
i

Ver.1.0

Embedded System development
Quality Reference guide

Written and edited by
Software Engineering Center,

Technology Headquarters,
Information-technology Promotion Agency, Japan

ii

This document has been published as the English edition of ESQR (Embedded System development

Quality Reference) Version 1.0 published by IPA/SEC* in Japan. ESQR provides evaluation metrics for

visualizing the quality of software deliverables and work products to ensure systematic quality control of

embedded software development.

The purpose of ESQR is to be used as the reference guide for introducing quantitative quality management

concepts and practices to organizations and individual projects engaged in embedded software development

that do not have satisfactory management system in place to measure and evaluate the quality of their

software development.

August 2010

Software Engineering Center,

Information-technology Promotion Agency, Japan

Copyright © 2010, IPA/SEC
Permission to copy and distribute this document is hereby granted provided that this notice is retained on all copies, that

copies are not altered, and that IPA/SEC is credited when the material is used to form other copyright policies.

* Software Engineering Center, Technology Headquarters, Information-technology Promotion Agency, Japan

iiiPreface

	 Preface

The leaves on the trees in the Rikugien Garden, as seen from here on the 16th floor of

the Bunkyo Green Coat Center Office, are again taking on their autumn hues of red and

yellow. For us, this is the fourth time that we have been able to enjoy this beautiful view.

Over the past four years, the Software Engineering Center (SEC) has been preparing

the Embedded System Development Exemplar Reference (ESxR) series of guidebooks

with the goal of cultivating the skills of Japan's embedded software developers. Our

latest release is of the "Embedded System Development Quality Reference" (ESQR), the

fourth guide of the series, which aims at assuring high-quality embedded system design.

The situations surrounding systems and software are changing quickly and the enabling

technologies are advancing quickly. On the other hand, the fundamentals of system and

software development as "creative design and manufacturing" remain as before. The

origins of modern science go back to when Sir Isaac Newton observed an apple fall

from a tree, after which he went on to derive laws describing how it happened, and then

the science and engineering based on it have developed to give us the creative design and

manufacturing on which we depend today.

With this publication of the ESQR, we view system and software development as

a kind of creative design and manufacturing and, by returning to basics, analyze the

software itself and the work needed to create it objectively, visualizing and observing

them to guide engineers to achieve better quality.

For this purpose, this guide uses original concepts throughout, such as system

characteristics profiling to attain the quality required for the target system, project

characteristics profiling to determine the characteristics of a project to develop the

system, and ST-SEISMIC that is used to evaluate the influence of a system trouble. In

addition, to set an actual quality goal, this guide provides a range of metrics (evaluation

metrics) and corresponding reference values to measure and visualize quality, together

with tips to improve software quality, some of which are unique.

These are defined as a means of materializing the concepts introduced in this guide

and to "quantitatively control software quality at the development stage." We hope

that you use them as a reference for establishing a quantitative quality control method.

When reading this guide, you should select helpful reference information, adapt it to

your own needs, and/or review it, to use it as an opportunity to start the discussion and

deployment of a quantitative quality control scheme suitable for your own organization,

project, and system.

2008 Fall

Embedded Software Engineering Section, SEC, IPA

Masayuki Hirayama, Satomi Yoshizawa, Sayuri Yamaguchi

iv Acknowledgements

	 Acknowledgements

ESQR grew out of many, many hearings, interviews, and questionnaire surveys mainly

with SEC's research workers, as well as with many corporate partners and engineers.

To create the draft of ESQR, experts from the SEC Software development technical

committee and other arenas kindly gave us their valuable opinions and comments from

the viewpoint of use in production environments. We would like to thank everybody who

cooperated in the creation of this guide.

While this guide was being created, Yutaka Ukon, one of the most important members

of ESQR creation group and an SEC's research worker, passed away. Mr. Ukon drew on

his rich experience to give us many valuable ideas, opinions, and comments starting from

the time of ESQR concept creation, greatly contributing to the completion of this guide.

vContents

Contents

Preface	... iii

Acknowledgements	.. iv

Chapter 1	 How	to	Read	ESQR	 1

	 1.1	 Purpose	and	Positioning	of	ESQR	... 2

	 1.2	 Embedded	System	Development	Based	upon	Evaluation	Metrics 5

	 1.3	 Intended	Users,	Usage,	and	Effects	of	ESQR	.. 12

	 1.4	 Structure	of	ESQR	.. 16

	 1.5	 Notes	on	Using	ESQR	.. 18

	 1.6	 Related	Standards	.. 21

Chapter 2	 Defining	Quality	Target	Values	Using	System	
Characteristics	Profiling	 23

	 2.1	 Concept	of	Quality	Target	Value	Setting	Considering	Embedded	System	
Characteristics	... 24

	 2.2	 Step	1:		System	Characteristics	Profiling	... 28

	 2.3	 Step	2:		Project	Characteristics	Profiling	.. 33

	 2.4	 Step	3:		Quality	Target	Value	Setting	.. 36

	 2.5	 Profiling	Example	... 44

	 2.6	 Evaluation	of	System	Trouble	and	Reflection	on	System	Characteristics	
Profiling	... 47

vi Contents

Chapter 3	 Definition	and	Reference	Values	for	Evaluation	
Metrics	 51

	 3.1	 Definitions	and	Meanings	of	Evaluation	Metrics	and	How	to	Use	Them	52

	 3.2	 Categorization	of	Evaluation	Metrics	... 54

	 3.3	 Evaluation	Metrics	-	Notes	on	Use	... 59

	 3.4	 Process	Metrics	-	Definition	and	Reference	Values 63

	 3.5	 Product	Metrics	-	Definition	and	Reference	Values 79

	 3.6	 Basic	Metrics	-	Definition	and	Reference	Values 105

Chapter 4	 Tips	for	High	Quality	Establishment	 135

	 4.1	 Communication	and	Decision	Making	in	Development 136

	 4.2	 Documents	.. 141

	 4.3	 Reviews	... 147

	 4.4	 Tests	.. 152

	 4.5	 Quality	Establishment	Using	Metrics	... 159

	 Appendix	A	 Reference	Books 168

Key to implementing high-quality embedded software is

quality establishment in the development process. This

"Embedded System Development Quality Reference"

(ESQR) summarizes concrete methods of setting and

achieving quality target values, which are essential

to assuring the quality of an embedded system. This

chapter is aimed at first-time readers of ESQR to

show how this guide is positioned and how it should be

utilized.

1.1 Purpose and Positioning of ESQR2

1.2 Embedded System Development Based upon
Evaluation Metrics ...5

1.3 Intended Users, Usage, and Effects of ESQR12

1.4 Structure of ESQR ..16

1.5 Notes on Using ESQR18

1.6 Related Standards ..21

How	to	Read	ESQR

Chapter 1

2 Chapter 1 How to Read ESQR

S
tru

ctu
re	o

f	

E
S
Q
R

1.4

Embedded	System	Development	

Based	upon	Evaluation	Metrics

1.2

R
elated

	

S
tan

d
ard

s

1.6

N
o
tes	o

n

	U
sin

g

	

E
S
Q
R

1.5

Intended	Users,	Usage,	

and	Effects	of	ESQR

1.3

Purpose	and	

Positioning	of	ESQ
R

1.1

Purpose	and	Positioning	of	
ESQR	 1.1	

 Purpose of ESQR
With the rapid increase in the demand for embedded software over the last few years,

the need for higher quality, reliability, and safety has arisen. Conventionally, a range of

methods and concepts has been introduced and deployed to implement high-quality

software, including well-defined review and testing, as well as the optimization of the

software design structure. Besides, definitions of the software quality and measures for

evaluating it, have been suggested in several different ways and introduced as quality

concepts in the ISO/IEC9126 series. However, it still cannot be said that there are

concrete and clear metrics, although there has been much debate on software quality and

methodologies, such as "how many reviews and tests are required to ensure high quality"

or "what level of quality is required for what system, and what methods should be used

to achieve the required level." As a result, it is difficult to define a clear quality goal in an

actual production environment, and therefore the concept of the quantitative control of

quality (quality control) for achieving the goal is not sufficiently put into practice. This

results in ongoing software errors and system troubles.

This guide was written based on this reality of quality control in software

development, to hopefully deploy more systematic quality control methods in the

embedded software development environment. In this sense, the purpose of this guide is

to "visualize the qualities of software deliverables and work using metrics, and guide the

reader to an appropriate development method which best fits the required quality level."

Putting this a little more concretely, this guide aims to help the reader to:

• Analyze and defi ne the level quality required by the users of individual products,

• Defi ne the evaluation metrics based upon the analysis result,

• Measure the suitability of the deliverable from each process and the related

check work, and

• Link the check results to activities for ensuring quality.

31.1 Purpose and Positioning of ESQR

S
tru

ctu
re	o

f	

E
S
Q
R

1.4

Embedded	System	Development	

Based	upon	Evaluation	Metrics

1.2

R
elated

	

S
tan

d
ard

s

1.6

N
o
tes	o

n

	U
sin

g

	

E
S
Q
R

1.5

Intended	Users,	Usage,	

and	Effects	of	ESQR

1.3

Purpose	and	

Positioning	of	ESQ
R

1.1
At the start point is the concept of trying to represent "acceptable quality" with concrete

values using metrics, rather than describing it abstractly or intuitively.

 Positioning of ESQR
SEC has been developing the Embedded System Development Exemplar Reference

(ESxR) series of reference guides to facilitate embedded software development. The

"Embedded System Development Process Reference" (ESPR) summarizes the standard

concepts behind the processes for developing embedded software. The "Embedded

System Development Management Reference" (ESMR) describes how to create a

development plan, as a first step to facilitating embedded software development project

management. And, the "Embedded System Development Coding Reference" (ESCR)

summarizes the way in which programs are coded to directly improve program quality.

This "Embedded System Development Quality Reference" (ESQR) proposes metrics

for evaluating the sufficiency of the reviews and tests intended to ensure quality

when putting the development processes defined in ESPR into practice, as well as for

evaluating the qualities of the intermediate deliverables produced by these processes, and

describes how each of these metrics should be implemented. ESMR creates development

plans as a baseline for project management, including a plan for quality. This guide

details the evaluation metrics used in such a quality plan and how to set corresponding

target values. Basically, this guide refers to the names of intermediate deliverables such

as work processes (e.g., unit test and requirements analysis) and the documents described

in ESPR. Refer to ESPR as necessary.

This guide also includes specifications related to the quality evaluation of the source

code. For the definitions of concepts such as deviations from coding rules, also refer to

the description of the coding practices mentioned in ESCR.

� Chapter 1 How to Read ESQR

S
tru

ctu
re	o

f	

E
S
Q
R

1.4

Embedded	System	Development	

Based	upon	Evaluation	Metrics

1.2

R
elated

	

S
tan

d
ard

s

1.6

N
o
tes	o

n

	U
sin

g

	

E
S
Q
R

1.5

Intended	Users,	Usage,	

and	Effects	of	ESQR

1.3

Purpose	and	

Positioning	of	ESQ
R

1.1

ESMR (management)

ESQR (evaluation metrics)

ESPR (process establishment)

Management metrics

What

How

ESCR
coding practices

Safety testing

Safety requirements
definition

System testing

Integration and
qualification testing

Design specifications
evaluation metrics

Unit testing
Software

detailed design

Architectural
design

Requirements
definition

Coding

System quality
evaluation metrics

Test work
evaluation metrics

Requirements specification
evaluation metrics

Source code
quality evaluation

ESQR
[Quality establishment]

ESPR
[Process definition]

Safety
establishment

[Functional safety]

D
ev

el
op

m
en

t m
em

be
r

M
an

ag
er

E
xecutive

Figure	1-1:	Positioning	of	ESQR

51.2 Embedded System Development Based upon Evaluation Metrics

S
tru

ctu
re	o

f	

E
S
Q
R

1.4

Embedded	System	Development	

Based	upon	Evaluation	Metrics

1.2

R
elated

	

S
tan

d
ard

s

1.6

N
o
tes	o

n

	U
sin

g

	

E
S
Q
R

1.5

Intended	Users,	Usage,	

and	Effects	of	ESQR

1.3

Purpose	and	

Positioning	of	ESQ
R

1.1

Purpose	and	

Positioning	of	ESQ
R

1.1

Embedded	System	Development	

Based	upon	Evaluation	Metrics

1.2

Embedded	System	Development	
Based	upon	Evaluation	Metrics	 1.2	

This guide is centered around the concept of "setting a quantitative goal for software

quality using evaluation metrics and quality control to achieve that goal." This section

briefly explains this core concept of "evaluation metrics."

 What are metrics?
We are surrounded by a huge variety of "things," and very often talk about the

"characteristics" of these things. Suppose, for instance, that we think of an "apple." We

evaluate the features of an apple by sensing its characteristics, such as its weight, size,

color, etc. However, the phrase "large apple" is likely to mean different things to different

people. If we were to attempt to determine the price of an apple according to its size,

such sense-based evaluation would be very ambiguous, and would not work well. It is

much more normal, therefore, to measure the diameter of the apple and represent it

numerically, to eliminate personal differences and represent the features of the thing

scientifically. Then, apples can be classified into large and medium sizes according to

their diameters and a standard value. In this case, "the diameter of the apple" is a metric

for evaluating the size of an apple. As such, everything in this world has characteristics,

and metrics can be devised to measure and evaluate them.

Another example is "how long a customer is kept waiting when he or she goes to a

bank to open an account." In this example, the target of the evaluation is not a "thing."

But we nevertheless evaluate banks, saying that "Bank A offers a poor service because it

makes us wait a long time, while Bank B offers a good service because it doesn't make us

wait." Thus, we unwittingly compare the "bank account opening procedure" which is a

non-material entity (service or work quality). Again, whether the service is good or poor

varies from one person to another. So, to evaluate the service quality, more objective

metrics are adopted, such as the measured average waiting time.

6 Chapter 1 How to Read ESQR

S
tru

ctu
re	o

f	

E
S
Q
R

1.4

Embedded	System	Development	

Based	upon	Evaluation	Metrics

1.2

R
elated

	

S
tan

d
ard

s

1.6

N
o
tes	o

n

	U
sin

g

	

E
S
Q
R

1.5

Intended	Users,	Usage,	

and	Effects	of	ESQR

1.3

Purpose	and	

Positioning	of	ESQ
R

1.1

Purpose	and	

Positioning	of	ESQ
R

1.1

Embedded	System	Development	

Based	upon	Evaluation	Metrics

1.2

In this way, metrics can be used to measure the characteristics of non-material targets

such as work. That is, metrics can be defined as follows:

 Metrics: A measure with a scientifi c basis for representing the characteristics of

a material or non-material target (material, work, service, etc.).

Generally, regardless of the target, to determine the characteristics of the target, it

is necessary to use a metric to measure some characteristics of the target and compare

the measured value to the goal or some empirical value to determine the feature of the

target.

 Measurement method, units, and precision of metrics
Let's further consider the "diameter of an apple" metric, mentioned above. The

diameter of an apple varies depending on where it is measured, as shown in Figure 1-2.

For example, the diameter at the section across the center of the sphere of the apple

differs from that at a section above the center of the sphere. A metric value that would

vary depending on the measurement method would be meaningless. For a metric to be

meaningful, therefore, it must be defined together with a valid measurement method.

In addition, the precision of the measurement must also be considered. Using a

measure with a precision of 1 cm, values such as approximately 10 or 7 cm can be

obtained. But, if we use a measure with a precision of 0.01 cm and obtain values such

as 7.13 or 7.14 cm, the difference of 0.01 cm is meaningless. The point of this example

is that we have to select a precision that is suitable for the characteristic to be measured

with a metric.

In addition, length can be measured in cm, mm, or even inches. It is not strictly

necessary to use the metric system to measure the diameter of an apple, but if the

measurement units differ from person to person, any comparison of measured diameters

will be confusing.

The following summarizes the requirements for the metrics, the units to be used, and

the precision, based on the examples mentioned so far.

71.2 Embedded System Development Based upon Evaluation Metrics

S
tru

ctu
re	o

f	

E
S
Q
R

1.4

Embedded	System	Development	

Based	upon	Evaluation	Metrics

1.2

R
elated

	

S
tan

d
ard

s

1.6

N
o
tes	o

n

	U
sin

g

	

E
S
Q
R

1.5

Intended	Users,	Usage,	

and	Effects	of	ESQR

1.3

Purpose	and	

Positioning	of	ESQ
R

1.1

Purpose	and	

Positioning	of	ESQ
R

1.1

Embedded	System	Development	

Based	upon	Evaluation	Metrics

1.2

 Metrics: Metrics must be defi ned with an appropriate measurement method

to ensure that similar values are obtained regardless of who performs the

measurement.

 Metrics	precision: Precision suitable to best represent the characteristic of the

measurement target.

 Metrics	unit: The unit for a metric must be unifi ed to a single set, as part of the

defi nition of the metric.

Figure	1-2:	Meaning	of	metrics	and	measurement

 How to use metrics
For what reasons are metrics determined and measured? If we again consider the

"diameter of an apple" example, if the diameter of a given apple is larger than the

standard value, then we could conclude that that apple is a "good apple for shipment."

Or, an apple with a diameter that is much smaller than the standard could be classed as

being too small and would be left on the tree to grow. A metric can be used in this way

for judging whether the apple can be harvested or shipped. Let's think of another metric,

namely, the "thickness of the stem of an apple." We could set the standard thickness to

2 mm and classify several apples into those having thicker stems and those with thinner

8 Chapter 1 How to Read ESQR

S
tru

ctu
re	o

f	

E
S
Q
R

1.4

Embedded	System	Development	

Based	upon	Evaluation	Metrics

1.2

R
elated

	

S
tan

d
ard

s

1.6

N
o
tes	o

n

	U
sin

g

	

E
S
Q
R

1.5

Intended	Users,	Usage,	

and	Effects	of	ESQR

1.3

Purpose	and	

Positioning	of	ESQ
R

1.1

Purpose	and	

Positioning	of	ESQ
R

1.1

Embedded	System	Development	

Based	upon	Evaluation	Metrics

1.2

stems. Does this classification have any meaning? While we can easily measure the

"thickness of the stem of an apple," its thickness probably has no influence on the value

of the apple. As seen in this example, metric targets have different characteristics, all of

which can be measured. Some metrics, however, although they can be measured, have

little or no meaning. Generally, "measuring a metric" assumes that the measured metric

value is utilized for some purpose. Therefore, when determining a metric, it is critically

important to first clarify "what is required from the use of the metric, or for what

purpose the metric is used" and then select the best metric for the purpose.

 What is an evaluation metric?
This guide is intended to introduce methods to quantitatively control the

characteristics of embedded systems in order to improve the quality of such systems.

The concept of "metrics" as a means of representing the characteristics of "materials"

and "works," including software, has already been mentioned. This guide develops

this concept to enable the deployment of evaluation metrics to represent "quality," a

characteristic of software, and control this characteristic.

The "apple" used in the above examples is a physical object that we can pick up

and measure. On the contrary, the embedded software targeted by this guide is very

difficult to either hold or observe. That is, the embedded software implemented in

products cannot actually be separated from those products, and even in the development

environment, software can only be regarded as an object when in the form of an

intermediate deliverable, such as the source code or a design document. In this sense,

when considering software as the measurement target of a metric, it is very difficult to

grasp.

On the other hand, failures have occurred with many commercial embedded systems

or some of them are not easy to use in some way, and we often criticize such systems

as being of "poor quality." As in this example, software is very difficult product to

measure. But we do attach the concept of "quality" to software as well as other material

objects. So, this guide clarifies the evaluation metrics applied to software to measure and

represent its quality.

In software development, it is important to examine the fundamental factors

determining software quality and then aim to control them. For example, to grow a

"high-quality apple" with a large diameter, it does not make sense to merely measure the

produced good apples with metrics. To obtain "high-quality apples" it is important to

91.2 Embedded System Development Based upon Evaluation Metrics

S
tru

ctu
re	o

f	

E
S
Q
R

1.4

Embedded	System	Development	

Based	upon	Evaluation	Metrics

1.2

R
elated

	

S
tan

d
ard

s

1.6

N
o
tes	o

n

	U
sin

g

	

E
S
Q
R

1.5

Intended	Users,	Usage,	

and	Effects	of	ESQR

1.3

Purpose	and	

Positioning	of	ESQ
R

1.1

Purpose	and	

Positioning	of	ESQ
R

1.1

Embedded	System	Development	

Based	upon	Evaluation	Metrics

1.2

determine whether the processes and farm work, such as "how much sunlight they get,"

"how much it rains," or "how much they are fertilized" are appropriate, and if not, to take

measures such as "fertilize them more." In the case of software, because the final quality

is very difficult to determine, such concepts are even more important. That is, in addition

to measuring the ultimate software quality, it is necessary to evaluate how much effort

was expended or how much necessary work was done during development. In this sense,

evaluation metrics can be classified into the following two concepts:

 Metrics for measuring the appropriateness of the work done in the process of

obtaining the result => Process metrics

 Metrics for measuring the quality of the resulting software => Product metrics

 Process metrics and product metrics
As mentioned above, this guide deploys two metric concepts, process metrics and

product metrics, to measure and evaluate that property of an embedded system that we

call "quality."

(1)	Process	metrics

"The tasks that are required" in each phase of software implementation are

described in the "Embedded System Development Process Reference" (ESPR). This

guide summarizes the measures for checking if work involved in each process is done

appropriately. While many different tasks are involved in software implementation, this

guide focuses on ensuring software quality, and considers the metrics for evaluating

whether the work central to securing and ensuring quality is done correctly from the

aspects of both quality establishment and testing.

In general, the work related to software implementation can be regarded as being the

repetition of three work elements, as shown below, "create properly, check, and fix."

• Create	properly: Analyze the requirements, design the structure, and implement

the program.

• Check: Check the software (e.g. through reviews) and ensure that it runs

normally (e.g. through testing).

• Fix: Debug the software and modify the design and documents accordingly.

10 Chapter 1 How to Read ESQR

S
tru

ctu
re	o

f	

E
S
Q
R

1.4

Embedded	System	Development	

Based	upon	Evaluation	Metrics

1.2

R
elated

	

S
tan

d
ard

s

1.6

N
o
tes	o

n

	U
sin

g

	

E
S
Q
R

1.5

Intended	Users,	Usage,	

and	Effects	of	ESQR

1.3

Purpose	and	

Positioning	of	ESQ
R

1.1

Purpose	and	

Positioning	of	ESQ
R

1.1

Embedded	System	Development	

Based	upon	Evaluation	Metrics

1.2

Among the above, "create properly and fix" has been discussed from many different

viewpoints as a software engineering technique. This guide focuses on the second work

element, namely, "check the software and ensure that it runs normally."

(2)	Product	metrics

When developing software used in industrial products, it is very important to measure

and evaluate the deliverables created during the development, at appropriate timings,

and then adjust (control) the quality according to the goal. This guide provides product

metrics to measure and evaluate the deliverables created during development.

As mentioned above, software seems or does not seem to have some kind of form

and is a hard-to-grasp "concept." Therefore, software quality is measured by directly

measuring the intermediate deliverables created during the development process such as

the specifications, design documents, source code, and executable code to evaluate the

quality as a physical thing; Product quality.

 Reference value for evaluation metrics
The basic idea behind this guide is that the development of embedded system should

start with, as shown in Figure 1-3, requirements definition and then proceed through

design, coding, and testing. Chapter 3 of this guide presents the metrics used to gradually

ensure quality throughout each of these processes. These metrics are presented together

with definitions, measurement methods, and guidelines needed to interpret the measured

values. As you will see in Chapter 3 and the subsequent chapters of this guide, many

of the evaluation metrics presented are selected because measurement is easy and they

are not subject to personal differences. Along with these evaluation metrics (definition,

measurement method, and interpretation), reference values, taking into consideration the

quality level of the target system, are shown for determining validity of measured metric

values. These reference values assume new development based upon waterfall-type

processes. In actual embedded system implementation, in addition to entirely new system

development, existing software assets are often used or reused. In these cases, modify the

description according to the individual development conditions, based upon the metrics,

reference values, and concepts presented in this guide. Note that the reference values

presented for metrics are calculated from the data provided by the bodies approving SEC

activities as well as through discussion, and should be used as references, or standards,

and customized for your own product development.

111.2 Embedded System Development Based upon Evaluation Metrics

S
tru

ctu
re	o

f	

E
S
Q
R

1.4

Embedded	System	Development	

Based	upon	Evaluation	Metrics

1.2

R
elated

	

S
tan

d
ard

s

1.6

N
o
tes	o

n

	U
sin

g

	

E
S
Q
R

1.5

Intended	Users,	Usage,	

and	Effects	of	ESQR

1.3

Purpose	and	

Positioning	of	ESQ
R

1.1

Purpose	and	

Positioning	of	ESQ
R

1.1

Embedded	System	Development	

Based	upon	Evaluation	Metrics

1.2

Process metrics:
Evaluate sufficiency of work.

Product metrics:
Evaluate deliverables.

Ratio of the
 review work effort

Execution ratio of
 the review work

Specifications

Design documents

Source code

Test specifications

Test report

Document
evaluation metrics

Code
evaluation metrics

Test
evaluation metrics

Ratio of the test
 work effort

Execution ratio of
 the test work

Requirement analysis and definition

System design

Software design

Coding

Software testing

System testing

Figure	1-3:	Positioning	of	process	metrics	and	product	metrics

12 Chapter 1 How to Read ESQR

S
tru

ctu
re	o

f	

E
S
Q
R

1.4

Embedded	System	Development	

Based	upon	Evaluation	Metrics

1.2

R
elated

	

S
tan

d
ard

s

1.6

N
o
tes	o

n

	U
sin

g

	

E
S
Q
R

1.5

Intended	Users,	Usage,	

and	Effects	of	ESQR

1.3

Purpose	and	

Positioning	of	ESQ
R

1.1

Purpose	and	

Positioning	of	ESQ
R

1.1

Intended	Users,	Usage,	

and	Effects	of	ESQR

1.3

Intended	Users,	Usage,	and	
Effects	of	ESQR	 1.3	

 Intended development and users
Intended	development

This guide is aimed at the development of any embedded software. In an actual

development environment, the following situations can be assumed:

• In the development of embedded system to be incorporated into a device, the

software is created from scratch.

• Existing design assets may be utilized or reused in the development of the

software, or some of the functions may be expanded.

• Partial (general-purpose) function or middleware is developed to implement

the embedded software as requested by a business partner or for your own

business.

Several development process patterns are possible for such software development, but

the basic concept for quantitatively controlling the software quality in the development

process remains consistent throughout. Therefore, the ideas or reference metrics

presented in this guide may be applied to your own development by adapting them to

suit your particular situation. Although the ideas in this guide are intended to be applied

to the development of embedded software, they can also be applied to other types of

software (component software of an enterprise information system, for example) with

some modifications.

Intended	users

This guide is aimed at those persons who develop software, manage quality, and who

are responsible for the management in companies or projects for defining and using

evaluation metrics.

This guide assumes that embedded software development involves the following users:

131.3 Intended Users, Usage, and Effects of ESQR

S
tru

ctu
re	o

f	

E
S
Q
R

1.4

Embedded	System	Development	

Based	upon	Evaluation	Metrics

1.2

R
elated

	

S
tan

d
ard

s

1.6

N
o
tes	o

n

	U
sin

g

	

E
S
Q
R

1.5

Intended	Users,	Usage,	

and	Effects	of	ESQR

1.3

Purpose	and	

Positioning	of	ESQ
R

1.1

Purpose	and	

Positioning	of	ESQ
R

1.1

Intended	Users,	Usage,	

and	Effects	of	ESQR

1.3

Embedded	System	Development	

Based	upon	Evaluation	Metrics

1.2

• Manager or leader who is responsible for managing a development project or

development team and who examines and determines actual process control

and quality management for individual development issues

• Member of an embedded software development organization who summarizes

the basic concepts related to the development process standard or quality for the

organization or department, and who supports its deployment

• Member of a support group for an embedded software development organization

who indirectly supports the software development (e.g., quality assurance)

Needless to say, comprehension, support, and backup by the management are

necessary because costs for process effort are involved in controlling system quality using

quantitative evaluation metrics.

 Intended usage
This guide summarizes the metrics and work flows for embedded software

development that are designed to ensure and improve quality. The guide is intended to be

used when preparing quality management for an individual organization or department,

or for an individual project.

The preparation of quality management techniques can be assumed for the following

scenarios:

• Analysis of product characteristics and defi nition of a quality goals suitable for

the product.

• Determination of the standard to be attained prior to proceeding to the next

software process.

• In a scenario where no measurements for software quality management

are made, introduce evaluation metrics and perform active quality control

(management).

