ R2) 227 ?Rc R 22> P2-

can be replaced respectively at the beginning of preprocessing with the following corresponding single-
character counterparts:

[\ 1 ~ A | Y-

The following two-character patterns, known as digraph sequences:

kK> <> ko kik

are handled respectively as equivalent to

t y 0 1 # ##

in the lexical analysis.

C99 defines the following macros in the header <is0646.h>

and and_eq bitand bitor compl

not not_eq or or_eq xor xor_eq

as alternative spellings that correspond respectively to the following tokens.

8& &= & | ~ 1 I=|| [= ~ ~=

Since trigraph sequences and alternative tokens are not frequently used, many compilers support them as
an optional feature.

Maintainability1 @ M1 Consider that others will read the program. 85

=
o
3
=
il
5
)
e
E
<

=
=,
=
—*
4,
5
)
=
E
<

A sequence starting with zero (0) that is two or guide
more digits long shall not be used as a constant.

Compliant example

// Digits are not aligned for better appearance

a=0;
b = 8;
c = 100;

[Related rule] M1.2.2

Preference

Rule
specification

Non-compliant example

// Examples of aligning the digits for better

// appearance

a = 000; // Interpreted as zero (@) in octal
// notation

b = 010; // Interpreted as eight (8) and not as
// ten (10) in decimal notation

Interpreted as hundred (100) in

// decimal notation

©

n
=
(]
<

Pore
~
~

Constants starting with zero (0) are interpreted as octal. No zero (0) can be added in front of decimal
numbers to align their digits for the purpose of appearance (i.e.: zero padding is not allowed).

state its intention.

When writing in an unconventional style, explicitly

‘ If statements that do nothing need to be intentionally
“described, comments or empty macros shall be used

" to make them noticeable.

Compliant example

for (55) {
// Waiting for interruption

}
#define NO_STATEMENT
i = COUNT;

while ((--i) > @) {
NO_STATEMENT;
}

» [Related rule] M1.1.1

Part2 Coding Practices for Embedded Software:Practices Chart

Preference
guide

Rule
specification

Non-compliant example

for (55) {
b

i = COUNT;
while ((--i) > 0);

Preference
{The unified style of writing infinite loops shall be guide

defined.) Rule
specification

(@)

Define

Define the unified style of writing infinite loops, for example, by selecting from one of the following:
+ Write the infinite loops uniformly as for(;;);.

+ Write the infinite loops uniformly as while(1);.
+ Use the macro defined for the infinite loop.

VEED) Do not embed magic numbers.

Preference
A meaningful constant shall be used after defining it guide

as a macro. Rule
specification

Compliant example Non-compliant example

#define MAXCNT 8 if (cnt == 8) {
if (cnt == MAXCNT) {

By defining a constant as a macro, its meaning can be stated explicitly. When modifying a program
where the same constant is used in multiple places, modification errors can be prevented much more
easily if this same constant is defined as a macro, because then, there will only be a need to modify one
macro.

For data size, however, use sizeof instead of using a macro.

[Related rule] M2.2.4

Maintainability1 @ M1 Consider that others will read the program.

87

=
o
3
=
il
5
)
e
E
<

=
=,
=
—*
4,
5
)
=
E
<

88

ViREN Explicitly state the area attributes.

Preference
guide
Rule

specification

Read-only areas shall be declared as const type.

const volatile int read_only_mem; int read_only_mem; // Read-only memory
// Read-only memory int constant_data = 10;
const int constant_data = 10; // Read-only data that does not
// Read-only data that does not // require memory allocation
// require memory allocation // Only reads the contents pointed by arg
// Only reads the contents pointed by arg
void func(const char *arg, int n) { void func(char *arg, int n) {
int i; int i;
for (i = 0; i < n; i++) { for (1 = 0; i < n; i++) {
put(*arg++); put(*arg++);

} }
» When a variable is only referenced and not modified, declaring it as const-qualified variable makes
o it clear that it is not modified. That is why read-only variables should be const-qualified. Moreover, a
. memory that is only referenced by the program but modified by other execution units should be declared
= with const volatile qualification so that the compiler can check and prevent the program from re-
| |
= newing it by mistake. Furthermore, function interfaces can be clearly stated by adding consts to param-
u
= eters when the memory spaces indicated by the parameters are only referenced in function processing.
| |
| |
| |
= [Related rule] R1.1.2
| |

Part2 Coding Practices for Embedded Software:Practices Chart

Preference
Areas that may be updated by other execution units guide

hall be declared as volatile. Rule
specification

Compliant example Non-compliant example

volatile int x = 1; int x = 1;

while (x == 1) { while (x == 1) {
// x is not modified within the loop and is // x is not modified within the loop and is
// modified by other execution units // modified by other execution units

¥ }

Areas qualified as volatile prohibit the compiler from optimizing them. Prohibition of optimization
means that executable object is generated strictly to every description, including even those considered
logically as unnecessary of processing. Suppose there is a description “X;” that has no meaning logically
except for only referencing variable x. If it is not qualified as volatile , the compiler will normally ig-
nore such statement and will not generate an executable object. Whereas, if it is qualified as volatile
, the compiler will generate an executable object that only references variable x (loads it to the register).
This description can be assumed to have meaning in indicating the interface to 1O registers (mapped to
the memory) that are reset when the memory is read. Embedded software has 10 registers for controlling
hardware that should be qualified as volatile when considered appropriate, based on their characteristics.

Preference
Rules for variable declaration and definition for guide

ROMization shall be defined) Rule

specification

Define

Compliant example Non-compliant example

const int x = 100; // Allocate to ROM int x = 100;

Variables qualified as const can be allocated to ROMization target areas. For example, when developing
a program where ROMization is applied, qualify the read-only variables as const , and specify the name
of the section to which these variables are allocated by, such as, #pragma.

[Related rule] R1.1.2

Maintainability1 @ M1 Consider that others will read the program.

89

=
o
3
=
il
5
)
e
E
<

Vikp) Correctly describe the statements even if they are
a not compiled.

Preference
Correct code shall be described even if it is going to guide

be deleted by the preprocessor. Rule
specification

Compliant example Non-compliant example

#if o #if o
/* */ /*
#endif #endif
=
o . .
= #if 0 #if 0
-
)
5 #else #elsel
T, int var; int var;
= #endif #endif
<
#if o #if o
/* I don't know */ I don't know
#endif #endif

~ [Related rule] M1.1.2

90 Part2 Coding Practices for Embedded Software:Practices Chart

One of the patterns that allows bugs to slip into a program easily is when other bugs are
created by mistake while fixing detected bugs. Especially if it has been a while since the
source code was written or if an engineer other than the creator modifies the source code,

unexpected misunderstanding may occur.
Efforts to reduce such modification errors as much as possible are strongly desired.

Maintainability 2.2 Localie access ranges and related data.

Clarify the grouping of structured data and blocks.

Maintainability2 @ M2 Write in a way so as not to cause modification errors.

91

=
=
5
-
=
5
[
S
=_.:
<

=
2
=
—*
4,
5
)
=3
E
<

92

Clarify the grouping of structured data and blocks.

SR - Preference
f arrays and structures are initialized with values quide

other than 0, their structural form shall be indicated Rule

- by using braces ‘{ }’. Data shall be described without K&l
any omission, except when all values are 0.

int arri[2][3] = {{0, 1, 2}, {3, 4, 5}}; int arri[2][3] = {0, 1, 2, 3, 4, 5};

int arr2[3] = {1, 1, 0}; int arr2[3] = {1, 1};
In initialization of arrays and structures, at least a pair of braces ‘{ 1}’ is required, but in this case, it is
difficult to see how the data for initialization are assigned. It is safer to create blocks according to the
structure, and fully describe the data for initialization without omitting any.
[Related rules] R1.2.1 M4.5.3

Preference
The body of if, else if, else, while, do, for, and guide

- switch statements shall be enclosed into blocks. Rule
: specification

if (x ==1) { if (x == 1)

func(); func();
If there is only one statement that is controlled by, such as, an if statement, there is no need to enclose
this statement into a block. However, when the program is modified and this single statement is changed
into multiple statements, there is a possibility of forgetting to enclose these multiple statements into a
block. To prevent such modification errors, enclose the body of each controlled statement into a block
In CERT C, there is a rule that says, “Do not place a semicolon on the same line as an if, for, or while
statement” (EXP15-C). By following this recommendation, unexpected insertion of a semicolon, such
as, the following:

if (x==b); {

}

can be prevented. This kind of code can be detected by using a code checker..

Part2 Coding Practices for Embedded Software:Practices Chart

M2.2

Localize access ranges and related data.

Variables used only in one function shall be declared

within the function.

Compliant example

void funcl(void)
{
static int x = 0;
if (x 1= 0) { // Refer to the value in the
// immediately preceding call
X++;

void func2(void)
{

int y = @; // Initialize each time

Preference
guide

Rule
specification

Non-compliant example

int x = @; // x is accessed only from funcl
int y = @; // y is accessed only from func2
void funcl(void) {
if (x !=0) { // Refer to the value in the
// immediately preceding call
X++;

void func2(void) {
y = 0; // Initialize each time

}

To declare variables in functions, it is sometimes effective to declare them with static storage class

specifiers. The following positive effects can be expected if static is specified:

« Static memory space is reserved and the space is valid until the end of the program (Without static,

generally, stack memory is used and is valid until the end of the function.)

« Initialization occurs only once after the program is started and if a function is called more than once,

the value assigned in the previous call is retained.

Therefore, among the variables accessed only within a function, the variables with values that are re-

tained even after the function terminates should be declared with static storage class specifiers.

In addition, declaring a large memory space for an automatic variable may cause stack overflow. When

there is such risk, one preventive measure is to use static to reserve static memory space even if the

values do not need to be retained after the function terminates. However, when using static for such

purpose, its intention should be explicitly stated by, such as, comments (to prevent potential misunder-

standing that static has been used by mistake).

[Related rule] M2.2.2

Maintainability2 @ M2 Write in a way so as not to cause modification errors.

93

=
=
5

-
=
5

[

S
E
<

=
2
=
—*
4,
5
)
=3
E
<

94

2’* Variables accessed by several functions defined in QEEECEE

. . i . id
the same file shall be declared with static in the file ilzl:
- Scope. specification

// x is not accessed by other files // x is not accessed by other files
static int x; int X;
void funcl(void) { void funcl(void) {
x = 0; x = 0;
3 ¥
void func2(void) { void func2(void) {
if (x == @) { if (x==0) {
X++5 X++;
} ¥
¥ }
The fewer the global variables, the higher the readability of the entire program becomes. To prevent the
number of global variables from increasing, static storage class specifiers should be used as much as
possible.
[Related rules] M2.2.1, M2.2.3

Preference
Functions that are called only by functions defined in guide

the same file shall be static. Rule
specification

// funcl is not called from functions in other // funcl is not called from functions in other
// files // files
static void funcl(void) { void funcl(void) {
¥ b
void func2(void) { void func2(void) {
funcl(); funcl();
} }

Part2 Coding Practices for Embedded Software:Practices Chart

The fewer the global functions, the higher the readability of the entire program becomes. To prevent the
number of global functions from increasing, static storage class specifiers should be used as much as
possible.

[Related rule] M2.2.2

Preference
enum shall be used rather than #define when defining guide

related constants. Rule
¥ specification

Compliant example Non-compliant example

enum ecountry { #define ENGLAND ©
ENGLAND, FRANCE, .. #define FRANCE 1
} country; #define SUNDAY ©
enum eweek { #define MONDAY 1
SUNDAY, MONDAY, .. int country, day;
} day;
if (country == ENGLAND) {
if (country == ENGLAND) { if (day == MONDAY) {
if (day == MONDAY) { if (country == SUNDAY) { // It is impossible
if (country == SUNDAY) { // It is possible // to check by tools

// to check by tools

To define the constants that are related like a set, use the enumeration type. By defining related constants
as enum type, and using this type, mistakes caused by the use of incorrect values can be prevented.
While macro names defined by #define are expanded at the preprocessing stage and the compiler does
not process those names, enum constants defined by enum declaration will be the names processed by
the compiler. The names processed by the compiler are easier to debug, becouse they can be referenced
during symbolic debugging.

[Related rules] M1.10.1 P1.3.2

Maintainability2 @ M2 Write in a way so as not to cause modification errors.

95

=
3
3
~a
sl
5
o
o
E
<

=
o
=]
(s
o
=]
)
=z
E
<

96

From the standpoint of software maintainability, there is no better software than those
created from simply written programs.

C language enables the structuring of software by, such as, dividing the program into
separate source files and functions. Structured programming that represents program
structure through three forms: sequence, selection and repetition, is also one of the applicable
techniques to write simple software programs. Writing simple software descriptions through
effective use of software structuring is strongly desired. Moreover, particular attention should
also be given to writing styles applied to describe, such as, iteration processing, assignment
and operations, as some may make the program difficult to maintain.

Part2 Coding Practices for Embedded Software:Practices Chart

Do structured programming.

1]
<’ There should be no more than one break or goto Pfeéi:ggce
statement used to terminate any iteration statement. -
- [MISRA C:2012 R15.4) specification

Compliant example Non-compliant example

end = 0; for (i=0; loop iteration condition; i++) {
for (i=0; loop iteration condition && l!end; i++) Iterated processing 1;
if (termination conditionl) { ng>
Iterated processing 1; break; 5
if (termination conditionl || termination iy
condition2) { if (termination conditionl) { =3
end = 1; break; ‘i.’-
} else { =
Iterated processing 2; Iterated processing 2; <
} }
¥
—or-

for (i=0; loop iteration condition; i++) {
Iterated processing 1;
if (termination conditionl || termination
condition2) {
break;

¥

Iterated processing 2;

This rule is to prevent the program logic from becoming complex. If a flag has to be prepared only for
eliminating the break statement, sometimes it is better not to prepare the flag and to use a break state-
ment. (Be careful, however, when using an end flag like in the case shown above as compliant example,

because it may complicate the program.)

Maintainability3 @ M3 Write programs in a simple way. 97

:(1) The goto statement shall not be used. Pre;i{jg"e

.(2) When using a goto statement, the destination to Rule

jump to shall be the label declared after the goto KaSliEl
statement that is within the block enclosing the
goto statement.

Compliant example Non-compliant example

Compliant example of (1) and (2) Non-compliant example of (1) and (2)
for (i = @; loop iteration condition; i++) { i=0;
Iterated processing; // goto is not LOOP:
§ // included Iterated processing;
§' } it++;
R if (loop iteration condition) {
g,_ Compliant example of (2)) goto LOOP;
g if (err 1= 0) {
goto ERR_RET;
}
ERR_RET:

end_proc();
return err;

}

These rules are to prevent the program logic from becoming complex. The purpose is not to eliminate
all the goto statements. The important point is to eliminate unnecessary goto statements to prevent the
program from becoming complicated (i.e., not being able to read it straightforwardly from top to bot-
tom). In some cases, the readability can actually be improved by writing goto statements. Therefore,
when programming, keep in mind how simply the logic can be expressed.

For example, goto statement can be useful to make the program simple, such as, when it is used to
jump to error processing or exit from multiple loops. For more information, CERT C MEM12-C should

also serve as a good source of reference.

98 Part2 Coding Practices for Embedded Software:Practices Chart

ﬁj (1) Each case clause and default clause in a switch =

(@)

statement shall always end with a break state- guide

ment.

(2) If the case clause or default clause in a switch

Rule Choose
specification | Define

statement is not going to be ended with a break statement,
{a project-specific comment shall be defined) and that comment
shall instead be inserted.

_
Compliant example of (1) and (2) Non-compliant example of (1) and (2) g-
switch (week) { // No matter what the value of week is, the g
case A: // code will be ELSE ==> bug 5
code = MON; switch (week) { S
break; case A: %
case B: code = MON; <
code = TUE; case B:
break; code = TUE;
case C: case C:
code = WED; code = WED;
break; default:
default: code = ELSE;
code = ELSE; }
break;

Compliant example of (2)

// This This is a case where processing of case
// B is continued after dd++, but it is non-
// compliant not only to (1) but also to (2)

dd = 9o; // because there is no comment
switch (status) { dd = 0;
case A: switch (status) {
dd++; case A:
// FALL THROUGH dd++;
case B: case B:

One of the typical examples of coding error is caused by forgetting to write the break statement in a
switch statement in C language. To prevent it, avoid writing a case statement without the break state-
ment unnecessarily. If the code is intended to continue processing to the next case without the break
statement, always insert a comment to explicitly indicate that the absence of the break statement is not
a problem. Define what kind of comment to insert in such case in the coding convention. As one ex-
ample, // FALL THROUGH is a comment that is frequently used.

[Related rule] R3.5.2

Maintainability3 @ M3 Write programs in a simple way. 99

Ayngeurejurey

100

3. ' ﬁ (1) A function shall end with one return statement. Preference
(2) A return statement to return in the middle of glied
processing shall be written only in case of recov- Spegﬁlzti on
ery from abnormality.

This rule is to prevent the program logic from becoming complex. When a program has many entry or

exit points, they will not only complicate the program but will also make it difficult to set break points
during debugging. In C language, there is only one entry point for a function but the exit points are
where the return statements are written.

Limit the number of side effects per statement to

]

- (1) Comma expressions shall not be used. Pfefefgnce
A guide

(2) Comma expressions shall not be used, other Rule

than in expressions for initializing or updating in [R

for statements.

Compliant example of (1) and (2) Non-compliant example of (1) and (2)
a=1; a=1,b=1;
b = 1;

Non-compliant example of (1)
j = 10; for (i =0, j=10; i < 10; i++, j--) {
for (i = 0; i < 10; i++) {

}

Y
}

Compliant example of (2)
for (i =0, j=10; i < 10; i++, j--) {

}

In general, the use of comma expressions make the program complicated. However, the progam may
sometimes become easier to understand in expressions for initializing and updating in for statements by
using comma expressions to collectively describe all the pre-loop operations as one set and all the loop-
end operations as another set.

[Related rule] M3.3.1

Part2 Coding Practices for Embedded Software:Practices Chart

Multiple assignments shall not be written in one RIEEEIS

. . guide
statement, except when the same value is assigned Rule

specification

Compliant example Non-compliant example
X =y =0; y = (x += 1) + 2;
y = (a++) + (b++);

Assignments include the compound assignments (+= -=, etc) beside the simple assignment (=). Multiple
assignments may be written in one statement, but since they impair readability, one statement should
contain only one assignment.

However, “commonly used conventional descriptions” shown below do not impair readability in many
cases. They may be treated as exceptions of this rule.

C = *p++;

*p++ = *q++;

VX Write expressions that differ in purpose separately.

The three expressions of a for statement shall be Pfefefznce
. guide

concerned only with loop control. Rule

[MISRA C:2004 13.5] specification

Compliant example Non-compliant example

for (1 = @; i < MAX; i++) { for (i = @; i < MAX; i++, j++) {
I+ 3

¥

In MISRA C:2012, rules 13.5 and 13.6 in MISRA C:2004 have been consolidated into R14.2, which
states that “a for loop shall be well-formed”. According to this rule, the first clause of a for statement,
for example, shall either be empty, assign a value in the loop counter or define and initialize the loop
counter (C99).

[Related rules] M3.2.1, M3.3.2

Maintainability3 @ M3 Write programs in a simple way.

101

=
o
3
=
il
5
)
2
E
<

=
2
=
(s
4,
5
)
=
E
<

102

/
- Numeric variables being used within a for loop for EREECIS

id
_iteration counting shall not be modified in the body of ?::I:
"the loop. [MISRA C:2004 13.6] specification

Compliant example Non-compliant example
for (i = 0; i < MAX; i++) { for (1 = 0; i < MAX;) {
} i++;
¥
See M3.3.1.

[Related rule] M3.3.1

b '» E
M?) ’ (1) Assignment operators shall not be used in Preference
~ expressions to examine true or false. guide

Rule

(2 Assignment operators shall not be used in .| Choose

specification
expressions to examine true or false, except for

conventionally used notations.