To use this guide, as shown in Figure 1-4, first perform system characteristics

profiling and project characteristics profiling, considering the business strategy of your

organization or department, product strategy, and organization characteristics, and

then reflect the results on the quality goal of the development. In addition, measure

the defined evaluation metrics and, according to the results of gap analysis of the

measurement result and goal, deploy the necessary methods and techniques to lead the

1� Chapter 1 How to Read ESQR

S
tru

ctu
re	o

f	

E
S
Q
R

1.4

Embedded	System	Development	

Based	upon	Evaluation	Metrics

1.2

R
elated

	

S
tan

d
ard

s

1.6

N
o
tes	o

n

	U
sin

g

	

E
S
Q
R

1.5

Intended	Users,	Usage,	

and	Effects	of	ESQR

1.3

Purpose	and	

Positioning	of	ESQ
R

1.1

Purpose	and	

Positioning	of	ESQ
R

1.1

Intended	Users,	Usage,	

and	Effects	of	ESQR

1.3

project in the desired direction. This guide describes system and project characteristics

profiling in Chapter 2 and evaluation metrics in Chapter 3. For development and system

quality control based upon the measured results, Chapter 4 provides tips on reviews and

tests in checklists. For details on more direct methods and techniques such as design and

implementation methods for ensuring higher quality, refer to other reference documents.

Work and deliverables in
system development

Test
specifications

Specifications

Acquisition Supply

Business strategy

Step 1 and 2

Analysis and
understanding of
required system quality
(Analyze system
characteristics profile and
project characteristics profile)
Analysis of personal and
economic loss risk upon
failure occurrence (total
damage amount x frequency),
understanding of reliability,
and countermeasures

Type
classification of
system
requirements
level and
business
strategy

Evaluation
metrics per type
(reference
value)

Selection and
practice of
optimum
techniques and
methods

Step 3

Definition of quality
goals and measurement
and analysis of actual
values
• Evaluation metrics for work

and deliverables
• Measurement and

evaluation of metrics

Step 4

Utilization of techniques
and methods
• Design methods, design

tools
• Test methods, test

tools/environment
• Review, validation, and

investigation
• Project management, etc.

 Software engineering
- Design methods, reviews, test methods,

etc.

- Project management

- Quantitative management (scientific and

engineering analysis)

- Process design/practice

 Personnel training: Skill standard,
etc.

Business/product

Source
code

Design
documents

System
testing

Software
testing

Software
design

System
design

Requirement
analysis

Coding

Figure	1-4:	Usage	flow	in	this	guide

151.3 Intended Users, Usage, and Effects of ESQR

S
tru

ctu
re	o

f	

E
S
Q
R

1.4

Embedded	System	Development	

Based	upon	Evaluation	Metrics

1.2

R
elated

	

S
tan

d
ard

s

1.6

N
o
tes	o

n

	U
sin

g

	

E
S
Q
R

1.5

Intended	Users,	Usage,	

and	Effects	of	ESQR

1.3

Purpose	and	

Positioning	of	ESQ
R

1.1

Purpose	and	

Positioning	of	ESQ
R

1.1

Intended	Users,	Usage,	

and	Effects	of	ESQR

1.3

Embedded	System	Development	

Based	upon	Evaluation	Metrics

1.2

 Expected effects
This guide sets out to control quality by applying the following steps, as shown in

Figure 1-4.

 Step	1: Analyze and understand the required quality, considering the

characteristics of the system to be developed,

 Step	2: Analyze and understand the characteristics of the development project,

 Step	3: Defi ne the quality goals according to the characteristics, and measure

and evaluate the metrics in accordance with the actual development, and

 Step	4: Perform quantitative quality control including the quality improvement

methods required to approach the defi ned quality target value.

The application of these steps will produce the following effects.

Effects	of	analyzing	the	characteristics	of	the	system	to	be	developed	

(system	characteristics	profiling)

• You can analyze and consider the appropriate system quality level from the

users' viewpoint.

• The quality level of a product may tend to be affected by the circumstances of

the developer. By thinking of the product requirements from the user's viewpoint,

in terms of both functionality and quality, you will be able to determine which

work is necessary for ensuring quality, and which is unnecessary.

Effects	of	analyzing	the	characteristics	of	the	project	for	developing	the	

system	(project	characteristics	profiling)

• You will be able to understand the characteristics of the project from the

viewpoint of the system development team and then refl ect them on the defi nition

of the quality goal.

• You will gain an opportunity to objectively consider the infl uence of the project

characteristics on quality.

Effects	of	controlling	product	quality	according	to	a	quality	goal	corresponding	

to	the	quality	level

• Establishment of metrics to quantitatively evaluate the work required to

ensure quality from the viewpoint of "suffi ciency," according to the quality level

determined through system and project characteristics profi ling. In addition, by

defi ning a goal value (quality target value) for these metrics and developing the

product, you will only have to undertake the minimum required amount of work to

ensure the desired quality.

16 Chapter 1 How to Read ESQR

S
tru

ctu
re	o

f	

E
S
Q
R

1.4

Embedded	System	Development	

Based	upon	Evaluation	Metrics

1.2

R
elated

	

S
tan

d
ard

s

1.6

N
o
tes	o

n

	U
sin

g

	

E
S
Q
R

1.5

Intended	Users,	Usage,	

and	Effects	of	ESQR

1.3

Purpose	and	

Positioning	of	ESQ
R

1.1

S
tru

ctu
re	o

f	

E
S
Q
R

1.4

Purpose	and	

Positioning	of	ESQ
R

1.1

Structure	of	ESQR	 1.4	

 Structure of ESQR
This guide summarizes the work required to quantitatively control embedded system

quality, applying a sequence of "system characteristics profiling," "project characteristics

profiling," and "evaluation metric definition and procedure." According to the results

of quantitative quality measurements, this guide introduces tips on "work required to

establish high quality."

This guide consists of the following chapters.

 Chapter	1: How to Read ESQR

 Chapter	2: Defi ning Quality Target Values Using System Characteristics

Profi ling

 Chapter	3: Defi nition and Reference Values for Evaluation Metrics

 Chapter	4: Tips for High Quality Establishment

Chapter	1 explains the positioning and purpose of this guide and gives an overview

of evaluation metrics, the core concept presented in this guide.

Chapter	2 describes the concept of system characteristics profiling needed to analyze

and define the system, as well as the project characteristics profiling needed to evaluate

the development project characteristics before using the evaluation metrics. System

characteristics profiling systematically analyzes the level that is required for the system

and characterizes the system from the user's viewpoints of quality and reliability.

Project characteristics profiling focuses on the development project and evaluates the

characteristics, so as to evaluate their influence on system quality and reliability.

Chapter	3 explains process metrics and product metrics which evaluate the sufficiency

of the works and deliverables, respectively, explains the basic metrics measured for these

metrics, and defines the concept and use of each evaluation metric. In addition, this

chapter presents the reference values for the evaluation metrics for each system type

defined in Chapter 2. The metrics presented in Chapter 3 can be measured easily by any

organization. For example, this guide uses Lines of Code (LOC), which is the number

171.4 Structure of ESQR

S
tru

ctu
re	o

f	

E
S
Q
R

1.4

Embedded	System	Development	

Based	upon	Evaluation	Metrics

1.2

R
elated

	

S
tan

d
ard

s

1.6

N
o
tes	o

n

	U
sin

g

	

E
S
Q
R

1.5

Intended	Users,	Usage,	

and	Effects	of	ESQR

1.3

Purpose	and	

Positioning	of	ESQ
R

1.1

S
tru

ctu
re	o

f	

E
S
Q
R

1.4

Purpose	and	

Positioning	of	ESQ
R

1.1

Intended	Users,	Usage,	

and	Effects	of	ESQR

1.3

Embedded	System	Development	

Based	upon	Evaluation	Metrics

1.2

of physical source code lines, to represent the scale of the software. LOC can be easily

determined by using a text editor and will not vary, regardless of who measures it.

Chapter	4 describes the checklist to be observed to ensure successful communication,

specification and design documents writing, as well as review, and testing. It also

provides tips on applying this guide throughout the organization.

Step 1: System characteristics profiling
Analyze the system characteristics and required quality.

Step 2: Project characteristics profiling
Analyze the development project characteristics.

Step 3(2): Definition of quality target values
Define the quality target values for the system.

Step 3(1): Selection of evaluation metrics
Select evaluation metrics for quantitative quality
control of the system.

Step 3(4): Evaluation and analysis of
measured metric values
Compare the defined quality target values and
measured evaluation metric values, and consider
the quality control method to apply.

Step 4: Examination and application of
measures for attaining higher quality
Review the development method for achieving higher
quality according to the analysis results.

Step 3(3): Measurement of evaluation metrics
Use the selected evaluation metrics to measure the
system.

Chapter 1

• Overview and positioning of this guide
• To understand the concept of quantitative quality

control

Chapter 4

• To check the points related to work for ensuring
high quality

Chapter 2

• To start the analysis of system characteristics
(system characteristics profiling)

• To understand the configuration method for
quality target values

Chapter 3

• To understand the definition and measurement of
evaluation metrics for quality quantification

• To understand the reference values for evaluation
metrics

• To understand the meaning of evaluation metric
values

Figure	1-5:	Structure	of	this	guide

18 Chapter 1 How to Read ESQR

S
tru

ctu
re	o

f	

E
S
Q
R

1.4

Embedded	System	Development	

Based	upon	Evaluation	Metrics

1.2

R
elated

	

S
tan

d
ard

s

1.6

N
o
tes	o

n

	U
sin

g

	

E
S
Q
R

1.5

Intended	Users,	Usage,	

and	Effects	of	ESQR

1.3

Purpose	and	

Positioning	of	ESQ
R

1.1

N
o
tes	o

n

	U
sin

g

	

E
S
Q
R

1.5

Purpose	and	

Positioning	of	ESQ
R

1.1

Notes	on	Using	ESQR	 1.5	

 Use as a reference
This guide summarizes the concept of system characteristics profiling, evaluation

metrics definition and reference values, as well as methodology points for quality

improvement, based upon quality control concepts using evaluation metrics during the

development process, in order to improve the quality of embedded systems. These issues

are based on a single concept for high-quality embedded system implementation, and are

to be understood as reference information. On this assumption, use this guide by paying

attention to the following points. Note that conformity to the contents of this guide does

not imply any authentication or approval.

(1)	System	characteristics	profiling	concept

The concept of system characteristics profiling explained in this guide is presented

from the user's viewpoint for assuring the quality and reliability required for the system.

It may not be perfectly compatible with your system, depending on its characteristics. So,

fully understand the meanings of this guide before attempting to apply them.

(2)	Evaluation	metrics	definition	and	reference	values	as	reference	

information

The concept of evaluation metrics presented in Chapter 3 is just one way of

visualizing software quality – many other evaluation metrics, scales, and quality

standards have been established around the world. We recommend that you also refer

to them and select whichever best fits your development. In addition, the reference

values for evaluation metrics presented in Chapter 3 should also be understood as some

of the cases. These may take different values according to the development and system

conditions and should be used by fully taking individual circumstances and conditions

into consideration.

Note that the values presented in this guide (ESQR Ver1.0) were determined by

examining data provided by cooperators of SEC during the creation of Ver1.0, and will

191.5 Notes on Using ESQR

S
tru

ctu
re	o

f	

E
S
Q
R

1.4

Embedded	System	Development	

Based	upon	Evaluation	Metrics

1.2

R
elated

	

S
tan

d
ard

s

1.6

N
o
tes	o

n

	U
sin

g

	

E
S
Q
R

1.5

Intended	Users,	Usage,	

and	Effects	of	ESQR

1.3

Purpose	and	

Positioning	of	ESQ
R

1.1

N
o
tes	o

n

	U
sin

g

	

E
S
Q
R

1.5

Purpose	and	

Positioning	of	ESQ
R

1.1

Embedded	System	Development	

Based	upon	Evaluation	Metrics

1.2

Intended	Users,	Usage,	

and	Effects	of	ESQR

1.3

S
tru

ctu
re	o

f	

E
S
Q
R

1.4

be changed to more accurate values in the next version, if necessary.

(3)	Do	not	be	a	slave	to	numeric	values

This guide provides various metrics and numeric values. The software development

industry seems to be very sensitive to such values and tends to jump on any such

bandwagon easily. As mentioned at the beginning of this guide, the quantification of

software quality is merely a means of developing high-quality software and is not an end

in itself. When we interviewed people in the industry at SEC, we often heard "although

we've been gathering data, we can't see what it says" or "we don't know how to use the

data that we've collected." For most such organizations, their goal is "gathering numeric

data." After reading this guide, and before starting an examination of the metrics to

quantify quality, thoroughly examine the reason why you are starting the activity.

 Notes on using this guide
Observe the following precautions when using this guide.

(1)	Referencing	for	improving	quality	within	a	company	or	development	

organization

When introducing quantitative quality control to a company or development

organization in line with this guide, there is no need to obtain permission from SEC. In

addition, there are no restrictions on quoting a part of this guide in an internal rule of

a company or other document, or using it in a seminar for internal engineers; you must,

however, name this guide to clarify the source.

If you have comments or opinions on such uses, SEC will welcome your feedback.

(2)	Quotation	in	other	books,	papers,	seminar	texts,	etc.

In such a case, you must ask SEC for permission in advance. When permitted, clarify

the source, including the number(s) of the quoted page(s).

(3)	Quotation	for	profit-making	seminars,	etc.

When quoting or introducing any part of this guide in a profit-making seminar for the

general public, you must ask SEC for permission in advance.

20 Chapter 1 How to Read ESQR

S
tru

ctu
re	o

f	

E
S
Q
R

1.4

Embedded	System	Development	

Based	upon	Evaluation	Metrics

1.2

R
elated

	

S
tan

d
ard

s

1.6

N
o
tes	o

n

	U
sin

g

	

E
S
Q
R

1.5

Intended	Users,	Usage,	

and	Effects	of	ESQR

1.3

Purpose	and	

Positioning	of	ESQ
R

1.1

N
o
tes	o

n

	U
sin

g

	

E
S
Q
R

1.5

Purpose	and	

Positioning	of	ESQ
R

1.1
 Request for feedback to SEC

SEC is a public agency that aims to foster software development skills. And we believe

that organizing and publishing documents like this guide will raise the standards of

software development skills in Japan. For the metrics and reference values presented in

this guide, actual values and feedback from the field are very important. We asked many

companies to provide us with data while we were creating this guide, and to improve

the quality of the guide as a reference, we need feedback from more organizations. We

welcome every reader to provide feedback for actual data related to the metrics presented

in this guide, including other metrics data.

211.6 Related Standards

S
tru

ctu
re	o

f	

E
S
Q
R

1.4

Embedded	System	Development	

Based	upon	Evaluation	Metrics

1.2

R
elated

	

S
tan

d
ard

s

1.6

N
o
tes	o

n

	U
sin

g

	

E
S
Q
R

1.5

Intended	Users,	Usage,	

and	Effects	of	ESQR

1.3

Purpose	and	

Positioning	of	ESQ
R

1.1

Purpose	and	

Positioning	of	ESQ
R

1.1

R
elated

	

S
tan

d
ard

s

1.6

Embedded	System	Development	

Based	upon	Evaluation	Metrics

1.2

Intended	Users,	Usage,	

and	Effects	of	ESQR

1.3

S
tru

ctu
re	o

f	

E
S
Q
R

1.4

N
o
tes	o

n

	U
sin

g

	

E
S
Q
R

1.5

Related	Standards	 1.6	

 International standards
(1)	ISO/IEC9126	(JIS	X0129)

This standard defines quality characteristics for software products. Based on the

concept that a software product has a total of six aspects including reliability and

functionality, this standard defines sub-characteristics for each aspect and alternative

characteristics (external and internal characteristics) to represent them. This standard

is often referenced in the software arena and can be said to be positioned at the deepest

level of understanding regarding software quality.

Part of the product metrics concept presented in Chapter 3 is related to this standard,

in particular the aspect of software product quality. In addition, the ratio of code control

statement description is related to reliability (complexity), while the ratio of comment

line description is related to maintainability. The creation of this guide was based on

discussions with this standard in mind.

(2)	IEC	61508	(JIS	C0508)

An international standard to document functional safety policies related to electrical

and electronic computer system (programmable systems). With a system such as a

plant in mind, this standard evaluates its functional preparedness in terms of security

and safety as a Safety Integrity Level (SIL) and recommends a development method

corresponding to the SIL. This guide summarizes the concepts of system characteristics

profiling to determine the levels of quality and safety required for the system in an easier

way, based on the concept of SIL in this standard. Although not mentioned in the text,

the four types of system characteristics profiling described in this guide are very closely

related to the SIL levels.

22 Chapter 1 How to Read ESQR

S
tru

ctu
re	o

f	

E
S
Q
R

1.4

Embedded	System	Development	

Based	upon	Evaluation	Metrics

1.2

R
elated

	

S
tan

d
ard

s

1.6

N
o
tes	o

n

	U
sin

g

	

E
S
Q
R

1.5

Intended	Users,	Usage,	

and	Effects	of	ESQR

1.3

Purpose	and	

Positioning	of	ESQ
R

1.1

Purpose	and	

Positioning	of	ESQ
R

1.1

R
elated

	

S
tan

d
ard

s

1.6

(3)	ISO/IEC	15939	(JIS	X0141)

This standard summarizes the concepts of software measurement methods and

processes. Regarding the flow and framework related to software measurement, this

standard summarizes the concepts of the measurement methods for the target and basic

measurement quantities, as well as the concepts of derived measurement quantities and

metrics, comparing them with the standard values used for decision-making. Regarding

these items, this standard also defines the terms related to measurement and evaluation.

This guide references this standard and unifies terms of scale to enable the

measurement and evaluation of the target in terms of "metrics" from the viewpoint of

familiarity with the field.

To set quality goals for embedded software and actually

establish quality, the target values must be set by

considering the characteristics of each target embedded

system. This chapter introduces the concept of system

characteristics profiling, which is required to set quality

target values for embedded systems, and describes

how to set the evaluation metrics for embedded

software based on this concept.

2.1 Concept of Quality Target Value Setting
Considering Embedded System Characteristics .24

2.2 Step 1: System Characteristics Profiling28

2.3 Step 2: Project Characteristics Profiling33

2.4 Step 3: Quality Target Value Setting36

2.5 Profiling Example ..44

2.6 Evaluation of System Trouble and Reflection on
System Characteristics Profiling47

Defining	Quality	Target	
Values	Using	System	

Characteristics	Profiling

Chapter 2

2� Chapter 2 Defi ning Quality Target Values Using System Characteristics Profi ling

Step	3:	Q
uality	

Target	Value	Setting

2.4

Step	1:	System

	

Characteristics	Profiling

2.2

Evaluation	of	System	Trouble	and	Reflection	

on	System	Characteristics	Profiling

2.6

P
rofiling

	E
xam

p
le

2.5

Step	2:	Project	

Characteristics	Profiling

2.3

Concept	of	Quality	Target	Value	Setting	

Considering	Embedded	System	Characteristics

2.1

Concept	of	Quality	Target	Value	Setting	
Considering	Embedded	System	Characteristics	 2.1	

 Basic guidelines for setting quality target values
We are surrounded by many different embedded systems. Examples include

information appliances such as cellular phones and TV sets, home appliance such as

fridges and microwave ovens, transportation devices such as automobiles and elevators,

as well as the components making up our social infrastructure, such as bank ATMs

and station ticket barriers. The complicated controllers used in power plants are

another example of an embedded system. When considering the qualities of embedded

systems, it would be heavy-handed to group all these systems under the single category

of "embedded systems." For example, when a trouble occurs with a cellular phone or

information appliance, the user will almost always be inconvenienced, but this trouble is

very unlikely to lead to the human cost such as injury to the user. If, on the other hand,

a fault occurs in the control system of an automobile, elevator, or aircraft, it may lead

to a serious accident, possibly involving human casualties. Thus, regarding the quality

that an embedded system is to provide, or is expected to provide as a product, the

viewpoint or level greatly depends on the characteristics of the given embedded system.

Therefore, when developing an embedded system and establishing quality as part of the

development process, it is necessary to consider the characteristics of the target system

when setting the quality target value.

 Flow of quality target value setting using system
characteristics profiling

To set a quality target value in consideration of the characteristics of the target system

using system characteristics profiling (SCP), apply the following three-step procedure.

Step	1:	System characteristics profiling (SCP)

 Consider the system troubles that could possibly occur during system use and

operation, and select those scenarios in which the software to embed will be

involved, and classify the target system into four system types according to

potential economic and human damage and cost.

252.1 Concept of Quality Target Value Setting Considering Embedded System Characteristics

Step	3:	Q
uality	

Target	Value	Setting

2.4

Step	1:	System

	

Characteristics	Profiling

2.2

Evaluation	of	System	Trouble	and	Reflection	

on	System	Characteristics	Profiling

2.6

P
rofiling

	E
xam

p
le

2.5

Step	2:	Project	

Characteristics	Profiling

2.3

Concept	of	Quality	Target	Value	Setting	

Considering	Embedded	System	Characteristics

2.1
Step	2:	Project characteristics profiling (PCP)

 Evaluate the characteristics of the development project, considering the system

characteristics, the implementation of the software embedded in the system, and

the project characteristics. Use the evaluation result as an adjustment coeffi cient

to apply to the four system types obtained in Step 1 as a reference to set the

quality target value in Step 3. In project characteristics profi ling, ten factors

are checked and converted into the adjustment coeffi cient mentioned above

according to the whole check status. These ten factors are just examples and

should be reviewed or supplemented as necessary.

Step	3:	Quality target value setting (QTVS)

 Chapter 3 of this guide presents metrics and reference values for setting

the quality target value that must be considered to establish the quality of

the embedded software. Reference values are defi ned for each of the four

system types classifi ed in Step 1, and the adjustment base values are also

shown. According to the results of system characteristics profi ling and project

characteristics profi ling (Steps 1 and 2) and the evaluation metrics information

described in Chapter 3, choose the evaluation metrics to be used for each

development project and set quality target values. Note that the metric reference

values given in Chapter 3 were produced by analyzing data collected through

hearings and questionnaires undertaken by SEC and are provided for reference

only. For an actual project, examine, review, and supplement these metrics as

necessary.

 Target and scope of quality target value setting
When setting quality target values by applying the three steps described above, it is

necessary to determine the target and scope of the system characteristics profiling.

Guideline	for	system	components

Generally, an embedded system consists of several "components," and consequently,

the embedded software used in that system can also be divided into components.

Each of these components may have very different characteristic as well as qualities

required. The software used in an automobile system, for example, consists of many

components and the quality, reliability, and performance demanded of the software

26 Chapter 2 Defining Quality Target Values Using System Characteristics Profiling

Step	3:	Q
uality	

Target	Value	Setting

2.4

Step	1:	System

	

Characteristics	Profiling

2.2

Evaluation	of	System	Trouble	and	Reflection	

on	System	Characteristics	Profiling

2.6

P
rofiling

	E
xam

p
le

2.5

Step	2:	Project	

Characteristics	Profiling

2.3

Concept	of	Quality	Target	Value	Setting	

Considering	Embedded	System	Characteristics

2.1
component controlling the braking system are very different from those required for the

component that controls the air-conditioning system. In system characteristics profiling,

"components" with different characteristics are profiled separately. This allows the

setting of quality targets that reflect the characteristics of individual components. The

way in which the target software is to be divided depends on the software functionality

and structure. So, fully consider these factors and apply system characteristics profiling

with appropriate granularity. Also note that, if profiling is too strict and focuses on the

system components, you may fail to understand the characteristics of the entire system.

The ideal situation is to profile the system components while being aware of the entire

system.

Guideline	on	the	use	and	reuse	of	software

Nowadays, it is commonplace to use and/or reuse legacy design assets in embedded

software development. With this style of development, it is important to choose the

adjustment targets for system characteristics profiling and quality target value setting

(described below). In particular, when normalizing values within the overall volume or

process effort of the target software, such as the execution ratio of the test work, targets

can be chosen in different ways. As shown in Figure 2-1, when subsystem software is

divided into files, the subsystems and files for which a program or design sheet has

been changed or is possibly changed (by even just a single line) are targeted for system

characteristics profiling or quality target value setting, regardless of the amount of

volume changed. For software consisting of subsystems A, B, and C as shown in

the figure, therefore, when subsystems B and C are partially modified or expanded,

subsystem D is newly created, and subsystem A is used as is, subsystems B, C, and D

are targeted in system characteristics profiling and the total number of source code lines

for these three subsystems are used as the basis for setting the quality target value(1).

This idea is also applied to the development of derived versions in a product family.

That is, when developing a derived version of the software, components with functional

additions or modifications are targeted (without regard to the total volume) for system

characteristics profiling or quality target value setting.

(1): If subsystem A is a core part of the system and is targeted in the test, consider including its number of source code
lines in the total number of source code lines, as necessary.

272.1 Concept of Quality Target Value Setting Considering Embedded System Characteristics

Step	3:	Q
uality	

Target	Value	Setting

2.4

Step	1:	System

	

Characteristics	Profiling

2.2

Evaluation	of	System	Trouble	and	Reflection	

on	System	Characteristics	Profiling

2.6

P
rofiling

	E
xam

p
le

2.5

Step	2:	Project	

Characteristics	Profiling

2.3

Concept	of	Quality	Target	Value	Setting	

Considering	Embedded	System	Characteristics

2.1

Subsystem D

Existing software asset Development based on existing software

Subsystem A

Subsystem C
Subsystem B

Subsystem A

Subsystem C
Subsystem B

Partially
 modified

(No modification)

Partially
expanded

Added
new subsystem

Figure	2-1:	Guideline	on	the	use	and	reuse	of	software

28 Chapter 2 Defi ning Quality Target Values Using System Characteristics Profi ling

Step	3:	Q
uality	

Target	Value	Setting

2.4

Step	1:	System

	

Characteristics	Profiling

2.2

Evaluation	of	System	Trouble	and	Reflection	

on	System	Characteristics	Profiling

2.6

P
rofiling

	E
xam

p
le

2.5

Step	2:	Project	

Characteristics	Profiling

2.3

Concept	of	Quality	Target	Value	Setting	

Considering	Embedded	System	Characteristics

2.1

Concept	of	Quality	Target	Value	Setting	

Considering	Embedded	System	Characteristics

2.1

Step	1:	System

	

Characteristics	Profiling

2.2

Step	1:		System	Characteristics	
Profi	ling	2.2	

 Role and positioning of system characteristics profiling
The embedded systems surrounding us are exposed to an unlimited range of scenarios

because there are no restrictions on the way that users may apply them. The first step

toward establishing quality for such a broad range of embedded systems, considering

their characteristics, is to evaluate the characteristics of the target system. This guide

uses system characteristics profiling (SCP(2)) to evaluate the characteristics of an

embedded system. SCP is a system characteristics evaluation method developed by SEC,

and is based on recent lively discussions on electronic and electrical functional safety and

system dependability.

The most distinctive feature of system characteristics profiling is "assuming the use

scenario of the target embedded system and classifying the system type from the user's

viewpoint." That is, SCP classifies the system type by considering "when a system trouble

occurs once the system is complete and actually being used, to what degree would

the user be inconvenienced or how much damage would they incur?" For example,

it estimates the degree to which typical users would be inconvenienced if the control

system of a cellular phone were to fail, or how great the damage would be if the control

system for a nuclear power station were to fail, causing the reactor to go out of control,

and then classifies the system type according to the results.

In this way, to define and classify the type of the socially required system quality, the

SCP described in this guide assumes the system troubles that could occur during system

use and operation and classifies the target system (or its components) as one of the

following four types according to the possible economic and/or human damage and cost.

(2)	SCP: System characteristics profi ling: Developed by M. Hirayama and S. Yoshizawa

292.2 Step 1: System Characteristics Profi ling

Step	3:	Q
uality	

Target	Value	Setting

2.4

Step	1:	System

	

Characteristics	Profiling

2.2

Evaluation	of	System	Trouble	and	Reflection	

on	System	Characteristics	Profiling

2.6

P
rofiling

	E
xam

p
le

2.5

Step	2:	Project	

Characteristics	Profiling

2.3

Concept	of	Quality	Target	Value	Setting	

Considering	Embedded	System	Characteristics

2.1

Concept	of	Quality	Target	Value	Setting	

Considering	Embedded	System	Characteristics

2.1

Step	1:	System

	

Characteristics	Profiling

2.2

Classification	of	system	types

System	type: SCP (system characteristics profiling)

Type	1: Normal: System for which the normal level of quality and reliability is
required

Type	2: Normal Quality Required: System for which a higher level of quality and
reliability than the normal level is required

Type	3: Critical: System for which high quality and reliability are required

Type	4: Highly Critical: System for which extremely high quality and reliability are
required

This guide classifies a target system into these four types, defines the quality to be

achieved by the product, and sets the quality target value for the development process.

If we look at the two examples above (the cellular phone and nuclear power station

control systems), it is easy to say that the latter will cause much greater problems upon the

occurrence of a failure. The required quality level of a target system can be determined by

applying SCP. The type of the quality level assigned to a target system can be classified; for

example, the cellular phone control system is classified as Type 2: Normal Quality while

the nuclear power station control system is classified as Type 4: Highly Critical.

 Evaluation method for system characteristics profiling
In system characteristics profiling, the following two decisions are performed, in the

order shown, to classify the target system into one of the four types above.