Compliant example of (1) and (2) Non-compliant example of (1) and (2)
p = top_p; if (p = top_p) {
if (p != NULL) {
}
}
Non-compliant example of (1)
Compliant example of (1) while (c = *p++) {
C = *p++;
while (c != '¥0') { }
// Since this is an expression used
C = *p++; // conventionally, it is compliant to (2).
} // (However, be careful of its usage, because its
// readability depends on the programmer’s coding
// skills.)

The following are the expressions to examine true or false:
if (expression), for (; expression ;), while (expression), (expression)?:,
expression && expression, — expression || expression

Part2 Coding Practices for Embedded Software:Practices Chart

VE¥’S Do not use complicated pointer operations.

Preference
guide

Three or more pointer indirections shall not be used.

Rule
specification

Compliant example Non-compliant example

int **p; int ***p;
typedef char **strptr_t; typedef char **strptr_t;
strptr_t q; strptr_t *q;

Since it is difficult to understand the changes in the pointer values in three or more levels, multiple
pointer indirections impair maintainability.

Maintainability4 @ M4 Write in a consistent way.

103

=
=
=]
=
=
5
)
S
E
<

EIMEMELTTYA

| Write in

Recently, developing programs under the shared efforts of multiple programmers has become a
widely accepted approach in software projects. If these programmers apply different coding styles
to write their assigned portion of the source code, the reviewers or other programmers may later
face difficulty checking what each programmer has written. Moreover, if the naming of variables,
information to be described in a file, and the order to describe the information, among others, are
not uniform, unexpected misunderstanding or errors may arise from such inconsistencies. This is
why writing the source code as much as possible according to a unified coding style in a single

=
o
=]
(s
o
=]
)
=z
E
<

project or within the organization is often said to be desirable.

104 Part2 Coding Practices for Embedded Software:Practices Chart

V“%R Unify the coding styles.

(Conventions regarding the style of using, such as, REEEES

O

_the braces'{ }’, indentation and space shall be de- i“i?e
" fi ule)
fmed.>> specification il

To make the code easier to read, it is important to unify the coding style applied in the project.

When defining a new style convention to be followed in the project, the recommended approach would
be to select from already existing coding styles. Existing coding styles have been developed from vari-
ous schools, and many programmers create their programs based on any one or more of these pre-
established styles. One of the benefits of selecting from these existing coding styles is that the format
can be easily specified by the format commands available in editors and other tools. If no coding style is
clearly specified in the existing project, the recommendation would be to define a coding convention that
matches most closely with the current source code.

What is most important in deciding on the style convention is not in “deciding what kind of style” to de-
fine, but is in “defining a unified style to be followed”.

Explained below are the set of style-related items to be defined:

(1) Position of braces { }’
Unify the position to place the braces ‘{ }’ so that the beginning and end of a block will become easier
to read (see Representative styles).

(2) Indentation
Indentation makes a group of declarations and operations easier to read. For unified use of indentation,
define the following:

« Whether to use spaces or tabs for indentation;
- If spaces are used, how many space characters are set for one indent? If tabs are used, how many
characters are set for each tab?

(3) How to use spacing
Spacing makes the code easier to read. For example, define the following rules:

+ Add a space before and after binary and ternary operators, except for the following operators.
[1, -> . (period), , (comma operator)

+ Do not add a space between unary operator and its operand.

By applying these rules, coding errors that are attributable to compound assignment operators will be-
come easier to detect.

Maintainability4 @ M4 Write in a consistentway. =~ 105

=
=
=]
—*
=
5
)
S
E
<

[Examples]
x=-1; /* Intended to write x-=1, but made a mistake => difficult to distinguish */
x =- 1; /* Intended to write x-=1, but made a mistake => easy to distinguish */

Besides those stated above, the following rules are also defined in some cases:

+ Add a space after a comma (except for commas for parameters in macro definitions)

+ Add a space before the left parenthesis enclosing control statements such as, 1f and for. Do not
add a space before the left parenthesis of a function call. This rule makes it easier to identify
function calls. This rule makes it easier to identify function calls.

(4) Position to place a new line character for line continuation

When an expression becomes lengthy and extends beyond the length of an easily readable line, a new
line character shall be placed at an appropriate position. In placing a new line character, the recom-
mended approach is to apply either one of the following two methods. What is important is to write the
continuation line after indenting.

=
2
=]
-
4,
=]
[V
g
E
<

[Method 1] Write an operator at the end of the line.
Example :
X = varl + var2 + var3 + vard +
var5 + varé + var7 + var8 + var9;
if (varl == var2 &&
var3 == var4)

[Method 2] Write an operator at the beginning of the continuation line.

Example :
X = varl + var2 + var3 + var4

+ var5 + var6 + var7 + var8 + var9;
if (varl == var2

&& var3 == var4)

@ Representative styles

(1) K&R style

This is a coding style used in “The C Programming Language” (widely known as K&R).“K&R” used as
the acronym of this book derives from the initials of the two authors. In the K&R style, the braces ‘{ }’
and indentation are placed in the positions described below:

+ Position of braces: Place the braces ‘{ }” for function definition on the new line at the column
aligned with the beginning of the previous line. Place the braces ‘{ } for oth-
ers (including structures and control statements, such as, if, for and while) on
the same line without continuing to a new line (see Example of K&R style).

+ Indentation: 1 tab. In the first edition of “The C Programming Language”, the width
of a tab was set to 5 spaces, but in the second edition (ANSI compliant),
the number of spaces is set to 4.

106 Part2 Coding Practices for Embedded Software:Practices Chart

(2) BSD style

This is a description style adopted by Eric Allman who wrote many BSD utilities. It is also called the
Allman style. In the BSD style, the braces ‘{ }’ and indentation are placed in the positions described

below:

- Position of braces: Start all the function definitions, if , for and while, etc, from a new line
and place the braces ‘{ }’ at the column aligned with the beginning of the
previous line (see Example of BSD style).

* Indentation: Generally defined as 8 spaces, but 4 is also common.

(3) GNU style

This is a coding style for writing GNU packages. It is defined in “GNU Coding Standards” written by
Richard Stallman and volunteers in the GNU project. In the GNU style, the braces ‘{ }’and indentation
are placed in the positions described below:

=
=
5
-
=
5
o
S
=_.:
<

- Position of braces: Start all the function definitions, if , for and while , etc, from a new
line. Place the braces ‘{ }’ for function definitions at column 0, and braces
‘{ } for others after indenting 2 spaces (see Example of GNU style).

+ Indentation: 2 spaces. Indent 2 spaces for both the braces ‘{ }” and their body.
(1) Example of K&R style (2) Example of BSD style
void func(int argl) void
{ // Write the { of a function on a func(int argl)
// new line { // Write the { of a function on a
// Indent is 1 tab // newline
if (argl) { if (argl)
¥
}
}
}

(3) Example of GNU style
void
func(int argl)
{ // Write the { of a function on a
// new line at column ©
if (argl)
{

¥

Maintainability4 ® M4 Write in a consistentway. = 107

Unify the style of writing comments.

{Convention regarding the style of writing file header GRS
comments, function header comments, end of line i”'lde
comments, block comments and copyright shall be Speciﬁczﬁon
defined.)

o

Define

Writing good comments makes the program easier to read. To improve the readability further, a unified

style of writing is necessary.

There are document generation tools that create documents for maintenance and examination from
the source code. When utilizing such tools, they can be most effectively used by writing in a style that
conforms to their specifications. In general, when the explanation of the variables and functions are
described according to certain comment conventions, the document generation tools enable these de-

=
2
=
(s
4,
5
)
=
E
<

scriptions to be extracted from the source code and reflected in the generated documents. Therefore, it is
important to examine the specifications of these tools and define the comment conventions accordingly.
Presented below are some established styles of writing comments that have been extracted from existing
coding conventions and related literature.

® Representative styles of writing comments
(1) Indian Hill coding conventions

The following comment rules are described in Indian Hill C Style and Coding Standards:

* Block comments

Comments that describe data structures, algorithms, etc., should be in block comment form with the
opening / in column 1, a * in column 2 before each line of comment text, and the closing */ in col-
umns 2-3. (Note that grep ’~.* ’ will catch all block comments in the file.)

Example:

/* Write a comment.
* Write a comment.

*/
+ Position of comments
- Block comments inside a function

Should be tabbed over to the same tab setting as the code that they describe.

- End-of-line comments
Start them apart from the statement by using the tab. If there are more than one of such
comments, align them all to the same tab setting.

(2) GNU coding standards
The following comment rules are described in the GNU Coding Standards:
- Language English.

108 = Part2 Coding Practices for Embedded Software:Practices Chart

+ Position and contents

- At the beginning of the program
Write a comment that briefly explains what the program does at the beginning of every
program.

- Function
Write comments that provide the following information for each function.
What the function does, explanation of parameters (values, meaning, usage), return value

- #endif
Except for short conditions that are not nested, add comments to explicitly state the conditions
at the end of line of every #endif.

- Notation for tools

Place two spaces at the end of each comment sentence.
(3) “The Practices of Programming”

The following comment rules are described in “The Practices of Programming.”

=
=
5
-
=
5
o
S
=_.:
<

- Position Describe comments for functions and global data.
+ Other practices
- Don’t belabor the obvious.
- Don’t contradict the code.
- Clarify, don’t confuse
(4) Others

« Define the policy on when to use /* */ comment and // comment.

Example 1: Use // for the comment at the end of statement, and /* */ for block comment.
Example 2: Use only //, because there is a risk of forgetting to close /* */.
Example 3: Do not use /* or // within a comment, provided that // may be used withina //
comment.
* Describe the copyright notice in the comment.
+ Define the comment for the switch statements without break.

Example :

switch (status) {
case CASE1:
Processing;
// FALL THROUGH
case CASE2:

* Define the comment for no processing.

Example :

if (Condition 1) {
Processing;

} else if (Condition 2) {
Processing;

} else {
// NOT REACHED

}

« Line-splicing shall not be used in // comments. (MISRA C:2012 R3.2)

Maintainability4 ® M4 Write in a consistentway. = 109

=
2
=
(s
4,
5
)
=
E
<

110

V%8 Unify the naming conventions.

Preference
Convention for naming external variables and inter- guide

al variables shall be defined.) Rule
specification

(@)

Define

See ¥Y¢ Rules on naming conventions below.

[Related rules] M1.7.1, M1.7.2, M1.7.3, M4.3.2, P1.1.2, P1.2.1

Preference
guide

Rule
specification

o

(Convention for naming files shall be defined.)

Define

See ¥¢ Rules on naming conventions below.

[Related rules] M4.3.1, P1.1.2, P1.2.1

Y¢ Rules on naming conventions
Readability of programs is greatly affected by naming. There are various methods for naming but im-

portant points are to be consistent and to make the names easy to understand.
For naming, the following items shall be defined:

+ Guidelines for names in general

+ How to name files (including folders and directories)

+ How to name globally and locally

» How to name macros, etc.
Presented in the following are some naming guidelines and rules introduced in existing coding conven-
tions and related literature. They are useful as reference when creating a project-specific naming con-
vention newly. If no naming convention is explicitly defined in the existing project, the recommendation
would be to create a naming convention that is closest to the current source code.

@ Typical naming conventions
(1) Indian Hill coding conventions
+ Names with leading and trailing underscores are reserved for system purposes and should not be
used.
« #define constants should be in all CAPS.
+ enum constants should either have the initial character or all the characters capitalized.
« It is best to avoid names that differ only in case, like foo and Foo.

Part2 Coding Practices for Embedded Software:Practices Chart

+ Global names should have a common prefix identifying the module that they belong with.

« A file name should be eight characters or less (excluding the extension), starting with an alphabetic
character and followed by alphanumeric characters.

« File names that are the same as library header filenames should be avoided.

Overall + Names with leading and trailing underscores should not be used.
- Avoid names that differ only in case.
Example: foo and Foo

AVZTiE o] 3ETh (e B el 1o 1Ml A prefix identifying the module should be added.

function 11 Nothing in particular

names

Other » Macro names should be in all CAPS.
Example: #define MACRO

- enum constants are Capitalized or in all CAPS.

=
=
5

-
=
5

o

S
=_.:
<

(2) GNU coding standards
» Don’t choose terse names—instead, look for names that give useful information about the meaning
of the variable or function. Names should be English.
« Use underscores to separate words in a name.

- Stick to lower case; reserve upper case for macros and enum constants, and for name-prefixes that
follow a uniform convention.

Overall + Use underscores to separate words in a name.

Example: get_name
- Stick to lower case; reserve upper case for macros and enum constants,
and name-prefixes that follows a uniform convention.

\EUEERET OB EIlI LB Don't choose terse names—instead, look for names that give useful in-
function formation about the meaning of the variable and function.
names Names should be English.

Nothing in particular

- Reserve upper case for macros.
Example: #define MACRO
+ Reserve upper case for enum constants.

(3) “The Practice of Programming”

» Use descriptive names for globals, short names for locals.
« Give related things and related names that show their relationship and highlight their difference.
+ Function names should be based on active verbs, perhaps followed by nouns.

Maintainability4 ® M4 Write in a consistentway. =~ 111

Overall Give related things related names that show their relationship.

A\ELE R G B E] o] E1 B Use descriptive names.

function 1| Use short names.

names

Other Function names should be based on active verbs, perhaps followed by
nouns.

(4) Others
+ When naming files, variables and other objects, use only the following:

- Letters in the English alphabet (A through Z and a through z)
- Digits (0 through 9)

- Space

- &+, - 0=

(See CERT C MSC09-C for related information.)

=
2
=]
=
4,
=]
[V
g
E
<

+ Identifiers will not differ by:
- The presence/absence of the underscore character
- The interchange of the letter ‘O’, ‘D’ or ‘Q’ with the digit ‘0’
- The interchange of the letter ‘I’, with the letter ‘I’ (lower case of L) or the digit ‘1’
- The interchange of the letter ‘S’ with the digit 5’
- The interchange of the letter ‘Z’ with the digit ‘2’
- The interchange of the letter ‘n’ with the letter ‘h’.
- The interchange of the letter ‘B’ with the digit ‘8’
- The interchange of the letter ‘m’ with the string ‘rn’.

- How to separate a name: A name that consists of multiple words should be either separated with
underscore or delimited using an uppercase letter for the first letters of the
words. Determine which style to adopt.

+ Hungarian notation: There is a notation called Hungarian notation that explicitly indicates the
type of variable.
+ How to name files: Give a name with a prefix, for example, that expresses the subsystem.

The validity of file names is also dependent on the environment, such as, the file system. Some file sys-
tems do not allow the use of characters like comma (,) and colon (:) for file names, while some others
have a special meaning defined for space () and underscore (_). The programmers need to watch out for
these local restrictions and definitions applied to specific characters to prevent what they write as the file
name using any of these characters from behaving unexpectedly.

[Related rules] P1.1.2, P1.2.1

112 Part2 Coding Practices for Embedded Software:Practices Chart

Unify the contents to be described in a file and the

order of describing them.

- {The descriptive contents of header files (declara- REECCUEE

tions, definitions, etc) and the order they are de- i‘jﬁ:

scribed in shall be defined.>> specification

O

Define

Items commonly used in a program shall be described in header files to prevent the risk of modification

errors when they are scattered in different places. Header files should contain macro definitions, tag dec-
larations for structures, unions and enumeration types, typedef declarations, external variable declara-
tions and function prototype declarations that are commonly used in multiple source files.

For example, they should be described in the following order:

(1) File header comment

(2) Inclusion of system headers

(3) Inclusion of user defined headers

(4) #define macros

(5) #define function macros

(6) typedef definitions (type definitions for basic types such as int or char)
(7) enum tag definitions (together with typedef)

(8) struct/union tag definitions (together with typedef)
(9) extern variable declarations

(10) Function prototype declarations

(11) Inline function

By using typedef or macro, the readability of the program at first sight can be improved and coding
changes can be localized. They should, however, be used according to a specific rule or rules that define
their usage. Or else, they may lead to an adverse result, such as, when a different definition is established
for the macro with the same description (making the program more difficult to read or easier to overlook
the coding changes). Therefore, the specific usage of typedef and macros in a project should be de-
fined before starting the project, and such project-specific rule or rules should be consistently followed
throughout the project to mitigate the aforesaid risk of adverse effects.

Maintainability4 @ M4 Write in a consistent way.

113

=
=
=]
—*
=
5
)
S
E
<

The descriptive contents of source files (declara- Preéefzgce
- - mgm u'

- tions, definitions, etc) and the order they are de- ST

_‘ scribed in shall be defined.) specification

O

Define

In a source file, definitions of variables and functions, definitions or declarations of macros, tags, and
types (typedef types) used only in the individual source file should be described.
For example, they should be described in the following order:

(1) File header comment

(2) Inclusion of system headers

(3) Inclusion of user-defined headers

(4) #define macros used only in this file

(5) #define function macros used only in this file

(6) typedef definitions used only in this file

(7) enum tag definitions used only in this file

(8) struct/union tag definitions used only in this file
(9) static variable declarations shared in this file

=
2
=
(s
4,
5
)
=
E
<

(10) static function declarations
(11) Variable definitions
(12) Function definitions

*Regarding (2) and (3), be careful not to include unnecessary items.
*Avoid describing (4) through (8) as much as possible.

114 Part2 Coding Practices for Embedded Software:Practices Chart

Preference

id
. cept for functions used only in the file), the header iL:I:
file describing their declarations shall be included. specification

Compliant example Non-compliant example

--- my_inc.h --- // Declaration of variable x and function func
extern int x; // are missing
int func(int); int x;
int func(int in)
______________ {
#include "my_inc.h"
int x; // Declaration of variable x and function func
int func(int in) // are written in the same file and not included

{ // from the header file
extern int x;
int func (int);
int x;
int func (int in) {

In C language, variables must either be declared or defined before being used. On the other hand, func-
tions can be used without declarations or definitions. However, to ensure that declarations and defini-
tions are consistent, the declarations should be described in the header file, and that header file should be
included.

Preference
External variables shall not be defined in multiple lo- guide

’. cations. Rule
specification

Compliant example Non-compliant example

int x; // Definition of one external variable int x;
// shall be only once int x; // Definition of an external variable
// in multiple locations does not cause
// a compile error

Definitions without initialization for external variables can be described more than once. However, the

behavior is not guaranteed when an external variable is initialized in multiple files.

Maintainability4 @ M4 Write in a consistent way.

115

=
=
=]
=
=
5
)
S
E
<

. - . . Preference
: Variable definitions or function definitions shall not guide

: be described in a header file. Rule
specification

Compliant example Non-compliant example

--- filel.h --- --- filel.h ---

extern int x; // Variable declaration int x; // External variable definition

int func(void); // Function declaration static int func(void) // Function definition
{

--- filel.c ---

#include "filel.h" }

int x; // Variable definition

int func(void) // Function definition

=
2
=
(s
4,
5
)
=
E
<

Header files might be included into several source files. Therfore, describing variable definitions and
function definitions in a header file may unnecessarily enlarge object code size generated after compila-
tion. Basically, only declarations or type definitions should be described in a header file.

‘;Header files shall be descriptively capable of han- [tk o

: id
_dling redundant inclusions. (The descriptive method gRLi:I:
"to achieve this capability shall be defined.) specification | D°"®

Compliant example Non-compliant example

--- myheader.h --- --- myheader.h ---
#ifndef MYHEADER_H void func(void);
#define MYHEADER_H // end of file

Contents of the header file
#endif // MYHEADER_H

The descriptive contents of header files should be organized to avoid redundant inclusions. However,
there are cases when redundant inclusions become unavoidable. To prepare for such cases, header files
should be written in such a way that will make them possible of handling multiple inclusions.

As an example, the following may be defined as the rule for writing header files that are capable of han-
dling redundant inclusions:

Example of the rule:

#ifndef macro that judges whether the header has already been included or not shall be written at the
beginning of the header file, so that the descriptions that follow will not be compiled in subsequent in-
clusions. In this case, the macro name should be the same as the header file name but replacing all the

bl

lowercase letters to uppercase letters, and the period ‘.’ to underscore © _ °.

116 Part2 Coding Practices for Embedded Software:Practices Chart

V%58 Unify the style of writing declarations.

(1) In a function prototype declaration, all the pa- Preference

guide
rameters shall not be named (types only.) s

- (2) In a function prototype declaration, all the pa- specification

rameters shall be named. In addition, the types of the parameters,
their names and the type of the return value shall be literally the
same as those of the function definition.

=
o7
2
Compliant example of (1) Non-compliant example of (1) and (2) 3
int funcl(int, int); int funcl(int x, int y); S
int func2(float x, int y); &F
int funcil(int x, int y)
int funcil(int y, int x) // The parameter
// Process the function // name differs from
} // the name in the
// prototype
Compliant example of (2) // declaration
int funcl(int x, int y);
int func2(float x, int y); // Process the function
}
int funcil(int x, int y)
typedef int INT;
// Process the function int func2(float x, INT y) // The type of y is
} // not literally the
// same as in the
int func2(float x, int y) // prototype

// declaration
// Process the function
// Process the function

}

In a function prototype declaration, parameter names can be omitted, but describing appropriate param-
eter names is useful as function interface information. When describing parameter names, use the same
name as in the definition to avoid unnecessary confusion. As for the parameter type name, making it
literally the same as the function definition is also recommended to make the code easier to read.
Moreover, if the parameter is an array of specific size, it is desirable to specify the number of its ele-
ments.
Example: void func(int a[4]) { ... }

void func2(size_t n, int arr[n]) { ... } // In case of variable length array

See also CERT C API05-C for related information.

[Related rule] M1.4.1

Maintainability4 ® M4 Write in a consistentway. = 117

=
2
=
(s
4,
5
)
=
E
<

118

Preference
Structure tags and variables shall be declared sepa- guide

- rately. Rule
1 specification

Compliant example Non-compliant example

struct TAG { struct TAG {
int meml; int memil;
int mem2; int mem2;

}s }x;

struct TAG x;

(1) “,” shall not be placed before the last “}” in the REGERES

: S : guide
list of initial value expressions for structures, i

unions and arrays, nor in the list of enumerators. BEEEE)

(2) “,” shall not be placed before the last “}” in the list of initial value
expressions for structures, unions and arrays, nor in the list of
enumerators. However, placing “,” before the last “}” in the list of
initial values for array initialization is allowed.

Compliant example Non-compliant example

Compliant example of (1) Non-compliant example of (1) and (2)

struct tag data[] = { struct tag x ={ 1, 2, };
{1, 2,3}, // Not clear whether there are only two members
{4, 5,61}, // or there are three or more

{7,891} // There is no comma after the
// last element
s
Compliant example of (2)
struct tag data[] = {
{1) 2) 3 })
{4) 5) 6 }J
{7,891}, // There is a comma after the
// last element
15

The usage of comma in descriptions for initializing multiple data is generally divided into two schools of
coding rules. One school follows the tradition of not placing a comma after the last initial value in order
to indicate the end of initialization explicitly. Another school follows the tradition of placing a comma at
the end by considering the easiness of adding or deleting initial values. Decide on which rule to follow
by weighing the importance of the usage of comma for such descriptions in your specific cases.

In C90 standard, it was not acceptable to have ““,” just before “}” that indicates the end of an enumera-
tor list, but this became acceptable in C99 standard.

[Related rule] M2.1.1

Part2 Coding Practices for Embedded Software:Practices Chart

28 Unify the style of writing null pointers.

~ (1) @ shall be used for the null pointer. NULL shall not Batacie

: id
be used in any case. S
Rule

2) NULL shall be used for the null pointer. NULL shall St
not be used for anything other than the null point-
er.

Compliant example Non-compliant example

=
Compliant example of (1) Non-compliant example of (1) %-
char *p; char *p; =
int dat[10]; int dat[10]; 3
g
p = 0; p = NULL; =
dat[e] = o; dat[@] = NULL; <
Compliant example of (2) Non-compliant example of (2)
char *p; char *p;
int dat[1e@]; int dat[1e@];
p = NULL; p = 0;
dat[e] = o; dat[@] = NULL;
= NULL has been conventionally used to express the null pointer, but the expression of the null pointer var-
= ies, depending on the execution environment. For this reason, some people think that it is safer to use @.

Maintainability4 @ M4 Write in a consistentway. =~ 119

=
2
=
(s
4,
5
)
=
E
<

120

“¥& Unify the style of writing preprocessor directives.

. Preference
- The body and parameters of a macro that includes guide

. operators shall be enclosed with parentheses (). Rule
; specification

#define M_SAMPLE(a, b) ((a)+(b)) #define M_SAMPLE(a, b) a+b

If the body and parameters of a macro are not enclosed with parentheses () , there is a risk of bug be-
ing produced when the operations are not performed in the expected order, since the operation order
depends on the order of precedence of operators that come next to the macro after expanding the macro
and the operators in the macro.

j.#else, #elif or #endif that correspond to #ifdef, QA=

#ifndef or #if shall be described in the same file, AL
Rule

o

"and (their correspondence relationship shall be Define

specification
clearly stated with a comment defined in the proj-

ect) .

Compliant example Non-compliant example
#ifdef AMA #ifdef AAA

// Process when AAA is defined // Process when AAA is defined

#else // not AAA #else
// Process when AAA is not defined // Process when AAA is not defined

#endif // end AAA #endif

If #else or #endif is described in a distant location or nested in a partitioned process by macros, such
as, #ifdef , their correspondence becomes difficult to understand. Therefore, add a project-defined
comment to #else or #endif that corresponds with, such as, #ifdef to make their correspondence
easier to understand.

[Related rules] M1.1.1, M1.1.2

Part2 Coding Practices for Embedded Software:Practices Chart

efined(macro_name) or defined macro_name shall Bl

id
be used to check whether the macro name has al- iL::

ready been defined by #if or #elif. specification

Compliant example Non-compliant example

#if defined(AAA) #if AAA
#endif #endif
- or - - or -
#if defined AAA #defined DD(x) defined(x)
#if DD(AAA)
#endif
#endif

“#if macro name” does not determine whether a macro is defined or not. For example, when #if AAA
is written, it will be evaluated as false not only when macro AAA is not defined, but also when the
value of macro AAA is 0. The C language standard does not define how to process defined operator.
Therefore, to check whether a macro is defined or not, defined operator should be used.

defined operator should not be described other than by defined(macro name) or defined macro_
name, because they are the only two ways of describing defined that are supported in C language
standard, and any other descriptions of defined may cause an error or may be interpreted differently,
depending on the compiler used.

[Related rule] M4.7.7

Preference
Macros shall not be #define’d or #undef’d within a guide

block. [MISRA C:2004 19.5] Rule
specification

Compliant example Non-compliant example

#define AAA] // Members with restriction on the assignable
#define BBB 1 // values exist
#define CCC 2 struct stag {
struct stag { int meml; // The following values are
int meml; // assignable:
char *mem2; #define AAA 0O
18 #define BBB 1

#define CCC 2
char *mem2;

1

Maintainability5 @ M5 Write in a way easy to test.

121

=
o
3
=
=
5
)
e
E
<

In general, macro definitions (#define) are all described together at the beginning of the file. If they are
scattered in various parts of the file, for example, by describing them in blocks, they will become dif-
ficult to read. Moreover, cancellation of definitions (#undef) within a block will also degrade the read-
ability. Also note that, unlike the scope of variables, macro definitions are valid only up to the end of the
file. The description below shows how the program in the above non-compliant example can be rewrit-
ten to make it compliant:

enum etag { AAA, BBB, CCC };

struct stag {

enum etag meml;
char *mem2;

B

[Related rule] M4.7.6

=
o
=
—*
o
5
)
S
E
<

Preference
guide

Rule
specification

#undef shall not be used. [MISRA C:2012 R19.6]

#undef can change the state of #define’d macro name to undefined. But the use of #undef involves

the risk of degrading the readability, because the interpretation of #undef may differ, depending on
where the macro name is referred to.

[Related rule] M4.7.5

122 Part2 Coding Practices for Embedded Software:Practices Chart

. . - q Preference
Controlling expression of #if or #elif preprocess- guide

ing directive shall be evaluated as 0 or 1. Rule
(MISRA C:2012 R20.8] specification

Compliant example Non-compliant example

#define TRUE 1 #define ABC 2
#define FALSE © #if ABC
#if TRUE

#if defined(AAA)
#if VERSION == 2

#if @ // Invalidated due to ~

In case of #if or #elif controlling expression, true or false is evaluated by the controlling expres-
sion. Therefore, the controlling expression should be described in a way that would make it easy to
evaluate true or false, thus making the program easy to read.

[Related rule] M4.7.3

Maintainability5 @ M5 Write in a way easy to test.

123

=
o
3
=
=
5
)
e
E
<

=
=,
=]
-
4,
=]
(Y
g
E
<

124

One of the essential tasks in embedded software development is to check the behaviors
(through testing). However, with recent complex embedded software, it is becoming
increasingly challenging to fulfill this task when faced with difficulties caused by, such as,
bugs and malfunctions detected during tests that cannot be reproduced. Therefore, when
writing the source code, it is desirable to be more conscious of writing in a style that will
make the root cause analysis easy to perform when problem arises. Moreover, particular
attention must also be given to descriptions that involve, such as, the use of dynamic
memory, by keeping in mind the risk of memory leak, among other points of concern.

Write in a style that makes it easy to investigate the
causes of problems when they occur.

Maintaiability 5.2 Be careful when using dynamic memory allocations.

Part2 Coding Practices for Embedded Software:Practices Chart

Write in a style that makes it easy to investigate the
causes of problems when they occur.

Preference

(The rules for writing the code for setting debug op- o)

guide
_tions and for recording logs in release modules shall Rule _
be deﬁned'>> specification Dl

Besides implementing the specified functionalities correctly, a good program requires coding that also
takes account of the easiness to debug and investigate into the causes of problems when they occur. De-
scriptions that make investigation of problems easy to conduct can be achieved by writing descriptions
for debugging that are not reflected in the release modules and descriptions for outputting logs after re-
lease that are reflected in the release modules. Explained below are the points to take into consideration
when determining the rules to be followed in writing each of these descriptions.

=
4,
5

~a
4,
5

)

S
E
<

@ Descriptions for debugging

Descriptions for debugging, including print statements used during program development, need to be
written as isolated descriptions that are not reflected in the release module. Explained below are two
ways of writing the descriptions for debugging: (a) by isolating the debug descriptions using macro defi-

nitions; and (b) by using assert macros for debugging purpose.

(a) Using macro definitions to isolate debug descriptions

Use the macro definitions to identify the code parts to be compiled so that the debug descriptions are not
reflected in the provided release module. Strings, such as, “DEBUG” and “MODULEA DEBUG” that contain
“DEBUG ” as part of the name are commonly used as those macro names.

Example of rule definition:
#ifdef DEBUG shall be used to isolate the debug code. (DEBUG macro shall be specified at compile
time.)
[Code example]
#ifdef DEBUG

fprintf(stderr, "varl = %d/n", varl);
#endif

The following macro definitions can also be used.
Example of rule definition:
#ifdef DEBUG shall be used to isolate the debug code. (DEBUG macro shall be specified at compile

time). In addition, the following macro shall be used to output debug information.

DEBUG_PRINT(str); // Output str to standard output

Maintainability> @ M5 Write in a way easy totest. =~ 125

Since this macro is defined in the common header of the project, debug_macros.h , this header shall
be
included when using this macro.

-- debug_macros.h --

#ifdef DEBUG

#define DEBUG_PRINT(str) fputs(str, stderr)

ttelse

#define DEBUG_PRINT(str) ((void) @) // no action
#endif // DEBUG

[Code example]
void func(void) {
DEBUG_PRINT(">> func\n");

DEBUG_PRINT("<< func\n");
}
(b) Using the assert macro
In C language standard, assert macro is provided as a macro for program diagnosis. It is useful for

=
=,
=]
-
4,
=]
(Y
g
E
<

making coding errors easier to detect during debugging. To facilitate debugging, define where to use the
assert macro and follow this defined usage throughout the project. By doing so, it will be possible to
collect consistent debug information during, such as, the integration test, and such information, as a re-
sult, will help make debugging easier.

The following is a brief explanation on how to use the assert macro, using a coding example that

shows how this macro is used in a function definition written under the precondition that the null pointer
is never passed as the argument.

void func(int *p) {
assert(p != NULL);
*p = INIT_DATA;

}

If the NDEBUG macro is defined at compile time, the assert macro does nothing. On the other hand, if
the NDEBUG macro is not defined and the expression passed to the assert macro is false, the program
abends after outputting the file name and the line number of the source to the standard error. Note that
the macro name is NDEBUG, not DEBUG.

assert macro is a macro provided by the compiler in <assert.h>. By using the following example as
a reference, examine how to abort the program and determine whether to use the macro provided by the
compiler or to provide your own assert function.

#ifdef NDEBUG
#define assert(exp) ((void) @)
#else
#define assert(exp) (void) ((exp)) || (_assert(#exp, _ FILE_ , _ LINE_)))
#endif
void _assert(char *mes, char *fname, unsigned int 1lno) {
fprintf(stderr, "Assert:%s:%s(%d)¥n", mes, fname, 1lno);
fflush(stderr);
abort();

126 Part2 Coding Practices for Embedded Software:Practices Chart

C11 allows embedding static assert that can be evaluated by the compiler in the source code, confirming
the offset of a structure member and the length of a string constant, and detecting, such as, the type sizes
and internal representations that differ depending of the compiler used, at the time the code is compiled.

_Static_assert(sizeof(t) <= 4, "The size of t is exceeding 4 bytes.");

@ Outputting logs after release

It is also useful to include descriptions for problem investigation in the release module that dose not
contain descriptions for debug. One common method is to record the result of the investigation as log
information. Log information is helpful for validation testing of the release module as well as for inves-
tigation of problems that occurred in the system provided to the customer.

In case of recording the log information, the following items should be determined in advance and de-
fined as the coding convention.

+ When to output logs

=
o
3
=
=
5
)
e
E
<

Logs should be output not only when an abnormal condition is detected, but also at the timing of,
such as, data communication with an external system. The point is to output logs at appropriate
timing (such as, when key events occur) that will make it easier to trace the history and faster to
identify the root cause of the detected abnormality.

» What to output in logs

Information on the process executed immediately before the occurrence of the abnormal condition,

the data values processed at that time, and information for tracing memory usage are some of the
log information that should be recorded to enhance the traceability of the history and facilitate the
investigation of the cause of the abnormality.

+ Macro or function for outputting log information
Localize the log information output as a macro or a function. It is often preferable to make the
log output destination changeable.

(1) The # and ## preprocessor operators should not Preference

be used. [MISRA C:2012 R20.10] guide

" (2) A macro parameter immediately following a # op- e

~ erator shall not immediately be followed by a ## sbectiearon
operator. [MISRA C:2012 R20.11]

Choose

Compliant example Non-compliant example

Compliant example of (2) Non-compliant example of (1) and (2)
#define AAA(a, b) at#b #define XXX(a, b, c) a#tbtttc
#define BBB(x, y) xitty

The evaluation order of # operator and ## operator is not defined. Therefore, # and ## operators should
not be mixed, nor used twice or more.

Maintainability> @ M5 Write in a way easy totest. =~ 127

=
o
=]
—*
o
=]
)
=z
E
<

128

Preference
Function shall be used rather than using function- guide

ike macro. Rule
specification

Compliant example Non-compliant example
int func(int argl, int arg2) #define func(argl, arg2) (argl + arg2)
{
return argl + arg2;
}

Using functions rather than function-like macros facilitates tracking processes by stopping at the begin-
ning of a function during debugging etc.

In addition, the compiler performs type checking with the functions and helps to detect coding mistakes.
The functions can be inline functions. For more information about the performance of inline functions
and object code size, see E1.1.1.

[Related rules] E1.1.1, P2.1.1

V%8 Be careful when using dynamic memory allocations.

(1) Dynamic memory shall not be used. Preference
(2) If dynamic memory is used, (the means to allo- HEEELS
cate and free the memory, the maximum

Rule Choose
specification | Define

amount of memory that can be used, process to
be taken when running out of memory, and
debugging procedure shall be defined.)

Using dynamic memory involves the risk of memory corruption caused by invalid memory access as
well as the risk of memory leak that leads to depletion of system resources, which may be caused by
forgetting to return the obtained memory space to the system. The use of dynamic memory should be
avoided, but there are unavoidable cases, such as, when middleware is used, and these cases are, in fact,
not that rare. In case the use of dynamic memory is unavoidable, specific rule or rules, including those
exemplified below, should be established to prevent the aforesaid risks from arising and facilitate the
debugging process:

Example 1: Write the code for allocating the memory and freeing the allocated memory symmetrically
in the same translation unit.

Example 2: Assign a new value to the pointer that points to the freed memory.

Part2 Coding Practices for Embedded Software:Practices Chart

Example 3: Define in advance the maximum size of the dynamic memory to be used.

Example 4: Define the process to be taken when running out of memory.

Example 5: To allocate or free dynamic memories, do not use standard functions, such as, malloc or
free. Instead, prepare for the project one or more functions that facilitates the debugging
process, as shown in the example below.

Since some compilers already provide functions for debug, consider using them as well. Open source
software also has pieces of source code for debug and should serve as useful references when creating
your own.

Example of the project specific functions for memory allocation and free:

-- X_MALLOC.h --
#ifdef DEBUG
void *log_malloc(size_t size, char*, char*);
void log_free(void*);
#define X_MALLOC(size) log_malloc(size, _ FILE_ , _ LINE_)
#define X_FREE(p) do {log_free(p, _ FILE_ , _ LINE_); p=NULL;} while(®)
#else
#include <stdlib.h>
#define X_MALLOC(size) malloc(size)
#define X_FREE(p) do {free(p); p=NULL;} while(@)
#endif
[Use of those functions]
#include “X_MALLOC.h”
p = X_MALLOC(sizeof(*p) * NUM);
if (p == NULL) {
return (MEM_NOTHING);
}

X_FREE(p);
return (OK);

[Related rule] R3.2.2

o Reference: Problems when using dynamic memory
Described below are problems that you should watch out when using dynamic memory.
+ Buffer overflow
This occurs as a result of referencing or updating areas beyond the range of obtained memory. In
particular, when an area outside the range is accidentally updated, this failure does not occur at the
time of update but will occur when the memory destroyed by the update is referenced.

+ Forgetting to initialize
Memories obtained by typical dynamic memory functions are not initialized (there are some dy-
namic memory obtaining functions perform initialization). Like automatic variables, the memories
should be initialized in the program before using them.
Functions for initializing the obtained memory space, such as, calloc, can be used.

+ Memory leak
There is a risk of this problem being caused by forgetting to free the obtained memory space. This

Maintainability5 @ M5 Write in a way easy to test.

129

=
=
5
-
=
5
o
S
=_.:
<

=
=,
=]
-
4,
=]
(Y
g
E
<

130

problem does not occur with programs that terminate each time after running once. However, with
programs that keep running, memory leak can occur and become the cause of memory depletion
and system malfunction.

+ Using freed memory
There are cases when the freed memory is used. When the obtained memory space is freed with
functions, such as, free or realloc, the freed memory space may be reused later, such as, when
malloc function is called. In case a pointer that points to the freed memory (also known as dan-
gling pointer) is used to update the memory, the memory space will be destroyed if it is already be-
ing reused for other purpose.

* Double free

This term refers to freeing the allocated memory more than once with functions, such as, free or
realloc. Since the behavior after double free is undefined, the behavior of the program that uses
double freed memory is not guaranteed. One of the methods to prevent this problem from occurring
is to assign a null pointer as the pointer that points to this memory, immediately after freeing this
memory.