(1)	Human	cost	calculation						(2)	Economic	cost	calculation

No

Yes

1 billion yen
or more

100 million yen
or more

Less than 100
million yen

Domain exampleSystem type

Check 1

Check 2

Economic cost
incurred?

Type 4
Highly Critical

Nuclear power
station, aircraft, etc.

Plant, transportation
device, etc.

Home appliance,
cellular phone, etc.

Type 3
Critical

Type 2
Normal Quality Required

Type 1
Normal

Extremely high
human cost

Extremely high
economic costHuman cost

incurred?

Start

Figure	2-2:	SCP	check	flowchart

30 Chapter 2 Defining Quality Target Values Using System Characteristics Profiling

Step	3:	Q
uality	

Target	Value	Setting

2.4

Step	1:	System

	

Characteristics	Profiling

2.2

Evaluation	of	System	Trouble	and	Reflection	

on	System	Characteristics	Profiling

2.6

P
rofiling

	E
xam

p
le

2.5

Step	2:	Project	

Characteristics	Profiling

2.3

Concept	of	Quality	Target	Value	Setting	

Considering	Embedded	System	Characteristics

2.1

Concept	of	Quality	Target	Value	Setting	

Considering	Embedded	System	Characteristics

2.1

Step	1:	System

	

Characteristics	Profiling

2.2

(1)	Calculating	the	human	cost

Analyze whether direct or indirect users of the target system would be injured, killed,

or otherwise fatally affected by an accident caused by a trouble of the system. The points

to be considered when estimating human cost are as follows:

[Points	to	consider	when	estimating	human	cost]

• If a human cost (including serious injury) would be incurred as a result of an

accident caused by a system trouble, high quality and reliability is required for

the system as a means of ensuring safety (Type 3 or higher).

• If a very high human cost would be incurred as a result of an accident caused by

a system trouble, the system is classified as Type 4 (Highly Critical).

Human	cost Type Acronym Meaning

No human cost Type 2 or lower NQ or lower Normal Quality
Required or lower

Human cost (including serious injury)
may be incurred

Type 3 C Critical

Very high human cost (including
serious injury) may be incurred

Type 4 HC Highly Critical

[Tips	on	estimation]

• Direct	or	indirect	damage	acknowledgement

 In a criticality accident such as the Chernobyl Nuclear Power Station accident,

it is assumed that the engineers working there would lose their lives, while the

health of residents around the power station would suffer considerably. In such a

case, the damage incurred by the direct users and the indirect costs incurred by

the residents would both be included in the human cost.

• Possibility	of	multiple	accidents	being	caused	by	a	single	product

 If the engine control software of an automobile were to fail, resulting in a traffic

accident, the number of passengers in the automobile would be regarded as

being the direct human cost for a single accident. However, because as many

automobiles as those manufactured featuring the same software would be

distributed to the market, they could crash as a result of the same failure. In this

case, consider the human cost accumulated the total number of automobiles

manufactured when calculating the scale of the human cost.

• Probability	of	accident

 In the above examples, the probability of a power station accident is extremely

low and human damage would rarely be caused. Almost certainly, automobile

312.2 Step 1: System Characteristics Profiling

Step	3:	Q
uality	

Target	Value	Setting

2.4

Step	1:	System

	

Characteristics	Profiling

2.2

Evaluation	of	System	Trouble	and	Reflection	

on	System	Characteristics	Profiling

2.6

P
rofiling

	E
xam

p
le

2.5

Step	2:	Project	

Characteristics	Profiling

2.3

Concept	of	Quality	Target	Value	Setting	

Considering	Embedded	System	Characteristics

2.1

Concept	of	Quality	Target	Value	Setting	

Considering	Embedded	System	Characteristics

2.1

Step	1:	System

	

Characteristics	Profiling

2.2

engine control software failures would occur at higher (than the power station

failure) frequencies. Therefore, the probabilities of system troubles occurring, as

well as the human damage, should also be considered to calculate the scale of

the damage more accurately. Since SCP is intended to easily classify the system

type, it basically does not take failure occurrence and human damage occurrence

probabilities into consideration. They may be considered, however, depending

on the organization and project. In addition, for cases in which the participants

(including neighbors) may suffer for a long time after the system trouble, as in the

case of Chernobyl, also consider the term of the suffering in the evaluation.

(2)	Calculating	the	economic	cost

Next, analyze the economic cost incurred by the user in the event of the trouble of

the target system. An embedded system alone would seem incapable of causing extreme

economic cost. However, devices using embedded systems are nowadays used in larger

systems or IT systems, such that the failure of the embedded system within a component

could cause the entire system to stop functioning. In any such case, the evaluation of the

possible economic cost is very important. The points to be considered when estimating

the economic cost are as follows.

[Points	to	consider	when	estimating	economic	cost]

• When a system is judged as being of Type 4 in (1), calculation of the economic

cost is not necessary.

• When economic cost is anticipated in the event of an accident, the system

should be considered as being the cause of that economic cost. Calculate the

economic loss that would be incurred by both direct and indirect users in the

event of an accident.

• Classify the system into one of the following four types according to the

economic cost incurred in the event of accident. Note that the type classification

value is for reference only and can be revised according to the product area and

the situation facing the company.

Economic	cost Type Acronym Meaning

Cost lower than 100 million yen Type 1 N Normal

Cost lower than 1 billion yen Type 2 NQ Normal Quality
Required

Cost of 1 billion yen or higher Type 3 C Critical

Among Type 3 costs, those for which
extremely large losses are anticipated

Type 4 HC Highly Critical

32 Chapter 2 Defi ning Quality Target Values Using System Characteristics Profi ling

Step	3:	Q
uality	

Target	Value	Setting

2.4

Step	1:	System

	

Characteristics	Profiling

2.2

Evaluation	of	System	Trouble	and	Reflection	

on	System	Characteristics	Profiling

2.6

P
rofiling

	E
xam

p
le

2.5

Step	2:	Project	

Characteristics	Profiling

2.3

Concept	of	Quality	Target	Value	Setting	

Considering	Embedded	System	Characteristics

2.1

Concept	of	Quality	Target	Value	Setting	

Considering	Embedded	System	Characteristics

2.1

Step	1:	System

	

Characteristics	Profiling

2.2

[Tips	on	estimation]

• Direct	and	indirect	damage	acknowledgement

 If an airline's check-in system fails such that its passengers cannot check in, the

damage to the airline's business (economic cost) due to the delay in providing

a service can be the fi rst item considered (direct cost). In addition, individual

passengers may suffer their own business losses as a result of their fl ights

being canceled (indirect cost). Consider both of these costs when estimating the

economic cost.

 In the control system of a plant, any system trouble could suspend the

manufacturing of products, preventing the manufacturer from providing those

products to its customers. Such factors should also be considered when

estimating the economic cost.

• Estimating	damage	over	time

 If a system trouble occurs, it may take some time to repair and restart the

system. The user continues to incur economic loss during this period. So, when

estimating the economic cost, sum up that incurred while the system cannot

provide services as a result of the trouble.

• Exclusion	of	manufacturer's	economic	cost

 When an embedded system suffers a failure, the manufacturer will also incur

economic costs for recalls and repairs. In the fi rst steps of SCP, however, these

costs are excluded from the calculation and are left until the evaluation of the

project characteristics profi ling in the next step.

 Applying feedback from failures in the field and experience
with actual systems to assumptions

In SCP, the assumed human and economic costs incurred upon system troubles are

used in calculations as mentioned above. However, it is often difficult to assume the

type and scale of influence upon the occurrence of an actual system trouble caused by

the failure of the developed system. In such a case, as mentioned in Section 2.6 of this

guide, analyze any failures or accidents that have actually occurred with similar systems

or products in the past and use the analysis result as a reference for making assumptions

regarding damage.

332.3 Step 2: Project Characteristics Profi ling

Step	3:	Q
uality	

Target	Value	Setting

2.4

Step	1:	System

	

Characteristics	Profiling

2.2

Evaluation	of	System	Trouble	and	Reflection	

on	System	Characteristics	Profiling

2.6

P
rofiling

	E
xam

p
le

2.5

Step	2:	Project	

Characteristics	Profiling

2.3

Concept	of	Quality	Target	Value	Setting	

Considering	Embedded	System	Characteristics

2.1

Concept	of	Quality	Target	Value	Setting	

Considering	Embedded	System	Characteristics

2.1

Step	2:	Project	

Characteristics	Profiling

2.3

Step	1:	System

	

Characteristics	Profiling

2.2

Step	2:		Project	Characteristics	
Profi	ling	2.3	

 Meaning and positioning of project characteristics profiling
This guide uses an approach whereby the quality level of a target system is classified

into one of four types as described in Step 1, after which the quality target value is set

according to the type. For example, we could take "the review time for a Type 1 system

for 10% of the process effort for the entire development project" as the quality target

value. Suppose, however, that in an actual system development environment, a team of

unskilled novices were to be assigned to the system development because the system is

classified as being of Type 1, for which only normal quality is required. In such a case, it

is doubtful that the recommended review time for Type 1 will be enough. Given the skills

and experience of the development members, it would be safer to spend more time on the

review. Therefore, this guide sets the final quality target values, based upon the system

type obtained by system characteristics profiling and by adding the characteristics of

the system development project. Step 2 focuses on the project for developing the target

system and deploys the concept of project characteristics profiling (PCP(3)) to evaluate

the project characteristics. As detailed below, PCP checks ten factors related to the

system implementation characteristics and the development project circumstances. The

result of the project characteristics profiling obtained here will be applied as adjustment

coefficients for the system types when setting the quality target values in Step 3 of this

guide.

 Project characteristics profiling factors
Regarding the project characteristics as well as the system and software

implementation characteristics in actual development, the ten profiling factors (hereafter

referred to as "factors") listed in Table 2-1 are regarded as being adjustment factors

for evaluating the project characteristics profile. Specifically, the project characteristics

profiling factors listed in Table 2-1 and related to these ten factors are checked.

(3)	PCP: Project Characteristic Profi ling: Developed by M. Hirayama and S. Yoshizawa

3� Chapter 2 Defi ning Quality Target Values Using System Characteristics Profi ling

Step	3:	Q
uality	

Target	Value	Setting

2.4

Step	1:	System

	

Characteristics	Profiling

2.2

Evaluation	of	System	Trouble	and	Reflection	

on	System	Characteristics	Profiling

2.6

P
rofiling

	E
xam

p
le

2.5

Step	2:	Project	

Characteristics	Profiling

2.3

Concept	of	Quality	Target	Value	Setting	

Considering	Embedded	System	Characteristics

2.1

Concept	of	Quality	Target	Value	Setting	

Considering	Embedded	System	Characteristics

2.1

Step	2:	Project	

Characteristics	Profiling

2.3

Note that these ten factors used for project characteristics profiling are merely

examples and it is recommended that they be reviewed as necessary depending on the

circumstances of a target organization or project to be evaluated.

Table	2-1:	Project	characteristics	profiling	factors

(1)	 Software	size As the project becomes larger, software failure is more likely to occur and
so more thoughtful development is required.

(2)	 Software	complexity As the project becomes more complicated, software failure is more likely
to occur and so more thoughtful development is required.

(3)	 System	constraint	
severity

As the system constraints become more severe, the number of matters to
consider in design and implementation increases and testing for various
cases becomes necessary.

(4)	 Specification	clarity A project with ambiguous system specifications or frequent changes
to the specifications tends to result in redesign or failure, so cautious
checking in the development phase is required.

(5)	 Quality	of	reuse	software When reusing existing assets for development, and when the quality of
the reuse software is low, the quality of the new project will be affected
and so more cautious review and testing are required.

(6)	 Degree	of	organization	of	
development	process

If a development process is not well organized and deployed, the
development members will get out of step with each other, resulting in
missing tasks and errors, and failures are more likely to occur.

(7)	 Labor	division	and	
hierarchicalization	of	
development	organization

If the development organization is large and deeply hierarchical and
introduces division of labor, problems such as insufficient communications
tend to occur.

(8)	 Skill	of	development	
members

If the skills of the development members vary from person to person or if
poorly skilled persons hold a majority in the team, more cautious checks
should be applied to the work and deliverables through the application of
reviews.

(9)	 Experience	and	skill	of	
project	manager

If the project manager (PM) is inexperienced or poorly skilled, reviews
and/or checks at appropriate timings may be insufficient, so sufficient
review time should be reserved in advance.

(10)	Damage	to	manufacturer	
upon	occurrence	of	
system	trouble

When the damage to the manufacturer upon the occurrence of a system
trouble (e.g., recall) would be considerable, thorough quality checks and
quality establishment must be done in the development stage to lower the
risk.

 Project characteristics profile check table
Use Table 2-2 to check factors (1) to (10) and evaluate the project characteristics

profile. For example, for the development target of the project, if "(1) Software size" is

"extremely small," check the corresponding column. Once all of factors (1) to (10) have

been checked, multiply the number of "-1" columns by -1 and then enter the result in the

left subtotal column, and then multiply the number of "+1" columns by 1 and then enter

the result in the right subtotal column. Finally, sum the subtotals and enter the result

in the Total points column. This value will be the adjustment coefficient to apply to the

system type for determining the quality target value in Step 3 of this guide.

352.3 Step 2: Project Characteristics Profiling

Step	3:	Q
uality	

Target	Value	Setting

2.4

Step	1:	System

	

Characteristics	Profiling

2.2

Evaluation	of	System	Trouble	and	Reflection	

on	System	Characteristics	Profiling

2.6

P
rofiling

	E
xam

p
le

2.5

Step	2:	Project	

Characteristics	Profiling

2.3

Concept	of	Quality	Target	Value	Setting	

Considering	Embedded	System	Characteristics

2.1

Concept	of	Quality	Target	Value	Setting	

Considering	Embedded	System	Characteristics

2.1

Step	2:	Project	

Characteristics	Profiling

2.3

Step	1:	System

	

Characteristics	Profiling

2.2

Table	2-2:	Project	characteristics	profile	table

Factors Negative adjustment (-1) Basic Positive adjustment (+1)

(1) Software	size Extremely small Average Extremely large

(2) Software	complexity Extremely simple Average Extremely complex

(3) System	constraint	severity Loose Average Severe

(4) Specification	clarity Extremely clear Average Ambiguous

(5) Quality	of	reuse	software Extremely high quality Average Extremely low quality

(6) Degree	of	organization	of	development	
process

Well organized Average Not well organized

(7) Labor	division	and	hierarchicalization	
of	development	organization

Organization is simple Average Organization is complex

(8) Skill	of	development	members Member skill is high Average Member skill is low

(9) Experience	and	skill	of	project	manager PM skill is high Average PM skill is low

(10) Damage	to	manufacturer	upon	
occurrence	of	system	trouble

Extremely low Average Extremely high

Subtotal

Total	points

(Example)

The following shows an example of calculating the adjustment coefficient by using

this check table.

In this example, the subtotal of the "-1" column is -3 points and the subtotal of the

"+1" column is +1 point, so the adjustment coefficient is -2.

Table	2-3:	Project	characteristics	profile	table	(example)

Factors -1 0 +1

(1) Software	size Extremely small Average Extremely large

(2) Software	complexity Extremely simple Average Extremely complex

(3) System	constraint	severity Loose Average Severe

(4) Specification	clarity Extremely clear Average Ambiguous

(5) Quality	of	reuse	software Extremely high quality Average Extremely low quality

(6) Degree	of	organization	of	development	
process

Well organized Average Not well organized

(7) Labor	division	and	hierarchicalization	
of	development	organization

Organization is simple Average Organization is complex

(8) Skill	of	development	members Member skill is high Average Member skill is low

(9) Experience	and	skill	of	project	manager PM skill is high Average PM skill is low

(10) Damage	to	manufacturer	upon	
occurrence	of	system	trouble

Extremely low Average Extremely high

Subtotal -3 0 1

Total	points -2

36 Chapter 2 Defi ning Quality Target Values Using System Characteristics Profi ling

Step	3:	Q
uality	

Target	Value	Setting

2.4

Step	1:	System

	

Characteristics	Profiling

2.2

Evaluation	of	System	Trouble	and	Reflection	

on	System	Characteristics	Profiling

2.6

P
rofiling

	E
xam

p
le

2.5

Step	2:	Project	

Characteristics	Profiling

2.3

Concept	of	Quality	Target	Value	Setting	

Considering	Embedded	System	Characteristics

2.1

Step	3:	Q
uality	

Target	Value	Setting

2.4

Concept	of	Quality	Target	Value	Setting	

Considering	Embedded	System	Characteristics

2.1

Step	3:		Quality	Target	Value	
Setting	2.4	

 What is a quality target value?
The quality target values for the software to be developed are set by clarifying the

measurement targets (system and development), using the type adjustment coefficient

that is based on the system type determined in Step 1, and the project characteristics

profile obtained in Step 2, and by referencing the individual evaluation metrics reference

table given in Chapter 3 of this guide.

Chapter 3 defines the metrics for quantitatively controlling quality during embedded

software development. These metrics are basically used as standards for setting quality

targets during development, such as "to what degree should the design document be

reviewed?" or "how complex should the source code be?" To this end, two types of

metrics, as explained in Chapter 1, are provided, namely, process metrics and product

metrics.

• Process metrics are used to evaluate the suffi ciency of the work used for

checking quality, such as the review of intermediate deliverables.

• Product metrics are used to evaluate the quality of intermediate deliverables

during development.

In actual development, the target values for the process metrics and product metrics

can be considered as being equal to the quality target values for the project. The quality

target values, as already mentioned, should be set according to the quality and reliability

levels required for the system or embedded software being developed. Uniform quality

target values that are set without considering these factors would generate gaps between

the required and actual quality levels of the system or software, resulting in excesses or

shortfalls. This guide sets the target values for the individual process metrics and product

metrics, based on the SCP and PCP results mentioned above.

372.4 Step 3: Quality Target Value Setting

Step	3:	Q
uality	

Target	Value	Setting

2.4

Step	1:	System

	

Characteristics	Profiling

2.2

Evaluation	of	System	Trouble	and	Reflection	

on	System	Characteristics	Profiling

2.6

P
rofiling

	E
xam

p
le

2.5

Step	2:	Project	

Characteristics	Profiling

2.3

Concept	of	Quality	Target	Value	Setting	

Considering	Embedded	System	Characteristics

2.1

Step	3:	Q
uality	

Target	Value	Setting

2.4

Concept	of	Quality	Target	Value	Setting	

Considering	Embedded	System	Characteristics

2.1

Step	2:	Project	

Characteristics	Profiling

2.3

Step	1:	System

	

Characteristics	Profiling

2.2

 Examination and determination of deployed process and
product metrics

Before setting a quality target value, you must first determine the metrics to be

used to set that quality target value. To this end, according to the evaluation metrics

mentioned in Chapter 3 of this guide, examine and determine the metrics to be used in

the target project. When examining the metrics to use, consider the development process

for the project and the intermediate deliverables that are to be created, and determine

the metrics that are to be measured and the timing at which the measurement is to be

done. The metrics listed in Chapter 3 are for reference only and should be selected and

deployed according to the target system or project characteristics or circumstances.

They can be expanded as necessary. As mentioned in the tips for quality quantification

given in Chapter 4 (Section 4.5) of this guide, you should also examine the metrics

measurement cost and purpose sufficiently, as well as the actual use of the metrics.

Project
development process

Examination of evaluation
metrics used

Examination of evaluation
metrics target values

System characteristics
profiling

Evaluation metrics
definition
(reference information)

Project characteristics
profiling

Evaluation metrics
reference value

ESPR

Chapter 2 of
this guide

Chapter 3 of this guide

• Determination of
measurement metrics

• Determination of
measurement method

• Determination of
measurement timing

• Setting of basic quality
target values

• Adjustment of quality
target values

System type

Type adjustment
coefficient

Figure	2-3:	Quality	target	value	setting	flow

38 Chapter 2 Defi ning Quality Target Values Using System Characteristics Profi ling

Step	3:	Q
uality	

Target	Value	Setting

2.4

Step	1:	System

	

Characteristics	Profiling

2.2

Evaluation	of	System	Trouble	and	Reflection	

on	System	Characteristics	Profiling

2.6

P
rofiling

	E
xam

p
le

2.5

Step	2:	Project	

Characteristics	Profiling

2.3

Concept	of	Quality	Target	Value	Setting	

Considering	Embedded	System	Characteristics

2.1

Step	3:	Q
uality	

Target	Value	Setting

2.4

Concept	of	Quality	Target	Value	Setting	

Considering	Embedded	System	Characteristics

2.1
 How to set a quality target value

Use the metrics reference values shown in Chapter 3 of this guide and the system type

classified in Step 1, as well as the type adjustment coefficient obtained from the project

characteristics profiling in Step 2, to set the quality target value for each metric. Also,

consult with the project leader, manager, and/or actual engineers when setting the quality

target values.

(1)	Setting	a	basic	quality	target	value

After determining the metrics to be used in a project, it is necessary to set target values

for those metrics.

Chapter 3 of this guide provides reference values along with the definitions of

individual process metrics and product metrics. For example, for the Ratio of the Design

Review Effort (ID: PR11, RDRE), a representative process metric, the table shown below

is provided. From this table, the basic value of the Ratio of the Design Review Effort

should be 2.00% when the target system type is Normal, 6.00% for Normal Quality

Required, 10.00% for Critical, and 14.00% for Highly Critical.

Table	2-4:	Example	of	ratio	of	the	design	review	effort

ID PR11

Name Ratio of the Design Review Effort

Abbreviation RDRE

Reference	value
N NQ C HC

Adjustment
base value

2.00 6.00 10.00 14.00

4.00 Reference	value	
range 0.00 to 6.00 2.00 to 10.00 6.00 to 14.00 10.00 to 18.00

Measurement	
unit %

Tolerance Percentage (two high-order significant digits)

Meaning	of	the	
metric

• Represented as the balance between the process effort for the design
review and process effort spent on design (design process effort).

• As better safety and reliability are required, the design review process
effort increases, as does the design process effort itself. Therefore, a
higher value is not necessarily good but an appropriate value is required.

Calculation	
method

Review Effort for DEsign/Process Effort for DEsign
RDRE = REDE/PEDE

392.4 Step 3: Quality Target Value Setting

Step	3:	Q
uality	

Target	Value	Setting

2.4

Step	1:	System

	

Characteristics	Profiling

2.2

Evaluation	of	System	Trouble	and	Reflection	

on	System	Characteristics	Profiling

2.6

P
rofiling

	E
xam

p
le

2.5

Step	2:	Project	

Characteristics	Profiling

2.3

Concept	of	Quality	Target	Value	Setting	

Considering	Embedded	System	Characteristics

2.1

Step	3:	Q
uality	

Target	Value	Setting

2.4

Concept	of	Quality	Target	Value	Setting	

Considering	Embedded	System	Characteristics

2.1

Step	2:	Project	

Characteristics	Profiling

2.3

Step	1:	System

	

Characteristics	Profiling

2.2

(2)	Adjusting	the	quality	target	value

Next, adjust the basic quality target value obtained in (1). Assume, for example, that

the system characteristics profiling mentioned above is performed for a target system,

and that it is classified as Type N in Step 1: SCP and Step 2: PCP resulted in +4 points.

In this case, the ratio of the design review effort for the target system is as follows.

 Ratio	of	the	specifications	review	effort	for	Type	N: 2.00%

 Adjustment	base	value	for	the	ratio	of	the	design	review	effort: 4.00

 Adjustment	coefficient: +4

 Therefore,

 Ratio	of	the	design	review	effort	of	the	target	system

 = Ratio of the design review effort for the corresponding type + adjustment

coefficient/10 × adjustment base value

 = 2.00 + (4/10 × 4.00)

 = 3.60%

�0 Chapter 2 Defining Quality Target Values Using System Characteristics Profiling

Step	3:	Q
uality	

Target	Value	Setting

2.4

Step	1:	System

	

Characteristics	Profiling

2.2

Evaluation	of	System	Trouble	and	Reflection	

on	System	Characteristics	Profiling

2.6

P
rofiling

	E
xam

p
le

2.5

Step	2:	Project	

Characteristics	Profiling

2.3

Concept	of	Quality	Target	Value	Setting	

Considering	Embedded	System	Characteristics

2.1

Step	3:	Q
uality	

Target	Value	Setting

2.4

Concept	of	Quality	Target	Value	Setting	

Considering	Embedded	System	Characteristics

2.1
Table	2-5:	Quality	target	values	setting	table

Target	system	or	project	name

System/project	characteristics	profiling	result

System Characteristics Profiling Normal Normal Quality Critical Highly Critical

Project Characteristics Profiling point

Process	metrics Reference	
value	for	
corresponding	
type

Adjustment	
base	value

Set	target	value

Ratio of the work effort

Specifications review 4.00

Design review 4.00

Code review 1.50

Testing review 1.50

Testing 5.00

Review 4.00

Execution ratio of the work

Specifications review 2.40

Design review 2.40

Code review 1.20

Testing review 2.00

Testing 17.00

Review 8.00

Product	metrics Reference	
value	for	
corresponding	
type

Adjustment	
base	value

Set	target	value

Document

Document volume

Requirements specification 4.00

Design document 10.00

Test specifications 10.00

Document balance

Requirements specification -

Design document -

Test specifications -

Code

Code volume

Number of lines 2
KLOC

Should be equal
to or less than
this value

Number of function lines 160
LOC

Should be equal
to or less than
this value

�12.4 Step 3: Quality Target Value Setting

Step	3:	Q
uality	

Target	Value	Setting

2.4

Step	1:	System

	

Characteristics	Profiling

2.2

Evaluation	of	System	Trouble	and	Reflection	

on	System	Characteristics	Profiling

2.6

P
rofiling

	E
xam

p
le

2.5

Step	2:	Project	

Characteristics	Profiling

2.3

Concept	of	Quality	Target	Value	Setting	

Considering	Embedded	System	Characteristics

2.1

Step	3:	Q
uality	

Target	Value	Setting

2.4

Concept	of	Quality	Target	Value	Setting	

Considering	Embedded	System	Characteristics

2.1

Step	2:	Project	

Characteristics	Profiling

2.3

Step	1:	System

	

Characteristics	Profiling

2.2

Code characteristics

Control statement description ratio 5.00

Comment line description ratio 5.00

Coding rule conformity 100

Testing

Testing sufficiency

Testing density 25.00

Failure coverage 0.01

Operation completeness

Failure elimination ratio 3.00

Document	balance	metrics

Item	
No.

Description Reference	
value

Set	target	
value

Requirements
specification

R1. Entire description volume 100

R2. Target user and usage description 5

R3. Description volume for operation environment
conditions

10

R4. Description volume for main functions 40

R5. Description volume for safety and non-
functional requirements

30

R6. Description volume for overall system structure 10

R7. Description volume for exception handling 5

Design
document

D1. Entire description volume R1×3

D2. Description volume for overall system structure 5

D3. Description volume for functional block structure 5

D4. Description volume for functional block details 50

D5. Description volume for interface data 20

D6. Description volume for exception handling 20

Test
specifications

T1. Entire description volume R1×3

T2. Description of test environment 5

T3. Description of test procedure and conditions 10

T4. Description of normal system 35

T5. Description of abnormal system and exception
handling

45

T6. Description of test completion criteria 5

�2 Chapter 2 Defi ning Quality Target Values Using System Characteristics Profi ling

Step	3:	Q
uality	

Target	Value	Setting

2.4

Step	1:	System

	

Characteristics	Profiling

2.2

Evaluation	of	System	Trouble	and	Reflection	

on	System	Characteristics	Profiling

2.6

P
rofiling

	E
xam

p
le

2.5

Step	2:	Project	

Characteristics	Profiling

2.3

Concept	of	Quality	Target	Value	Setting	

Considering	Embedded	System	Characteristics

2.1

Step	3:	Q
uality	

Target	Value	Setting

2.4

Concept	of	Quality	Target	Value	Setting	

Considering	Embedded	System	Characteristics

2.1
 Basic concepts of adjustment coefficient

As can be seen from the above calculations, when a system is classified as being N

or NQ in Step 1: SCP, the adjustment effect in Step 2: PCP is a maximum of +/-10

(100%) and adjustment is performed by shifting the system characteristics profiling type

up or down by one. That is, when the system is classified as being of Type 3: Critical

in Step 1, the same quality target value as that for the Normal level (two levels below

Critical) would be insufficient even if the development conditions obtained by PCP are

considered for the maximum. Therefore, for a Critical system, it is recommended that

the quality target value be set within the range from Normal Quality Required (one level

below) to Highly Critical (one level above), considering the convenience of development.

Execution ratio of the design review
Metrics adjustment range by project
characteristics profiling

Reference metrics value
per type determined by
system characteristics
profiling

0.20

0.15

0.10

0.05

0
Normal Normal

Quality
Required

Critical Highly
Critical

Figure	2-4:	Basic	concepts	of	adjustment	coefficient

In actual quality target value setting, Table 2-5 is used to select the metrics and set the

target value.

�32.4 Step 3: Quality Target Value Setting

Step	3:	Q
uality	

Target	Value	Setting

2.4

Step	1:	System

	

Characteristics	Profiling

2.2

Evaluation	of	System	Trouble	and	Reflection	

on	System	Characteristics	Profiling

2.6

P
rofiling

	E
xam

p
le

2.5

Step	2:	Project	

Characteristics	Profiling

2.3

Concept	of	Quality	Target	Value	Setting	

Considering	Embedded	System	Characteristics

2.1

Step	3:	Q
uality	

Target	Value	Setting

2.4

Concept	of	Quality	Target	Value	Setting	

Considering	Embedded	System	Characteristics

2.1

Step	2:	Project	

Characteristics	Profiling

2.3

Step	1:	System

	

Characteristics	Profiling

2.2

 Continuous review of reference metric values within an
organization

Chapter 3 of this guide lists the definitions of metrics and corresponding reference

values as a standard for setting quality target values. These reference metric values

were produced by SEC by analyzing data collected through hearings and questionnaire

surveys with the corporate partners approving SEC's activities. The collected data came

from organizations and projects in various areas and of different scales. So, these values

should be used merely as references for examination.

In general, these standard metric values etc. are more precise for individual

organizations when accumulated and used as values that reflect the characteristics of

the organizations. Given this point, use the reference values given in this guide as a

start point and modify them optimally based on the experience of your organization

or corporation. Naturally, it is necessary to analyze the mid-to-long term metric trends

and the results of their application to actual development projects and obtain optimum

standard values, when preparing standard metric values for each organization. In the

process, collect statistics on these values as necessary and process the data layers and

out-of-scope values to prepare highly precise standard values that are well suited to each

organization or corporation.

�� Chapter 2 Defi ning Quality Target Values Using System Characteristics Profi ling

Step	3:	Q
uality	

Target	Value	Setting

2.4

Step	1:	System

	

Characteristics	Profiling

2.2

Evaluation	of	System	Trouble	and	Reflection	

on	System	Characteristics	Profiling

2.6

P
rofiling

	E
xam

p
le

2.5

Step	2:	Project	

Characteristics	Profiling

2.3

Concept	of	Quality	Target	Value	Setting	

Considering	Embedded	System	Characteristics

2.1

P
rofiling

	E
xam

p
le

2.5

Concept	of	Quality	Target	Value	Setting	

Considering	Embedded	System	Characteristics

2.1

Profi	ling	Example	2.5	

This section introduces examples of system characteristics profiling and project

characteristics profiling by using a simple case.

 Assumed case: Small mobile communications device
Development	condition

Major	function: A palm-top size small, personal use mobile

communications device for accessing e-mail and Web

services. In addition to the communications function, the

major functions include the display of e-mails and Web

pages (with some animation), scheduling, and directory

management.

Intended	users: Young adults; Expected shipments of 10,000 units.

Software: The component software size is approximately three

million LOC, developed using existing cellular phone

control software. The device will be functionally and

structurally simpler than a cellular phone. The software

specifications will be relatively simple and easy to

understand.

Development	project: The development project team consists of existing cellular

phone development project members and, because the

team is temporarily and hurriedly formed, the relationship

with the hardware team is not fixed. Therefore, the project

is immature in terms of development processes. The

project leader, however, has considerable experience.

Positioning	of	product: Because the shipment volume is not high and the product

price is relatively low, the manufacturer expects that the

recall cost in the case of product trouble is estimated as

not being particularly high.

�52.5 Profiling Example

Step	3:	Q
uality	

Target	Value	Setting

2.4

Step	1:	System

	

Characteristics	Profiling

2.2

Evaluation	of	System	Trouble	and	Reflection	

on	System	Characteristics	Profiling

2.6

P
rofiling

	E
xam

p
le

2.5

Step	2:	Project	

Characteristics	Profiling

2.3

Concept	of	Quality	Target	Value	Setting	

Considering	Embedded	System	Characteristics

2.1

P
rofiling

	E
xam

p
le

2.5

Concept	of	Quality	Target	Value	Setting	

Considering	Embedded	System	Characteristics

2.1

Step	1:	System

	

Characteristics	Profiling

2.2

Step	2:	Project	

Characteristics	Profiling

2.3

Step	3:	Q
uality	

Target	Value	Setting

2.4

System	characteristics	profiling

Step	1: SCP (system characteristics profiling)

In this system, the probability of human damage due to a system trouble is presumed

to be extremely low. Any economic cost caused by the system trouble can be calculated

as follows.

• NU: Number of Users: Number of target users

• RD: Ratio of Damaged users: Ratio of total users to the number of target users

affected by a system trouble

• DI: Damage of Impact: Estimated damage per user when the device is

assumed to be unavailable to users for a day

due to a system trouble

• ND: Non Service Days: Number of days during which the users cannot

receive services due to a system trouble

• ED: Economic Damage: Conclusive economic cost caused by a system

trouble

The relationship between the above elements can be expressed using the following

formula:

 ED = [ND × (NU × RD)] × DI

When the following figures are assumed in this case:

 NU = 10,000 (number of users)

 RD = 1.0 (assuming that all users are affected by a system trouble)

 ND = 2.0 days (system trouble will be repaired in about two days installing the

software patch supplied by the vendor)

 DI = 5,000 yen (assuming that each user is receiving a service equivalent to

5,000 yen using the device per day)

 ED = [2.0 × (10000 × 1)] × 5000

 = 100,000,000 yen

The economic cost can be estimated as shown above. Based on this result, this system

can be classified as being of Type 2 (Normal Quality Required), given the assumed

�6 Chapter 2 Defining Quality Target Values Using System Characteristics Profiling

Step	3:	Q
uality	

Target	Value	Setting

2.4

Step	1:	System

	

Characteristics	Profiling

2.2

Evaluation	of	System	Trouble	and	Reflection	

on	System	Characteristics	Profiling

2.6

P
rofiling

	E
xam

p
le

2.5

Step	2:	Project	

Characteristics	Profiling

2.3

Concept	of	Quality	Target	Value	Setting	

Considering	Embedded	System	Characteristics

2.1

P
rofiling

	E
xam

p
le

2.5

Concept	of	Quality	Target	Value	Setting	

Considering	Embedded	System	Characteristics

2.1
damage due to the economic cost.

Note that the values given here for the number of users and the method of assuming

damage to the users are just examples.

Step	2: PCP (project characteristics profiling)

Based on the development conditions listed at the beginning of this section, the type

adjustment coefficient (turning point) is 0. So, the reference value obtained in Step 1

(Type 2) can be used as is.

Table	2-6:	Project	characteristics	profiling	(example	of	entry	for	assumed	case)

Negative adjustment (-1) Basic Positive adjustment (+1)

(1) Software	size Extremely small Average Extremely large

(2) Software	complexity Extremely simple Average Extremely complex

(3) System	constraint	severity Loose Average Severe

(4) Specification	clarity Extremely clear Average Ambiguous

(5) Quality	of	reuse	software Extremely high quality Average Extremely low quality

(6) Degree	of	organization	of	development	
process

Well organized Average Not well organized

(7) Degree	of	labor	division	and	
hierarchicalization	of	development	
organization

Organization is simple Average Organization is
complicated

(8) Skill	of	development	members Member skill is high Average Member skill is low

(9) Experience	and	skill	of	project	manager PM skill is high Average PM skill is low

(10) Damage	to	manufacturer	upon	
occurrence	of	system	trouble

Extremely low Average Extremely high

Subtotal -2 2

Total	points 0

�72.6 Evaluation of System Trouble and Refl ection on System Characteristics Profi ling

Step	3:	Q
uality	

Target	Value	Setting

2.4

Step	1:	System

	

Characteristics	Profiling

2.2

Evaluation	of	System	Trouble	and	Reflection	

on	System	Characteristics	Profiling

2.6

P
rofiling

	E
xam

p
le

2.5

Step	2:	Project	

Characteristics	Profiling

2.3

Concept	of	Quality	Target	Value	Setting	

Considering	Embedded	System	Characteristics

2.1

Concept	of	Quality	Target	Value	Setting	

Considering	Embedded	System	Characteristics

2.1

Evaluation	of	System	Trouble	and	Reflection	

on	System	Characteristics	Profiling

2.6

Step	1:	System

	

Characteristics	Profiling

2.2

Step	2:	Project	

Characteristics	Profiling

2.3

Step	3:	Q
uality	

Target	Value	Setting

2.4

P
rofiling

	E
xam

p
le

2.5

Evaluation	of	System	Trouble	and	Refl	ection	
on	System	Characteristics	Profi	ling	2.6	

 Reflection on system characteristics profiling according to
feedback on system trouble

In the flow from system characteristics profiling to project characteristics profiling,

and to a sequence of quality target value settings explained in this chapter, system

characteristics profiling, which is the first step, assumes the occurrence of a system

trouble before starting the development of the target system and analyzes the influence

of that trouble. This analysis is very difficult, however, even if the specifications and use

scenarios of the target system are thoroughly analyzed, and the evaluation result may

differ depending on the analysis.

IEC61508, which defines system functional safety, includes a pre-safety plan and post-

safety plan to describe the importance of feedback on actual system troubles and their

reflection on subsequent development, as well as countermeasure planning considering

assumed troubles when actually developing a system. Concerning this, Sections 2.2 to 2.4

in this chapter mainly describe the set up of quality target values in the pre-development

stage related to the pre-safety plan. On the other hand, the evaluation of the influence

of an actual system trouble and the feedback to quality control in the next project,

equivalent to the post-safety plan mentioned in IEC61508, is also a very important

factor. This section summarizes the concept of evaluating the influence of a system on

the user or society when a system trouble occurs. The system trouble influence evaluation

scale, ST-SEISMIC (System Trouble SEISMIC(4)), mentioned here, is newly considered

by SEC and shall be understood as a sample measure for evaluating the influence of

system troubles.

(4)	ST-SEISMIC: System Trouble SEISMIC: Developed by M. Hirayama, S. Yoshizawa, and S. Yamaguchi

�8 Chapter 2 Defi ning Quality Target Values Using System Characteristics Profi ling

Step	3:	Q
uality	

Target	Value	Setting

2.4

Step	1:	System

	

Characteristics	Profiling

2.2

Evaluation	of	System	Trouble	and	Reflection	

on	System	Characteristics	Profiling

2.6

P
rofiling

	E
xam

p
le

2.5

Step	2:	Project	

Characteristics	Profiling

2.3

Concept	of	Quality	Target	Value	Setting	

Considering	Embedded	System	Characteristics

2.1

Concept	of	Quality	Target	Value	Setting	

Considering	Embedded	System	Characteristics

2.1

Evaluation	of	System	Trouble	and	Reflection	

on	System	Characteristics	Profiling

2.6

 Concept of System Trouble SEISMIC Scale ST-SEISMIC
For correct system characteristics profiling, it is necessary to properly recognize that

damage due to a system trouble or fault that is actually caused by a similar system, with

respect to user health and economic well-being, as well as the influence on the system

peripheral environment and society. Naturally, the level of damage and influence will

depend on the influence of the actual system trouble. ST-SEISMIC classifies these levels

into seven stages, as shown in Table 2-7, and evaluates the degree of the influence of

actual system trouble. It is intended to be used as a reference for calculating the assumed

amount of (1) human damage and (2) economic damage in SCP when developing

subsequent or similar systems according to the evaluation of actual troubles.

Basically, evaluation according to the system trouble classes shown in Table 2-7 is

reflected on the system type classification.

System characteristics profiling (SCP)
System trouble influence evaluation
ST-SEISMIC Scale

Project characteristics profiling (PCP)

Quality target value setting

Pre-safety plan Post-safety plan

System development System

System trouble

Figure	2-5:	Using	ST-SEISMIC

�92.6 Evaluation of System Trouble and Reflection on System Characteristics Profiling

Step	3:	Q
uality	

Target	Value	Setting

2.4

Step	1:	System

	

Characteristics	Profiling

2.2

Evaluation	of	System	Trouble	and	Reflection	

on	System	Characteristics	Profiling

2.6

P
rofiling

	E
xam

p
le

2.5

Step	2:	Project	

Characteristics	Profiling

2.3

Concept	of	Quality	Target	Value	Setting	

Considering	Embedded	System	Characteristics

2.1

Concept	of	Quality	Target	Value	Setting	

Considering	Embedded	System	Characteristics

2.1

Evaluation	of	System	Trouble	and	Reflection	

on	System	Characteristics	Profiling

2.6

Step	1:	System

	

Characteristics	Profiling

2.2

Step	2:	Project	

Characteristics	Profiling

2.3

Step	3:	Q
uality	

Target	Value	Setting

2.4

P
rofiling

	E
xam

p
le

2.5

Table	2-7:	ST-SEISMIC	Scale	(System	Trouble	SEISMIC	Scale)

Class
Influence	on	
user	operation

Health	hazard	
to	user

Economic	
damage	to	user

Influence	
on	system	
peripheral	
environment

System	type

0 None
Failure is not
noticed.

Normal

1 Minimal

Some users
sense a problem
with the system
operation.

2 Very	slight

Many users
sense a problem
with the system
operation.

Normal Quality
Required

3 Slight

Most users
sense a problem
with the system
operation and
some make a
complaint.

Some users
may be exposed
to a minimal
health hazard.

Some services
stop and some
users may
incur a slight
economic loss.

4 Moderate

Some of the
user goals
cannot be
achieved.

Some users are
exposed to a
health hazard.

Some services
stop and users
may incur an
economic loss.

Critical

5 Considerable
User goals
cannot be
achieved.

Some users are
exposed to a
serious health
hazard.

Some or all
services stop
and some
users may
incur a serious
economic loss.

System trouble
leads to limited
social unrest or
inconvenience.

6 Severe

Many users are
exposed to a
serious health
hazard.

Some or all
services stop
and many
users may
incur a serious
economic loss.

System trouble
leads to social
unrest.

Highly Critical

7 Very	severe

Most users are
exposed to a
serious health
hazard.

Some or all
services stop
and most users
incur a serious
economic loss

System trouble
leads to serious
social unrest.

50 Chapter 2 Defi ning Quality Target Values Using System Characteristics Profi ling

Step	3:	Q
uality	

Target	Value	Setting

2.4

Step	1:	System

	

Characteristics	Profiling

2.2

Evaluation	of	System	Trouble	and	Reflection	

on	System	Characteristics	Profiling

2.6

P
rofiling

	E
xam

p
le

2.5

Step	2:	Project	

Characteristics	Profiling

2.3

Concept	of	Quality	Target	Value	Setting	

Considering	Embedded	System	Characteristics

2.1

Concept	of	Quality	Target	Value	Setting	

Considering	Embedded	System	Characteristics

2.1

Evaluation	of	System	Trouble	and	Reflection	

on	System	Characteristics	Profiling

2.6

 How to use the ST-SEISMIC Scale (System Trouble
SEISMIC Scale)

As you may have already noticed with ST-SEISMIC, this scale is created by comparing the

degree of seismic intensity (i.e., the "SEISMIC Scale") that is used in Japan, an earthquake

country, to the evaluation of a system trouble. When a major earthquake occurs, its seismic

intensity is quickly reported by the mass media. The intensity of anticipated earthquakes

is also expressed using this scale. Recently, many system troubles have been reported. In the

same way as with the seismic intensity, this scale can also be used as a guideline to indicate

the countermeasures that are required for any given level of trouble or failure. Of course, the

characteristics differ depending on the system, so this scale can also be used from the viewpoint

of establishing quality and reliability in development by considering countermeasures suitable

for the system characteristics or feeding them back to system characteristics profi ling.

To visualize the quality of embedded software, evaluation metrics are required. But if the

definitions of evaluation metrics are ambiguous, the measured values will vary depending

on who or which organization performs the measurement. In addition, to determine whether

the measured value falls within the correct range, an evaluation standard for the measured

value must be defined in advance. This chapter introduces the definition of evaluation

metrics, corresponding reference values, and how to use them.

3.1 Definitions and Meanings of Evaluation Metrics
and How to Use Them52

3.2 Categorization of Evaluation Metrics54

3.3 Evaluation Metrics - Notes on Use59

3.4 Process Metrics - Definition and Reference
Values ..63

3.5 Product Metrics - Definition and Reference
Values ..79

3.6 Basic Metrics - Definition and Reference
Values .. 105

Definition	and	
Reference	Values	for	
Evaluation	Metrics

Chapter 3

52 Chapter 3 Defi nition and Reference Values for Evaluation Metrics

Process	Metrics	-	Definition	

and	Reference	Values

3.4

C
ategorization	of	

E
valuation	M

etrics

3.2

Basic	Metrics	-	Definition	

and	Reference	Values

3.6

Product	Metrics	-	Definition	

and	Reference	Values

3.5

E
valuation	M

etrics	

-	N
otes	on	U

se

3.3

Definitions	and	Meanings	of	Evaluation	

Metrics	and	How	to	Use	Them

3.1

Defi	nitions	and	Meanings	of	Evaluation	
Metrics	and	How	to	Use	Them	 3.1	

As first explained in Chapter 1, the development of higher-quality software demands

the precise monitoring of the actual development work and the resulting deliverables

from the viewpoint of quality. To this end, it is essential that we have a system of

quantitative quality control based on evaluation metrics to give us a means of objectively

understanding the quality of the work being done and the resulting deliverables, while

and then feeding back the results to improve the process as necessary. Evaluation

metrics play a leading role in this quantitative quality control. This section introduces

the concept of software evaluation metrics as used in this guide. In general, the following

points need to be considered when examining evaluation metrics.

• Defi nitions and meanings of metrics and how to use them

• Measurement method and timing of metrics

 Clarifying the definitions of metrics to be measured
One representative measure (evaluation metric) used to evaluate software is the

number of lines of the source code, which is generally referred to as "Lines of Code"

(LOC). If we think about this, the LOC value for the source code of any one process

will vary depending on the language used to write the process, such as C, C++, assembly

language, etc. Even if we limit the language to C, whether or not to count the comment

and/or blank lines will result in very different LOC values. When the measuring and

visualizing of software and its development work is to be done quantitatively using

evaluation metrics, a clear definition of each metric is required.

 Considering how to apply measured data to development
Numeric values, including evaluation metrics, that are acquired during development

only have meaning when they are used in the actual development. An often heard

phrase is "We have gathered numeric data, but we don't know what to do with it." Such

a situation not only makes the effort of collecting the data useless, but also results in us

533.1 Defi nitions and Meanings of Evaluation Metrics and How to Use Them

Process	Metrics	-	Definition	

and	Reference	Values

3.4

C
ategorization	of	

E
valuation	M

etrics

3.2

Basic	Metrics	-	Definition	

and	Reference	Values

3.6

Product	Metrics	-	Definition	

and	Reference	Values

3.5

E
valuation	M

etrics	

-	N
otes	on	U

se

3.3

Definitions	and	Meanings	of	Evaluation	

Metrics	and	How	to	Use	Them

3.1
being allergic to collecting numeric data and unwilling to check even the required data.

To prevent this situation from occurring and to visualize software and its development

works using evaluation metrics, it is necessary to investigate, in advance, how to use

the measured numeric data, in particular how it can be fed back into the development

process.

For the process metrics and product metrics described in the subsequent sections,

the aspects of the software or development work that are to be visualized by individual

metrics, as well as the situations that can be assumed if the metric values are lower than

the reference values, are described for reference purposes. Evaluation metrics described

in this guide are selected as strictly as possible as those which can be measured easily and

used for quality feedback during development. Using these metrics as a guide, consider

the metrics that are to be used in your organization or project to visualize software

development and how they are used for feedback into the development process, then

narrow down the data to be measured and make full use of the measured data.

 Considering the measurement method and timing of metrics
The gathering of data during product development places an extra burden on the

development team. Therefore, it is necessary to thoroughly consider how and when the

measurement should be done by applying metrics to the gathering of numeric data.

Although the measurement method partly depends on the precision of metrics data to

be measured, it is not desirable to demand an unreasonably long time and/or effort to

gather unnecessarily precise data from the development team. It is important to always

consider how meaningful data can be collected while keeping the amount of effort

needed to acquire that data to a minimum.

5� Chapter 3 Defi nition and Reference Values for Evaluation Metrics

Process	Metrics	-	Definition	

and	Reference	Values

3.4

Basic	Metrics	-	Definition	

and	Reference	Values

3.6

Product	Metrics	-	Definition	

and	Reference	Values

3.5

E
valuation	M

etrics	

-	N
otes	on	U

se

3.3

Definitions	and	Meanings	of	Evaluation	

Metrics	and	How	to	Use	Them

3.1

C
ategorization	of	

E
valuation	M

etrics

3.2

Categorization	of	Evaluation	
Metrics	3.2	

Usually in software development, software is created through a sequence of steps,

including requirements analysis, design, coding, and testing. To control the quality of the

final software, you should make multi-aspect quality checks as shown below.

(1) Checking the quality of each intermediate deliverable during the development

process

(2) Checking each execution status of the work related to the development process,

which may directly improve quality

(3) Checking the quality of the fi nally developed software

To ensure objectivity in such a quality check and quality control, this guide uses two

types of metrics, namely, evaluation metrics and basic metrics which are numeric data

to be measured to obtain evaluation metrics. The evaluation metrics consist of process

metrics and product metrics.

Evaluation metrics

Process metrics
Metrics for evaluating the sufficiency of

quality check work among the work executed

during the software development process

Product metrics
Metrics for evaluating the result of

deliverables created during the software

development process

Basic metrics
Basic observation metrics necessary to obtain evaluation metrics

Review

Testing

Specifications

Design
document

Code, Test
specifications,

Test report

Measurement MeasurementEffort Deliverable

Figure	3-1:	Types	and	meanings	of	evaluation	metrics

553.2 Categorization of Evaluation Metrics

Process	Metrics	-	Definition	

and	Reference	Values

3.4

Basic	Metrics	-	Definition	

and	Reference	Values

3.6

Product	Metrics	-	Definition	

and	Reference	Values

3.5

E
valuation	M

etrics	

-	N
otes	on	U

se

3.3

Definitions	and	Meanings	of	Evaluation	

Metrics	and	How	to	Use	Them

3.1

C
ategorization	of	

E
valuation	M

etrics

3.2

Efforts	toward	systematic	organization	of	
evaluation	metrics	in	software	engineering

In the field of software engineering, the subject of software measurement (software

metrics) has been studied and software-related data has been collected. In a typical

example, the ISBSG organization has collected software development data from over

3,000 IT projects conducted all over the world.

http://www.isbsg.org/japanese/index.htm

In Japan, SEC has collected development data from approximately 1,000 enterprise

projects and analyzed and summarized that data in the "White Paper 2007 on

software development projects in Japan." These trials were aimed at bringing project

contours into sharp relief using various metrics, based mainly on software productivity.

On the other hand, such a data collection attempt has basically not been reported

in the embedded software area, so there has been very little discussion as to the

metrics that should be applied to each aspect of development. It is expected that

data collection by ISBSG will be promoted in the embedded software area with the

publication of this guide, and the understanding of software development will become

possible with the adoption of numerical data in the near future.

C o l u m n

56 Chapter 3 Defi nition and Reference Values for Evaluation Metrics

Process	Metrics	-	Definition	

and	Reference	Values

3.4

Basic	Metrics	-	Definition	

and	Reference	Values

3.6

Product	Metrics	-	Definition	

and	Reference	Values

3.5

E
valuation	M

etrics	

-	N
otes	on	U

se

3.3

Definitions	and	Meanings	of	Evaluation	

Metrics	and	How	to	Use	Them

3.1

C
ategorization	of	

E
valuation	M

etrics

3.2

 Evaluation metrics

Evaluation	metrics
ID Abbreviation Name Measurement	method	or	formula
Process	metrics:	Ratio	of	the	work	effort
PR10 RSRE Ratio of the Specifications

Review Effort
Review Effort for SPecification/Process Effort for
SPecification

PR11 RDRE Ratio of the Design Review Effort Review Effort for DEsign/Process Effort for DEsign
PR12 RCRE Ratio of the Code Review Effort Review Effort for COde/Process Effort for COde
PR13 RTRE Ratio of the Test Review Effort Review Effort for Test Preparation/Process Effort for

Test Preparation
PR14 RTWE Ratio of the Test Work Effort Process Effort for TEst/Process Effort in TOtal
PR15 RORE Ratio Of the Review Effort Review Effort in TOtal/Process Effort in TOtal
Process	metrics:	Execution	ratio	of	the	work
PR20 ERSR Execution Ratio of the

Specifications Review
Review Effort for SPecification/Total Lines Of Code

PR21 ERDR Execution Ratio of the Design
Review

Review Effort for DEsign/Total Lines Of Code

PR22 ERCR Execution Ratio of the Code
Review

Review Effort for COde/Total Lines Of Code

PR23 ERTR Execution Ratio of the Test
Review

Review Effort for Test Preparation/Total Lines Of Code

PR24 ERTW Execution Ratio of the Test Work Process Effort for TEst/Total Lines Of Code
PR25 EROR Execution Ratio Of the Review Review Effort in TOtal/Total Lines Of Code
Product	metrics:	Document	evaluation	metrics
Document volume evaluation metrics
PD10 RSDV Ratio of the Specifications

Document Volume
Volume Of the Specifications Document/Total Lines Of
Code

PD11 RDDV Ratio of the Design Document
Volume

Volume Of the Design Document/Total Lines Of Code

PD12 RTDV Ratio of the Test Document
Volume

Volume Of the Test Document/Total Lines Of Code

Document balance evaluation metrics
PD20 BSDD Balance of the Specifications

Document Description
Number of pages of each part in requirements
specification/Total number of pages in requirements
specification

PD21 BDDD Balance of the Design Document
Description

Number of pages of each part in design document/
Total number of pages in design document

PD22 BTDD Balance of the Test Document
Description

Number of pages of each part in test specifications/
Total number of pages in test specifications

Product	metrics:	Code	evaluation	metrics
Code volume evaluation metrics
PD30 FLOC File Lines Of Code Same as File Lines Of Code of basic metrics
PD31 MLOC Module Lines Of Code Same as Module Lines Of Code of basic metrics
Code characteristics evaluation metrics
PD32 ROCS Ratio Of Control Statement Number Of Control Statement/Total Lines Of Code
PD33 ROCL Ratio Of Comment Line Comment Lines Of Code/Total Lines Of Code
PD34 RDCR Ratio of Deviation of Coding

Rules
Number of Deviation of Coding Rules/Total Lines Of
Code

Product	metrics:	Test	evaluation	metrics
Test sufficiency evaluation metrics
PD40 DOTI Density Of Test Items Number Of Test Items/Total Lines Of Code
PD41 ROFC Ratio Of Fault detection in

Comparison
Ratio Of Fault Detection during final 10% of test period/
Ratio Of Fault Detection during first 90% of test period

Operation completeness evaluation metrics
PD42 ROFE Ratio Of Fault Elimination Number Of Eliminated Fault/Number Of Detected Fault

573.2 Categorization of Evaluation Metrics

Process	Metrics	-	Definition	

and	Reference	Values

3.4

Basic	Metrics	-	Definition	

and	Reference	Values

3.6

Product	Metrics	-	Definition	

and	Reference	Values

3.5

E
valuation	M

etrics	

-	N
otes	on	U

se

3.3

Definitions	and	Meanings	of	Evaluation	

Metrics	and	How	to	Use	Them

3.1

C
ategorization	of	

E
valuation	M

etrics

3.2

Basic	metrics

ID Abbreviation Name Measurement	method	or	formula

Source	code	volume	basic	metrics

B10 TLOC Total Lines Of Code Total number of lines per file

B11 FLOC File Lines Of Code Scale of the source code described in each source file

B12 MLOC Module Lines Of Code Scale of the source code per function

B13 NOCS Number Of Control Statement Number of control statements per file

B14 CLOC Comment Lines Of Code Number of comment lines per file

B15 NDCR Number of Deviation of Coding
Rules

Accumulated number of deviations from coding rules

Document	volume	basic	metrics

B20 VOSD Volume Of the Specifications
Document

Total number of pages in documents related to
specifications

B21 VODD Volume Of the Design Document Total number of pages in documents related to design

B22 VOTD Volume Of the Test Document Total number of pages in documents related to testing

Process	effort	basic	metrics

B30 RETO Review Effort in TOtal Total review process effort

B31 RESP Review Effort for SPecification Total specifications review process effort

B32 REDE Review Effort for DEsign Total design review process effort

B33 RECO Review Effort for COde Total code review process effort

B34 RETP Review Effort for Test Preparation Total test review process effort

B35 PETO Process Effort in TOtal Total development process effort

B36 PESP Process Effort for SPecification Total specifications creation process effort

B37 PEDE Process Effort for DEsign Total design process effort

B38 PECO Process Effort for COde Total code creation process effort

B39 PETP Process Effort for Test
Preparation

Total test preparation and check process effort

B3A PETE Process Effort for TEst Total test process effort

Test	volume	basic	metrics

B40 NOTI Number Of Test Items Total number of test items (those executed only)

B41 NOET Number Of Executed Test Items Total number of executed test items (including
duplicate items)

B42 NODF Number Of Detected Fault Total number of faults detected after unit testing

B43 NOEF Number Of Eliminated Fault Total number of faults corrected of those detected

B44 ROFD Ratio Of Fault Detection Number Of Detected Fault/Number Of Executed Test
Items

58 Chapter 3 Defi nition and Reference Values for Evaluation Metrics

Process	Metrics	-	Definition	

and	Reference	Values

3.4

Basic	Metrics	-	Definition	

and	Reference	Values

3.6

Product	Metrics	-	Definition	

and	Reference	Values

3.5

E
valuation	M

etrics	

-	N
otes	on	U

se

3.3

Definitions	and	Meanings	of	Evaluation	

Metrics	and	How	to	Use	Them

3.1

C
ategorization	of	

E
valuation	M

etrics

3.2

 Evaluation metrics normalization and basic metrics
This guide aims to visualize software using two types of evaluation metrics; process

metrics and product metrics. The most important point requiring visualization is the

size of the software or the scale of the development project (i.e., the process effort).