The behavior of the program that specifies a null pointer as the argument of free or realloc
function is guaranteed. Double free can therefore be prevented by making it a rule to assign a null
pointer as the pointer that points to the freed memory,

The code that leads to these problems does not cause a compile error. In addition, problems do not occur
at the location where the bugs were implanted, making them undetectable in tests that are just for check-
ing the normal specifications. They cannot be discovered unless the code is carefully reviewed or tests
are performed after inserting a test code specifically written to detect such problems or after adding a
special library to the program for similar purpose.

Part2 Coding Practices for Embedded Software:Practices Chart

Portability

One of the distinctive aspects of embedded software is that
there are diverse options in the platform used for software op-
eration. This also means that there are many possible combina-
tions of MPU options and OS options to select the hardware and
software platforms from. As the number of functionalities real-
ized by the embedded software increases, opportunities to port
the existing software to other platforms by modifying or remod-
eling it to make it compatible with multiple platforms are also on
the rise.
Due to this trend, software portability is becoming an extremely
important element also at the source code level. In particular,
writing in a style that is implementation-dependent is one of the
most common mistakes made on a regular basis. '

@ Portability 1: Write in a style that is not dependent on
the compiler.

@ Portability 2: Localize the code that has a problem with
portability.

o
o
=3
&
=
E

<

132

Portability

L

Write in a style that|snot s
dependent on the compiler.

- s
e e _-_'_-’- { % ’l._:l 1

Use of compilers is unavoidable when programming in C++ language. Various compilers
are available in the world and each has its own features. If the source code is written poorly,
the code may become dependent on the features of the compiler used, and may cause
unexpected results when a different compiler is used.

For this reason, programming must be performed carefully with an awareness that the code
must be written in a style that is not implementation-dependent.

Portability 1.1

Portability 1.2

Portability 1.3

Portability 1.4

Portability 1.5

Do not use functionalities that are advanced features or
implementation-defined.

Use only the characters and escape sequences defined in
the language standard.

Confirm and document data type representations, behav-
ioral specifications of advanced functionalities and imple-
mentation-dependent parts.

For source file inclusion, confirm the implementation-
dependent parts and write in a style that is not implementa-
tion-dependent.

Write in a style that does not depend on the environment
used for compiling.

Part2 Coding Practices for Embedded Software:Practices Chart

Do not use functionalities that are advanced fea-
tures or implementation-defined.

'_»:#“(" (1) Functionalities not specified in the language Preference
standard shall not be used. guide

Rule Choose
specification | Document

(2) If functionalities not specified in the language
standard are used, (the functionalities used and
their usage shall be documented.)

At present, while C99 is the widely used C language standard, the latest version is C11. In addition, there
are still many compilers that also support the older version, C90.

One way of thinking would be to choose rule (2) and allow the use of functionalities defined in the latest
language standard, C11, that are specifically supported by the compiler used.

Regarding the acceptable ways of using the functionalities that are not specified in the language stan-
dard, the details are provided in the following related rules.

[Related rules] P1.1.3, P1.2.1, P1.2.2, P1.3.2, P2.1.1, P2.1.2

Preference
{All usage of implementation-defined behavior shall guide

be documented.) [MISRA C:2004 3.1) Rule

specification

(@)

Document

In the language standard, there are implementation-defined items whose behavior varies depending on

the compiler used. For example, the following are implementation-defined and should be documented if
they are used.

+ How to represent floating-point numbers

+ For C90, how to handle signs of remainders for integer division

« The search order of files for the #include directive

 #pragma

Portability1 @ P1 Write in a compiler independent way.

133

o
o
=X
o
=5
E
<

o
o
=3
Y
=
E

<

134

To use a program written in another language, (its P’e;iﬁ;‘ce

interface shall be documented and its usage shall Rule
. be defined.) specification

Document
Define

The C language standard does not define the interface for making programs written in other languages
available from a C language program. In other words, using a program written in another language re-
quires the use of an advanced functionality, which means that portability will be impaired. Therefore,
when using such a program, document the specifications of the compiler used and define its usage, re-
gardless of the possibility of porting.

[Related rules] P1.1.1, P2.1.1

Use only the characters and escape sequences de-
2N fined in the language standard.

To use characters other than those defined in the Preference
language standard for writing a program, the com- 2:3:

" piler specifications shall be confirmed, and (their specification
usage shall be defined.)

Compliant example Non-compliant example

const char * table[MAX]; // table of names const char * table[MAX];// &HI&E

// Compliant // Non-compliant: In Shift_JIS, the second byte of
// a double-byte character®®”is '\' in ASCII,
// and may be misinterpreted as
// comment line-splicing

The basic character set defined in the language standard as usable for source code are upper and lower
case letters of the Latin alphabet, decimal digits, graphic characters (! “ # % & ¢ () * + , -
./ i3 <=>2[\N1"_A{1] 1} ~),space character, and control characters that represent the
horizontal tab, vertical tab and form feed. However, a part of these graphic characters varies in countries
and are therefore implementation-dependent. As a result, they may not be correctly processed.

International characters and multibyte characters (like Japanese) can be used as identifiers and charac-
ters, but they may not be supported by some compilers. Therefore, if these characters are going to be
used, check beforehand that they can be used in the following locations and define their usage.

Part2 Coding Practices for Embedded Software:Practices Chart

* Identifiers
+ Comments
« String literals
- Processing when \ exists in the character codes of the string (whether special care is required or
whether options are required at the time the code is compiled, etc.)
- The necessity to write using wide string literals (with the prefix L such as L“string™.)
- The necessity to write using charl6_t string literals (with the prefix u such as u“string”.) (in case
of C11)
- The necessity to write using char32 t string literals (with the prefix U such as U“string”.) (in case
of C11)
+ Character constants
- The bit length of the character constant
- Process when \ exists in the character code of character constants (whether special consideration is
necessary or whether option is specified at the time the code is compiled, etc.)
- The necessity to write using wide character constants (with the prefix L such as L& ”)
- The necessity to write using charl16_t character constants (with the prefix u such as u#?) (in case
of CI1)
- The necessity to write using char32_t character constants (with the prefix U such as U &) (in case
of C11)
+ The file name of #include

For example, define the following rules.

* As the identifier, only the alphanumeric characters and underscore should be used.

» Comments can be written in Japanese. The character code used should be UTF-8. Halfwidth Katakana
shall not be used.

« Japanese shall not be used in strings, string constants and file names of #include.

Many compilers these days support Unicode to process multibyte character set that includes Japanese. In
Japan, Shift JIS has long and often been used as the character code for processing Japanese characters.

But recently, there are increasing number of development projects using open source that are adopting
UTP-8 as the character code.

[Related Rules] M4.3.1, M4.3.2, P1.1.1

Portability1 @ P1 Write in a compiler independent way.

135

o
(]
-
Q
S
E

o
o
=3
Y
=
E

<

Only escape sequences defined in the language guide

. standard shall be used.

Compliant example

char ¢ = "\t'; // compliant

\a (alert) \b (backspace)

\r (carriage return)

[Related rule] P1.1.1

\f (form feed)
\t (horizontal tab)

Preference

Rule
specification

Non-compliant example

char ¢ = "\e'; // Non-compliant: The escape sequence
// is not defined in the
// language standard
// It is not portable

The language standard defines the following seven nongraphic characters as escape sequences:

\n (new line)

\Vv (vertical tab)

tion-dependent parts.

Confirm and document data type representations, behavioral
=X specifications of advanced functionalities and implementa-

‘ Simple char type (that does not specify the signed-

Preference

" ness) shall be used only for storing character val- guide

ues. If a process that depends on signedness (im-

plementation-defined) is required, unsigned char or
signed char that specifies its signedness shall be used.

Compliant example

char c = 'a'; // Used to store characters

int8 t i8 = -1; // To use it as 8-bit data,
// use a type defined, for
// example, with typedef

136 Part2 Coding Practices for Embedded Software:Practices Chart

Rule
specification

Non-compliant example

char ¢ = -1;

if (c¢>0) { .}

// Non-compliant: char can be signed or unsigned
// depending on the compiler, and this difference
// affects the result of the comparison

Unlike other integer types like int , char that does not specify its signedness will be either signed or
unsigned depending on the compiler (int type is the same as signed int type.) Therefore, using char
that depends on the signedness is not portable. This is because char that does not specify its signed-
ness is an independent type provided for storing characters (comprised of three types: char , unsigned
char and signed char) and the language standard assumes such usage. For using char as a small
integer type, such as, when a process that depends on signedness is required, use either unsigned char
or signed char that specifies its signedness. In this case, it is desirable to use typedef as the type to lo-
calize the range of modification during porting.

A problem similar to this rule exists with the returned type of the standard function getc that is int and
must not be received by char . However, this is rather a problem pertaining to function interface (as-
signment that may cause information loss).

[Reference materials for those wanting to know more in detail about this rule]
+ MISRA C:2012 Rule 10.1

[Related rule] P2.1.3

1] .
) ’h The members of an enumeration type (enum) shall BEECIES

be defined with values that can be represented as i:jld:
: S type. specification

Compliant example Non-compliant example

// If int is 16bits and long is 32bits // If int is 16bits and long is 32bits
enum largenum { enum largenum {

LARGE = INT_MAX LARGE = INT_MAX+1
I 3

In the C language standard, the members of an enumeration type must have values that can be repre-
sented as int type. However, some compilers that support this functionality extendedly may not cause
an error even if the value exceeds the range of int type for the members of an enumeration type.

C++ allows values in the range of 1long type for the members of an enumeration type.

[Related rule] P1.1.1

Portability1 @ P1 Write in a compiler independent way.

137

p
o
=3
[
=

5

o
o
=3
Y
=
E

<

(1) Bit fields shall not be used.
(2) Bit fields shall not be used for data whose bit
positions are meaningful.

Preference

guide o

Rule Choose
specification Document

(3) (Ifit is being relied upon, the implementation-

defined behavior and packing of bit fields shall be documented.)
[MISRA C:2004 3.5]

Compliant example

Compliant example of (2)
struct S {
unsigned int bitl:1;
unsigned int bit2:1;

3

extern struct S * p; // Compliant if p points
// to a date that is, for
// example, just a set of
// flags and bitl can be
// any bit in that data

p->bitl = 1;

Non-compliant example

Non-compliant example of (2)
struct S {

unsigned int bit1:1;

unsigned int bit2:1;
s
extern struct S * p;
// If the bit positions are meaningful, for
// example, when p points at IO ports; in
// other words, if there is a meaning for bitl
// to point at either the lowest bit or the
// highest bit of the data, the program is non-
// portable
p->bitl = 1; // As to which bit of the data,
// p will point at, is
// implementation-dependent

The following behaviors of bit field vary depending on the compiler used:

(1) Whether the bit field of an int type that does not specify its signedness will be handled as signed ;
(2) Assignment order of the bit fields within a unit
(3) Boundary of a bit field in a storage unit

If bit fields are used to access data whose bit positions are meaningful, such as, the IO ports, portability
problem arises due to rules (2) and (3). Therefore, in such cases, do not use bit fields, but instead, use
bitwise operations, such as, & and | .

[Related rules] R2.6.1, R3.11.2

138

Part2 Coding Practices for Embedded Software:Practices Chart

For source file inclusion, confirm the implementation-
= dependent parts and write in a style that is not implemen-
tation-dependent.

The #include directive shall be followed by either a RaEEEIES

. . guide
<filename> or “filename™ sequence. Rule
[MlSRA C:2012 R20.3] specification

Compliant example Non-compliant example

#include <stdio.h> #include stdio.h

#include "myheader.h" // Neither <> nor “ ” is placed
#if VERSION == #include "myheader.h" 1

#define INCFILE "versl.h" // 1 is specified at the end

#elif VERSION == 2
#define INCFILE "vers2.h"
#endif

#include INCFILE

In C language standard, the behavior is not defined for cases where the format of the header name does
not match with neither of the two styles (< > or “ *) after macro-expansion of the #include directive.
Most compilers will output an error if it cannot match the format with neither of the two styles, while
some others may not handle it as an error. Therefore, write the header name format in either of the two
styles to ensure safety.

Preference
(The usage of <> format and “” format for #include guide

file specification shall be defined.) AL
specification

Define

Compliant example Non-compliant example
#include <stdio.h> #include "stdio.h"
#include "myheader.h" #include <myheader.h>

There are two ways of writing #include . To unify the writing style, define rules, for example, that in-
clude the following:
+ Specify the header provided by the compiler by enclosing it with < > ;
+ Specify the header created in the project by enclosing it wit]
+ Specify the header provided by the purchased software by enclosing it with “ .

€« »
H

Portability1 @ P1 Write in a compiler independent way.

139

p
]
=3
<)
=

5

o
o
=3
Y
=
E

<

140

Preference
Characters ¢, \, “, /*, // and : shall not be used guide

for file specification in #include. Rule
specification

Compliant example Non-compliant example

#include "inc/my_header.h™ // Compliant #include "inc\my_header.h" // Non-compliant

The language standard does not define the behavior when the characters mentioned above are used (more
specifically, in the following cases); that is to say, the operation result is not certain when these charac-
ters are used in the following cases, which consequently make the code non-portable:.

» When characters * \” or /* appear in the string enclosed with < > ;

« When characters * \”” or /* appear in the string enclosed with “ .

Also, the behavior of the character : (colon) differs depending on the compiler, and makes the code

nonportable.

Write in a style that does not depend on the envi-
ronment used for compiling.

d Preference
= The absolute path shall not be written for #include guide

ile specification. Rule
specification

Compliant example Non-compliant example

#include "hl.h" #include "/projectl/modulel/h1.h"

If an absolute path is written in the code, there will be a need to modify the path when the program is
compiled after changing the directories.

Part2 Coding Practices for Embedded Software:Practices Chart

5 . . Preference
sizeof shall be used to determine the size of a type guide

or variable. Rule
specification

Compliant example Non-compliant example

#define LEN 10 #define LEN 10

#define INT_SIZE 4
int *p = (int *)malloc(sizeof(int)*LEN);
int *p = (int *)malloc(INT_SIZE*LEN);

Since the size of a type or variable varies depending on the complier used, use the sizeof operator to
find out the size of a type or variable that are implementation-defined.

[Related rules] R3.1.5, R3.6.3

Portability1 @ P1 Write in a compiler independent way.

141

o
o
=X
o
=5
E
<

=48 Localize thecodgth%t 12
problem with portability.

SR (%

p.

The principle is not to write implementation-dependent source code as much as possible.
But in some cases, this may be unavoidable. A typical example is when an assembly
language program is called from C language. In such case, it is recommended to localize the
implementation-dependent parts of the code as much as possible.

Localize the code that has a problem with portability.

o
o
=3
Y
=
E

<

142 = Part2 Coding Practices for Embedded Software:Practices Chart

Localize the code that has a problem with portabil-

ity.

Preference
When assembly language programs are called quide O

from C language, {how to localize such parts shall Rule

Define

be defined) ,such as, by expressing them as func- KaiEll
tions of C language that contain only inline assembly language
code or describing them using macros.

Compliant example Non-compliant example
#define SET_PORT1 asm(" st.b 1, portl") void f() {
void f() {

asm(" st.b 1,port1l");
SET_PORT1;

// asm and other processes are mixed
In C99, inline-specified functions can be written. Many compilers provide extended support
to asm (string) format as a method to include the assembly language code. However, there

are some compilers that do not provide such support. Moreover, the same format may lead to
different behavior depending on the compiler used, thus making it non-portable.

[Related rules] M5.1.3, P1.1.1, P1.1.3, E1.1.1

Preference
Keywords extended by the compiler shall be used guide

by localizing them after {defining the macros.) . Rl
specification

o

Define

Compliant example Non-compliant example
// interrupt is defined as a keyword extended by // interrupt is defined as a keyword extended
// a specific compiler // by a specific compiler. It is used without

#define INTERRUPT interrupt
INTERRUPT void int_handler (void) {

-

// being defined by a macro
interrupt void int_handler(void) {

-

Portability2 @ P2 Localize code with portability issues.

143

o
o
=X
3]
=5
E
<

Some compilers provide extended keywords instead of using the #pragma directive, But the code will
become non-portable when these keywords are used. Therefore, when using them, localize them, such
as, by defining them as macros. For the macro name, use the keyword written in uppercase letters, as
shown above in the compliant example.

[Related rule] P1.1.1

~ (1) The basic types (char, int, long, long long, g

O

float, double and long double) shall not be guide
used. Instead, the types defined by typedef Rule Choose
shall be used. {The types defined by typedef

that are used in the project shall be defined.)

specification | Document

(2) When using any of the basic types (char, int, long, long long,
float, double and long double) in a form that is dependent on
its size, the type defined by typedef for each of these basic
types shall be used. {The types defined by typedef that are
used in the project shall be defined.)

2 Compliant sxample

=Y

= Compliant example of (1) and (2) Non-compliant example of (1) and (2)

= uint32_t flag32; // Use unit32_t if 32bits is unsigned int flag32; // used by assuming int as
< // assumed // 32bits

Compliant example for (2)

int i;

for (i = 0; i< 10; i++) { ..

// i is used as an index. It can be 8bits,

// 16bits or 32bits and a basic type in the
// language specification can be used for i

The size and internal representation of integer types and floating point types vary depending on the com-
piler. C99 specifies the following typedefs to be provided as the language standard. Therefore, these
type definitions should be used. When using C90, it is advisable to refer to them as the typedef names
for these basic types.

Size-specific types: int8_t, int16_t, int32_t, int64_t, uint8_t, uintl6_t, uint32_t, uint64_t
Least-width integer types: int_least8_t, uint_least8_t, ..., int_least64_t, uint_least64_t
Fastest least-width integer types: int_fast8_t, uint_fast8_t, ..., int_fast64_t, uint_fast64_t
Maximum-width integer types: intmax_t, uintmax_t

Moreover, use size_t for size or length resulting from, such as, the use of sizeof, ptrdiff_t for the

result from pointer subtraction, and wchar_t for wide character.

144 = Part2 Coding Practices for Embedded Software:Practices Chart

In case of Cl1, rsize_t should be used rather than size_t. Runtime error occurs if rsize_t type
variable exceeds the maximum size defined by RSIZE_MAX.

[Reference materials for those wanting to know more in detail about this rule]
« CERT INTO01-C

[Related rule] P1.3.1

Portability2 @ P2 Localize code with portability issues.

145

o
o
=+
Q
=3
5

Efficiency

Embedded software is characteristic for being embedded :
in a product and operating together with hardware to serve :
its purposes in the real world. The increasing demand for :
further product cost reduction has imposed various restric- f
tions, not only on, such as, MPU or memory, but also on :
software. :
In addition, requirements, such as, on real-time property
have placed stricter time constraints that need to be met.
Embedded software must therefore be coded with particular :
attention on resource efficiency like efficient use of memory
and time efficiency that takes account of time performance. |

@ Efficiency1: Write in a style that takes account of re-
source and time efficiencies.

m
=
Q.
(1)
=]
G

<

148

Efficiency

Depending on how the source code is written, the object size may increase and the
execution speed may slow down. If there are restrictions on memory size and processing
time, the code must be written thoughtfully with additional considerations given to these

restrictions.

o Write in a style that takes account of resource and
Efficiency 1.1
time efficiencies.

Part2 Coding Practices for Embedded Software:Practices Chart

time efficiencies.

Write in a style that takes account of resource and

Macro functions shall be used only in parts related guide

to speed performance.

Compliant example

extern void funcl(int,int); // funcl: called
// only once

#define func2(argl, arg2) // func2: called
// many times

funcl(argl, arg2);
for (i = 0; i < 10000; i++) {
func2(argl, arg2); // Speed performance is
// critical for this
// process

Preference

Rule
specification

Non-compliant example

#define funcl(argl, arg2) // funcl: called only
// once
extern void func2(int, int); // func2: called
// many times

funcl(argl, arg2);
for (i = ©; i < 10000; i++) {
func2(argl, arg2); // Speed performance is
// critical for this
// process

Function is safer than macro function. So, use function as much as possible (see M5.1.3).
However, processing of function calls and returns may slow down the speed performance.
The use of inline function can be one way of preventing the processsing speed from slowing
down. But since inlining is implementation-dependent, inline function may not be expanded
as intended, depending on the complier used. Therefore, if speed performance is an issue that

has to be improved, use macro function instead.
Yet, the frequent use of macro function may increase the object size because the code will be

spread to wherever the macro function is used.