For example, when the value of the review effort for design, a process metric, is 1 man-

month, the project will be evaluated very differently to a 1000 man-month or 100 man-

month project in terms of review sufficiency. We can also think of the number of design

document pages as a product metric. The number of design document pages will be

large when the size of the software to be developed is large. But in this case, "the number

of design document pages" alone is not necessarily an appropriate value. Thus, some

process metrics and product metrics must be evaluated relative to the software size of the

measurement target or the total process effort to be spent on the target.

Therefore, when values are calculated for process metrics and product metrics in this

guide, in addition to calculating direct values such as the review effort for design and

the number of design document pages as basic metrics, values necessary for normalizing

these values, such as the total number of lines of source code or the total process effort

of development, are also measured. Note that the metrics needed for normalization are

used as denominators in the formulas for calculating evaluation metrics, mentioned later.

593.3 Evaluation Metrics - Notes on Use

Process	Metrics	-	Definition	

and	Reference	Values

3.4

Basic	Metrics	-	Definition	

and	Reference	Values

3.6

Product	Metrics	-	Definition	

and	Reference	Values

3.5

Definitions	and	Meanings	of	Evaluation	

Metrics	and	How	to	Use	Them

3.1

E
valuation	M

etrics	

-	N
otes	on	U

se

3.3

C
ategorization	of	

E
valuation	M

etrics

3.2

Evaluation	Metrics	-	Notes	
on	Use	3.3	

This guide describes the definition, measurement method, and usage of each process

metric, product metric, and basic metric, as described later in this chapter. In principle,

for these metrics we assume that the entire process, from system requirements definition

through to testing, is done within a single organization. However, the actual development

style will vary in practice, for example, part of the development work may be extracted

or existing software may be reused. The following provides notes on each variation of

the development style.

 When part of the development work is extracted for
outsourcing

In actual embedded system development projects, different development styles can be

applied. For example, the entire flow from the initial requirements definition through

to final testing may be done within a single project or organization, some of the work

may be outsourced, your organization may be contracted to develop part of a project, or

functions of the system may be distributed among several departments or companies for

development. This guide is intended to visualize the quality of the software developed by

the entire project, as described in Section 3.2, by using and measuring several evaluation

metrics. These evaluation metrics ensure relatively precise measurement when the entire

flow, from initial requirements definition through to final testing, is done or when all

the functions are developed within a single project. However, the measuring of all of

these evaluation metrics described in this guide may be difficult in projects in which

some of the development work is extracted or outsourced, functions are distributed

for development, or these projects are unified. Therefore, you should narrow down the

measurable evaluation metrics in such cases according to the project scope or style,

rather than using all of the evaluation metrics described as a reference for using this

guide. Each organization, project, or department that is responsible for quality control

should investigate how to use evaluation metrics according to its own situation.

60 Chapter 3 Defi nition and Reference Values for Evaluation Metrics

Process	Metrics	-	Definition	

and	Reference	Values

3.4

C
ategorization	of	

E
valuation	M

etrics

3.2

Basic	Metrics	-	Definition	

and	Reference	Values

3.6

Product	Metrics	-	Definition	

and	Reference	Values

3.5

Definitions	and	Meanings	of	Evaluation	

Metrics	and	How	to	Use	Them

3.1

E
valuation	M

etrics	

-	N
otes	on	U

se

3.3

 Calculating basic metrics in partial development
As mentioned above, in projects in which design and coding, or requirements

specification creation and final testing are contracted out, the evaluation metrics

related to the work (review, etc.) done as part of each project and/or the deliverables

produced by the work (design document, specifications, etc.) are only evaluated. In this

case, reference the following for the basic metrics (total number of source code lines,

development process effort, etc.) used as the basis for calculating the evaluation metrics.

• Total	Lines	Of	Code	(total	number	of	source	code	lines)

 For Total Lines Of Code, use the number of lines of code for the entire software

product to be developed, as a reference value, even if part of it is contracted

out. If you are not sure of the entire source code volume because of the contract

work, check with the client. The client should also cooperate with the contract

vendor to ensure the creation of effective evaluation metrics.

• Development	process	effort

 Measure the development process effort for each process executed as part of

the project. Because, however, the values for Ratio of the Test Work Effort and

Ratio Of the Review Effort are relative to Process Effort in TOtal, measuring

Process Effort in TOtal may not be possible if only the test work is contracted

out. In this case, it is possible to regard the process effort for all of the work

related to a project as Process Effort in TOtal, but the Ratio of the Test Work

Effort may be 100%. For such a project, the reference values for the evaluation

metrics given later in this guide are not appropriate. To evaluate the test work

in this case, use Execution Ratio of the Test Work instead of Ratio of the Test

Work Effort.

613.3 Evaluation Metrics - Notes on Use

Process	Metrics	-	Definition	

and	Reference	Values

3.4

Basic	Metrics	-	Definition	

and	Reference	Values

3.6

Product	Metrics	-	Definition	

and	Reference	Values

3.5

Definitions	and	Meanings	of	Evaluation	

Metrics	and	How	to	Use	Them

3.1

E
valuation	M

etrics	

-	N
otes	on	U

se

3.3

C
ategorization	of	

E
valuation	M

etrics

3.2

 Measurement timing for evaluation metrics
The evaluation metrics mentioned in this guide should be measured at appropriate

timings, according to the work status of each project. Figure 3-2 shows the general

measurement timing.

This guide uses the evaluation metrics mentioned in Sections 3.4 to 3.6 to

quantitatively control quality. Among them, the basic metrics that are actually measured

should be estimated in advance, and their precision should be improved step by step as

the development progresses. These metrics should be measured at the following timings.

• The document volume for the requirements specifi cations, design document, and

test specifi cations should be measured upon the completion of the draft or the

fi rst edition of each deliverable.

• The code volume should be measured upon the completion of the source code.

• The required process effort should be measured by monitoring the start through

the end of each work.

• The basic metrics for the test volume should be measured mainly in the test

phase.

 Concepts of Process Effort in TOtal and Total Lines Of
Code according to measurement timing

The process metrics and product metrics actually used for quantitative quality control

are obtained by processing the basic metrics values. For example, to obtain Execution

Ratio of the Specifications Review, measure the process effort for the specifications

review upon its completion, and then divide it by Total Lines Of Code. Coding has not

normally been started, however, upon the completion of the specifications review, so the

Total Lines Of Code value is not available for measurement at this point and calculation

for Execution Ratio of the Specifications Review is not possible. The ratio of the work

effort and execution ratio of the work, as used in this guide, are calculated using the

development process effort and Total Lines Of Code, but these values are not available

during development (i.e., in requirements definition, design, or coding). Therefore, to

obtain the ratio of the work effort or execution ratio of the work during development,

an inferred (estimated) value is used for the development process effort or Total Lines Of

Code that is used as the denominator.

62 Chapter 3 Definition and Reference Values for Evaluation Metrics

Process	Metrics	-	Definition	

and	Reference	Values

3.4

C
ategorization	of	

E
valuation	M

etrics

3.2

Basic	Metrics	-	Definition	

and	Reference	Values

3.6

Product	Metrics	-	Definition	

and	Reference	Values

3.5

Definitions	and	Meanings	of	Evaluation	

Metrics	and	How	to	Use	Them

3.1

E
valuation	M

etrics	

-	N
otes	on	U

se

3.3

For these inferred values, approximate values should be obtained according to the

values for similar developments in the past and taking the amount of specification

changed in the system into consideration.

Requirements definition Design Coding Testing

Ratio of the work effort/Execution ratio of the work

SWP1.2
Requirements
specification confirmation

SWP4/SWP5/SWP6
Testing
SWP4.3/SWP5.3/SWP6.3
Testing result confirmation

SWP2.2
Architectural design confirmation
SWP3.2
Detailed design confirmation

SWP4.2
Program unit coding

Code
volume/characteristics

Test sufficiency
Operation
completeness

SWP6.1.3
Test specifications internal
confirmation

SWP2.1.6
Architectural design documentation
SWP3.1.5
Detailed design documentation

SWP1.1.5
Requirements
specification documentation

Document volume/Document balance

Figure	3-2:	Metrics	measurement	timing

633.4 Process Metrics - Defi nition and Reference Values

Basic	Metrics	-	Definition	

and	Reference	Values

3.6

Product	Metrics	-	Definition	

and	Reference	Values

3.5

Process	Metrics	-	Definition	

and	Reference	Values

3.4

Definitions	and	Meanings	of	Evaluation	

Metrics	and	How	to	Use	Them

3.1

E
valuation	M

etrics	

-	N
otes	on	U

se

3.3

C
ategorization	of	

E
valuation	M

etrics

3.2

Process	Metrics	-	Defi	nition	
and	Reference	Values	3.4	

 What is a process metric?
A process metric is an evaluation metric for measuring and evaluating work to be done

in the software development process. To create high-quality software, effective quality

checks and confirmation must be performed during the development process. Process

metrics are used to evaluate the sufficiency of this work.

Evaluation	target	for	process	metrics

The target to be evaluated with process metrics is the development work itself. Process

metrics examine, for example, whether the specifications have been investigated properly

or whether the design document has been reviewed sufficiently. This guide explains how

to evaluate the appropriateness and sufficiency of the work related to quality checks,

including those reviews and tests that are directly related to quality establishment, among

the works to be done in the software development.

Viewpoint	of	process	metrics	evaluation

The actual meaning of "work," which is the target of a process metric, is in a way very

difficult to grasp. Generally, the viewpoints by which work is evaluated are "whether the

work was done properly," "whether the work was done sufficiently," and "whether any

work has been omitted." For checking the appropriateness and sufficiency of the work,

"Ratio of the work effort: Evaluation of relative sufficiency of the work by checking

how much process effort (quantity) is assigned in the entire software development work"

and "Execution ratio of the work: Evaluation of granularity of the work by checking

whether appropriate work process effort (quantity) for the volume of the work target

is assigned" are the two viewpoints used to evaluate the quantitative and qualitative

sufficiency of the work.

Ratio	of	the	work	effort

The ratio of the work effort indicates the sufficiency of the work process effort

6� Chapter 3 Definition and Reference Values for Evaluation Metrics

C
ategorization	of	

E
valuation	M

etrics

3.2

Basic	Metrics	-	Definition	

and	Reference	Values

3.6

Product	Metrics	-	Definition	

and	Reference	Values

3.5

E
valuation	M

etrics	

-	N
otes	on	U

se

3.3

Process	Metrics	-	Definition	

and	Reference	Values

3.4

Definitions	and	Meanings	of	Evaluation	

Metrics	and	How	to	Use	Them

3.1
by comparing the process effort for reviewing and process effort for testing spent on

intermediate and final deliverables against the work process effort spent on the process.

For the specification, design, code creation, test creation (preparation), and result

creation, the work process effort for each review is evaluated relative to the entire work

process effort. For testing, the work process effort is evaluated relative to the entire

development work process effort.

For example, Ratio of the Design Review Effort is obtained by dividing the design

review work process effort by the process effort required for the entire design work

process. Generally, if considerable process effort is spent on the design work, it can be

said that the design complexity is correspondingly high, or that the design quantity is

correspondingly large, with more design review process effort required. The concept of

ratio of the work effort is that it is used as a metric to evaluate the sufficiency of any

such work quantity. Of course, it is desirable to spend appropriate process effort on the

review and testing to assure quality, relative to the development process effort. That is, a

higher ratio of the work effort value is not necessarily good, and the target value must be

determined in relation to the quality required for the target system and other factors.

Execution	ratio	of	the	work

Execution ratio of the work is a metric that indicates the qualitative sufficiency of the

work by evaluating the process effort for reviewing and testing of the intermediate and

final deliverables created in the software development process, relative to the software

size. The work process effort spent on the review of the specification, design, source code

creation, test creation (preparation and result creation), or the process effort spent on

testing, is evaluated relative to the entire software size. The software size is represented

by Total Lines Of Code (ID: B10, TLOC). For example, Execution Ratio of the Design

Review is calculated by dividing the design review process effort by Total Lines Of Code

for the system being developed. This value indicates how much process effort per line

unit was spent on the design review and can be used as a metric for judging whether a

design review appropriate for the software volume has been done. Of course, greater

process effort is generally good for reviews and tests for ensuring quality, and a higher

Execution ratio of the work value indicates higher quality. However, its target value

should also be considered together with the required quality and development cost of

the target system.

653.4 Process Metrics - Definition and Reference Values

Basic	Metrics	-	Definition	

and	Reference	Values

3.6

Product	Metrics	-	Definition	

and	Reference	Values

3.5

Process	Metrics	-	Definition	

and	Reference	Values

3.4

Definitions	and	Meanings	of	Evaluation	

Metrics	and	How	to	Use	Them

3.1

E
valuation	M

etrics	

-	N
otes	on	U

se

3.3

C
ategorization	of	

E
valuation	M

etrics

3.2

Evaluation	target	scope	of	process	metrics

Software is created through roughly four processes including requirements

specification investigation (specifications documentation), design, coding, and testing.

For details on the process, refer to "Embedded System Development Process Reference"

(ESPR). For the process metrics, two concepts, namely, ratio of the work effort and

execution ratio of the work, are available. For these four processes, use the following

metrics:

 Ratio of the Specifications Review Effort/Execution Ratio of the Specifications

Review

 Ratio of the Design Review Effort/Execution Ratio of the Design Review

 Ratio of the Code Review Effort/Execution Ratio of the Code Review

 Ratio of the Test Review Effort/Execution Ratio of the Test Review

 Ratio of the Test Work Effort/Execution Ratio of the Test Work

 Ratio Of the Review Effort/Execution Ratio Of the Review

to check whether the review and testing have been done properly to ensure the quality of

the deliverable for each process.

66 Chapter 3 Defi nition and Reference Values for Evaluation Metrics

C
ategorization	of	

E
valuation	M

etrics

3.2

Basic	Metrics	-	Definition	

and	Reference	Values

3.6

Product	Metrics	-	Definition	

and	Reference	Values

3.5

E
valuation	M

etrics	

-	N
otes	on	U

se

3.3

Process	Metrics	-	Definition	

and	Reference	Values

3.4

Definitions	and	Meanings	of	Evaluation	

Metrics	and	How	to	Use	Them

3.1
 How to read the process metric definition table

The following describes the process metrics, one by one. Each table consists of the

following fields:

ID PR10

Name Ratio of the Specifications Review Effort

Abbreviation RSRE

Reference
value N NQ C HC

Adjustment
base value

2.00 6.00 10.00 14.00

4.00Reference
value range 0.00 to 6.00 2.00 to 10.00 6.00 to 14.00 10.00 to 18.00

Measurement
unit %

Tolerance Percentage (two high-order significant digits)

Meaning of the
metric

• Indicates how much process effort is expended on the review of the
specifications, relative to the process effort expended to document the
specifications.

• As higher levels of safety and reliability are demanded of a system, the
process effort to be expended on the review will increase, as will the
process effort needed to investigate and document the specifications.
Therefore, a greater review process effort is not necessarily good, but
should always be an appropriate value.

Calculation
method

Review Effort for SPecification/Process Effort for SPecification
RSRE = RESP/PESP

Usage of the
metric

• For the review of the specifications, an appropriate process effort,
equivalent to or greater than a certain value, is required.

• If the value of this metric is less than the reference value (i.e., the
process effort is too low relative to the entire project), it indicates that
the design review process effort was less than the process effort for the
specifications documentation, and so the amount of effort expended on
the specifications review may be insufficient. In this case, it is highly likely
that items may have been omitted from the review.

• On the other hand, if the value of this metric is larger than the reference
value (i.e., an unnecessarily long time was taken), it is possible that more
effort was expended on the review than on the documentation of the
specifications. In this case, it is probable that the project incorporates risk
such as, for example, many of the requirements specification being left
unfixed, requirements being too complicated, or there being too many
functions.

Remarks:
Interpretation
of the reference
value

• The reference value for this metric is calculated assuming that the
software is being newly created.

• If a high proportion of the software is reused, the review process effort
can be somewhat greater than the specifications documentation process
effort and will certainly be higher than the reference value.

• Note that the value of this metric changes depending on the level of
quality required by the project and the number of functions.

ID: ID proprietary to each metric. The ID of each process metric starts with PR.

Reference value
range: Available
range of reference
values, taking the
adjustment base
value into
consideration.

Calculation
method: Formula
for calculating the
evaluation metric
from basic metrics.

Adjustment base
value:
Adjustment base
value for the
reference value.

Usage of the
metric: Tips on
quality control
using the
evaluation metric.

Meaning of the
metric: Meaning
and interpretation
of the evaluation
metric.

Remarks: Notes
on and ideas of
the reference
value.

Measurement
unit: Units of the
evaluation metric.

Name: Name of
the metric.

Abbreviation:
Abbreviation for the
evaluation metric.

Reference value:
Reference value for
each system type.

Tolerance:
Tolerance of the
value when used as
an evaluation
metric.

Figure	3-3:	How	to	read	the	process	metric	definition	table

673.4 Process Metrics - Defi nition and Reference Values

Basic	Metrics	-	Definition	

and	Reference	Values

3.6

Product	Metrics	-	Definition	

and	Reference	Values

3.5

Process	Metrics	-	Definition	

and	Reference	Values

3.4

Definitions	and	Meanings	of	Evaluation	

Metrics	and	How	to	Use	Them

3.1

E
valuation	M

etrics	

-	N
otes	on	U

se

3.3

C
ategorization	of	

E
valuation	M

etrics

3.2

 Process metrics

ID PR10

Name Ratio of the Specifications Review Effort

Abbreviation RSRE

Reference	value
N NQ C HC

Adjustment
base value

2.00 6.00 10.00 14.00

4.00 Reference	value	
range 0.00 to 6.00 2.00 to 10.00 6.00 to 14.00 10.00 to 18.00

Measurement	
unit %

Tolerance Percentage (two high-order significant digits)

Meaning	of	the	
metric

• Indicates how much process effort is expended on the review of the
specifications, relative to the process effort expended to document the
specifications.

• As higher levels of safety and reliability are demanded of a system, the
process effort to be expended on the review will increase, as will the
process effort needed to investigate and document the specifications.
Therefore, a greater review process effort is not necessarily good, but
should always be an appropriate value.

Calculation	
method

Review Effort for SPecification/Process Effort for SPecification
RSRE = RESP/PESP

Usage	of	the	
metric

• For the review of the specifications, an appropriate process effort,
equivalent to or greater than a certain value, is required.

• If the value of this metric is less than the reference value (i.e., the process
effort is too low relative to the entire project), it indicates that the design
review process effort was less than the process effort for the specifications
documentation, and so the amount of effort expended on the specifications
review may be insufficient. In this case, it is highly likely that items may
have been omitted from the review.

• On the other hand, if the value of this metric is larger than the reference
value (i.e., an unnecessarily long time was taken), it is possible that more
effort was expended on the review than on the documentation of the
specifications. In this case, it is probable that the project incorporates risk
such as, for example, many of the requirements specification being left
unfixed, requirements being too complicated, or there being too many
functions.

Remarks:	
Interpretation	
of	the	reference	
value

• The reference value for this metric is calculated assuming that the software
is being newly created.

• If a high proportion of the software is reused, the review process effort can
be somewhat greater than the specifications documentation process effort
and will certainly be higher than the reference value.

• Note that the value of this metric changes depending on the level of quality
required by the project and the number of functions.

68 Chapter 3 Definition and Reference Values for Evaluation Metrics

C
ategorization	of	

E
valuation	M

etrics

3.2

Basic	Metrics	-	Definition	

and	Reference	Values

3.6

Product	Metrics	-	Definition	

and	Reference	Values

3.5

E
valuation	M

etrics	

-	N
otes	on	U

se

3.3

Process	Metrics	-	Definition	

and	Reference	Values

3.4

Definitions	and	Meanings	of	Evaluation	

Metrics	and	How	to	Use	Them

3.1

ID PR11

Name Ratio of the Design Review Effort

Abbreviation RDRE

Reference	value
N NQ C HC

Adjustment
base value

2.00 6.00 10.00 14.00

4.00 Reference	value	
range 0.00 to 6.00 2.00 to 10.00 6.00 to 14.00 10.00 to 18.00

Measurement	
unit %

Tolerance Percentage (two high-order significant digits)

Meaning	of	the	
metric

• Indicates how much process effort is expended on the review of the design,
relative to the design process effort (process effort required for the design
process).

• As higher levels of safety and reliability are required for the system, the
process effort to be expended on the review will increase, as will the design
work itself. Therefore, a greater process effort is not necessarily good, but
should always be an appropriate value.

Calculation	
method

Review Effort for DEsign/Process Effort for DEsign
RDRE = REDE/PEDE

Usage	of	the	
metric

• For the review of the design, an appropriate process effort, equivalent to or
higher than a certain value, is required.

• If the value of this metric is less than the reference value, it indicates that
the design review process effort is less than the process effort for the
design process, and it is highly likely that some items may be omitted from
the design review.

• On the contrary, if the value of this metric is larger than the reference value,
then the amount of effort expended on design review process was relatively
higher than the process effort for the design work. This may indicate that
the design review required more effort due to project risks, for example,
the specifications being ambiguous, the structure being too complicated, or
there being too many functions.

Remarks:	
Interpretation	
of	the	reference	
value

• The reference value for this metric is calculated assuming that the software
is being newly created.

• If a high proportion of the software is reused, the review process effort can
be somewhat greater than the design work and it will certainly be greater
than the reference value.

• Note that the value of this metric changes depending on the level of
quality required by the project, the complexity of the structure, abnormality
processing, etc.

693.4 Process Metrics - Definition and Reference Values

Basic	Metrics	-	Definition	

and	Reference	Values

3.6

Product	Metrics	-	Definition	

and	Reference	Values

3.5

Process	Metrics	-	Definition	

and	Reference	Values

3.4

Definitions	and	Meanings	of	Evaluation	

Metrics	and	How	to	Use	Them

3.1

E
valuation	M

etrics	

-	N
otes	on	U

se

3.3

C
ategorization	of	

E
valuation	M

etrics

3.2

ID PR12

Name Ratio of the Code Review Effort

Abbreviation RCRE

Reference	value
N NQ C HC

Adjustment
base value

2.00 3.50 5.00 6.50

1.50 Reference	value	
range 0.50 to 3.50 2.00 to 5.00 3.50 to 6.50 5.00 to 8.00

Measurement	
unit %

Tolerance Percentage (two high-order significant digits)

Meaning	of	the	
metric

• Indicates how much process effort is expended on the review of the source
code, relative to the Process Effort for COde for the source code (coding
process effort).

• As higher levels of safety and reliability are demanded of a system, the
process effort to be expended on the review will increase, as will the
process effort needed to create the source code. Therefore, a higher ratio
of the work effort value is not necessarily good, and instead the value
should be appropriate.

Calculation	
method

Review Effort for COde/Process Effort for COde
RCRE = RECO/PECO

Usage	of	the	
metric

• For the review of the source code, an appropriate process effort, equivalent
to or greater than a certain value, is required.

• If the value of this metric is less than the reference value, the process
effort expended on the source code review is too low relative to the coding
process effort, and some problems may remain unsolved in the source
code.

• On the other hand, if the value of this metric is larger than the reference
value, the process effort expended on the source code review is too great
relative to the coding process effort, and the source code may incorporate
project risks such as being difficult to understand or maintain.

• A source code review tends to concentrate on particular parts. Do not,
therefore, simply trust the value of this metric, but instead check the result
with a coverage analysis, that is, by observing the per-module distribution to
check that all important parts are reviewed and any items are not omitted.

Remarks:	
Interpretation	
of	the	reference	
value

The reference value for this metric is calculated assuming that the software is
being newly created. If a high proportion of the software is reused, the review
process effort can be somewhat greater than the Process Effort for COde for
the source code and the value can be higher than the reference value. Note
that this metric value changes with the quality level required by the project,
the complexity of the structure, abnormality processing, etc.

70 Chapter 3 Definition and Reference Values for Evaluation Metrics

C
ategorization	of	

E
valuation	M

etrics

3.2

Basic	Metrics	-	Definition	

and	Reference	Values

3.6

Product	Metrics	-	Definition	

and	Reference	Values

3.5

E
valuation	M

etrics	

-	N
otes	on	U

se

3.3

Process	Metrics	-	Definition	

and	Reference	Values

3.4

Definitions	and	Meanings	of	Evaluation	

Metrics	and	How	to	Use	Them

3.1

ID PR13

Name Ratio of the Test Review Effort

Abbreviation RTRE

Reference	value
N NQ C HC

Adjustment
base value

2.00 3.50 5.00 6.50

1.50 Reference	value	
range 0.50 to 3.50 2.00 to 5.00 3.50 to 6.50 5.00 to 8.00

Measurement	
unit %

Tolerance Percentage (two high-order significant digits)

Meaning	of	the	
metric

• Indicates how much process effort is expended on the review of the test
work (i.e., review of the test specifications, items, and result creation),
relative to the process effort for testing preparation and confirmation work.

• As higher levels of safety and reliability are demanded of a system, the
process effort to be expended on the review will increase, as will the
number of test review targets to be created. That is, a higher ratio of the
work effort value is not necessarily good, and the value should always be
appropriate.

Calculation	
method

Review Effort for Test Preparation/Process Effort for Test Preparation
RTRE = RETP/PETP

Usage	of	the	
metric

• For the test work review, an appropriate process effort, equivalent to or
greater than a certain value, is required.

• There are two measuring points; review before executing the testing (test
specifications and test script review, etc.) and review after executing the
testing (test result and test report review, etc.). For each, apply the metric
from the following viewpoints.

• Point at which to apply the metric before executing the testing: The aim of
performing the review sufficiently before executing the testing is to ensure
that failures can be detected. If this metric value is low, the test itself is
not checked for the quality and, therefore, failures may fail to be detected.
On the contrary, if this metric value is high, the review method may not
be good, the specifications review may be performed instead of the test
specifications review, or the test specifications themselves are not of good
quality, such that the review becomes unduly time-consuming.

• Point at which to apply the metric after executing the testing: The aim of
applying the metric at this point is to verify the sufficiency of the test. If this
metric value is low, the test result judgment will be insufficient, such that
failures may have been overlooked. On the contrary, if the value of this
metric is high, the testing may incorporate project risks such as low product
quality, leading to multiple problems that take much time to resolve.

• In all cases, clarify why the review value is not appropriate and apply
countermeasures.

Remarks:	
Interpretation	
of	the	reference	
value

The reference value for this metric is calculated assuming that the software is
being newly created. If a high proportion of the software is reused, the review
process effort can be relatively greater and the metric value can be higher
than the reference value. Note that this metric value changes depending on
the level of quality required by the project, the complexity, data variety, etc.

713.4 Process Metrics - Definition and Reference Values

Basic	Metrics	-	Definition	

and	Reference	Values

3.6

Product	Metrics	-	Definition	

and	Reference	Values

3.5

Process	Metrics	-	Definition	

and	Reference	Values

3.4

Definitions	and	Meanings	of	Evaluation	

Metrics	and	How	to	Use	Them

3.1

E
valuation	M

etrics	

-	N
otes	on	U

se

3.3

C
ategorization	of	

E
valuation	M

etrics

3.2

ID PR14

Name Ratio of the Test Work Effort

Abbreviation RTWE

Reference	value
N NQ C HC

Adjustment
base value

30.00 35.00 40.00 45.00

5.00 Reference	value	
range 25.00 to 35.00 30.00 to 40.00 35.00 to 45.00 40.00 to 50.00

Measurement	
unit %

Tolerance Percentage (two high-order significant digits)

Meaning	of	the	
metric

• Indicates how much process effort is expended on the testing of the
executable code which forms the deliverable (all work from testing
preparation, through execution, to confirmation), relative to the Process
Effort in TOtal.

• As higher levels of safety and reliability are demanded of a system, the
process effort to be expended on the testing will be greater, but it is only
a proportion of the entire process effort. That is, a higher ratio of the work
effort value is not necessarily good, and the value should be appropriate.

Calculation	
method

Process Effort for TEst/Process Effort in TOtal
RTWE = PETE/PETO

Usage	of	the	
metric

• For the test, an appropriate process effort, equivalent to or greater than a
certain value, is required.

• If the value of this metric is less than the reference value, the testing may
be efficient, or the testing may be insufficient, such that some failures
remain undetected.

• On the other hand, if the value of this metric is greater than the reference
value, it indicates that the work done before executing the testing (test
specifications documentation, etc.) may be insufficient and the test design
process effort is high, and that the product quality may be low such that the
tests had to be repeated over and over. In this case, there may be project
risks such as the test target product being of poor quality, the product being
difficult to understand, or the testability being poor.

Remarks:	
Interpretation	
of	the	reference	
value

• The reference value for this metric is calculated assuming that the software
is being newly created.

• If the high proportion of the design or code is reused, the test process effort
can be somewhat greater than the total development process effort and will
be higher than the reference value.

• Note that the value of this metric changes depending on the level of quality
required by the project, the complexity, data variety, etc.

72 Chapter 3 Definition and Reference Values for Evaluation Metrics

C
ategorization	of	

E
valuation	M

etrics

3.2

Basic	Metrics	-	Definition	

and	Reference	Values

3.6

Product	Metrics	-	Definition	

and	Reference	Values

3.5

E
valuation	M

etrics	

-	N
otes	on	U

se

3.3

Process	Metrics	-	Definition	

and	Reference	Values

3.4

Definitions	and	Meanings	of	Evaluation	

Metrics	and	How	to	Use	Them

3.1
ID PR15

Name Ratio Of the Review Effort

Abbreviation RORE

Reference	value
N NQ C HC

Adjustment
base value

4.00 8.00 12.00 16.00

4.00 Reference	value	
range 0.00 to 8.00 4.00 to 12.00 8.00 to 16.00 12.00 to 20.00

Measurement	
unit %

Tolerance Percentage (two high-order significant digits)

Meaning	of	the	
metric

• Indicates how much process effort is expended on the all the reviews
related to the development, relative to the Process Effort in TOtal.

• As higher levels of safety and reliability are demanded of a system, the
process effort to be expended on the review will increase, but it is only a
proportion of the entire process effort. That is, a higher ratio of the work
effort value is not necessarily good, and the value should be appropriate.

Calculation	
method

Review Effort in TOtal/Process Effort in TOtal
RORE = RETO/PETO

Usage	of	the	
metric

• For the review, an appropriate process effort, equivalent to or greater than a
certain value, is required.

• If the value of this metric is less than the reference value, it indicates that
the process effort expended on the review may be less than the total
process effort expended on development, such that some failures remain
undetected by the review.

• On the other hand, if the value of this metric is greater than the reference
value, there may be project risks such as the method of proceeding with the
review being improper, the product being of poor quality, the product being
difficult to understand, or the ease of review being poor. Even if the review
process effort is appropriate, the review itself may be of bad quality. Also
consider evaluating the quality of the review itself using the review record
etc.

• Also refer to the tips given in Chapter 4 on how to efficiently proceed with
the review.

Remarks:	
Interpretation	
of	the	reference	
value

• The reference value for this metric is calculated assuming that the software
is being newly created.

• If a high proportion of the software is reused, the review process effort can
be somewhat greater and the value can be higher than the reference value.

• Note that the value of this metric changes depending on the level of quality
required by the project, complexity, data variety, etc.

733.4 Process Metrics - Definition and Reference Values

Basic	Metrics	-	Definition	

and	Reference	Values

3.6

Product	Metrics	-	Definition	

and	Reference	Values

3.5

Process	Metrics	-	Definition	

and	Reference	Values

3.4

Definitions	and	Meanings	of	Evaluation	

Metrics	and	How	to	Use	Them

3.1

E
valuation	M

etrics	

-	N
otes	on	U

se

3.3

C
ategorization	of	

E
valuation	M

etrics

3.2

ID PR20

Name Execution Ratio of the Specifications Review

Abbreviation ERSR

Reference	value
N NQ C HC

Adjustment
base value

7.20 9.60 12.00 14.40

2.40 Reference	value	
range 4.30 to 9.10 6.70 to 11.50 9.10 to 13.80 11.50 to 16.30

Measurement	
unit Man-hours/KLOC

Tolerance Three high-order significant digits

Meaning	of	the	
metric

• Indicates how much process effort is expended on the specifications
review, relative to the project scale.

• As higher levels of safety and reliability are demanded of a system, the
process effort to be expended on the review will increase.

Calculation	
method

Review Effort for SPecification/Total Lines Of Code
ERSR = RESP/TLOC

Usage	of	the	
metric

• For the review of the specifications, an appropriate process effort,
equivalent to or greater than a certain value, is required.

• If the value of this metric is less than the reference value (review process
effort per scale is also too less), the specifications confirmation may be
insufficient and the review may not have been done thoroughly. Therefore,
the review details must be checked again.

• On the other hand, if the value of this metric is greater than the reference
value (process effort is unnecessarily high), there may be project risks such
as a large portion of the requirements specification being unfixed, such that
the specifications review turns into the investigation of the specifications,
requirements being too complicated, or there being too many functions.
Therefore, it is necessary to check whether the review results have, in fact,
been reflected on the specifications.

Remarks:	
Interpretation	
of	the	reference	
value

• The reference value for this metric is calculated assuming that the software
is being newly created.

• If a high proportion of the software is reused, the review target may be
small relative to the scale of the software, and the estimated value of the
metric can be lower than the reference value.

• Note that the value of this metric changes depending on the level of quality
required by the project and the number of functions.

7� Chapter 3 Definition and Reference Values for Evaluation Metrics

C
ategorization	of	

E
valuation	M

etrics

3.2

Basic	Metrics	-	Definition	

and	Reference	Values

3.6

Product	Metrics	-	Definition	

and	Reference	Values

3.5

E
valuation	M

etrics	

-	N
otes	on	U

se

3.3

Process	Metrics	-	Definition	

and	Reference	Values

3.4

Definitions	and	Meanings	of	Evaluation	

Metrics	and	How	to	Use	Them

3.1
ID PR21

Name Execution Ratio of the Design Review

Abbreviation ERDR

Reference	value
N NQ C HC

Adjustment
base value

7.20 9.60 12.00 14.40

2.40 Reference	value	
range 4.80 to 9.60 7.20 to 12.00 9.60 to 14.40 12.00 to 16.80

Measurement	
unit Man-hours/KLOC

Tolerance Three high-order significant digits

Meaning	of	the	
metric

• Indicates how much process effort is expended on the design review,
relative to the project scale.

• As higher levels of safety and reliability are demanded of a system, the
process effort to be expended on the review will increase.

Calculation	
method

Review Effort for DEsign/Total Lines Of Code
ERDR = REDE/TLOC

Usage	of	the	
metric

• For the review of the design, an appropriate process effort, equivalent to or
greater than a certain value, is required.

• If the value of this metric is less than the reference value, it indicates that
the design review may not be sufficiently thorough, some items may have
been missed from the reviewed design.

• On the other hand, if the value of this metric is greater than the reference
value, there may be project risks, for example, the design being difficult to
review because of the ambiguous specifications, the design structure being
too complicated, or there being too many functions.

Remarks:	
Interpretation	
of	the	reference	
value

• The reference value for this metric is calculated assuming that the software
is being newly created.

• If a high proportion of the software is reused, the review target may be
small relative to the scale of the software, and the estimated value of the
metric can be lower than the reference value.

• Note that this metric value changes depending on the level of quality
required by the project, the complexity of the structure, abnormality
processing, etc.

753.4 Process Metrics - Definition and Reference Values

Basic	Metrics	-	Definition	

and	Reference	Values

3.6

Product	Metrics	-	Definition	

and	Reference	Values

3.5

Process	Metrics	-	Definition	

and	Reference	Values

3.4

Definitions	and	Meanings	of	Evaluation	

Metrics	and	How	to	Use	Them

3.1

E
valuation	M

etrics	

-	N
otes	on	U

se

3.3

C
ategorization	of	

E
valuation	M

etrics

3.2

ID PR22

Name Execution Ratio of the Code Review

Abbreviation ERCR

Reference	value
N NQ C HC

Adjustment
base value

3.60 4.80 6.00 7.20

1.20 Reference	value	
range 2.40 to 4.80 3.60 to 6.00 4.80 to 7.20 6.00 to 8.40

Measurement	
unit Man-hours/KLOC

Tolerance Three high-order significant digits

Meaning	of	the	
metric

• Indicates how much process effort is expended on the source code review,
relative to the project scale.

• As higher levels of safety and reliability are demanded of a system, the
process effort to be expended on the review will increase.

Calculation	
method

Review Effort for COde/Total Lines Of Code
ERCR = RECO/TLOC

Usage	of	the	
metric

• For the review of the source code, an appropriate process effort, equivalent
to or greater than a certain value, is required.

• If the value of this metric is less than the reference value, the required
sections of the target source code are not thoroughly checked and some
failures are likely to go undetected.

• On the other hand, if the value of this metric is higher than the reference
value, there may be project risks such as the product being difficult to
understand, the maintainability being poor, or the review efficiency being
low.

Remarks:	
Interpretation	
of	the	reference	
value

• The reference value for this metric is calculated assuming that the software
is being newly created.

• If a high proportion of the software is reused, the review target may be
small relative to the scale of the software, and the estimated value of the
metric can be lower than the reference value.

• Note that the value of this metric changes depending on the level of
quality required by the project, the complexity of the structure, abnormality
processing, etc.

76 Chapter 3 Definition and Reference Values for Evaluation Metrics

C
ategorization	of	

E
valuation	M

etrics

3.2

Basic	Metrics	-	Definition	

and	Reference	Values

3.6

Product	Metrics	-	Definition	

and	Reference	Values

3.5

E
valuation	M

etrics	

-	N
otes	on	U

se

3.3

Process	Metrics	-	Definition	

and	Reference	Values

3.4

Definitions	and	Meanings	of	Evaluation	

Metrics	and	How	to	Use	Them

3.1
ID PR23

Name Execution Ratio of the Test Review

Abbreviation ERTR

Reference	value
N NQ C HC

Adjustment
base value

6.00 8.00 10.00 12.00

2.00 Reference	value	
range 4.00 to 8.00 6.00 to 10.00 8.00 to 12.00 10.00 to 14.00

Measurement	
unit Man-hours/KLOC

Tolerance Three high-order significant digits

Meaning	of	the	
metric

• Indicates how much process effort is expended on the test work review,
relative to the project scale.

• As higher levels of safety and reliability are demanded of a system, the
process effort to be expended on the review will increase.

Calculation	
method

Review Effort for Test Preparation/Total Lines Of Code
ERTR = RETP/TLOC

Usage	of	the	
metric

• If the value of this metric is less than the reference value, the test work
review may be insufficient and the test may include undetected problems.

• On the other hand, if the value of this metric is higher than the reference
value, the test specifications or test report may be of bad quality and review
may be time-consuming.

Remarks:	
Interpretation	
of	the	reference	
value

• The reference value for this metric is calculated assuming that the software
is being newly created.

• If a high proportion of the software is reused, the review target may be
small relative to the scale of the project, and the estimated value of the
metric can be lower than the reference value.

• Note that the value of this metric changes depending on the level of quality
required by the project, the complexity, data variety, etc.

773.4 Process Metrics - Definition and Reference Values

Basic	Metrics	-	Definition	

and	Reference	Values

3.6

Product	Metrics	-	Definition	

and	Reference	Values

3.5

Process	Metrics	-	Definition	

and	Reference	Values

3.4

Definitions	and	Meanings	of	Evaluation	

Metrics	and	How	to	Use	Them

3.1

E
valuation	M

etrics	

-	N
otes	on	U

se

3.3

C
ategorization	of	

E
valuation	M

etrics

3.2

ID PR24

Name Execution Ratio of the Test Work

Abbreviation ERTW

Reference	value
N NQ C HC

Adjustment
base value

34.00 51.00 68.00 85.00

17.00 Reference	value	
range 17.0 to 51.0 34.0 to 68.0 51.0 to 85.0 68.0 to 102.0

Measurement	
unit Man-hours/KLOC

Tolerance Three high-order significant digits

Meaning	of	the	
metric

• Indicates how much process effort is expended on the test work (from
testing preparation, through execution, to confirmation) for a particular
scale, relative to the overall scale of the project.

• As higher levels of safety and reliability are demanded of a system, the
process effort to be expended on the testing will be greater.

Calculation	
method

Process Effort for TEst/Total Lines Of Code
ERTW = PETE/TLOC

Usage	of	the	
metric

• For the testing, an appropriate process effort, equivalent to or greater than a
certain value, is required.

• If the value of this metric is less than the reference value, the test work may
be insufficient relative to the scale of the development target, and some
problems may go undetected consequently.

• On the other hand, if the value of this metric is greater than the reference
value, the testing will take more time and there may be project risks such
as the target product being of poor quality, the product being difficult to
understand, or the testability being low.

Remarks:	
Interpretation	
of	the	reference	
value

• When the total productivity per man-month is 1 KLOC/man-month (1
man–month = 155 man-hours), NQ assumes that the test phase takes
approximately 1/3 of the entire process effort and Execution Ratio of the
Test Work is based on approximately 50 man-hours (155 × 0.3).

• This metric is not influenced by the reuse ratio because the testing is done
for the entire source code as a rule, regardless of whether it is reused.

• This metric is normalized with "source code scale = total number of lines
of the source code" for convenience, while measuring the relative quantity
of the object code ensures more precise evaluation. When measurement
is possible, it is a good idea to make an evaluation based on the value
for total number of lines of the source code, excluding the total number of
comments and blank lines.

78 Chapter 3 Definition and Reference Values for Evaluation Metrics

C
ategorization	of	

E
valuation	M

etrics

3.2

Basic	Metrics	-	Definition	

and	Reference	Values

3.6

Product	Metrics	-	Definition	

and	Reference	Values

3.5

E
valuation	M

etrics	

-	N
otes	on	U

se

3.3

Process	Metrics	-	Definition	

and	Reference	Values

3.4

Definitions	and	Meanings	of	Evaluation	

Metrics	and	How	to	Use	Them

3.1

ID PR25

Name Execution Ratio Of the Review

Abbreviation EROR

Reference	value
N NQ C HC

Adjustment
base value

24.00 32.00 40.00 48.00

8.00 Reference	value	
range 16.0 to 32.0 24.0 to 40.0 32.0 to 48.0 40.0 to 56.0

Measurement	
unit Man-hours/KLOC

Tolerance Three high-order significant digits

Meaning	of	the	
metric

• Indicates how much process effort is expended on all the development-
related reviews relative to the project scale.

• As higher levels of safety and reliability are demanded of a system, the
process effort to be expended on the review will increase.

Calculation	
method

Review Effort in TOtal/Total Lines Of Code
EROR = RETO/TLOC

Usage	of	the	
metric

• For the review, an appropriate process effort, equivalent to or higher than a
certain value, is required.

• If the value of this metric is less than the reference value, the process effort
for review may be insufficient in comparison with the size of the software
such that some failures go undetected.

• On the other hand, if the value of this metric is greater than the reference
value, there may be project risks such as the target product being of bad
quality, the product being difficult to understand, or the ease of review
being poor. Alternatively, the method of proceeding with the review may be
improper. Even if the review process effort is appropriate, the review itself
may be of bad quality. Also consider evaluating the quality of the review
itself using the review record etc.

• Also refer to the tips given in Chapter 4 on how to efficiently proceed with
the review.

Remarks:	
Interpretation	
of	the	reference	
value

• The reference value for this metric is calculated assuming that the software
is being newly created.

• For NQ software, the reference value is calculated assuming that 3 man-
days are required for the review of the specifications to the code and 1
man-day is required for the test review for the software of 1 KLOC.

• If a high proportion of the software is reused, the review process effort can
be somewhat greater and the value can be higher than the reference value.

• Note that the value of this metric changes depending on the level of quality
required by the project, the complexity, data variety, etc.

793.5 Product Metrics - Defi nition and Reference Values

Basic	Metrics	-	Definition	

and	Reference	Values

3.6

Product	Metrics	-	Definition	

and	Reference	Values

3.5

Definitions	and	Meanings	of	Evaluation	

Metrics	and	How	to	Use	Them

3.1

C
ategorization	of	

E
valuation	M

etrics

3.2

E
valuation	M

etrics	

-	N
otes	on	U

se

3.3

Process	Metrics	-	Definition	

and	Reference	Values

3.4

Product	Metrics	-	Defi	nition	
and	Reference	Values	3.5	

 Product metrics
In the software development process, deliverables (documents) such as design

document, source code, and test specifications are created. Product metrics are used to

evaluate the quality of these intermediate deliverables created in such a development

process and deliverables created in the final stage.

Evaluation	target	for	product	metrics

As described above, in many of embedded software development projects, intermediate

deliverables such as documents including specifications, design documents, source code,

and test specifications, as well as test data, become the targets of product metrics. The

final versions of materials almost the same as these are prepared as the deliverables in

the final stage in most cases, so the deliverables are also targeted. In addition, software

products as final deliverables and test work and test results as software products or

system products are also targets of evaluation by the product metrics.

Viewpoints	and	types	of	product	metrics	evaluation

Though the deliverables which are the evaluation targets of the product metrics can be

seen (i.e., visible), they quickly become difficult to comprehend when we try to evaluate

their quality. This guide measures those factors that are relatively easy to measure

(e.g., the volume such as the number of pages or lines, failure count, etc.) among the

characteristics of the product and evaluates them from the viewpoint of whether a factor

directly linked to quality is reflected.

The product metrics can be classified into those for documents, source code, and tests

depending on the measurement target. ISO/IEC9126 classifies documents and source

code into an internal quality measurement target and tests as part of the external quality

measurement target with viewpoints for measurement. Refer to this as necessary.

80 Chapter 3 Defi nition and Reference Values for Evaluation Metrics

Process	Metrics	-	Definition	

and	Reference	Values

3.4

C
ategorization	of	

E
valuation	M

etrics

3.2

Basic	Metrics	-	Definition	

and	Reference	Values

3.6

E
valuation	M

etrics	

-	N
otes	on	U

se

3.3

Product	Metrics	-	Definition	

and	Reference	Values

3.5

Definitions	and	Meanings	of	Evaluation	

Metrics	and	How	to	Use	Them

3.1
Evaluation	target	scope	of	product	metrics

Modern embedded software is a composite of multiple functional entities. For

example, when an automobile is considered from the software aspect, various functions

such as the engine, brakes, and air-conditioner controls all have integrated, dedicated

software installed in the electronic computer unit (ECU) controlling each function.

These software modules communicate with each other via a communications function,

such as a dedicated network. The characteristics demanded of the software depend

on the function and part within the same automobile. Therefore, in product metrics

evaluation, it is necessary to identify the factors constituting the system and evaluate the

scope that can be considered as having identical quality characteristics.

 Overview of product metrics
(1)	Document	evaluation	metrics

Document evaluation metrics are used to evaluate the quality of documents such

as specifications and design documents among the created intermediate and final

deliverables created during the software development. Documents created as part of

embedded software development include requirements specification, design documents,

and test specifications.

There are the following two types of document evaluation metrics:

(i)	 Document volume evaluation metric for purely evaluating the volume per

document scale

(ii)	Document balance evaluation metric for evaluating the balance of the contents

described in a document

For details on the content to be described in the requirements specification, design

documents, and test specifications targeted by the document evaluation metrics, as

well as how these documents are positioned, refer to "Embedded System Development

Process Reference" (ESPR).

Document	volume	evaluation	metrics

As the first metric for evaluating whether a document is appropriate from the

viewpoint of quality, a metric to determine whether the volume (the number of pages) is

appropriate can be considered. However, the number of pages in such a document varies

depending on the size of the software being developed as well as the document format.

813.5 Product Metrics - Definition and Reference Values

Basic	Metrics	-	Definition	

and	Reference	Values

3.6

Product	Metrics	-	Definition	

and	Reference	Values

3.5

Definitions	and	Meanings	of	Evaluation	

Metrics	and	How	to	Use	Them

3.1

C
ategorization	of	

E
valuation	M

etrics

3.2

E
valuation	M

etrics	

-	N
otes	on	U

se

3.3

Process	Metrics	-	Definition	

and	Reference	Values

3.4

Therefore, simply counting the number of pages in the document is meaningless.

The document volume evaluation metrics introduced in this guide obtain a rough

count of the number of pages in a document, regardless of the format that is used,

by assuming 2,000 characters (40 characters x 50 lines)(*) of text, figure, and table

information as being equal to one page as a basic metric for the number of pages. And

then, by dividing the counted number of pages by the software size, the volume of the

document per unit scale (1 KLOC) is evaluated.

This guide normalizes the document volume per unit scale. However, the code size

of the base system naturally depends on the system characteristics (e.g., whether the

code consists primarily of the GUI or control logic). Therefore, when evaluating the

document volume, the characteristics of each system must be fully considered.

Document	balance	evaluation	metric

Even when the document volume is appropriate, if any necessary information is

missing, the development will be considerable affected. This guide provides document

balance evaluation metrics that indicate the items to be described as standard in the

requirements specification, design document, and test specifications, and how much

information is described for each item in a document, with the quantity of information

in the entire document being assumed to be 100. For example, by measuring the

percentage of description of the functional requirements as well as non-functional

requirements in the requirements specification, the metrics aim to evaluate the document

contents as described in the requirements specification. Note that the document

description items used here are based upon the definitions in ESPR.

(2)	Code	evaluation	metrics

The code evaluation metrics directly observe the source code which is the final

deliverable from the coding of embedded software and evaluate its quality.

The evaluation metrics for measuring the source code volume by counting the number

of lines include the logical number of lines which counts the lines composing the source

program excluding comments, and the physical number of lines which simply counts all

the lines. This guide uses the latter as the source code evaluation metric because an easier

measurement method is preferred. With this counting method, however, the number

of source code lines differs by a factor of two of three depending on how the code was

written. To ensure the effectiveness of the source code metrics, for example, you can

(*): This reference value is based on Japanese, so it needs to be adjusted for other languages. For example, the value is
nearly doubled in the case of English.

82 Chapter 3 Definition and Reference Values for Evaluation Metrics

Process	Metrics	-	Definition	

and	Reference	Values

3.4

C
ategorization	of	

E
valuation	M

etrics

3.2

Basic	Metrics	-	Definition	

and	Reference	Values

3.6

E
valuation	M

etrics	

-	N
otes	on	U

se

3.3

Product	Metrics	-	Definition	

and	Reference	Values

3.5

Definitions	and	Meanings	of	Evaluation	

Metrics	and	How	to	Use	Them

3.1
create a coding rule for the project based on the ESCR to unify the writing style and

control the project so that the ratio of comments is similar regardless of who writes the

code.

The source code for a given product is rarely written in a single language. However,

this guide basically provides the reference values assuming that the source code is

written in C, which is popular for embedded software development. When using another

language such as assembly language or C++, use a coefficient that is based on your

organization's experience.

There are the following two types of code evaluation metrics:

(i)	 Code volume evaluation metric to evaluate the volume per file or function

(ii)	Code characteristics evaluation metric to evaluate the balance of the source

code description

Measuring	the	software	size

The size of the software can be measured as a number of function points (FP)

or number of lines (LOC). The function point (FP) measurement focuses on the

application functionality and measures the program size according to the I/O and

application interface. The function point has some advantages that it can be used

regardless of the programming language and that it can determine the size before

coding. However, multiple measurement methods, all of which involve complicated

measurement rules, are proposed, and the result may differ greatly depending on who

makes the measurement and how. Therefore, special tools or experienced specialists

are required. On the contrary, the number of lines (LOC) is visually clear and

mechanically measurable, and does not vary regardless of who measures it, using the

functions of a text editor or some similar means.

C o l u m n

Code	volume	evaluation	metrics

One method of determining whether the source code is appropriate from the

viewpoint of quality is to check its volume against a metric. If the number of source

code lines per unit exceeds a certain value, the maintainability and understandability

may be affected.

833.5 Product Metrics - Definition and Reference Values

Basic	Metrics	-	Definition	

and	Reference	Values

3.6

Product	Metrics	-	Definition	

and	Reference	Values

3.5

Definitions	and	Meanings	of	Evaluation	

Metrics	and	How	to	Use	Them

3.1

C
ategorization	of	

E
valuation	M

etrics

3.2

E
valuation	M

etrics	

-	N
otes	on	U

se

3.3

Process	Metrics	-	Definition	

and	Reference	Values

3.4

There are the following two types of code volume evaluation metrics:

(i)	 File	Lines	Of	Code: Scale (volume) of the source code described in each

source file

(ii)	Module	Lines	Of	Code: Scale (volume) of the source code per function

The total of the File Lines Of Code values is used as the Total Lines Of Code which is

an alternative metric to indicate the scale of the program itself.

Code	characteristics	evaluation	metrics

Even when the source code volume is less than a certain value, if it is biased in

description, the readability and maintainability in review is deteriorated and quality of

the source code is affected. Therefore, this guide uses the code characteristics evaluation

metrics focusing on the characteristics of the source code. For example, comment lines

are a valuable information source and provide a supplementary explanation to the

reader (reviewer or maintenance engineer) on what the source code function should do.

By evaluating Ratio Of Comment Line to determine if any necessary supplementary

information is missing or redundant, in accordance with the coding rule defined by the

organization, any excess or shortfall of this information can be judged to some extent

and the evaluation result can be used to instruct a re-check in the review.

There are the following three types of code characteristics evaluation metrics:

(i)	 Ratio Of Control Statement

(ii) Ratio Of Comment Line

(iii)	Ratio of Deviation of Coding Rules

(3)	Test	evaluation	metrics

The test evaluation metrics are used to evaluate sufficiency of the test actually running

the object code, which is the final deliverable of coding.

The testing is executed for several different purposes, which can be roughly classified

into the following two characteristics:

(i)	 Checking whether the object code runs differently from the specifications

(function, performance, etc.) required for the system (fault detection)

(ii) Checking whether the object code satisfies the specifications (function,

performance, etc.) required for the system (operation check).

8� Chapter 3 Definition and Reference Values for Evaluation Metrics

Process	Metrics	-	Definition	

and	Reference	Values

3.4

C
ategorization	of	

E
valuation	M

etrics

3.2

Basic	Metrics	-	Definition	

and	Reference	Values

3.6

E
valuation	M

etrics	

-	N
otes	on	U

se

3.3

Product	Metrics	-	Definition	

and	Reference	Values

3.5

Definitions	and	Meanings	of	Evaluation	

Metrics	and	How	to	Use	Them

3.1
These two characteristics seem to contradict each other but both are important. When

designing a test, determine which is appropriate depending on the purpose and situation.

This guide indirectly evaluates the quality of the software by checking the sufficiency of

the test from this viewpoint.

There are the following two types of test evaluation metrics:

(i)	 Test sufficiency to evaluate whether enough tests have been done

(ii)	Operation completeness to evaluate the repair status of any failures detected

by the testing

Test	sufficiency	evaluation	metrics

One of the metrics for evaluating a test from the viewpoint of sufficiency is the

quantity of data produced as the result of the testing. For example, checking if the

number of tested items is sufficient relative to the software scale is aimed at evaluating

the test sufficiency by determining if the test volume is sufficient relative to the source

code volume. Of course, the number of test items varies depending on the test phase,

size and complexity of the software being developed, and the number of I/Os. Also,

the definition of a "single item" also depends on the project or the person in charge.

Therefore, simply counting the number of test items is meaningless.

This guide uses the item count at the general subsection or script level for the standard

for the reference value. You should determine the standard in accordance with the

project you are measuring.

There are the following two types of test sufficiency evaluation metrics:

(i)	 Density Of Test Items

(ii)	Ratio Of Fault detection in Comparison

Operation	completeness	evaluation	metrics

Even if failures are detected by the testing, whether to fix all of them depends on

the project. The operation completeness evaluation metrics are used to evaluate the

stability of the quality of the software after testing. These metrics evaluate how many of

the failures detected in the test were fixed to estimate the software risk after shipment.

Therefore, the operation completeness evaluation metrics only use a single metric; Ratio

Of Fault Elimination.

853.5 Product Metrics - Defi nition and Reference Values

Basic	Metrics	-	Definition	

and	Reference	Values

3.6

Product	Metrics	-	Definition	

and	Reference	Values

3.5

Definitions	and	Meanings	of	Evaluation	

Metrics	and	How	to	Use	Them

3.1

C
ategorization	of	

E
valuation	M

etrics

3.2

E
valuation	M

etrics	

-	N
otes	on	U

se

3.3

Process	Metrics	-	Definition	

and	Reference	Values

3.4

 How to read the product metrics definition table
The following describes the product metrics, one by one. Each table consists of the

following fields:

ID PD10

Name Ratio of the Specifications Document Volume

Abbreviation RSDV

Reference
value N NQ C HC

Adjustment
base value

3 7 11 15

4.00Reference
value range 0.00 to 7.00 3.00 to 11.00 7.00 to 15.00 11.00 to 19.00

Measurement
unit Page/KLOC

Tolerance Two high-order significant digits (e.g., 14 pages/KLOC for 14.8 pages/
KLOC)

Meaning of the
metric

• This metric indicates requirements specification volume relative to the
project scale.

• If this metric value is low, the documentation may be insufficient.