[Related rule] M5.1.3

Operations that remain unchanged shall not be per- guide
formed within an iterated process. Rule

Compliant example

varl = func();
for (1 = @; (i + varl) < MAX; i++) {

-

Preference

specification

Non-compliant example

// Function func returns the same result
for (1 = 0; (i + func()) < MAX; i++) {

-

Efficiency1 @ E1 Write with careful attention to resource and time efficiencies.

149

m
=
@,
()
=}
(3]

<

m
£
@,
o
S
G
<

150

Repeating the same process that returns the same result is inefficient. Although optimization of the com-
piler is often reliable for preventing such inefficiency, attention is still necessary in some cases, like in

the non-compliant example shown above, where the compiler used cannot determine the invariance..

d Preference
- Instead of structures, pointers to structures shall be guide

- used as function parameters. Rule
: specification

Compliant example Non-compliant example

typedef struct stag { typedef struct stag {
int meml; int memil;
int mem2; int mem2;

} STAG; } STAG;

int func (const STAG *p) { int func (STAG x) {
return p->meml + p->mem2; return x.meml + x.mem2;

¥ ¥

If a structure is passed as a function argument, all the structure data are copied into the area for storing
arguments when the function is called. If the size of the structure is large, it will become the cause of
speed performance degradation.

If a structure passed is read-only, not only pass it as a pointer to the structure, but also qualify it with
const.

< (The policy of selecting either switch or if state- Preference

“ment shall be determined and defined by taking imlde
" S ule
‘ readability and efficiency into consideration.) specification

switch statements often provide higher readability than if statements. In addition, recent compilers

tend to output optimized code using, such as, table jump or binary search when they process switch
statements. Take these matters into consideration when defining this rule.

Example of the rule:
switch statement shall be used instead of if statement when:

u
|
u
u
u
|
| |
u
|
u
u
u
= -aprocess branches according to the value of the expression (integer value), and
| |
= - the number of branches is three or more.

u

= However, this rule shall not apply if:

.- using the switch statement causes an efficiency issue that impedes the improvement of program per-
. formance.

u

u

u

|

[Related rule] M1.3.1

Part2 Coding Practices for Embedded Software:Practices Chart

Part3

Typical Coding Errors
in Embedded Software

1 Meaningless expressions and statements

2 Wrong expressions and statements

3 Wrong memory usage

4 Errors due to misunderstanding in logical expressions

5 Mistakes due to typos

descriptions that do not cause errors in some compilers

152

Typical Coding Errors in Embedded Software

This section focuses on showing some typical examples of coding errors that are easily made,
not only by C language beginners, but even by skilled programmers as well. Some recent compil-
ers provide enhanced warning functions as options, and some of the examples taken up here can be
captured by means of compiler warnings or static analysis tools. In particular, compiler warnings are
easy for anyone to use. By using the compiler warnings and being careful not to make such coding
errors during the coding stage, the amount of corrective work in later processes can be reduced.

Some existing coding conventions provide rules for preventing such coding errors. The members
of software development projects or organizations are recommended to examine whether to include
such rules into their coding conventions or not, by taking account of the skill levels of those in-
volved in the development of software programs.

In this section, the following six error-prone points are highlighted and explained with examples.

+ Meaningless expressions and statements

+ Wrong expressions and statements

+ Wrong memory usage

« Errors due to misunderstanding in logical operations
+ Mistakes due to typos

+ Wrong descriptions that do not cause errors in some compilers

ﬂ 1 Meaningless expressions and statements

Leaving statements or expressions that are not executed in the source code is likely to create mis-
understanding that often leads to problems as a result. It is said that confusion tends to be caused es-
pecially when the source code is modified by engineers who are not the originator of that particular
code.

Example 1: Writing statements that are not executed
return ret;

ret = ERROR;

This problem is caused either by putting a statement to branch the program control flow (return,
continue, break, goto statement) into the wrong place, or forgetting to delete unnecessary state-
ments when putting such a branch statement.

Part3 Typical Coding Errors in Embedded Software

Example 2: Writing statements whose execution result is not used

void func(---) {

int cnt;
cnt = 0
return;

Automatic variables and formal parameters cannot be referenced after the function return. There-
fore, if the updated variables are not referenced between the update and the return statement, the
update becomes an unnecessary expression (statement). There is a possibility that some operations
have been missed or unnecessary statements may have been left undeleted due to slippage during
program modification.

Example 3: Writing expressions whose execution result is not used

int func(---) {
int cnt;

return cnt++;
The postfix ++ operation updates the value of the variable after it is referenced, so increments as

shown in the above example are meaningless. If there is a need to return the incremented value to
the caller, the prefix increment must be used.

Example 4: Values passed as arguments are not used

int func(int in) {
in = @; // Overwriting the parameter

Overwriting a parameter without referencing its value, as shown in the above example, means that
the value of the argument set by the caller is ignored. This may be a coding error.

Typical Coding Errors in Embedded Software =~ 153

g 2 Wrong expressions and statements

To write proper source code, it must be written according to the grammar of the programming
language being used. But even programmers who are familiar with the programming language be-
ing used can make careless mistakes. Presented below are some examples of wrong expressions and
statements that are often seen.

Example 1: Incorrect range specification
if (0 < x < 10)

if (x == y == z)

The program shown in the above example appears to be a correct description at first sight. But in
C language, such description is not interpreted mathematically and is treated as a conditional expres-
sion that always becomes true.

Example 2: Comparing outside the range

unsigned char uc;
unsigned int ui;

if (uc == 256)

switch (uc) {
case 256:

¥
if (ui < @)

The variable is compared with a value beyond the range it can express. uc can only express values
between 0 and 255. ui can never be negative.

Example 3: String comparisons cannot be performed with == operation
if (str == "abc")

The condition shown in the above example compares addresses, and is not a condition for evaluat-
ing whether the string “abc” is equal to the string pointed by str or not.

154 Part3 Typical Coding Errors in Embedded Software

Example 4: Inconsistency between a function type and return statement of
the function

int funcl(int in) {
if (in < @) return; // Non-compliant
return in ;

}

int func2(int in) {
if (in < @) return 0;
} // Non-compliant

int func3(void) {// Non-compliant

return;

In the definition of a function that returns a value, all the return statements must describe the value
to be returned in return expression (function funcl). The function that returns a value must not
end the execution with anything other than the return statement (function func2). If a value is not
returned with return, the return value of the function is undefined. In addition, the type of function
with one or more return statements that respectively do not return a value should be void (function
func3). In C99, the inconsistency between such type of function and return statement is detected
as an error by the compiler.

Example 5: Pointer addition or subtraction error

#define N 10

int data[N];
int *p;

p = data;
p += sizeof(data); // p points to 160 bytes ahead and not 40 bytes ahead.

A value for addition or subtraction of integer to or from a pointer variable is automatically scaled
to the size of the type of the object pointed-to. The sizeof operator returns the number of the data
in bytes. Therefore, if the result of sizeof is used as the value for pointer addition or subtraction,
the pointer after the arithmetic may point to an unintended destination.

If the number of data bytes of int type in the above example is 4, sizeof(data) will be 40
(4x10). If the result of this sizeof is added to p, which is a pointer that points to int type, the
pointer will point to 160 bytes (40x4) ahead, scaling the result of 40 by a factor of 4 prior to the ad-
dition. Pointer p, as a result, will point at an unintended destination.

Typical Coding Errors in Embedded Software

155

ﬂ 3 Wrong memory usage

One of the characteristics of C language is that memory can be handled directly. While this is a
very useful feature when creating embedded software, it also often causes incorrect operations and
must therefore be used carefully.

Example 1: Reference and update outside the array bounds

char varl[N];

for (i = 1; i <= N; i++) {/* Accessing outside the array bounds (error) */
varl[i] = i;

¥
varl[-1] = @; // error
varl[N] = ©; // error

The array index in C language starts with 0 and its maximum value is 1 less than the element
count.

Example 2: Passing the address of an automatic variable to the caller mistakenly

int *func(tag *p) {
int x;
p->mem = &x; // The automatic variable memory area is referenced after the
// function return (risky)
return &x; // The automatic variable memory area is referenced after the
// function return (risky)

tag v;

int *p;

p = func(&y);

*p = 10; // Destroying invalid memory area
*y.mem = 20; // Destroying invalid memory area

Areas for automatic variables or parameters are freed to the system when the function ends, and
may be reused for other purposes. If the address of an automatic variable is specified as a function
return value or set in an area that can be referenced by the caller, as shown in the above example,
unexpected faults may occur when the area that has been returned to the system is referenced or up-
dated.

The area for compound literal introduced in C99 is freed and may be reused for other purposes

156 Part3 Typical Coding Errors in Embedded Software

when the execution proceeds outside the enclosing block of the compound literal.

void f ()
{

int *p;

p = (int []) {2, 4};

}
x = p[@]; // The memory area may be referenced after it is freed (risky)

Example 3: Referencing memory after being freed as dynamic memory

struct stag { // A list structure
struct stag *next;

b

struct stag *wkp; // Pointer to the list structure
struct stag *top; // Start pointer to the list structure

// Process to free the list structure by its elements one after another
// No good: It will access to an already freed area at the third control
// expression in the for statement
for (wkp = top; wkp != NULL; wkp = wkp-> next) {

free(wkp);
}

Memories obtained with, such as, malloc function need to be freed to the system by using free
function. The areas that have been freed by free function must not be referenced because they may
be reused by the system.

Example 4: Writing into string literals mistakenly
char *s;

s = "abc"; // The string literal may be in ROM area
s[@] = 'A'; // Cannot be written

Depending on the compiler, string literals may be allocated in the const area. Programmers must
therefore be careful not to overwrite string literals.

Typical Coding Errors in Embedded Software =~ 157

Example 5: Specifying copy siez s mistakenly

#define A 10
#define B 20
char a[A];
char b[B];

memcpy(a, b, sizeof(b));
When one array is copied to another, it will corrupt the memory area if the copy is made in the
size of the source that is larger than the size of the destination. The best way to copy from one array

to another is to use arrays of the same size. Or specifying the size of the destination as the copy size
will at least prevent the memory from corrupting.

g 4 Errors due to misunderstanding in logical expressions

The use of logical operators is relatively error-prone. In situations where they are used, close at-
tention must be given especially to the operation results, since in many cases, they lead to different
subsequent processes.

Example 1: Using a logical product mistakenly instead of a logical sum

if (x < @ && x > 10)

The above example shows a logical product written mistakenly instead of a logical sum. In C lan-
guage, conditions must be written carefully because they will not be processed as compile error even
if it is not possible to fulfill them.

Example 2: Using a logical sum mistakenly instead of a logical product

int i, data[1@], end = 0;
for (i = 0; i < 10 || lend; i++) {
data[i] = Value_assigned; // risk of corrupting outside the area
if (termination_condition) {
end = 1;

}

When a different condition is added as a condition for an iteration statement that sequentially ref-
erences or updates the array elements to a condition for ensuring that array bounds are not exceeded,

158 Part3 Typical Coding Errors in Embedded Software

these conditions must be specified with a logical product. The logical sum, as shown in the above
example, may cause the system to access outside the array bounds.

Example 3: Using a bitwise operation mistakenly instead of a logical operation

if (lenl & len2)

This is an example showing that bitwise AND operator (&) has been written mistakenly instead
of a logical product operator (&&). The bitwise AND operator does not mean that the conditions
are processed to gain a logical product. Make sure that the intention of the program is correctly de-
scribed.

3 B Mistakes due to typos

Some operators in C language like = and == have completely different meaning even though they
do not differ that much. When writing these operators, sufficient attention must be given to prevent
careless mistakes or typos.

Example 1: Writing = operator instead of == operator

if (x = 9)

To check whether two values are equal or not, == must be written as the operator instead of =.
Rules to prevent such errors caused by typos include “Assignment operators shall not be used in ex-
pressions to examine true or false.”

There are also reverse cases like a==b; where == operator is written mistakenly instead of = op-
erator. Easy mistake like this must also be carefully avoided.

3 6 Wrong descriptions that do not cause errors in some compilers

Each compiler has various characteristics of its own. Note that some compilers do not cause com-
pile errors during compilation even if the program contains inappropriate descriptions.

Example 1: Macro with the same name that has multiple definitions

// Depending on where AAA is referenced, what is expanded varies

Typical Coding Errors in Embedded Software

159

160

#define AAA 100

a = AAA; // 100 is assigned
#define AAA 10

b = AAA; // 10 is assigned

Macro name defined by #define will not become a compile error in some compilers even when it
is redefined without applying #undef beforehand. Macro name that may be processed differently de-
pending on where it is used should be avoided since it has the risk of impairing the readability of the
program.

Example 2: Writing into the const area mistakenly

void func(const int *p) {
*p = @; // Writing into the const area (error)

Some compilers do not cause a compile error even if the const area is rewritten. Programmers
should be careful not to rewrite the const area.

Part3 Typical Coding Errors in Embedded Software

Appendices

Appendix A List of practices and rules

Appendix B Rule classification based on C language grammar

Appendix C Regarding the implementation-defined behaviors

Appendix A List of practices and rules

[Reliability 1] R1 Initialize areas and use them by taking their sizes into consideration.

Practice in detail

R1.1 Use areas after initializing them.

R1.1.1

Rule

Automatic variables shall be initialized at the time of
declaration, or the initial values shall be assigned just
before using them.

33

R1.1.2

const variables shall be initialized at the time of decla-
ration.

33

R1.2 Describe initializations without
excess or deficiency

R1.21

Arrays with specified number of elements shall be
initialized with values that match the number of the ele-
ments.

34

R1.2.2

Initialization of enumeration type (enum type) mem-
bers shall be by either: not specifying any constants;
specifying all the constants; or specifying only the first
member.

34

R1.3 Pay attention to the range of the
area pointed by a pointer.

R1.3.1

(1) Integer addition to or subtraction from (including ++
and --) pointers shall not be made; Array format with []
shall be used for references and assignments to the
allocated area.

(2) Integer addition to or subtraction from (including ++
and --) pointers shall be made only when the pointer
points to the array and the result must be pointing
within the range of the array.

35

R1.3.2

Subtraction between pointers shall only be applied to
pointers that address elements of the same array.

36

R1.3.3

Comparison between pointers shall be used only when
the two pointers are both pointing at either the ele-
ments in the same array or the members of the same
structure.

37

R1.3.4

The restrict type qualifier shall not be used.
[MISRA C:2012 R8.14]

37

162 Appendices

[Reliability 2] R2 Use data by taking their ranges, sizes and internal representations into consideration.

Practice in detail Rule Page
R2.1 Make comparisons that do not de- | R2.1.1 Floating-point expressions shall not be used to perform 39
pend on internal representations. equality or inequality comparisons.
R2.1.2 | Floating-point variable shall not be used as a loop 39
counter.
R2.1.3 [memcmp shall not be used to compare structures and 40
unions.
R2.2 When values such as logical R2.2.1 Comparison with a value defined as true shall not be 40
values are defined as a range, made in expressions that examine true or false.
do not make a judgment by
finding whether or not a value is
equivalent to any particular value
(representative value) within this
range.
R2.3 Use the same data type to per- R2.3.1 Unsigned integer constant expressions shall be de- 41
form operations or comparisons. scribed within the range that can be represented with
the result type.
R2.3.2 [When using conditional operator (?: operator), the logi- 41
cal expression shall be enclosed in parentheses () and
both return values shall be the same type.
R2.3.3 Loop counters and variables used for comparison of 42
loop iteration conditions shall be the same type.
R2.4 Describe code by taking operation | R2.4.1 When the type of an operation and the type of the 42
precision into consideration. destination to which the operation result is assigned
(assignment destination) are different, the operation
shall be performed after casting them to the type of
expected operation precision.
R2.4.2 [When performing arithmetic operations or comparisons 43
of expressions mixed with signed and unsigned, an
explicit cast to the expected type shall be performed.
R2.5 Do not use operations that have |R2.5.1 When performing assignments (=operation, actual 44

the risk of information loss.

arguments passing of function calls, function return)
or operations to data types that may cause informa-
tion loss, they shall be first confirmed that there are no
problems, and a cast shall be described to explicitly
state that they are problem-free.

Appendix A List of practices and rules

163

164

[Reliability 2] R2 Use data by taking their ranges, sizes and internal representations into consideration.

Practice in detail

R2.5 Do not use operations that have
the risk of information loss.

R2.5.2

Rule

Unary operator -’ shall not be used in unsigned expres-
sions.

Page
45

R2.5.3

When one’s complement (~) or left shift (<<) is ap-
plied to unsigned char or unsigned short type data, an
explicit cast to the type of the operation result shall be
performed.

45

R2.5.4

The right-hand side of a shift operator shall be zero or
more, and less than the bit width of the left-hand side.

46

R2.6 Use types that can represent the
target data.

R2.6.1

(1) The types used for bit field shall only be signed int
or unsigned int. If a bit field of 1 bit width is required,
unsigned int type shall be used, and not the un-
signed int type.

(2) The types used for bit field shall be signed int,
unsigned int or _Bool. If a bit field of 1 bit width is
required, unsigned int type or _Bool type shall be
used.

(3) The types used for bit field shall be signed int,
unsigned int, _Bool, or those allowed by the com-
piler that are either enum or the type that specifies
signed or unsigned. If a bit field of 1 bit width is
required, the type that specifies unsigned or _Bool
type shall be used.

46

R2.6.2

Data used as bit sequences shall be defined with
unsigned type, and not with the signed type.

48

R2.7 Pay attention to pointer types.

R2.7.1

(1) Pointer type shall not be converted to other pointer
type or integer type, and vice versa, with the excep-
tion of mutual conversion between “pointer to data”
type and “pointer to void*” type.

(2) Pointer type shall not be converted to other pointer
type or integer type with less data width than that of
the pointer type, with the exception of mutual con-
version between “pointer to data” type and “pointer
to void*” type.

(3) Pointer type shall not be converted to other pointer
type or integer type with less data width than that of
the pointer type, with the exception of mutual con-
version between “pointer to data” type and “pointer
to other data” type, and between “pointer to data”
type and “pointer to void*” type.

49

Appendices

[Reliability 2] R2 Use data by taking their ranges, sizes and internal representations into consideration.

Practice in detail

R2.7 Pay attention to pointer types.

R2.7.2

Rule

A cast shall not be performed that removes any const
or volatile qualification from the type addressed by a
pointer. [MISRA C:2012 R11.8]

Page
52

R2.7.3

Comparison to check whether a pointer is negative or
not shall not be performed.

52

R2.8 Write in a way that will enable the
compiler to check that there are
no conflicting declarations, usages
and definitions.

R2.8.1

Functions with no parameters shall be declared with a
void type parameter.

53

R2.8.2

(1) Functions shall not be defined with a variable number
of arguments. [MISRA C:2004 16.1]

(2) When using functions with a variable number of ar-
guments, {they shall be used after documenting the
intended behaviors based on the compiler used.)

53

R2.8.3

One prototype declaration shall be made at one place
from where it can be referenced by both the function
calls and function definition.

[Reliability 3] R3 Write in a way that ensures intended behavior.

Practice in detail

R3.1 Write in a way that is conscious of
area size.

R3.1.1

Rule

(1) In an extern declaration of an array, the number of
elements shall always be specified.

(2) In an extern declaration of an array, the number of
elements shall always be specified, except for extern
declarations of arrays that correspond to the array
definition that includes initialization and has omitted
the number of elements.

54

56

R3.1.2

Iteration conditions for a loop to sequentially access ar-
ray elements shall include the decision to whether the
access is within the range of the array or not.

57

R3.1.3

The size of the array initialized with a designated initial-
izer shall be clearly indicated.

57

R3.1.4

Variable length array type shall not be used.
[MISRA C:2012 R18.8]

58

R3.1.5

(1) sizeof operator shall not be applied to pointer-type
variable.

(2) sizeof operator shall not be applied to array-type
argument.

58

Appendix A List of practices and rules

165

[Reliability 3] R3 Write in a way that ensures intended behavior.

Practice in detail

R3.2 Prevent operations that may
cause runtime error from falling
into error cases.

R3.21

Rule

Operations shall be performed after confirming that
the right-hand side expression of division or remainder
operation is not 0.

59

R3.2.2

Destination pointed by a pointer shall be referenced to
after checking that the pointer is not the null pointer.

60

R3.3 Check the interface restrictions
when a function is called.

R3.3.1

If a function returns error information, then that error
information shall be tested. [MISRA C:2012 D4.7]

60

R3.3.2

The function shall check if there are constraints on
parameters before starting to process.

61

R3.4 Do not perform recursive calls.

R3.4.1

Functions shall not call themselves, either directly or
indirectly. [MISRA C:2012 R17.2]

62

R3.5 Pay attention to branch conditions
and describe how to handle cases
that do not follow the predefined
conditions when they occur.

R3.5.1

The else clause shall be written at the end of an if-else
if statement. If it is known that the else condition does
not normally occur, the description of the else caluse
shall be either one of the following:

(i) An exception handling process shall be written in
the else clause.

(i) A comment specified by the project shall be written
in the else clause.)

63

R3.5.2

{The default clause shall be written at the end of

a switch statement. If it is known that the default
condition does not normally occur, the description of
the default clause shall be either one of the followings.
{(i) An exception handling process shall be written in
the default clause.

(if) A comment specified by the project shall be written
in the default clause.)

64

R3.5.3

Equality operators (==) or inequality operators (!=) shall
not be used for comparisons of loop counters. (<=, >=,
<, or > shall be used.)

65

R3.6 Pay attention to the order of
evaluation.

R3.6.1

Variables whose values are changed in an expression
shall not be referred to or modified in the same expres-
sion.

66

R3.6.2

Function calls with side effects and volatile variables
shall not be described more than once in a sequence
of actual arguments or binary operation expressions.

67

166 Appendices

[Reliability 3] R3 Write in a way that ensures intended behavior.

Practice in detail Rule
R3.6 Pay attention to the order of R3.6.3 [sizeof operator shall not be used in expressions that 68
evaluation. have side effect.
R3.11 Be careful with how to access the |R3.11.1 | For concurrent processing, volatile shall not be used as 68
shared data in programs that use synchronization primitive.
threads or signals.
R3.11.2 [The bit fields that may be allocated in the same mem- 69

ory space shall not be accessed by multiple threads or
shall be exclusively controlled properly.

[Maintainability1] M1 Keep in mind that others will read the program

Practice in detail

M1.1 Do not leave unused descriptions.

M1.1.1

Rule

Unused functions, variables, parameters, typedefs,
tags, labels or macros shall not be declared (defined).

73

M1.1.2

(1) Sections of code should not be “commented out”.
[MISRA C:2012 D4.4]

(2) For commenting out sections of code, (the coding
rule shall be specified.)

73

M1.2 Do not writing confusingly.

M1.2.1

(1) Only one variable shall be declared in one declara-
tion statement (avoid multiple declarations.)

(2) Automatic variables of the same type used for the
similar purposes may be declared in one declara-
tion statement, but variables with initialization and
variables without initialization shall not be mixed.

74

M1.2.2

Suffixes shall be added to constant descriptions that
can use them to indicate appropriate types. Only an
uppercase letter “L” shall be used for a suffix indicating
a long type integer constant.

75

M1.2.3

When expressing a long string literal, successive string
literals shall be concatenated without using newlines
within the string literal.

75

M1.3 Do not write in an unconventional
style.

M1.3.1

Expressions evaluating to true or false shall not be
described in switch (expression).

76

M1.3.2

The case labels and default label in a switch statement
shall be described only in the compound statement (ex-
cluding nested compound statements) within the body
of the switch statement.

76

Appendix A List of practices and rules

167

168

[Maintainability1] M1 Keep in mind that others will read the program

Practice in detail Rule
M1.3 Do not write in an unconventional |M1.3.3 [The types shall be explicitly described for definitions 77
style. and declarations of functions and variables.
M1.4 Write in a style that clearly speci- | M1.4.1 Expressions described at the right hand and left hand 77
fies the operator precedence. of && and || operations shall be either simple variables
or expressions enclosed with (). However, if only
&& operations or only || operations are successively
combined, it is not necessary to enclose each && and
|| expression with ().
M1.4.2 |{Usage of parentheses to explicitly indicate operator 78
precedence shall be defined.)
M1.5 Explicitly describe the operations |M1.5.1 | A function identifier (function name) shall only be used 78
that are likely to cause misunder- with either a preceding “&”, or with a parenthesized
standing when they are omitted. parameter list, which may be empty. [MISRA C:2004
16.9]
M1.5.2 | Comparisons with zero (0) shall be explicitly written in 79
conditional expressions.
M1.6 Use one area for one purpose. M1.6.1 Variables shall be prepared for each purpose. 79
M1.6.2 | (1) Unions shall not be used. 80
(2) If unions are used, the same members that are
assigned values shall be referenced.
M1.7 Do not reuse names. M1.7.1 The rules below shall be followed for name unique- 81

ness.
1. An identifier declared in an inner scope shall not hide
an identifier declared in an outer scope.
[MISRA C:2012 R5.3]
2. A typedef name shall be a unique identifier.
[MISRA C:2013 R5.6]
3. A tag name shall be a unique identifier.
[MISRA C:2012 R5.7]
4. |dentifiers that define objects or functions with exter-
nal linkage shall be unique. [MISRA C:2012 R5.8]
5. Identifiers that define objects or functions with inter-
nal linkage should be unique. [MISRA C:2012 R5.9]
6. No identifier in one name space should have the
same spelling as an identifier in another name
space, with the exception of structure member and
union member names. [MISRA C:2004 R5.6]

Appendices

[Maintainability1] M1 Keep in mind that others will read the program

Practice in detail Rule
M1.7 Do not reuse names. M1.7.2 | Names for functions, variables and macros in the 82
standard library shall not be redefined or reused. In
addition, those macro names shall not be undefined.
M1.7.3 | Names (variables) that start with an underscore shall 83
not be defined.

M1.8 Do not use language specifica- M1.8.1 The right-hand operand of a logical && or || operator 84
tions that are likely to cause shall not contain side effects. [MISRA C:2012 R13.5]
misunderstanding.

M1.8.2 C macros shall only expand to a braced initializer, a 84
constant, a parenthesised expression, a type qualifier,
a storage class specifier, or a do-while-zero construct.
[MISRA 2004 19.4]

M1.8.3 [#line shall not be used, unless it is automatically gener- 85
ated by a tool.

M1.8.4 | Sequences of three or more characters starting with ?? 85
and alternative tokens shall not be used.

M1.8.5 [A sequence starting with zero (0) that is two or more 86
digits long shall not be used as a constant.

M1.9 When writing in an unconventional | M1.9.1 If statements that do nothing need to be intentionally 86
style, explicitly state its intention. described, comments or empty macros shall be used

to make them noticeable.
M1.9.2 | {The unified style of writing infinite loops shall be de- 87
fined.)

M1.10 Do not embed magic numbers. M1.10.1 [A meaningful constant shall be used after defining it as 87

a macro.
M1.11 Explicitly state the area attributes | M1.11.1 | Read-only areas shall be declared as const type. 88
M1.11.2 [Areas that may be updated by other execution units 89
shall be declared as volatile.
M1.11.3 | {Rules for variable declaration and definition for 89
ROMization shall be defined)
M1.12 Correctly describe the statements |M1.12.1 | Correct code shall be described even if it is going to be 90

even if they are not compiled.

deleted by the preprocessor.

Appendix A List of practices and rules

169

[Maintainability2] M2 Write in a style that can prevent modification errors.

M3.1

[Maintainability3] M3 Write programs

Practice in detail

Do structured programming.

simply.

M3.1.1

Practice in detail Rule
M2.1 Clarify the grouping of structured | M2.1.1 If arrays and structures are initialized with values other 92
data and blocks. than 0, their structural form shall be indicated by using
braces { }'. Data shall be described without any omis-
sion, except when all values are 0.
M2.1.2 | The body of if, else if, else, while, do, for, and switch 92
statements shall be enclosed into blocks.
M2.2 Localize access ranges and M2.2.1 | Variables used only in one function shall be declared 93
related data. within the function.
M2.2.2 | Variables accessed by several functions defined in the 94
same file shall be declared with static in the file scope..
M2.2.3 | Functions that are called only by functions defined in 94
the same file shall be static.
M2.2.4 | enum shall be used rather than #define when defining 95

related constants.

For any iteration statement, there shall be at most one
break statement used for loop termination. [MISRA
C:2012 R15.4])

97

M3.1.2

(1)The goto statement shall not be used.

(2) When using a goto statement, the destination to
jump to shall be the label declared after the goto
statement that is in the same block or within the
block enclosing the goto statement.

98

M3.1.4

(1) Each case clause and default clause in a switch
statement shall always end with a break statement.

(2) If the case clause or default clause in a switch
statement is not going to be ended with a break
statement, {a project-specific comment shall be de-
fined) and that comment shall instead be inserted.

99

M3.1.5

(1) A function shall end with one return statement.

(2) A return statement to return in the middle of pro-
cessing shall be written only in case of recovery
from abnormality.

100

170 Appendices

[Maintainability3] M3 Write programs simply.

Practice in detail

M3.2 One statement should have one | M3.2.1 (1) Comma expressions shall not be used. 100
side effect. (2) Comma expressions shall not be used, other than
in expressions for initializing or updating in for state-
ments.
M3.2.2 | Multiple assignments shall not be written in one state- 101

ment, except when the same value is assigned to
multiple variables.

M3.3 Separately describe expressions |M3.3.1 | The three expressions of a for statement shall be con- 101
with different purposes. cerned only with loop control. [MISRA C:2004 13.5]

M3.3.2 [Numeric variables being used within a for loop for itera- 102
tion counting shall not be modified in the body of the
loop. [MISRA C:2004 13.6]

M3.3.3 [(1) Assignment operators shall not be used in 102
expressions to examine true or false.

(2) Assignment operators shall not be used in expres-
sions to examine true or false, except for conven-
tionally used notations.

M3.4 Do not use complicated pointer | M3.4.1 | Three or more pointer indirections shall not be used. 103
operations.

[Maintainability4] M4 Write in a unified style.

Practice in detail

M4.1 Unify the coding styles. M4.1.1 {Conventions regarding the style of using, such as, the 105
braces{ }, indentation and space shall be defined.)

M4.2 Unify the style of writing com- M4.2.1 {Convention regarding the style of writing file header 108
ments. comments, function header comments, end of line
comments, block comments and copyright shall be
defined.)
M4.3 Unify the naming conventions. M4.3.1 {Convention for naming external variables and internal 110

variables shall be defined.)

M4.3.2 | {Convention for naming files shall be defined.) 110

M4.4 Unify the contents to be described | M4.4.1 | {The descriptive contents of header files (declarations, 113
in a file and the order of describ- definitions, etc) and the order they are described in
ing them. shall be defined.)

Appendix A List of practices and rules = 171

[Maintainability4] M4 Write in a unified style.

Practice in detail

M4.4 Unify the contents to be described
in a file and the order of describ-
ing them.

M4.4.2

{The descriptive contents of source files (declarations,
definitions, etc) and the order they are described in
shall be defined.)

114

M4.4.3

To use or define external variables or functions (except
for functions used only in the file), the header file de-
scribing their declarations shall be included.

115

M4.4.4

External variables shall not be defined in multiple loca-
tions.

115

M4.4.5

Variable definitions or function definitions shall not be
described in a header file.

116

M4.4.6

Header files shall be descriptively capable of handling
redundant inclusions. {The descriptive method to
achieve this capability shall be defined.)

116

M4.5 Unify the style of writing declara-
tions.

M4.5.1

(1) In a function prototype declaration, all the param-
eters shall not be named (types only.)

(2) In a function prototype declaration, all the param-
eters shall be named. In addition, the types of the
parameters, their names and the type of the return
value shall be literally the same as those of the
function definition.

17

M4.5.2

Structure tags and variables shall be declared sepa-
rately.

118

M4.5.3

(1) “,” shall not be placed before the last “}" in the list of
initial value expressions for structures, unions and
arrays, nor in the list of enumerators.

(2) “,” shall not be placed before the last “}" in the list
of initial value expressions for structures, unions
and arrays, nor in the list of enumerators. However,
placing “,” before the last “}" in the list of initial val-
ues for array initialization is allowed.

118

M4.6 Unify the style of writing null point-
ers.

M4.6.1

(1) O shall be used for the null pointer. NULL shall not
be used in any case.

(2) NULL shall be used for the null pointer. NULL shall
not be used for anything other than the null pointer.

119

M4.7 Unify the style of writing prepro-
cessor directives.

M4.7 1

The body and parameters of a macro that includes
operators shall be enclosed with parentheses ().

120

172 Appendices

[Maintainability4] M4 Write in a unified style.

Practice in detail

M4.7 Unify the style of writing prepro- |M4.7.2 | #else, #elif or #endif that correspond to #ifdef, #ifndef 120

cessor directives. or #if shall be described in the same file, and (their
correspondence relationship shall be clearly stated with
a comment defined in the project) .

M4.7.3 | defined(macro_name) or defined macro_name shallbe | 121
used to check whether the macro name has already
been defined by #if or #elif.

M4.7.5 | Macros shall not be #define’d or #undef'd within a 121
block. [MISRA C:2004 19.5]

M4.7.6 |#undef shall not be used. [MISRA C:2012 R19.6] 122
M4.7.7 | Controlling expression of #if or #elif preprocessing 123
directive shall be evaluated as 0 or 1. [MISRA C:2012
R20.8]

[Maintainability5] M5 Write in a style that makes testing easy.

Practice in detail

M5.1 Write in a style that makes it easy | M5.1.1 {The rules for writing the code for setting debug op- 125
to investigate the causes of prob- tions and for recording logs in release modules shall be
lems when they occur. defined.)
M5.1.2 [(1) The # and ## preprocessor operators should not 127

be used. [MISRA C:2012 R20.10]

(2) A macro parameter immediately following a #
operator shall not immediately be followed by a ##
operator. [MISRA C:2012 R20.11]

M5.1.3 | Function shall be used rather than using function-like 128
macro.
M5.2 Be careful when using dynamic M5.2.1 | (1) Dynamic memory shall not be used. 128
memory allocations. (2) If dynamic memory is used, {The maximum

amount of memory that can be used, process to
be taken when running out of memory, and
debugging procedure shall be defined.)

[Portability 1] P1 Write in a style that is not dependent on the compiler.

Practice in detail Rule
P1.1 Do not use functionalities that are |P1.1.1 (1) Functionalities not specified in the language stan- 133
advanced features or implementa- dard shall not be used.
tion-defined. (2) If functionalities not specified in the language stan-

dard are used, (the functionalities used and their
usage shall be documented.)

Appendix A List of practices and rules =~ 173

174

[Portability 1] P1 Write in a style that is not dependent on the compiler.

Practice in detail Rule

P1.1 Do not use functionalities that are |P1.1.2 {All usage of implementation-defined behavior shall be 133
advanced features or implementa- documented.) [MISRA C:2004 3.1]
tion-defined.

P1.1.3 To use a program written in another language, (its 134
interface shall be documented and its usage shall be
defined.)

P1.2 Use only the characters and P1.2.1 To use characters other than those defined in the 134
escape sequences defined in the language standard for writing a program, the compiler
language standard. specifications shall be confirmed, and {their usage

shall be defined.)
P1.2.2 Only escape sequences defined in the language stan- 136
dard shall be used.

P1.3 Confirm and document data P1.3.1 Simple char type (that does not specify the signed- 136
type representations, behavioral ness) shall be used only for storing character values.
specifications of advanced func- If a process that depends on signedness (implementa-
tionalities and implementation- tion-defined) is required, unsigned char or signed char
dependent parts. that specifies its signedness shall be used.

P1.3.2 | The members of an enumeration type (enum) shall be 137
defined with values that can be represented as int type.
P1.3.3 (1) Bit fields shall not be used. 138
(2) it fields shall not be used for data whose bit
positions are meaningful.
(3) «Ifitis being relied upon, the implementation-
defined behavior and packing of bit fields shall be
documented.) [MISRA C:2004 3.5]

P1.4 For source file inclusion, confirm [P1.4.1 The #include directive shall be followed by either a <file- 139
the implementation-dependent name> or “filename” sequence.
parts and write in a style that is [MISRA C:2012 R20.3]
not implementation-dependent.

P1.4.2 [{(The usage of <> format and “" format for #include file 139
specification shall be defined.)

P1.4.3 |Characters, \, “ /*,// and : shall not be used for file 140
specification in #include.

P15 Write in a style that does not P1.5.1 The absolute path shall not be written for #include file 140

depend on the environment used
for compiling.

specification.

Appendices

[Portability 1] P1 Write in a style that is not dependent on the compiler.
Practice in detail Rule

P1.5 Write in a style that does not sizeof shall be used to determine the size of a type or
depend on the environment used variable.
for compiling.

[Portability 2] P2 Localize the code that has a problem with portability.

Practice in detail Rule

P21 Localize the code that has a prob- | P2.1.1 When assembly language programs are called from C
lem with portability. language, {how to localize such parts shall be defined)
,such as, by expressing them as functions or inline
functions of C language that contain only inline assem-
bly language code or describing them using macros.

143

P2.1.2 Keywords extended by the compiler shall be used by
localizing them after {defining the macros.) .

143

P2.1.3 [(1) The basic types (char, int, long, long long, float, dou-
ble and long double) shall not be used. Instead, the
types defined by typedef shall be used. (The types
defined by typedef that are used in the project shall
be defined.)

(2) When using any of the basic types (char, int, long,
long long, float, double and long double) in a form
that is dependent on its size, the type defined by
typedef for each of these basic types shall be used.
{The types defined by typedef that are used in the
project shall be defined.)

[Efficiency1] E1 Write in a style that takes account of resource and time efficiencies.

Practice in detail Rule

of resource and time efficiencies. efficiencies.

144

E1.1 Write in a style that takes account | E1.1.1 Write in a style that takes account of resource and time | 149
E1.1.2 Operations that remain unchanged shall not be per- 149
formed within an iterated process.
E1.1.3 Instead of structures, pointers to structures shall be 150
used as function parameters.
E1.1.4 {The policy of selecting either switch or if statement 150

shall be determined and defined by taking readability
and efficiency into consideration.)

Appendix A List of practices and rules

175

176

Appendix B Rule classification based on the C language grammar

The rules are classified according to the C language grammar shown below.

Classification based

on the grammar

1. Style

\[o}

Rule

11

Syntax style

M4.1.1

{Conventions regarding the style of using, such as, the braces{ }, indentation
and space shall be defined.)

12

Comments

M4.2.1

{Convention regarding the style of writing file header comments, function
header comments, end of line comments, block comments and copyright shall
be defined.)

13

Naming

M1.7.1

The rules below shall be followed for name uniqueness.

1. An identifi er declared in an inner scope shall not hide an identifi er declared
in an outer scope. [MISRA C:2012 R5.3]

2. A typedef name shall be a unique identifi er. [MISRA C:2013 R5.6]

3. A tag name shall be a unique identifi er. [MISRA C:2012 R5.7]

4. |dentifiers that define objects or functions with external linkage shall be
unique. [MISRA C:2012 R5.8]

5. Identifiers that define objects or functions with internal linkage should be
unique. [MISRA C:2012 R5.9]

6.No identifi er in one name space should have the same spelling as an identifi
er in another name space, with the exception of structure member and
union member names. [MISRA C:2004 5.6]

M1.7.2

Names for functions, variables and macros in the standard library shall not be
redefined or reused. In addition, those macro names shall not be undefined.