Calculation
method

Volume Of the Specifications Document/Total Lines Of Code
RSDV = VOSD/TLOC

Usage of the
metric

• If this metric value is less than the reference value, the document
may be insufficient. A document may be insufficient because (1) the
specifications were not investigated sufficiently, so the document is not
ready, or (2) the specifications were investigated sufficiently but the work
result was not sufficiently arranged. In all cases, review the document
again to check the validity of its contents.

Remarks:
Interpretation
of the reference
value

• The reference value for this metric assumes the requirements
specification for normal level software (N level) for which the required
level of quality is not so high, and assumes that approximately three
pages of specifications should be created per 1 KLOC of the source
code, mainly for describing the information on software positioning and
functionality, as well as the peripheral hardware. As the required quality
level rises, a more detailed description is required for the specifications.
Therefore, the reference value is defined so that the number of
requirements specification pages increases as the system type rises to
NQ, C, and HC.

• In addition, the volume changes depending on the system characteristics.
For example, a system with more user interfaces tends to require more
volume for the requirements specification.

ID: ID proprietary to each metric. The ID of each process metric starts with PD.

Reference value
range: Available
range of reference
values, taking the
adjustment base
value into
consideration.

Adjustment base
value:
Adjustment base
value for the
reference value.

Usage of the
metric: Tips on
quality control
using the
evaluation metric.

Meaning of the
metric: Meaning
and interpretation
of the evaluation
metric.

Remarks: Notes
on and ideas of
the reference
value.

Measurement
unit: Units of the
evaluation metric.

Name: Name of
the metric.

Abbreviation:
Abbreviation for the
evaluation metric.

Reference value:
Reference value for
each system type.

Tolerance:
Tolerance of the
value when used as
an evaluation
metric.

Calculation
method: Formula
for calculating the
evaluation metric
from basic metrics.

Figure	3-4:	How	to	read	the	product	metrics	definition	table

86 Chapter 3 Defi nition and Reference Values for Evaluation Metrics

Process	Metrics	-	Definition	

and	Reference	Values

3.4

C
ategorization	of	

E
valuation	M

etrics

3.2

Basic	Metrics	-	Definition	

and	Reference	Values

3.6

E
valuation	M

etrics	

-	N
otes	on	U

se

3.3

Product	Metrics	-	Definition	

and	Reference	Values

3.5

Definitions	and	Meanings	of	Evaluation	

Metrics	and	How	to	Use	Them

3.1
 Product metrics

ID PD10

Name Ratio of the Specifications Document Volume

Abbreviation RSDV

Reference	value
N NQ C HC

Adjustment
base value

3 7 11 15

4.00 Reference	value	
range 0.00 to 7.00 3.00 to 11.00 7.00 to 15.00 11.00 to 19.00

Measurement	
unit Page/KLOC

Tolerance Two high-order significant digits (e.g., 14 pages/KLOC for 14.8 pages/KLOC)

Meaning	of	the	
metric

• This metric indicates requirements specification volume relative to the
project scale.

• If this metric value is low, the documentation may be insufficient.

Calculation	
method

Volume Of the Specifications Document/Total Lines Of Code
RSDV = VOSD/TLOC

Usage	of	the	
metric

• If this metric value is less than the reference value, the document may be
insufficient. A document may be insufficient because (1) the specifications
were not investigated sufficiently, so the document is not ready, or (2) the
specifications were investigated sufficiently but the work result was not
sufficiently arranged. In all cases, review the document again to check the
validity of its contents.

Remarks:	
Interpretation	
of	the	reference	
value

• The reference value for this metric assumes the requirements specification
for normal level software (N level) for which the required level of quality is
not so high, and assumes that approximately three pages of specifications
should be created per 1 KLOC of the source code, mainly for describing
the information on software positioning and functionality, as well as the
peripheral hardware. As the required quality level rises, a more detailed
description is required for the specifications. Therefore, the reference value
is defined so that the number of requirements specification pages increases
as the system type rises to NQ, C, and HC.

• In addition, the volume changes depending on the system characteristics.
For example, a system with more user interfaces tends to require more
volume for the requirements specification.

873.5 Product Metrics - Definition and Reference Values

Basic	Metrics	-	Definition	

and	Reference	Values

3.6

Product	Metrics	-	Definition	

and	Reference	Values

3.5

Definitions	and	Meanings	of	Evaluation	

Metrics	and	How	to	Use	Them

3.1

C
ategorization	of	

E
valuation	M

etrics

3.2

E
valuation	M

etrics	

-	N
otes	on	U

se

3.3

Process	Metrics	-	Definition	

and	Reference	Values

3.4

ID PD11

Name Ratio of the Design Document Volume

Abbreviation RDDV

Reference	value
N NQ C HC

Adjustment
base value

9 19 29 39

10.00 Reference	value	
range 0.00 to 19.00 9.00 to 29.00 19.00 to 39.00 29.00 to 49.00

Measurement	
unit Page/KLOC

Tolerance Two high-order significant digits (e.g., 14 pages/KLOC for 14.8 pages/KLOC)

Meaning	of	the	
metric

• This metric indicates the design documents volume relative to the project
scale.

• If this metric value is low, documentation may be insufficient.

Calculation	
method

Volume Of the Design Document/Total Lines Of Code
RDDV = VODD/TLOC

Usage	of	the	
metric

• If this metric value is less than the reference value, the design document
may be insufficient. A design document may be insufficient because (1) the
design was not investigated sufficiently, so the document is not ready, or (2)
the design was investigated sufficiently but the work result is not sufficiently
arranged. In all cases, review the document again to check the validity of its
contents.

Remarks:	
Interpretation	
of	the	reference	
value

• The reference value of this metric assumes the requirements specification
for normal level software (Type-1: N) for which the required level of quality
is not so high, and defines the proper volume of the design document as
being approximately three times that of the requirements specification if
the contents of a single page of the requirements specification are properly
reflected on the design.

• In addition, the volume changes depending on the system characteristics.
For example, a system with more user interfaces tends to require more
volume for the design document.

88 Chapter 3 Definition and Reference Values for Evaluation Metrics

Process	Metrics	-	Definition	

and	Reference	Values

3.4

C
ategorization	of	

E
valuation	M

etrics

3.2

Basic	Metrics	-	Definition	

and	Reference	Values

3.6

E
valuation	M

etrics	

-	N
otes	on	U

se

3.3

Product	Metrics	-	Definition	

and	Reference	Values

3.5

Definitions	and	Meanings	of	Evaluation	

Metrics	and	How	to	Use	Them

3.1

ID PD12

Name Ratio of the Test Document Volume

Abbreviation RTDV

Reference	value
N NQ C HC

Adjustment
base value

9 19 29 39

10.00 Reference	value	
range 0.00 to 19.00 9.00 to 29.00 19.00 to 39.00 29.00 to 49.00

Measurement	
unit Page/KLOC

Tolerance Two high-order significant digits (e.g., 14 pages/KLOC for 14.8 pages/KLOC)

Meaning	of	the	
metric

• This metric indicates the test-related specifications volume relative to the
project scale.

• If this metric value is low, the documentation may be insufficient.

Calculation	
method

Volume Of the Test Document/Total Lines Of Code
RTDV = VOTD/TLOC

Usage	of	the	
metric

• If this metric value is less than the reference value, then the test document
may be insufficient. A test document may be insufficient because (1) the
test items were not investigated sufficiently, so the document is not ready,
or (2) the test items were investigated sufficiently but the work result is not
sufficiently arranged. In all cases, review the document again to check the
validity of its contents.

Remarks:	
Interpretation	
of	the	reference	
value

• The reference value for this metric assumes the Requirements Specification
for normal level software (Type-1: N) for which the required level of quality
is not so high, and defines the proper volume of the test specifications as
being approximately three times that of the requirements specification,
assuming that variations including exceptions are tested for the software.

• In addition, the volume changes depending on the system characteristics.
For example, a system with more user interfaces tends to require more
volume for the test specifications.

893.5 Product Metrics - Definition and Reference Values

Basic	Metrics	-	Definition	

and	Reference	Values

3.6

Product	Metrics	-	Definition	

and	Reference	Values

3.5

Definitions	and	Meanings	of	Evaluation	

Metrics	and	How	to	Use	Them

3.1

C
ategorization	of	

E
valuation	M

etrics

3.2

E
valuation	M

etrics	

-	N
otes	on	U

se

3.3

Process	Metrics	-	Definition	

and	Reference	Values

3.4

Influence	of	reuse	ratio	on	metrics	value

Recently, the development of software from scratch has become quite rare with the

reuse of existing software assets and the deriving of new software from base software

becoming common. In such software development, the quality must be controlled by

considering both the reused part(s) and the entire software. Because the influence of

the reuse ratio on the software development varies with each project or software, the

reference value for Execution Ratio Of the Review is difficult to uniformly determine.

Therefore, this guide provides reference values for entirely new software development

as a guideline. It is recommended that the provided reference values be changed

considering the project situation to reflect the influence of the reuse ratio on the

software development.

C o l u m n

90 Chapter 3 Definition and Reference Values for Evaluation Metrics

Process	Metrics	-	Definition	

and	Reference	Values

3.4

C
ategorization	of	

E
valuation	M

etrics

3.2

Basic	Metrics	-	Definition	

and	Reference	Values

3.6

E
valuation	M

etrics	

-	N
otes	on	U

se

3.3

Product	Metrics	-	Definition	

and	Reference	Values

3.5

Definitions	and	Meanings	of	Evaluation	

Metrics	and	How	to	Use	Them

3.1

ID PD20

Name Balance of the Specifications Document Description(1)

Abbreviation BSDD

Reference	
value/reference	
value	range

N NQ C HC
Adjustment
base value

See the table on the next page. None

Measurement	
unit Percentage of description items of each document

Tolerance Percentage rounded to the nearest 10%

Meaning	of	the	
metric

• This metric indicates how much information is described for each item
which should be mentioned in the requirements specification relative to the
entire volume of the requirements specification, to evaluate the sufficiency
of the described contents of the document.

Calculation	
method

• Number of pages of each part in requirements specification/total number of
pages in requirements specification

• For the contents of each part of the requirements specification, measure its
percentage relative to the entire volume of the requirements specification.

• To measure the description volume, for example, count the number
of pages for "R2: Target user and usage description," and divide the
measured number of pages by the total number of pages to calculate the
percentage of the description for the item. Note that the items which should
be mentioned in the requirements specification are selected according to
"SYP1.1 System Requirements Specification Documentation" and "SWP1.1
Software Requirements Specification Documentation" in ESPR.

Usage	of	the	
metric

For this metric value, if the value for a description item is extremely low compared
with the description balance indicated by the reference values listed in the table
on the next page, we can say that the description and investigation of that item is
not sufficient, and the document must be reviewed or investigated again.

Remarks:	
Interpretation	
of	the	reference	
value

• For measurement and evaluation of this metric, items which should be mentioned
in the requirements specification, as well as the approximate description volume
of each item, assuming the entire volume of the document to be 100 are shown.
For example, the reference values for the requirements specification define that
the volume of "R2: Target user and usage description" should be approximately
5% of the entire volume and the volume of "R3: Description volume for operation
environment conditions" should be approximately 10% of the entire volume.
According to these values, measure the items that are described in the target
document (e.g., requirements specification) of whatever volume for each, and
evaluate the appropriateness of the document contents.

• Note that description ratio for each item varies according to the characteristics
of the system. The reference values reflect the ratio for the standard system.
For example, the ratio of R5 is higher for a system for which safety is required
and the ratio of R7 is higher for a system in which there are many exceptions
to handle. Check the items on which to focus in system characteristics profiling
and reflect the check result on the target value setting.

(1)	BDD: Balance of the Document Description: Proposed by M. Hirayama and S. Yoshizawa

913.5 Product Metrics - Definition and Reference Values

Basic	Metrics	-	Definition	

and	Reference	Values

3.6

Product	Metrics	-	Definition	

and	Reference	Values

3.5

Definitions	and	Meanings	of	Evaluation	

Metrics	and	How	to	Use	Them

3.1

C
ategorization	of	

E
valuation	M

etrics

3.2

E
valuation	M

etrics	

-	N
otes	on	U

se

3.3

Process	Metrics	-	Definition	

and	Reference	Values

3.4

Document Item	No. Contents Reference	%

Requirements
specification

R1. Entire description volume 100

R2. Target user and usage description 5

R3.
Description volume for operation environment
conditions

10

R4. Description volume for main functions 40

R5.
Description volume for safety and non-
functional requirements

30

R6.
Description volume for overall system
structure

10

R7. Description volume for exception handling 5

Functional	vs.	non-functional	requirements

When developing software, it is required to first clarify what is being developed.

To this end, a task called requirements analysis and definition must be done. In

requirements analysis and definition, the functional requirements that describe the

software functions to be realized and non-functional requirements other than the

functional aspects including performance, usability, and safety are clarified.

The functional and non-functional requirements that the software to be developed

should have and the ratio between the two is highly dependent on individual systems.

For example, for embedded software used in a product used by the general public,

non-functional aspects such as usability and reliability must be sufficiently investigated

in addition to the software functionality itself. For such software, matters that should be

described as non-functional requirements increase and the balance of the description

in the requirements specification should be adjusted.

C o l u m n

92 Chapter 3 Definition and Reference Values for Evaluation Metrics

Process	Metrics	-	Definition	

and	Reference	Values

3.4

C
ategorization	of	

E
valuation	M

etrics

3.2

Basic	Metrics	-	Definition	

and	Reference	Values

3.6

E
valuation	M

etrics	

-	N
otes	on	U

se

3.3

Product	Metrics	-	Definition	

and	Reference	Values

3.5

Definitions	and	Meanings	of	Evaluation	

Metrics	and	How	to	Use	Them

3.1

ID PD21

Name Balance of the Design Document Description

Abbreviation BDDD

Reference	
value/reference	
value	range

N NQ C HC
Adjustment
base value

See the table on the next page. None

Measurement	
unit Percentage of description items of each document

Tolerance Percentage rounded to the nearest 10%

Meaning	of	the	
metric

• This metric indicates how much information is described for each item
which should be mentioned in the design document relative to the entire
volume of the design document, to evaluate sufficiency of the described
contents of the design document.

Calculation	
method

• Number of pages of each part in design document/Total number of pages
in design document

• For the contents of each part of the design document, measure its
percentage relative to the entire volume of the design document. To
measure the description volume, for example, count the number of pages
for "D2: Description volume for overall system structure" and divide the
obtained number of pages by the total number of pages to calculate
the percentage of the description for the item. Note that the items to be
mentioned in the design document are selected according to "SYP2.1
System Architectural Specifications Documentation" and "SWP2.1 Software
Architectural Design Documentation" in ESPR.

Usage	of	the	
metric

• For this metric value, if the value for a description item is extremely low
relative to the description balance indicated by the reference values
listed in the table on the next page, it can be judged that the description
and investigation of that item is not sufficient, and the document must be
reviewed or investigated again.

Remarks:	
Interpretation	
of	the	reference	
value

• For the measurement and evaluation of this metric, items which should be
mentioned in the design document, as well as the approximate description
volume of each item, assuming the entire volume of the document to
be 100 are shown. For example, the reference values for the design
specifications define that the volume of "D2: Description volume for overall
system structure" should be approximately 5% of the entire volume and
the volume of "D3: Description volume for functional block structure" should
also be approximately 5% of the entire volume. According to these values,
measure the items mentioned in the document to be evaluated (e.g., design
document) in whichever volume for each, and evaluate appropriateness of
the contents of the document.

• Note that the description ratio of each item varies according to the
characteristics of the system. The reference values reflect the ratio for a
standard system. If the balance target value is changed for Balance of the
Specifications Document Description, you must also change the target
value of this Balance of the Design Document Description accordingly.

933.5 Product Metrics - Definition and Reference Values

Basic	Metrics	-	Definition	

and	Reference	Values

3.6

Product	Metrics	-	Definition	

and	Reference	Values

3.5

Definitions	and	Meanings	of	Evaluation	

Metrics	and	How	to	Use	Them

3.1

C
ategorization	of	

E
valuation	M

etrics

3.2

E
valuation	M

etrics	

-	N
otes	on	U

se

3.3

Process	Metrics	-	Definition	

and	Reference	Values

3.4

Document Item	No. Contents Reference	%

Design document D1. Entire description volume 100

D2.
Description volume for overall system
structure

5

D3.
Description volume for functional block
structure

5

D4.
Description volume for functional block
details

50

D5. Description volume for interface data 20

D6. Description volume for exception handling 20

"D1: Entire description volume" is defined as being approximately three times "R1: Entire description
volume" (of the requirements specification).

How	to	represent	design	details

The design of software involves considering how the requirements (functional and

non-functional) required for the software should be implemented, and investigating

and determining the static structure and dynamic mechanism of the software. The

static structure and dynamic mechanism of the software are often represented

using diagrams and tables which can show them most clearly, rather than a natural

language. Recently, the concept of design modeling is becoming popular in the

software design world, and is one concept for abstractively arranging the software

design using predefined diagram and table conventions. Using such diagrams and

tables to represent the software design has the advantage of representing the design

structure intuitively or logically, while it cannot represent the details and design basis

to the full extent. It is required to investigate, in advance, the contents to be mentioned

in the design document, including the representation systems that are used in order to

precisely communicate the software design details.

C o l u m n

9� Chapter 3 Definition and Reference Values for Evaluation Metrics

Process	Metrics	-	Definition	

and	Reference	Values

3.4

C
ategorization	of	

E
valuation	M

etrics

3.2

Basic	Metrics	-	Definition	

and	Reference	Values

3.6

E
valuation	M

etrics	

-	N
otes	on	U

se

3.3

Product	Metrics	-	Definition	

and	Reference	Values

3.5

Definitions	and	Meanings	of	Evaluation	

Metrics	and	How	to	Use	Them

3.1

ID PD22

Name Balance of the Test Document Description

Abbreviation BTDD

Reference	
value/reference	
value	range

N NQ C HC
Adjustment
base value

See the table on the next page. None

Measurement	
unit Percentage of description items of each document

Tolerance Percentage rounded to the nearest 10%

Meaning	of	the	
metric

• This metric indicates the number of items that should be mentioned in test
specifications relative to the entire volume of the test specifications, to
evaluate the sufficiency of the described contents of the document.

Calculation	
method

• Number of pages in each part in test specifications/Total number of pages
in the test specifications

• For the contents of each part of test specifications, measure its percentage
relative to the entire volume of the test specifications.

• To measure the description volume, for example, count the number of
pages for "T2: Description of test environment" and divide the obtained
number of pages by the total number of pages to calculate the percentage
of the description for the item. Note that the items to be mentioned in the
test specifications are selected according to "SYP4.1 System Qualification
Testing Preparation," "SWP5.1 Software Integration Testing Preparation,"
and "SWP6.1 Software Qualification Testing Preparation" in ESPR.

Usage	of	the	
metric

• If the value for a description item is extremely low relative to the description
balance indicated by the reference values listed in the table on the next
page, we can say that the description and investigation of that item is not
sufficient, and the document must be reviewed or investigated again.

Measurement	
tips

• For the volume of each description item, a rough quantity with the number
of pages (such as approximately 1.5 pages) or the number of lines is
enough. In some cases, a percentage described with physical values such
as the area or length of description area may be used.

Remarks:	
Interpretation	
of	the	reference	
value

• For the measurement and evaluation of this metric, items which should be
mentioned in the test specifications, as well as the approximate description
volume for each item, assuming the entire volume of the document to be
100 are shown. For example, the reference values for the test specifications
define that the volume of "T2: Description of test environment" should be
approximately 5% of the entire volume and the volume of "T3: Description
of test procedure and conditions" should be approximately 10% of the entire
volume. According to these values, measure the items that are mentioned
in the document to be evaluated (e.g., test specifications) in whichever
volume, and evaluate the appropriateness of the contents of the document.

• Note that the description ratio of each item varies with the characteristics
of the system. The reference values reflect the ratio for a standard system.
If the balance target value is changed for Balance of the Specifications
Document Description, you must also change the target value of this
Balance of the Test Document Description accordingly.

953.5 Product Metrics - Definition and Reference Values

Basic	Metrics	-	Definition	

and	Reference	Values

3.6

Product	Metrics	-	Definition	

and	Reference	Values

3.5

Definitions	and	Meanings	of	Evaluation	

Metrics	and	How	to	Use	Them

3.1

C
ategorization	of	

E
valuation	M

etrics

3.2

E
valuation	M

etrics	

-	N
otes	on	U

se

3.3

Process	Metrics	-	Definition	

and	Reference	Values

3.4

Document Item	No. Contents Reference	
value

Test
specifications

T1. Entire description volume R1*3

T2. Description of test environment 5

T3. Description of test procedure and conditions 10

T4. Description of normal system 35

T5. Description of abnormal system and
exception handling

45

T6. Description of test completion criteria 5

"T1: Entire description volume" is defined as being approximately three times "R1: Entire description
volume" (of the requirements specification).

Numeric	metrics

The numeric metrics generally incur measurement errors for many reasons. It is

desirable to use the reference values in this guide by modifying them as necessary in

consideration of a tolerance of ±15%, as shown below.

Note that some metrics do not simply increase in proportion to the software size.

C o l u m n

0

30

45

60

75

15

Requirements
specification

Design
document

Test
specifications

Reference
value tolerance

D
oc

um
en

t v
ol

um
e

(P
ag

e/
K

LO
C

)

Normal Normal
Quality
Required

Critical Highly
Critical

96 Chapter 3 Definition and Reference Values for Evaluation Metrics

Process	Metrics	-	Definition	

and	Reference	Values

3.4

C
ategorization	of	

E
valuation	M

etrics

3.2

Basic	Metrics	-	Definition	

and	Reference	Values

3.6

E
valuation	M

etrics	

-	N
otes	on	U

se

3.3

Product	Metrics	-	Definition	

and	Reference	Values

3.5

Definitions	and	Meanings	of	Evaluation	

Metrics	and	How	to	Use	Them

3.1

ID PD30

Name File Lines Of Code

Abbreviation FLOC

Reference	
value/reference	
value	range

N NQ C HC Must be
equivalent
to or lower
than this
value.

2.00 2.00 2.00 2.00

Measurement	
unit KLOC

Tolerance Two high-order significant digits (e.g., 1.2 KLOC for 1231 LOC)

Meaning	of	the	
metric

• This metric indicates the size of the software targeted for quality
measurement and evaluation.

• If this value is large, it indicates that the target software size is large.
• Measure the number of lines per file and check if the file contains more

than a certain number of lines. If the number of lines per file is too large,
the readability and maintainability may suffer. Note that this metric is not
influenced by the type of the system characteristics profile.

Calculation	
method

File Lines Of Code: Use File Lines Of Code of the basic metrics as is.
FLOC = FLOC

Usage	of	the	
metric

• This metric targets a file with a large value for evaluation.
• If the number of lines per file is much greater than the reference value, the

maintainability may suffer and a source code review must be performed as
early as possible.

• Also, the total of the values for this metric (total File Lines Of Code) is used
as the alternative metric to indicate the software size. If this measured
value differs considerably from the software size (the total number of
lines) grasped intuitively by the developer, project manager, or leader, the
developer may have misunderstood the specifications or an error may have
occurred with the internal processing, and a source code review needs to
be performed as early as possible.

• Note that this metric value assumes the use of C as the programming
language. For details on how to convert the value when using multiple
languages, refer to File Lines Of Code (ID=B11, FLOC) of the basic metrics.

Remarks:	
Interpretation	
of	the	reference	
value

• There is a limit to the extent to which a human can understand the logic.
For the text of a single chapter (be it a novel or a technical document), it
is easy to follow the logic. The reference value for this metric assumes the
text of a single chapter or two; 80 lines x 25 pages (2,000 lines).

973.5 Product Metrics - Definition and Reference Values

Basic	Metrics	-	Definition	

and	Reference	Values

3.6

Product	Metrics	-	Definition	

and	Reference	Values

3.5

Definitions	and	Meanings	of	Evaluation	

Metrics	and	How	to	Use	Them

3.1

C
ategorization	of	

E
valuation	M

etrics

3.2

E
valuation	M

etrics	

-	N
otes	on	U

se

3.3

Process	Metrics	-	Definition	

and	Reference	Values

3.4

ID PD31

Name Module Lines Of Code

Abbreviation MLOC

Reference	
value/reference	
value	range

N NQ C HC Must be
equivalent
to or lower
than this
value.

160.0 160.0 160.0 160.0

Measurement	
unit LOC

Tolerance Two high-order significant digits (e.g., 230 LOC for 231 LOC)

Meaning	of	the	
metric

• This metric indicates the scale of a function, which is a unit for processing.
• Measure the number of lines per function and check if the function contains

more lines than a certain value. If the number of lines per function is too
large, the readability and maintainability may suffer. Note that this metric is
not influenced by the type of the system characteristics profile type.

Calculation	
method

Module Lines Of Code: Use Module Lines Of Code of the basic metrics as is.
MLOC = MLOC

Usage	of	the	
metric

• This metric targets a function with a large value for evaluation.
• Extract and measure those functions for which the number of lines exceeds

the certain number of lines. If it is difficult to measure all the functions, it is a
good idea to select and measure those functions which seem large.

• If the number of lines per function is much greater than the reference value,
the maintainability may suffer. If this is the case, it is required to consider
measures such as dividing the function into multiple modules or performing a
source code review as early as possible.

Remarks:	
Interpretation	
of	the	reference	
value

• There is a limit to the extent to which a human can understand the logic.
Two printed pages of source code are appropriate for review. The reference
value for this metric assumes 80 lines x 2 pages.

98 Chapter 3 Definition and Reference Values for Evaluation Metrics

Process	Metrics	-	Definition	

and	Reference	Values

3.4

C
ategorization	of	

E
valuation	M

etrics

3.2

Basic	Metrics	-	Definition	

and	Reference	Values

3.6

E
valuation	M

etrics	

-	N
otes	on	U

se

3.3

Product	Metrics	-	Definition	

and	Reference	Values

3.5

Definitions	and	Meanings	of	Evaluation	

Metrics	and	How	to	Use	Them

3.1

ID PD32

Name Ratio Of Control Statement

Abbreviation ROCS

Reference	value
N NQ C HC

Adjustment
base value

35 30 25 20

5.00 Reference	value	
range 30.00 to 40.00 25.00 to 35.00 20.00 to 30.00 15.00 to 25.00

Measurement	
unit %

Tolerance Two high-order significant digits

Meaning	of	the	
metric

• This metric indicates the number of control statements in the measurement
target file relative to the total number of lines of source code. Ratio Of
Control Statement is proposed as an alternative metric because measuring
the complexity of the source code is difficult.

• High complexity infers that the source code description is complex, making
the code difficult to maintain and understand, as well as of low quality. If this
metric value is high, it indicates that the code may contain many branches
and other logics and the design or code itself is complex, resulting in
possible problems with reliability and maintainability.

Calculation	
method

Number Of Control Statement/Total Lines Of Code
ROCS = NOCS/TLOC

Usage	of	the	
metric

• If the Number Of Control Statement value is high, the source code may be
complicated, making it difficult to maintain and read, and may contain many
bugs. When the value is too high, review the design, check for reliability in
the source code review, and/or cover all the paths in the testing.

• The complexity required of the software varies depending on the
characteristics of the target system. Based on the reference value, define
appropriate values for individual organizations and modules.

Remarks:	
Interpretation	
of	the	reference	
value

• You can also use a method whereby a tool is used to measure the
cyclomatic complexity. In this case, use a metric defined for each
organization.

• This guide proposes Ratio Of Control Statement as an alternative metric
which allows for easier and lower-cost measurement. This metric measures
the complexity by picking up those keywords that represent branches in the
source code, and is easy to use.

• This metric assumes that three or four control statements per 100 lines are
used in N-type software.

993.5 Product Metrics - Definition and Reference Values

Basic	Metrics	-	Definition	

and	Reference	Values

3.6

Product	Metrics	-	Definition	

and	Reference	Values

3.5

Definitions	and	Meanings	of	Evaluation	

Metrics	and	How	to	Use	Them

3.1

C
ategorization	of	

E
valuation	M

etrics

3.2

E
valuation	M

etrics	

-	N
otes	on	U

se

3.3

Process	Metrics	-	Definition	

and	Reference	Values

3.4

ID PD33

Name Ratio Of Comment Line

Abbreviation ROCL

Reference	value
N NQ C HC

Adjustment
base value

20.00 25.00 30.00 35.00

5.00 Reference	value	
range 15.00 to 25.00 20.00 to 30.00 25.00 to 35.00 30.00 to 40.00

Measurement	
unit %

Tolerance Percentage (two high-order significant digits)

Meaning	of	the	
metric

• This metric indicates the number of comment lines in the measurement
target file relative to the total number of lines of source code.

• Comments conforming to certain rules such as the coding rules provide the
minimum amount of information needed to understand and maintain the
source code. Source code containing appropriate lines of header comments
and explanations of the functions and variables, provides higher readability.

• If this metric value is too high, unnecessary comments may be included or
unnecessary comments or code may be left undeleted in the source code,
resulting in lower readability of the source code.