M1.7.3

Names (variables) that start with an underscore shall not be defined.

M4.3.1

{Convention for naming external variables and internal variables shall be
defined.)

M4.3.2

{Convention for naming files shall be defined.)

14

Composition of a file

M4.4.1

{The descriptive contents of header files (declarations, definitions, etc) and the
order they are described in shall be defined.)

M4.4.2

{The descriptive contents of source files (declarations, definitions, etc) and the
order they are described in shall be defined.)

M4.4.3

To use or defi ne external variables or functions (except for functions used
only in the file), the header file describing their declarations shall be included.

M4.4.5

Variable definitions or function definitions shall not be described in a header
file.

Appendices

Classification based

on the grammar
1. Style

1.4 | Composition of a file | M4.4.6 | Header files shall be descriptively capable of handling redundant inclusions.
{The descriptive method to achieve this capability shall be defined)

1.5 | Constants M1.2.2 | Suffixes shall be added to constant descriptions that can use them to indicate
appropriate types. Only an uppercase letter “L” shall be used for a suffix indi-
cating a long type integer constant.

M1.2.3 | When expressing a long string literal, successive string literals shall be concat-
enated without using newlines within the string literal.

M1.8.5 | A sequence starting with zero (0) that is two or more digits long shall not be
used as a constant.

M1.10.1 | Ameaningful constant shall be used after defining it as a macro.

1.6 | Other (Style) M1.1.2 | Sections of code should not be “commented out”.
[MISRA C:2004 2.4]

M1.8.4 | Sequences of three or more characters starting with ?? and alternative tokens
shall not be used.

M1.9.1 If statements that do nothing need to be intentionally described, comments or
empty macros shall be used to make them noticeable.

M5.1.3 | Function shall be used rather than using function-like macro.

2. Type

2.1 |[Basic types R2.6.2 Data used as bit sequences shall be defined with unsigned type, and not with
the signed type

P1.3.1 Simple char type (that does not specify the signedness) shall be used only
for storing character values. If a process that depends on signedness (imple-
mentation-defined) is required, unsigned char or signed char that specifi es its
signedness shall be used.

P2.1.3 (1) The basic types (char, int, long, long long, float, double and long double)
shall not be used. Instead, the types defined by typedef shall be used. {The
types defined by typedef that are used in the project shall be defined.)

(2) When using any of the basic types (char, int, long, long long, fl oat, double
and long double) in a form that is dependent on its size, the type defined
by typedef for each of these basic types shall be used. {The types defined
by typedef that are used in the project shall be defined)

Appendix B Rule classification based on C language grammar =~ 177

178

Classification based
\[o}

on the grammar

2. Type

2.2 | Structures/Unions R2.1.3 memcmp shall not be used to compare structures and unions.

M1.6.2 | (1) Unions shall not be used. [MISRA C:2004 18.4]
(2) If unions are used, the same members that are assigned values shall be
referenced.

M1.7.2 Names for functions, variables and macros in the standard library shall not be
redefined or reused. Inaddition, those macro names shall not be undefined.

M4.5.2 | Structure tags and variables shall be declared separately.

2.3 |Bit fields R2.6.1 (1) The types used for bit field shall only be signed int or unsigned int. If a bit
field of 1 bit width is required, unsigned int type shall be used, and not the
unsigned int type

(2) The types used for bit field shall be signed int, unsigned int or _Bool. If a
bit field of 1 bit width is required, unsigned int type or _Bool type shall be
used.

(3) The types used for bit field shall be signed int, unsigned int, _Bool, or
those allowed by the compiler that are either enum or the type that specifi
es signed or unsigned. If a bit field of 1 bit width is required, the type that
specifi es unsigned or _Bool type shall be used.

R3.11.2 | The bit fields that may be allocated in the same memory space shall not be
accessed by multiple threads or shall be exclusively controlled properly.

P1.3.3 (1) Bit fields shall not be used.

(2) Bit fields shall not be used for data whose bit positions are meaningful.

(3) (Ifitis being relied upon, the implementationdefined behavior and packing
of bit fields shall be documented.) [MISRA C:2004 3.5]

2.4 | Enumerated type R1.2.2 Initialization of enumeration type (enum type) members shall be by either: not
specifying any constants; specifying all the constants; or specifying only the
first member.

M2.2.4 | enum shall be used rather than #define when defi ning related constants.

P1.3.2 The members of an enumeration type (enum) shall be defined with values that
can be represented as int type.

3. Declaration/Definition

3.1 | Initialization R1.1.1 Automatic variables shall be initialized at the time of declaration, or the initial
values shall be assigned just before using them.

R1.1.2 const variables shall be initialized at the time of declaration.

Appendices

Classification based

on the grammar

3. Declaration/Definition

3.1 | Initialization R1.2.1 Arrays with specifi ed number of elements shall beinitialized with values that
match the number of the elements.

R3.1.3 The size of the array initialized with a designated initializer shall be clearly
indicated.

M2.1.1 If arrays and structures are initialized with values other than 0, their structural
form shall be indicated by using braces { }'. Data shall be described without
any omission, except when all values are 0.

M4.53 | (1)*” shall not be placed before the last “}" in the list of initial value expres-
sions for structures, unions and arrays, nor in the list of enumerators

(2) “,” shall not be placed before the last “}” in the list of initial value expres-
sions for structures, unions and arrays, nor in the list of enumerators.
However, placing “,” before the last “}” in the list of initial values for array
initialization is allowed.

3.2 | Variable declaration/ | R3.11.1 [For concurrent processing, volatile shall not be used as synchronization primi-
definition tive.

M1.2.1 (1) Only one variable shall be declared in one declaration statement (avoid
multiple declarations.)

(2) Automatic variables of the same type used for the similar purposes may
be declared in one declaration statement, but variables with initialization
and variables without initialization shall not be mixed.

M1.6.1 Variables shall be prepared for each purpose.

M1.11.1 | Read-only areas shall be declared as const type.

M1.11.2 | Areas that may be updated by other execution units shall be declared as vola-
tile.

M1.11.3 | {Rules for variable declaration and definition for ROM ization shall be defined)

M2.2.1 Variables used only in one function shall be declared within the function.

M2.2.2 | Variables accessed by several functions defined in the same file shall be de-
clared with static in the file scope.

M4.4.4 | External variables shall not be defined in multiple locations.

Appendix B Rule classification based on C language grammar 179

180

Classification based
\[o}

on the grammar

3. Declaration/Definition

3.3 | Function declaration/ | R2.8.1 Functions with no parameters shall be declared with a void type parameter.
definition

R2.8.2 | (1) Functions shall not be defined with a variable number of arguments.
(MISRAC:2004 16.1]

(2) When using functions with a variable number of arguments, { they shall be
used after documenting the intended behaviors based on the compiler used.

R2.8.3 | One prototype declaration shall be made at one place from where it can be
referenced by both the function calls and function defi nition.

M2.2.3 [Functions that are called only by functions defined in the same file shall be
static.

M4.5.1 (1) In a function prototype declaration, all the parameters shall not be named
(types only.)

(2) In a function prototype declaration, all the parameters shall be named.
In addition, the types of the parameters, their names and the type of the
return value shall be literally the same as those of the function defi nition.

3.4 [Array declaration/|R3.1.1 (1) In an extern declaration of an array, the number of elements shall always be

definition specified.

(2) In an extern declaration of an array, the number of elements shall always
be specified, except for extern declarations of arrays that correspond to the
array defi nition that includes initialization and has omitted the number of ele-
ments.

R3.1.4 Variable length array type shall not be used. [MISRA C:2012 R18.8]

3.5 | Other (declaration/|M1.1.1 Unused functions, variables, parameters, typedefs, tags, labels or macros shall
definition) not be declared (defined).

M1.3.3 | The types shall be explicitly described for defi nitions and declarations of func-
tions and variables.

4. Expression

4.1 [Function call R3.3.1 If a function returns error information, then that error information shall be
tested [MISRA C:2012 D4.7]

R3.3.2 | The function shall check if there are constraints on parameters before starting
to process

R3.4.1 Functions shall not call themselves, either directly or indirectly
[MISRA C:2012 R17.2]

Appendices

Classification based

on the grammar

4. Expression

4.2 | Pointer R1.31 (1) Integer addition to or subtraction from (including ++ and --) pointers shall not
be made; Array format with [] shall be used for references and assignments
to the allocated area.

(2)Integer addition to or subtraction from (including ++ and --) pointers shall be
made only when the pointer points to the array and the result must be point-
ing within the range of the array.

R1.3.2 Subtraction between pointers shall only be applied to pointers that address
elements of the same array. [MISRA C:2012 R18.2]

R1.3.3 Comparison between pointers shall be used only when the two pointers are
both pointing at either the elements in the same array or the members of the
same structure.

R2.7.1 (1) Pointer type shall not be converted to other pointer type or integer type, and
vice versa, with the exception of mutual conversion between “pointer to
data” type and “pointer to void*” type.

(2) Pointer type shall not be converted to other pointer type or integer type with
less data width than that of the pointer type, with the exception of mutual
conversion between “pointer to data” type and “pointer to void*” type

(3) Pointer type shall not be converted to other pointer type or integer type with
less data width than that of the pointer type, with the exception of mutual
conversion between “pointer to data” type and “pointer to other data” type,
and between “pointer to data” type and “pointer to void*” type.

R2.7.3 Comparison to check whether a pointer is negative or not shall not be per-
formed.

R3.2.2 Destination pointed by a pointer shall be referenced to after checking that the
pointer is not the null pointer.

M3.4.1 | Three or more pointer indirections shall not be used.

M4.6.1 | (1) O shall be used for the null pointer. NULL shall not be used in any case.
(2) NULL shall be used for the null pointer. NULL shall not be used for anything
other than the null pointer.

4.3 |Cast R2.4.2 | When performing arithmetic operations or comparisons of expressions mixed
with signed and unsigned, an explicit cast to the expected type shall be per-
formed.

R2.7.2 | A cast shall not be performed that removes any const or volatile qualification
from the type addressed by a pointer. [MISRA C:2012 R11.8]

Appendix B Rule classification based on C language grammar =~ 181

Classification based

on the grammar

\[o}

4. Expression
4.4 | Unary operation R2.5.2 | Unary operator -’ shall not be used in unsigned expressions.
R3.1.5 (1) sizeof operator shall not be applied to pointer-type variable.
(2) sizeof operator shall not be applied to array-type argument.
R3.6.3 | sizeof operator shall not be used in expressions that have side effect.
M1.5.1 A function identifier (function name) shall only be used with either a preceding
“&”, or with a parenthesized parameter list, which may be empty.
[MISRA C:2004 16.9]
4.5 [The four arithmetic | R3.2.1 Operations shall be performed after confi rming that the right-hand side ex-
operations pression of division or remainder operation is not 0.

4.6 | Shift R2.5.4 | The right-hand side of a shift operator shall be zero or more, and less than the
bit width of the left-hand side.

4.7 [Comparison R2.1.1 Floating-point expressions shall not be used to perform equality or inequality
comparisons.

R2.2.1 Comparison with a value defined as true shall not be made in expressions that
examine true or false.
M1.5.2 Comparisons with 0 shall be explicitly written.

4.8 [Bit operation R2.5.3 [When one’s complement (~) or left shift (<<) is applied to unsigned char or
unsigned short type data, an explicit cast to the type of the operation result
shall be performed.

49 [Logical operation M1.4.1 Expressions described at the right hand and left hand of && and || operations
shall be either simple variables or expressions enclosed with (). However, if
only && operations or only || operations are successively combined, it is not
necessary to enclose each && and || expression with ().

M1.8.1 The right-hand operand of a logical && or || operator shall not contain side ef-
fects. [MISRA C:2004 12.4]

4.10 | Ternary operation R2.3.2 When using conditional operator (?: operator), the logical expression shall be
enclosed in parentheses () and both return values shall be the same type.

4.11 | Assignment R2.4.1 When the type of an operation and the type of the destination to which the
operation result is assigned (assignment destination) are different, the opera-
tion shall be performed after casting them to the type of expected operation
precision.

182 Appendices

Classification based

on the grammar

4. Expression

4.11 | Assignment R2.5.1 When performing assignments (=operation, actual arguments passing of func-
tion calls, function return) or operations to data types that may cause informa-
tion loss, they shall be first confirmed that there are no problems, and a cast
shall be described to explicitly state that they are problem-free.

M3.3.3 | (1) Assignment operators shall not be used in expressions to examine true or
false.

(2) Assignment operators shall not be used in {expressions to examine true
or false, except for conventionally used notations.)

412 | Comma M3.2.1 (1) Comma expressions shall not be used.
(2) Comma expressions shall not be used, other than in expressions for initial-
izing or updating in for statements.

4.13 | Priority and Side R3.6.1 Variables whose values are changed in an expression shall not be referred to
effect or modified in the same expression.

R3.6.2 Function calls with side effects and volatile variables shall not be described
more than once in a sequence of actual arguments or binary operation expres-
sions.

M1.4.2 {Usage of parentheses to explicitly indicate operator precedence shall be
defined.)

4.14 | Other (Expression) |R2.3.1 Unsigned integer constant expressions shall be described within the range
that can be represented with the result type.

5. Statement

5.1 |if statement R3.5.1 The else clause shall be written at the end of an if-else if statement. If it is
known that the else condition does not normally occur, the description of the
else caluse shall be either one of the following:

{(i) An exception handling process shall be written in the else clause.

(i) A comment specifi ed by the project shall be written in the else clause.)

5.2 [switch statement R3.5.2 {The default clause shall be written at the end of a switch statement. If it is
known that the default condition does not normally occur, the description of the
default clause shall be either one of the following.

{(i) An exception handling process shall be written in the default clause.

(ii) A comment specifi ed by the project shall be written in the default clause.)

M1.3.1 Expressions evaluating to true or false shall not be described in switch (ex-
pression).

Appendix B Rule classification based on C language grammar =~ 183

184

Classification based

on the grammar

5. Statement

\[o}

5.2 [switch statement M1.3.2 | The case labels and default label in a switch statement shall be described only
in the compound statement (excluding nested compound statements) within
the body of the switch statement.

M3.1.4 [(1) Each case clause and default clause in a switch statement shall always

end with a break statement.

(2) If the case clause or default clause in a switch statement is not going to
be ended with a break statement, { a project-specifi c comment shall be
defined) and that comment shall instead be inserted

5.3 | for/while statement |R2.1.2 Floating-point variable shall not be used as a loop counter.

R2.3.3 Loop counters and variables used for comparison of loop iteration conditions
shall be the same type.

R3.1.2 Iteration conditions for a loop to sequentially access array elements shall
include the decision to whether the access is within the range of the array or
not.

R3.5.3 | Equality operators (==) or inequality operators (!=) shall not be used for com-
parisons of loop counters. (<=, >=, <, or > shall be used.)

M1.9.2 | {The unified style of writing infinite loops shall be defined)

M3.1.1 For any iteration statement, there shall be at most one break statement used
for loop termination. [MISRA C:2012 R15.4]

M3.3.1 The three expressions of a for statement shall be concerned only with loop
control. [MISRA C:2004 13.5]

M3.3.2 | Numeric variables being used within a for loop for iteration counting shall not
be modifi ed in the body of the loop. [MISRA C:2004 13.6] .

5.4 | Other (statement) M2.1.2 [The body of if, else if, else, while, do, for, and switch statements shall be en-
closed into blocks.

M3.1.2 | (1) The goto statement shall not be used.

(2) When using a goto statement, the destination to jump to shall be the label
declared after the goto statement that is in the same block or within the
block enclosing the goto statement.

M3.1.5 | (1) Afunction shall end with one return statement.

(2) Areturn statement to return in the middle of processing shall be written
only in case of recovery from abnormality.

Appendices

Classification based

on the grammar

5. Statement

5.4 | Other (statement) M3.2.2 | Multiple assignments shall not be written in one statement, except when the
same value is assigned to multiple variables.

6. Macro/preprocessor

6.1 [#if related M4.7.2 | #else, #elif or #endif that correspond to #ifdef, #ifndef or #if shall be described
in the same file, and { their correspondence relationship shall be clearly stated
with a comment defined in the project) .

M4.7.3 | “defined(macro_name) or defined macro_name shall be used to check
whether the macro name has already been defined by #if or #elif.

M4.7.7 | Controlling expression of #if or #elif preprocessing directive shall be evaluated
as 0 or 1. [MISRA C:2012 R20.8] .

6.2 [#include P1.4.1 The #include directive shall be followed by either a <filename> or “filename”
sequence. [MISRA C:2012 R20.3]

P1.4.2 | {The usage of <> format and * format for #include file specifi cation shall be
defined.)

P143 Characters , \, “, /*, // and : shall not be used for file specifi cation in #include.

P1.5.1 The absolute path shall not be written for #include file specification.

6.3 [Macro M1.8.2 | C macros shall only expand to a braced initializer, a constant, a parenthesised
expression, a type qualifier, a storage class specifier, or a do-while-zero con-
struct. [MISRA C:2004 19.4)

M4.7.1 | The body and parameters of a macro that includes operators shall be en-
closed with parentheses ().

M4.7.5 | Macros shall not be #define’d or #undefd within a block. [MISRA C:2004
19.5]

M4.7.6 | #undef shall not be used. [MISRA C:2012 R19.6]

6.4 | Other (preprocessor) | M1.8.3 | #line shall not be used, unless it is automatically generated by a tool.

M1.12.1 | Correct code shall be described even if it is going to be deleted by the prepro-
Cessor.

Appendix B Rule classification based on C language grammar =~ 1 85

186

Classification based
\[o}

on the grammar

6. Macro/preprocessor

6.4 | Other (preprocessor) | M5.1.2 | (1) The # and ## preprocessor operators should not be used. [MISRA C:2012
R20.10]]

(2) A macro parameter immediately following a # operator shall not immedi-
ately be followed by a ## operator. [MISRA C:2012 R20.11]

7. Environment/Other

7.1 | Portability P1.11 (1) Functionalities not specifi ed in the language standard shall not be used.
(2) If functionalities not specifi ed in the language standard are used, {the
functionalities used and their usage shall be documented.)

P1.1.2 {All usage of implementation-defined behavior shall be documented.)
[MISRA C:2004 3.1]

P1.1.3 To use a program written in another language, (its interface shall be docu-
mented and its usage shall be defined.)

P1.2.1 To use characters other than those defined in the language standard for
writing a program, the compiler specifi cations shall be confirmed, and {their
usage shall be defined.)

P1.2.2 Only escape sequences defined in the language standard shall be used.

P1.5.2 |sizeof shall be used to determine the size of a type or variable.

P2.1.1 When assembly language programs are called from C language, {how to lo-
calize such parts shall be defined) ,such as, by expressing them as functions
or inline functions of C language that contain only inline assembly language
code or describing them using macros.

P2.1.2 Keywords extended by the compiler shall be used by localizing them after {defi
ning the macros.)

7.2 | Performance R1.3.4 The restrict type qualifier shall not be used. [MISRA C:2012 R8.14] .

E1.1.1 Macro functions shall be used only in parts related to speed performance.

E1.1.2 Operations that remain unchanged shall not be performed within an iterated
process

E1.1.3 Instead of structures, pointers to structures shall be used as function param-
eters.

E1.14 {The policy of selecting either switch or if statement shall be determined and
defined by taking readability and effi ciency into consideration.)

Appendices

Classification based

on the grammar

7. Environment/Other

7.3 | Description for de- M5.1.1 {The rules for writing the code for setting debug options and for recording logs
bug in release modules shall be defined.)
7.4 | Other M5.2.1 | (1) Dynamic memory shall not be used.

(2) If dynamic memory is used ¢, the maximum amount of memory that can
be used, process to be taken when running out of memory, and debugging
procedure shall be defined.)

Appendix B Rule classification based on C language grammar

187

Appendix C Regarding the implementation-defined behaviors

C language standard has behaviors that are unspecified or undefined in its language specifications.
(Refer to “Column: Unspecified Behavior and Undefined Behavior” below.) Some of the
unspecified behaviors are defined by the compiler, and they are referred to as “implementation-defined
behaviors”. Every implementation-defined behavior is compiler-specific. In other words, it always
behaves the same way when it is processed by the same type of compiler.

What this also means is that the behavior may not always be the same when it is processed by a
different type of compiler, even if the code written in the source program is the same. Therefore,
attention is necessary when the program is ported or when the compiler is changed. Moreover, if the
programmers are used to working in an environment that only uses a specific type of compiler, they
may incorrectly assume that implementation-defined parts of the code used in their development
project tare all specified in the C language standard and do not consider the possibility of changes
in their implementation-defined behaviors when a different type of compiler is used to process the
program that they write. To prevent them from causing any unexpected errors, it is desirable to check
and keep in mind which behaviors are implementation-defined before starting the programming
process.

Implementation-defined behaviors are normally listed in the manual of each compiler. Some of
the widely-known implementation-defined behaviors are outlined below.

E Representative implementation-defined behavior 1: Execution environment

A term that often appears in descriptions about implementation-defined behavior is “freestanding
environment”. Simply put, freestanding environment is an environment that does not have an
operating system. In such environment, the name and type of the function called at program startup
are implementation-defined. Normally, main function is called, but which function (invisible to
programmers) is called before the main function is called after program startup depends on the
compiler that is used.

Moreover, when the main function is terminated or when the program is suspended because the
exit function is called, the subsequent behavior is implementation-defined. Although writing a
program that does not behave differently depending on the compiler used comes first and foremost,
it is also necessary for programmers to understand the different kinds of behaviors that can be
expected when they are implementation-defined and how they may affect the program execution.

E Representative implementation-defined behavior 2: Character code

Character codes are a set of values assigned respectively to the characters, symbols, etc. processed
in a computer. Each character coding system has one or more charts that show which character
corresponds to which character code in tabular form. In Table 1, the horizontal axis of the chart
shows the upper 3-bit and the vertical axis shows the lower 4-bit. As to which character code system
will be used is implementation-defined. In case of alphabetic character “A”, for example, upper 3-bit

Appendix C Regarding the implementation-defined behaviors

189

190

is “4” and lower 4-bit is “1”, which mean that the corresponding code is “0x41”.

The explanation of the above example is based on ASCII (American Standard Code for
Information Interchange) 7-bit coding system. But in case of EBCDIC (Extended Binary Coded
Decimal Interchange Code), which is an 8-bit coding system as shown below in Table 2, the
corresponding code for alphabetic character “A” would be “0xC1”, and not “0x41” as in ASCIL

High order bits High order bits
0] 1]2]3]4a]5]6]7 0l1]2]3]4a]5]6|7]8]9]AlB]C|D|EIF
_loInucpElsP[0 [@|P | | b L0 [NuL|pLE[DS SP|&] - {11\]o
s[1]sonjpct| 1 [1][A[ala]aq [1 |soH|pci1|sos / alj|-~ AlJ 1
&l2|stx|pc2|[" [2 [B|R| b | r 82 [sTx|DC2| FS [sYN b|k|s B|K|S|2
o[3|eTx|pc3[# [3|c|s|c| s o[3 [ETX|[™ c|1 |t clL|T]|3
&[aleoT|pcals [a D [T [d |t &4 | pF [RES|BYP| PN d|m|u p|lm|ula
5|ENQNAK| % | 5 |E|U | e | u 5| HT | NL | LF | RS e|n|v E|N|V]|5
6|ACK|sYN[& |6 |F|Vv]|f| v 6 | Lc | BS [ETB| UC flo|w Flo|w|s
7lBeL|eTB] " |7 |G |[w]g | w 7 |oeEL| L |Esc|eoT a|p|x G|p[x|7
8| BS |CAN 8|H|xX|h]| x 8 CAN h|qly Hla|Y]s
9| HT |EM o 1Y |i]y 9 EM i|r|z IR[z|9
AlLF[suB| * [[J]z|i]z= A [sMM| cC | sm ¢ |1]
Blvr|esc|+|: [k[1]«k]|{ B | vt [cut|cuz|cus| - | s #
clFF|Fs |, [<|L |\ [1]] C| FF [IFs DC4| < | * |% | @
D|CR|GS|-|=|M|]|m]|} D|cr[1GS[ENQ|NAK] (|) | _ |
E|lso|Rs|. [>|N[~|n]| - E | so [IRs [ack +] |>|=
Flst|us|/|?2|0]|_|o |DEL F| s [us|BEL|suB| | |4 |2
Table 1 ASCII code chart Table 2 EBCDIC code chart

As you can see, the code used for representing each character varies with each character coding
system. Therefore, close attention is required on how the compiler processes the characters when
the character coding system used in the translation environment (environment where the source
program is processed) differs from the character coding system used in the execution environment
(environment where the execution files are processed for operation).

In case of Japanese characters (hiragana, kanji, etc.), a character code composed of 2 bytes or
more is assigned to each character. There are multiple character coding systems that handle Japanese
characters. At present, many personal computers in Japan use the character coding system called
Shift _JIS that expresses each Japanese character as a double-byte character. Since the value assigned
to each Japanese character varies with each character coding system, close attention is necessary on
how the compiler handles the Japanese characters.

Another character coding system that began to be widely used in recent years is Unicode, which
has been developed to handle the characters of different languages in the world including Japanese
in a unified manner. In Unicode, one character may be expressed with 1 byte or multiple bytes (up
to 6 bytes). There are mainly three coding systems in Unicode that define the method of expressing
each character (encoding method), which are as follows:

1. UTF-8 : All the characters covered in ASCII are expressed with 1 byte. The rest are expressed in
variable length (from 2 bytes to 6 bytes).

2. UTF-16 : Uses 16-bit as a unit to express each character. All the characters are expressed either in
one unit (16-bit) or two units (32-bit).

3. UTF-32 : All the characters are expressed in a fixed length of 32-bit only.

Appendices

C language has been extending its features by using “wide character”, which has been introduced
to handle the characters expressed in multiple bytes in specific character coding systems respectively
with an integer of a fixed bit length. For example, in C99, wchar t has been introduced as a type for
wide character, and libraries that supports wide characters have been added.

Example of a library that supports wide characters:

int vwprintf (const wchar_t * restrict format, va_list arg);
// A version of printf that supports wide character

In C11, char16_t (2-byte length) and char32_t (4-byte length) have been added as types that
support wide characters.

The size of wchar t and the character codes that correspond respectively to wide character types
are implementation-defined. In C11, however, two macros, __STDC_UTF_16__ and __STDC_
UTF_32__ have been introduced, and when these macros are defined, charl6_t and char32_t are
encoded respectively according to UTF-16 and UTF-32.

Beside the behavioral differences expected with the character coding system used, attention is also
necessary, for example, when kanji characters are expressed in Shift JIS. In Shift JIS, each Japanese
character is encoded in two bytes. But there are some Japanese characters whose second byte is the
same as “\” (back slash or “¥”) in ASCII. For example, the character code that corresponds to the
kanji character “%” is “0x955¢” in Shift _JIS. The second byte “0x5¢” in Shift JIS corresponds to “\”
in ASCIL (See Table 1).

If the compiler used does not support Shift JIS, double-byte characters will be recognized as
single-byte characters. In case of double-byte kanji character “ 3% ”, it will be processed as escape
sequence since the compiler will recognize this character as “\”. As a result, the character may be
displayed differently from the intended representation (making it garbled, etc.)

Example:
Source code: printf("FE\n"); // Byte sequence: 0x95 Ox5c Ox5c Ox6e
// > 0x5c 0x5c(\\) becomes Ox5c(\).
Output: F:n // Byte sequence: 0x95 Ox5c Ox6e

// Actually intended to begin a new line after"Z&R"

E Representative implementation-defined behavior 3: Pointer and address

Address with an absolute value is often written in the program for embedded software. A pointer
is used to access a specific address. In the following case, for example, the calculation requires an
integer to be assigned to a pointer (or vice versa).

unsigned char *addrp = (unsigned char *)oxffffe123L;
The execution code actually used for such conversion between an integer and pointer is
implementation-defined. Moreover, the size of the address value is also implementation-defined.

These behaviors not only depend on the compiler used, but are also largely dependent on the actual
architecture of the processor used for program execution.

Appendix C Regarding the implementation-defined behaviors

191

192

ﬂ Representative implementation-defined behavior 4: Array

The size resulting after subtraction of two pointers to the element in the same array is not
necessarily guaranteed as the size (bit length) applied to the address. It is implementation-defined.
C99 language standard ISO/IEC9899:1999 defines ptrdiff_t in <stddef.h> as the type of the
result of subtracting two pointers.

E Representative implementation-defined behavior 5: Integer

Whether the signed integer type will be expressed as sign and magnitude representation, ones’
complement representation or two’s complement representation is implementation-defined.
Therefore, in the following example,

if ((intVal & 0x80000000) == Ox80000000) { // if the most significant bit is 1

expected behavior will occur only if the compiler processes the most significant bit of the signed
integer type as representation of the sign bit (’1” if the value is negative).

Moreover, whether the extraordinary value is a trap representation or an ordinary value is also
implementation-defined. Extraordinary value refers to the calculation result that is a value that
does not fit in the size of the variable. If the variable is unsigned, and the calculation result exceeds
the variable representation range, the actual result in that variable will be the remainder of the
calculation result divided by the maximum representable value of that variable + 1. Take an unsigned
8-bit variable for example. If the calculated value is 257, the remainder of the value 257 divided by
256 (the maximum representable value of 8-bit variable +1) that is 1 will be the calculation result.
This behavior is called “wrap around”.

On the other hand, if the variable is signed, and the calculation result exceeds the variable
representation range, an overflow will occur. In this case, the compiler may either represent the
calculation result in the same way as the case with unsigned variable (as the value left in the
variable) or process it as trap representation, which is a bit pattern specially defined in the system for
internal processing. If the system is using two’s complement, the most significant bit of the pattern
defined as trap representation will be 1 and the rest will all be 0.

E Representative implementation-defined behavior 6: Bit field

The so-called embedded C compiler can use the bit field of a size of unsigned 8-bit. It is frequently
used to access the processor registers where bits are assigned to microcontroller functions.

However, how the bit field is used is implementation-defined. There is no guarantee that a
behavior that was normal with a specific compiler will be the same when a different compiler is
used. Moreover, whether the bit sequence will be in the ascending order from 0 set as the most
significant bit or as the least significant bit is also implementation-defined.

Furthermore, even when the bit field is used, whether the actual execution code will command bit
access to, such as, internal registers or not is also implementation-defined. The execution code may
command a read-modify-write operation that accesses the byte that includes that bit, and cause an
unexpected failure.

Appendices

ﬂ Representative implementation-defined behavior 7: Access to volatile qualified type object

volatile qualifier is used to suppress the optimization of the compiler. For example, to wait for
interrupt, there is a code somewhere in the interrupt handler that sets InterruptFlag to 1, as shown
below in the while loop, which does the polling.

while (InterruptFlag ==0) { ; }

In this case, the process to make the variable, InterruptFlag, a value of 1 is not in this loop.
The compiler may optimize and transform the loop into a simple infinite loop. volatile qualifier
can prevent the compiler from optimizing in this way.

volatile qualified object implicitly indicates that it may be processed without being recognized
by the compiler. How the execution code configures the access to volatile qualified object is
implementation-defined.

ﬂ Representative implementation-defined behavior 8: Preprocessing directives

There are various preprocessing directives that are implementation-defined, as outlined below.
* Method of corresponding each of the header names specified in series by <> or "" to either
the header or the name of the external source file
* Whether the value of the character constant of the constant equation that controls the
conditional include matches with the value of the same character constant in the execution
character set

* Whether the character constant of a single character of the constant equation controls the
conditional include takes a negative value or not

* Method of forming the header name from the preprocessing token in the #include directive
(which may also be generated from macro expansion)

* Nesting limitation when processing #include

e Whether “\” is inserted in front of “\” that is the first character of a universal character name
or not when # operator is in the character constant or string constant

e Behavior of non-STDC #pragma
From C99 (ISO/IEC9899:1999), a specific #pragma directive was defined additionally as a
standard directive in C language. This is called “STDC (standard C) #pragma directive”.
Any #pragma that is not STDC is implementation-defined.

* How the __DATE__ and __ TIME__ are processed when the translated date and time are not
known.

Appendix C Regarding the implementation-defined behaviors

193

ﬂ Representative implementation-defined behavior 9: Others

Even when inline instruction or register qualifier is specified, whether it will be forced or not is
implementation-defined.

To learn about other implementation-defined behaviors that have not been mentioned above, refer
to the manual of the compiler (of the precise version) used in the development.

194 Appendices

Column: Unspecified behavior and undefined behavior |

In C language, there are four kinds of behavior that require particular attention.
1. Unspecified behavior
2. Undefined behavior
3. Implementation-defined behavior
4. Locale-specific behavior

(For details, refer to C99 language standard “ISO/IEC 9899:1999 Programming Language
C” Annex J.)

Unspecified behavior and undefined behavior are alike, but do not mean the same, as
explained below.

Bl Unspecified behavior

There are some behaviors that are grammatically correct (and therefore will not be
processed as error) but have alternative execution results depending on which alternative
the compiler chooses to process. These behaviors are collectively referred to as “unspecified
behavior”. For example, the order of evaluating the actual argument to a function may differ
depending on the choice made by the compiler.

printf("%d %d ¥n", i, i++);

In case of the above code, the result displayed will differ depending on whether i or i++ is
evaluated first. To gain an overall knowledge about what kind of behavior is unspecified, refer
to the list under J.1 in ISO/IEC9899:1999. Descriptions that will cause unspecified behavior
should be avoided as much as possible.

Hl Undefined behavior

Undefined behavior refers to a set of behaviors that are not defined in C language standard.

For example, the behavior of division by zero is undefined. To gain an overall knowledge
about what kind of behavior is unspecified, refer to the list under J.2 in ISO/IEC9899:1999.

Any descriptions that cause undefined behavior must be avoided by all means, since the
behavior resulting from any of such descriptions is not defined in the language standard.
There is a need to know beforehand which undefined behavior can be detected or not by the
static analysis tool that is going to be used for the development.

Appendix C Regarding the implementation-defined behaviors

195

196

Citations and References

[1] ISO/IEC 25010:2011, Systems and software enginieering -- Systems and software Quality Requirements and
Evaluation (SQuaRE) -- System and software quality models.

[2] ISO/IEC 9899:1990, Programming languages — C, ISO/IEC 9899:1990/Cor 1:1994, ISO/IEC 9899:1990/Cor 2:1996,
ISO/IEC 9899:1990/Amd 1:1995, C Integrity

[3] ISO/IEC 9899:1999, Programming languages — C, ISO/IEC 9899/Cor1:2001

[4] ISO/IEC 14882:2003, Programming languages — C++

[5] “MISRA Guidelines for the Use of the C Language in Vehicle Based Software”, The Motor Industry Software
Reliability Association, ISBN 0-9524156-9-0, Apr. 1998, https://www.misra.org.uk

[6] “MISRA-C:2004 Guidelines for the Use of the C Language in Critical Systems”, The Motor Industry Software
Reliability Association, ISBN 0-9524156-2-3, Oct. 2004, https://www.misra.org.uk

[7] “MISRA C:2012 Guidelines for the Use of the C Language in Critical Systems”,March. 2013, ISBN 978-1-906400-
10-1 / Amendment 1, April 2016 / Addendum 2, April 2016 / Technical Corrigendum 1, June 2017, https://www.
misra.org.uk

[8] “Indian Hill Style and Coding Standards”, ftp://ftp.cs.utoronto.ca/doc/programming/ihstyle.ps

[9] “comp.lang.c Frequently Asked Questions”, http://www.eskimo.com/~scs/C-faqg/top.html

[10] “GNU coding standards”, Free Software Foundation, http://www.gnu.org/prep/standards/

[11] “The C Programming Language, Second Edition”, Brian W. Kernighan and Dennis M. Ritchie, ISBN 0-13-110362-
8, Prentice Hall PTR, Mar. 1988

[12] “Writing Solid Code: Microsoft's Techniques for Developing Bug-Free C Programs”, Steve Maguire, ISBN
1-55615-551-4, Microsoft Press, May. 1993

[13] “The Practice of Programming”, Brian W. Kernighan and Rob Pike, ISBN 0-201-61586-X, Addison-Wesley
Professional, Feb. 1999

[14] “Linux kernel coding style”, http://www.kernel.org/doc/Documentation/CodingStyle

[15] “C Style: Standards and Guidelines: Defining Programming Standards for Professional C Programmers”, David
Straker, ISBN 0-1311-6898-3, Prentice Hall, Jan. 1992

[16] “C Programming FAQs:Frequently Asked Questions”, Addison-Wesley Professional, Nov. 1995. ISBN
9780201845198, Steve Summit

[17] “C STYLE GUIDE (SOFTWARE ENGINEERING LABORATORY SERIES SEL-94-003)", NASA, Aug. 1994,
http://sel.gsfc. nasa.gov/website/documents/online-doc/94-003.pdf

[18] “The CERT® C Secure Coding Standard”, Robert C. Seacord, ISBN 978-0321563217, Addison-Wesley Professional,
Oct. 2008 (SEI CERT C Coding Standard, 2016 Edition)

Ver. 1.0 & Ver. 1.1 Authors and editors (in alphabetical order)

AOKI Nao

ENDO Arisa

ENDOU Ryuji
FURUYAMA Hisaki
FUTAGAMI Takao
HACHIYA Shouichi
HAYASHIDA Seiji
HIRAYAMA Masayuki
MITSUHASHI Fusako
MURO Shuji
NAMIKI Rieko
OHNO Katsumi
OHSHIMA Kenji
SHISHIDO Fumio
UEDA Naoko

UNO Musubi

IPA/SEC

IPA/SEC

Mitsubishi Space Software Co., Ltd.
Matsushita Electric Industrial Co., Ltd.
TOYO Corporation

GAIA System Solutions Inc.
TOSHIBA CORPORATION

IPA/SEC

NEC Electronics Corporation
IPA/SEC

OGIS-RI Co., Ltd.

IPA/SEC

Ricoh Company, Ltd.

eSOL Co., Ltd.

Fujitsu Limited

Matsushita Electric Industrial Co., Ltd.

Ver. 2.0 & Ver. 3.0 Authors and editors (in alphabetical order)

FUTAGAMI Takao
ITOH Masako
MIHARA Yukihiro
MITSUHASHI Fusako
NISHIYAMA Hiroyasu

SHUKUGUCHI Masahiro

TACHI Nobuyuki
TOYAMA Keisuke

TOYO Corporation

Fujitsu Limited

IPA/SEC

NEC Corporation

Hitachi, Ltd.

eSOL Co., Ltd. / eSOL TRINITY Co., Ltd.

Nagoya University

IPA/SEC

(Organizational affiliations are as of the publication of Japanese edition.)

Contributors to English translation version

SHIMIZU Tatsuo
TOYAMA Keisuke

Shimizu International
IPA/SEC

Written and edited by Software Reliability Enhancement Center,

Technology Headquarters, Information-technology Promotion Agency, Japan

References

197

ESCR

[Revised edition]
Embedded System development Coding Reference guide [C language edition]

Ver. 3.0

March 28, 2018

Written and edited by Software Reliability Enhancement Center,
Technology Headquarters, Information-technology Promotion Agency, Japan

Bunkyo Green Court Center Office
2-28-8 Honkomagome, Bunkyo-ku, Tokyo, 113-6591 Japan
https://www.ipa.go.jp/english/sec/

© 2018, IPA/SEC

Information-technology
Promotion
Agency, Japan

	ESCR4_3
	ESCR5_3
	ESCR6_2
	ESCR7_1
	ESCR8_2
	ESCR9_3
	ESCR_hyou4