Calculation	
method

Comment Lines Of Code/Total Lines Of Code
ROCL = CLOC/TLOC

Usage	of	the	
metric

• To use this metric effectively, it is important to define a rule for describing
the comment (rule of the contents, location, update, etc.). By describing an
appropriate number of comments within the source code according to this
rule, its readability can be ensured.

• However, because comments are written in a natural language except for
some predefined items, the volume can vary greatly depending on who
writes them. Therefore, use this metric with a 20 to 30% margin. If the value
of this metric differs considerably from the target value, it is required to
review the source code as soon as possible to check the situation.

• You can also use Ratio Of Comment Line to see if the developer has
written an appropriate number of comments. If he or she has not, you can
use this metric value to aid in instructing him or her.

Remarks:	
Interpretation	
of	the	reference	
value

• This metric assumes that comments are inserted according to a coding
rule.

• Evaluate this metric from viewpoints such as whether it varies for different
files, and whether it is too high or low.

• If this metric value is too high, the case in which useless and even
dangerous comments are included is possible (e.g., an entire portion of an
unused code section is commented out).

• If this metric value is too low, necessary information (e.g., a header file)
may be missing. Confirm that the comments have been written according to
the coding rules.

100 Chapter 3 Definition and Reference Values for Evaluation Metrics

Process	Metrics	-	Definition	

and	Reference	Values

3.4

C
ategorization	of	

E
valuation	M

etrics

3.2

Basic	Metrics	-	Definition	

and	Reference	Values

3.6

E
valuation	M

etrics	

-	N
otes	on	U

se

3.3

Product	Metrics	-	Definition	

and	Reference	Values

3.5

Definitions	and	Meanings	of	Evaluation	

Metrics	and	How	to	Use	Them

3.1

ID PD34

Name Ratio of Deviation of Coding Rules

Abbreviation RDCR

Reference	value
N NQ C HC

Adjustment
base value

310 210 110 10

100.00 Reference	value	
range

210.00 to
410.00

110.00 to
310.00

10.00 to
210.00

0.00 to
110.00

Measurement	
unit Number/KLOC

Tolerance Two high-order significant digits

Meaning	of	the	
metric

• This metric indicates how much of the description deviates from the coding
rules defined by the organization or project, relative to the total number of
lines of source code.

Calculation	
method

Number of Deviation of Coding Rules/Total Lines Of Code
RDCR = NDCR/TLOC

Usage	of	the	
metric

• When the deviation ratio is high, you should take more time for checking in
the review to ensure quality. If a particular module shows a high deviation
ratio, it is recommended to check if the module has any specialty or
whether the deviation originates with the developer who wrote it.

Remarks:	
Interpretation	
of	the	reference	
value

• If many required counteractions against deviations are not performed, or if
there are many cases in which the source code is modified inappropriately
to correct any deviation, you should consider a renew of the coding rule
itself.

1013.5 Product Metrics - Definition and Reference Values

Basic	Metrics	-	Definition	

and	Reference	Values

3.6

Product	Metrics	-	Definition	

and	Reference	Values

3.5

Definitions	and	Meanings	of	Evaluation	

Metrics	and	How	to	Use	Them

3.1

C
ategorization	of	

E
valuation	M

etrics

3.2

E
valuation	M

etrics	

-	N
otes	on	U

se

3.3

Process	Metrics	-	Definition	

and	Reference	Values

3.4

ID PD40

Name Density Of Test Items

Abbreviation DOTI

Reference	value
N NQ C HC

Adjustment
base value

25.00 50.00 75.00 100.00

25.00 Reference	value	
range

0.00 to
50.00

25.00 to
75.00

50.00 to
100.00

75.00 to
125.00

Measurement	
unit Item/KLOC

Tolerance Two high-order significant digits

Meaning	of	the	
metric

• This metric indicates the number of executed test items per the source
code scale. This metric value shows sufficiency of the dynamic test and
coverage of the test relative to the source code.

Calculation	
method

Number Of Test Items/Total Lines Of Code
DOTI = NOTI/TLOC

Usage	of	the	
metric

• If the scale of the target is larger, the number of combinations is also
larger and Density Of Test Items increases. A higher value for this metric
is not necessarily good, and effective combinations should be considered
when designing the test. Because Density Of Test Items may increase
depending on the complexity and the number of I/Os of the target system, it
is necessary to ensure the appropriate balance considering the adjustment
coefficient and other factors.

• If this value is lower than the reference value, the necessary number of
tests have not been executed and some failures may remain undetected in
the test.

• If this value is higher than the reference value, some tests may be
unnecessary and the test efficiency may be poor.

Remarks:	
Interpretation	
of	the	reference	
value

• The reference value is calculated on the assumption that six test items are
prepared for one function which consists of 120 lines for NQ-level software.

• To further utilize this metric value, in addition to measuring Density Of Test
Items for the entire software, it is recommended to check if Density Of Test
Items is appropriate by considering highly difficult or complex portions and
portions having many I/Os for individual modules and functions.

102 Chapter 3 Definition and Reference Values for Evaluation Metrics

Process	Metrics	-	Definition	

and	Reference	Values

3.4

C
ategorization	of	

E
valuation	M

etrics

3.2

Basic	Metrics	-	Definition	

and	Reference	Values

3.6

E
valuation	M

etrics	

-	N
otes	on	U

se

3.3

Product	Metrics	-	Definition	

and	Reference	Values

3.5

Definitions	and	Meanings	of	Evaluation	

Metrics	and	How	to	Use	Them

3.1

ID PD41

Name Ratio Of Fault detection in Comparison

Abbreviation ROFC

Reference	value
N NQ C HC

Adjustment
base value

0.05 0.04 0.03 0.02

0.01 Reference	value	
range 0.04 to 0.06 0.03 to 0.05 0.02 to 0.04 0.01 to 0.03

Measurement	
unit %

Tolerance Percentage (two high-order significant digits)

Meaning	of	the	
metric

• There are many conditions for concluding the test. For example, the test is
completed when the number of detected failures is likely to converge, that
is, the failure ratio likely to fall below a certain value. This metric compares
the fault detection ratios during the final and former stages of the test period
to determine the stability of the software in the final stage.

• During the final stage of the test period, if Number Of Executed Test Items
increases and the number of faults detected gets closer to 0 (does not
increase), it can be said that faults that may occur when the software is
used are converging.

Calculation	
method

(Ratio Of Fault Detection in final 10% of test period)/(Ratio Of Fault Detection
in first 90% of test period)

Usage	of	the	
metric

If this value is extremely high relative to the description balance as given by
the reference value, the test is judged to be insufficient and the test items
should be reviewed and/or the test execution status should be investigated
again.

Remarks:	
Interpretation	
of	the	reference	
value

• This metric assumes that (1) identified faults are fixed and (2) the number
of test items increases as the regression tests are repeated. Therefore,
the Number Of Executed Test Items value increases as development
progresses, while the number of detected faults decreases. In the
relationship between the period and the number of items, the situation of
the organization should be considered (e.g., if the testing is not performed
for a long time, omit this period from the calculations).

1033.5 Product Metrics - Definition and Reference Values

Basic	Metrics	-	Definition	

and	Reference	Values

3.6

Product	Metrics	-	Definition	

and	Reference	Values

3.5

Definitions	and	Meanings	of	Evaluation	

Metrics	and	How	to	Use	Them

3.1

C
ategorization	of	

E
valuation	M

etrics

3.2

E
valuation	M

etrics	

-	N
otes	on	U

se

3.3

Process	Metrics	-	Definition	

and	Reference	Values

3.4

Ratio	Of	Fault	detection	in	Comparison

In the world of software, as a concept used to forecast how faults converge, they

often use the software reliability growth model called the "bug curve." Examples of

this model include the logistic curve and Gompertz curve, which are used to forecast

demand trends and economic growth. These curves have various models and

choosing the wrong model can result in an unreliable evaluation result. In addition,

they are statistics processes based upon probability and are very difficult to apply to

software development. This guide uses a method for easily judging the convergence

of faults by comparing the fault detection ratios during certain (first 90% and final 10%)

periods of a test to see if all the faults have been detected in the final stage of the test.

Test period

90%

T
o

ta
l n

u
m

b
er

 o
f

d
et

ec
te

d
 f

au
lt

s

T
o

ta
l n

u
m

b
er

 o
f

te
st

 e
xe

cu
ti

o
n

Ratio Of Fault detection in Comparison
 = (Ratio Of Fault Detection in final 10% of test period)/
 (Ratio Of Fault Detection in first 90% of test period)
 = (d/c)/(b/a)

10%

b

a

d

c

C o l u m n

10� Chapter 3 Definition and Reference Values for Evaluation Metrics

Process	Metrics	-	Definition	

and	Reference	Values

3.4

C
ategorization	of	

E
valuation	M

etrics

3.2

Basic	Metrics	-	Definition	

and	Reference	Values

3.6

E
valuation	M

etrics	

-	N
otes	on	U

se

3.3

Product	Metrics	-	Definition	

and	Reference	Values

3.5

Definitions	and	Meanings	of	Evaluation	

Metrics	and	How	to	Use	Them

3.1

ID PD42

Name Ratio Of Fault Elimination

Abbreviation ROFE

Reference	value
N NQ C HC

Adjustment
base value

94.00 97.00 100.00 100.00

3.00 Reference	value	
range 91 to 97 94 to 100 97 to 100.00 97 to 100.00

Measurement	
unit %

Tolerance Percentage (two high-order significant digits)

Meaning	of	the	
metric

• This metric indicates how many of the detected faults were fixed.
• With the upper limit being 100, this metric value should be as close as 100

as possible. That is, we should strive to fix every detected fault.

Calculation	
method

Number Of Eliminated Fault/Number Of Detected Fault
ROFE = NOEF/NODF

Usage	of	the	
metric

• The Number Of Detected Fault metric indicates the total number of faults in
all of the evaluation targets. If this value is high, the target may have quality
problems.

• By measuring this metric value during development, you can see how the
faults are fixed and converged. If this metric value is high, it indicates that
the faults are converging. On the contrary, if it is low, it indicates that many
of the detected faults have been left unfixed and the status of the project is
doubtful.

• If this metric value is still low at the final stage of development, a large
number of complaints can be feared and the release of the product should
be reconsidered.

• Because there are many types of faults, including serious and minor ones,
do not just evaluate the number of faults, but also consider the details of the
faults.

Remarks:	
Interpretation	
of	the	reference	
value

• Detected faults must not remain after development in a system for which a
certain level of quality is required. Therefore, the target reference value for
the system of Type 3: Critical or higher is set to 100.

• If some faults are left unfixed, you can change the specifications or
establish limitations (to assume that they were fixed) to increase this metric
value, it is important to determine how to handle them by considering their
frequency and danger. Also, to avoid operation errors or misunderstandings
by the user, some devices are required (e.g., clarifying the workaround).

• A metric similar to this metric is the number of unfixed bugs. Many projects
may regard the number of unfixed bugs as merely being a numeric value. If
there are projects of difference scales within a single organization, however,
you can use this metric to normalize them for comparison.

1053.6 Basic Metrics - Defi nition and Reference Values

Definitions	and	Meanings	of	Evaluation	

Metrics	and	How	to	Use	Them

3.1

Basic	Metrics	-	Definition	

and	Reference	Values

3.6

C
ategorization	of	

E
valuation	M

etrics

3.2

E
valuation	M

etrics	

-	N
otes	on	U

se

3.3

Process	Metrics	-	Definition	

and	Reference	Values

3.4

Product	Metrics	-	Definition	

and	Reference	Values

3.5

Basic	Metrics	-	Defi	nition	
and	Reference	Values	3.6	

 What is a basic metric?
A basic metric is a metric that is used for calculating the above-mentioned process

metrics and product metrics and which is actually measured at the various process of

software development.

There are the following four types of basic metrics:

(1) Source code volume basic metrics

(2) Document volume basic metrics

(3) Process effort volume basic metrics

(4) Test volume basic metrics

 Source code volume basic metrics
Total	Lines	Of	Code

According to the concept of the code volume evaluation metrics of the product

metrics mentioned above, measure the number of physical lines for each file, using a text

editor or line count command. Also, Total Lines Of Code, the total number of lines of

all files, is used as an alternative metric for the program scale. Creating a list of values

measured for each of the files facilitates application to File Lines Of Code (ID: PD30,

FLOC).

Number	Of	Control	Statement

Measure the number of control statements contained in the source code for each file.

In the case of the C programming language, a control statement is one of the following:

 if, while, for, case, default, else

By using a tool such as an editor to search for these keywords, we can obtain a rough

value for this metric. Create a list of values measured for each of the files as these

measurements are done to use it for Ratio Of Control Statement (ID: PD32, ROCS).

106 Chapter 3 Defi nition and Reference Values for Evaluation Metrics

Process	Metrics	-	Definition	

and	Reference	Values

3.4

C
ategorization	of	

E
valuation	M

etrics

3.2

Product	Metrics	-	Definition	

and	Reference	Values

3.5

E
valuation	M

etrics	

-	N
otes	on	U

se

3.3

Definitions	and	Meanings	of	Evaluation	

Metrics	and	How	to	Use	Them

3.1

Basic	Metrics	-	Definition	

and	Reference	Values

3.6

Comment	Lines	Of	Code

For each file, measure the number of comment lines in the source program. Comment

lines can be measured using a tool, or for the C programming language, counting "/*"

and "//" enclosing each comment produces a rough number of comments. In this case,

however, it is necessary to apply a coding rule to control how to describe a comment

spanning multiple lines.

 Document volume basic metrics
According to the concept of the document volume evaluation metrics of the product

metrics (i.e., approximately 2,000 characters per page)(*) mentioned above, measure the

number of pages in each document created as a deliverable by each of the software

development processes; requirements definition, architectural design, detailed design,

and integration testing, to system qualification testing.

Creating a list of parts of each document with measured values facilitates application

to Balance of the Specifications Document Description (ID: PD20, BSDD), Balance

of the Design Document Description (ID: PD21, BDDD), and Balance of the Test

Document Description (ID: PD22, BTDD).

 Process effort volume basic metrics
Measure the total process effort for individual tasks. A rough value can be calculated

from the work records.

Each	review	process	effort

Calculate the total process effort expended on reviewing each process. Base this

calculation on the review reports. In some cases, review records are not kept (e.g., in

the case of a personal desktop review, peer review). In such a case you do not need to

include such reviews in the review process effort.

Each	creation	process	effort

Calculate the total process effort expended on the individual processes. Base this

calculation on the work records. The measurement target process efforts are those

involved with producing or reviewing deliverables. To avoid confusion, clarify the

(*): This reference value is based on Japanese, so it needs to be adjusted for other languages. For example, the value is
nearly doubled in the case of English.

1073.6 Basic Metrics - Defi nition and Reference Values

Definitions	and	Meanings	of	Evaluation	

Metrics	and	How	to	Use	Them

3.1

Basic	Metrics	-	Definition	

and	Reference	Values

3.6

C
ategorization	of	

E
valuation	M

etrics

3.2

E
valuation	M

etrics	

-	N
otes	on	U

se

3.3

Process	Metrics	-	Definition	

and	Reference	Values

3.4

Product	Metrics	-	Definition	

and	Reference	Values

3.5

measurement targets for each project. For example, the time needed for meetings is to be

included but that for education is not.

Process	Effort	for	TEst

Calculate the total process effort expended on testing the software or system. Include

the process effort expended on test design, test data creation, test scenario creation, and

test expected value creation. In addition, the fault record and test report documentation

work process effort is included in Process Effort for TEst, but the unit testing process

effort is not.

In this guide, the unit testing is positioned as testing at the program unit level, in

accordance with the concept in ESPR SWP4.1 and SWP4.2.

 Test volume basic metrics
Measure the volume of deliverables obtained through the test processes.

Number	Of	Test	Items

The total number of test items including the integration testing, qualification testing,

system qualification testing, etc. but excluding the unit testing. Because the number of

items can be expressed in various granularities, ensure that the granularity is uniform

within the target project. The measurement target test items are those that are effective

as test items; that is, those which have actually been used in a test at least once. Test items

that have been created but not used are not included in the measurement target.

Number	Of	Executed	Test	Items

The total number of test items executed. Similarly to Number Of Test Items, the unit

testing is excluded. This value can be measured by multiplying the number of test items

mentioned above by the number of test executions. Note that if a test is aborted then the

test items after the abort point are not measured.

Number	Of	Detected	Fault

Measure the number of faults detected after the completion of the unit test phase

through the measurement time. Faults may be detected not only by the test team but

also by stakeholders, including the programmers and other internal parties related to

the project. Any fault that is detected should be recorded and managed with a incident

108 Chapter 3 Definition and Reference Values for Evaluation Metrics

Process	Metrics	-	Definition	

and	Reference	Values

3.4

C
ategorization	of	

E
valuation	M

etrics

3.2

Product	Metrics	-	Definition	

and	Reference	Values

3.5

E
valuation	M

etrics	

-	N
otes	on	U

se

3.3

Definitions	and	Meanings	of	Evaluation	

Metrics	and	How	to	Use	Them

3.1

Basic	Metrics	-	Definition	

and	Reference	Values

3.6

report per fault or database. When counting the incident reports to measure Number

Of Detected Fault, it is necessary to differentiate those "faults" that are actually not

faults (e.g., misunderstanding of the specifications, operation errors, manual errors, etc.)

from actual faults. However, for the number of detected faults for this metric, it is also

acceptable to use an easier method of calculating the ratio of actual faults relative to

the total number of incident reports by sampling and then multiply the total number of

incident reports by the calculated ratio, rather than precisely calculating the number of

actual faults.

Number	Of	Eliminated	Fault

Measure the number of faults that have been fixed, relative to the number of detected

faults mentioned above. Whether faults have been fixed should be managed through

the use of incident reports or a database, but note that for some projects it is difficult to

reflect this result. You can also calculate this metric value by subtracting the number of

remaining (unfixed) faults from Number Of Detected Fault.

Ratio	Of	Fault	Detection

This basic metric is not measured but calculated by dividing Number Of Detected

Fault by Number Of Executed Test Items, and indicates how much faults per tested

scale could be detected. Calculate this value in segmented periods and compare the ratio

between the period from the start to the latter stage of development and the final period

of development to calculate Ratio Of Fault detection in Comparison (ID: PD41, ROFC)

for the test sufficiency evaluation metrics.

Rank	of	detected	faults

Generally, a test reveals a variety of faults, from serious ones to very minor ones

(some corporations classify faults into "bug ranks"). This guide does not mention fault

ranks in detail in measurement of the number of faults which is required to calculate

Ratio Of Fault Detection.

In actual deployment, it is necessary to define a rule to count faults by considering

the fault rank.

C o l u m n

1093.6 Basic Metrics - Defi nition and Reference Values

Definitions	and	Meanings	of	Evaluation	

Metrics	and	How	to	Use	Them

3.1

Basic	Metrics	-	Definition	

and	Reference	Values

3.6

C
ategorization	of	

E
valuation	M

etrics

3.2

E
valuation	M

etrics	

-	N
otes	on	U

se

3.3

Process	Metrics	-	Definition	

and	Reference	Values

3.4

Product	Metrics	-	Definition	

and	Reference	Values

3.5

 How to read the basic metrics definition table
The following pages explain the basic metrics one by one. Each table consists of the

following fields:

ID B10

Name Total Lines Of Code

Abbreviation TLOC

Measurement
unit KLOC

Measurement
method

• Measure the number of physical lines of source code of part or all
of the software and calculate the total number of physical lines. This
measurement assumes the following conditions:
· All comment lines are counted.
· All blank lines (lines with no data) are counted.
· If a single process is described over multiple lines, the number of lines

are counted individually.

Notes on
measurement

• When the target is divided into modules or tasks written in C or another
programming language, and the source code is described in multiple
files, sum up the number of lines in each file or module and calculate the
total number of lines in the source code of the target.

• Header files containing code are basically included in the measurement.
Handle header files not containing code according to the measurement
rules established within your organization.

• If multiple programming languages are used within a single software
product, divide the target before measurement.

• Note that the metric reference values provided in this guide are
normalized assuming the use of the C programming language. When
using multiple languages, convert the measured value according to basic
metric File Lines Of Code (ID=B11, FLOC).

• The precise value of this metric value is not fixed until coding has been
completed. Therefore, when using this metric value for normalization in
the early stages of development, temporarily use the value from a similar
past project or initial estimate.

• OS, complier libraries, quality-assured commercial products, and open
sources are not targets of measurement. If these are altered during
development, include them as necessary.

Evaluation
metrics using
this metric

• Execution Ratio of the Specifications/Design/Code/Test Review (ERSR,
ERDR, ERCR, ERTR), Execution Ratio of the Test Work (ERTW),
Execution Ratio Of the Review (EROR), Ratio of the Specifications/
Design Document/Test Document Volume (RSDV, RDDV, RTDV), Ratio
Of Control Statement (ROCS), Ratio Of Comment Line (ROCL), Density
Of Test Items (DOTI)

Measurement
tips

This metric value can be obtained from the number of lines displayed by
an editor used during development.

ID: ID proprietary to each evaluation metric. The ID of each basic metric starts with B.

Measurement
method: Method for
measuring the basic
metric.

Abbreviation:
Abbreviation for the
evaluation metric.

Evaluation metrics
using this metric:
Evaluation metrics
that use this basic
metric.

Measurement
unit: Unit for
measurement.

Notes on
measurement:
Notes on
measuring this
basic metric.

Measurement
tips: Tips on the
method for
measuring this
basic metric and
other aspects.

Name: Name of
the metric.

Figure	3-5:	How	to	read	the	basic	metrics	definition	table

110 Chapter 3 Defi nition and Reference Values for Evaluation Metrics

Process	Metrics	-	Definition	

and	Reference	Values

3.4

C
ategorization	of	

E
valuation	M

etrics

3.2

Product	Metrics	-	Definition	

and	Reference	Values

3.5

E
valuation	M

etrics	

-	N
otes	on	U

se

3.3

Definitions	and	Meanings	of	Evaluation	

Metrics	and	How	to	Use	Them

3.1

Basic	Metrics	-	Definition	

and	Reference	Values

3.6

 Basic metrics

ID B10

Name Total Lines Of Code

Abbreviation TLOC

Measurement	
unit KLOC

Measurement	
method

• Measure the number of physical lines of source code of part or all of the
software and calculate the total number of physical lines. This measurement
assumes the following conditions:
· All comment lines are counted.
· All blank lines (lines with no data) are counted.
· If a single process is described over multiple lines, the number of lines are

counted individually.

Notes	on	
measurement

• When the target is divided into modules or tasks written in C or another
programming language, and the source code is described in multiple files,
sum up the number of lines in each file or module and calculate the total
number of lines in the source code of the target.

• Header files containing code are basically included in the measurement.
Handle header files not containing code according to the measurement
rules established within your organization.

• If multiple programming languages are used within a single software
product, divide the target before measurement.

• Note that the metric reference values provided in this guide are normalized
assuming the use of the C programming language. When using multiple
languages, convert the measured value according to basic metric File Lines
Of Code (ID=B11, FLOC).

• The precise value of this metric value is not fixed until coding has been
completed. Therefore, when using this metric value for normalization in the
early stages of development, temporarily use the value from a similar past
project or initial estimate.

• OS, complier libraries, quality-assured commercial products, and open
sources are not targets of measurement. If these are altered during
development, include them as necessary.

Evaluation	
metrics	using	
this	metric

• Execution Ratio of the Specifications/Design/Code/Test Review (ERSR,
ERDR, ERCR, ERTR), Execution Ratio of the Test Work (ERTW), Execution
Ratio Of the Review (EROR), Ratio of the Specifications/Design Document/
Test Document Volume (RSDV, RDDV, RTDV), Ratio Of Control Statement
(ROCS), Ratio Of Comment Line (ROCL), Density Of Test Items (DOTI)

Measurement	
tips

This metric value can be obtained from the number of lines displayed by an
editor used during development.

1113.6 Basic Metrics - Definition and Reference Values

Definitions	and	Meanings	of	Evaluation	

Metrics	and	How	to	Use	Them

3.1

Basic	Metrics	-	Definition	

and	Reference	Values

3.6

C
ategorization	of	

E
valuation	M

etrics

3.2

E
valuation	M

etrics	

-	N
otes	on	U

se

3.3

Process	Metrics	-	Definition	

and	Reference	Values

3.4

Product	Metrics	-	Definition	

and	Reference	Values

3.5

ID B11

Name File Lines Of Code

Abbreviation FLOC

Measurement	
unit KLOC

Measurement	
method

• Measure the number of lines for each of the files constituting part or all of
the software.

• This metric indicates the size of the software targeted for quality
measurement and evaluation. If the value of this metric is high, it indicates
that the size of the target software is large.

Notes	on	
measurement

• Count the number of physical lines in each file. Count the number of
comments and blank lines (follow the line counting rules for Total Lines Of
Code (ID: B10, TLOC)).

• For conversion when using multiple programming languages, for example,
Capers Jones(2) demonstrates the ratio data from FP (function points) based
on his experience as shown below. It is a good idea to create a conversion
formula based on past programming results.

 1FP = 320 statements: Assembly language
 1FP = 128 statements: C
 1FP = 53 statements: C++

Evaluation	
metrics	using	
this	metric

File Lines Of Code (FLOC)

Measurement	
tips

This metric value can be obtained from the number of lines displayed by an
editor during development.

(2): Estimating Software Costs: Bringing Realism to Estimating, Capers Jones, McGraw-Hill Osborne Media, 2007

112 Chapter 3 Definition and Reference Values for Evaluation Metrics

Process	Metrics	-	Definition	

and	Reference	Values

3.4

C
ategorization	of	

E
valuation	M

etrics

3.2

Product	Metrics	-	Definition	

and	Reference	Values

3.5

E
valuation	M

etrics	

-	N
otes	on	U

se

3.3

Definitions	and	Meanings	of	Evaluation	

Metrics	and	How	to	Use	Them

3.1

Basic	Metrics	-	Definition	

and	Reference	Values

3.6

ID B12

Name Module Lines Of Code

Abbreviation MLOC

Measurement	
unit LOC

Measurement	
method

• Measure the number of lines for each function. The concept of a single line
conforms to the measurement of Total Lines Of Code (ID: B10, TLOC).

• If multiple programming languages are used within a single software
product, measure the program unit equivalent to a function (subroutine,
method, etc.) according to each programming language. Refer to File Lines
Of Code (ID: B11, FLOC) for the conversion method.

Notes	on	
measurement

• Count the number of physical lines in each function, which specifically
indicates a function processing body enclosed by { (just after the function
declaration) and }.

• Comments and blank lines are also counted.

Evaluation	
metrics	using	
this	metric

Module Lines Of Code (MLOC)

Measurement	
tips

If it is difficult to measure the values for all the functions, it is also possible to
select those functions which seem large.

1133.6 Basic Metrics - Definition and Reference Values

Definitions	and	Meanings	of	Evaluation	

Metrics	and	How	to	Use	Them

3.1

Basic	Metrics	-	Definition	

and	Reference	Values

3.6

C
ategorization	of	

E
valuation	M

etrics

3.2

E
valuation	M

etrics	

-	N
otes	on	U

se

3.3

Process	Metrics	-	Definition	

and	Reference	Values

3.4

Product	Metrics	-	Definition	

and	Reference	Values

3.5

ID B13

Name Number Of Control Statement

Abbreviation NOCS

Measurement	
unit LOC

Measurement	
method

• Measure the number of control statements contained in the source code of
part or all of the software. In the case of the C programming language, a
control statement refers to the following:

 if, while, for, case, default, else

Notes	on	
measurement

• For a programming language other than C, determine the types of control
statements to be measured within the project.

• Comments are excluded from the measurement target. If performing
a count while excluding comments would be cumbersome (see the
measurement tips for this metric), a rough count is sufficient.

Evaluation	
metrics	using	
this	metric

Ratio Of Control Statement (ROCS)

Measurement	
tips

• By measuring the number of control statements contained in the source
code using an editor, simple counting tool, or script, it is possible to obtain
a rough value for Number Of Control Statement. Note that a conditional
statement (e.g., for) may appear frequently within English comments. In
this case, exclude the comments before attempting the measurement. If
all of them cannot be excluded for convenience of measurement, check
the source code visually and determine a rough ratio of such conditional
statements within comments, and exclude the estimated number of such
conditional statements from the total count.

11� Chapter 3 Definition and Reference Values for Evaluation Metrics

Process	Metrics	-	Definition	

and	Reference	Values

3.4

C
ategorization	of	

E
valuation	M

etrics

3.2

Product	Metrics	-	Definition	

and	Reference	Values

3.5

E
valuation	M

etrics	

-	N
otes	on	U

se

3.3

Definitions	and	Meanings	of	Evaluation	

Metrics	and	How	to	Use	Them

3.1

Basic	Metrics	-	Definition	

and	Reference	Values

3.6

ID B14

Name Comment Lines Of Code

Abbreviation CLOC

Measurement	
unit KLOC

Measurement	
method

• Measure the number of comment lines contained in the source code of part
or all of the software.

• For the C programming language, a rough value can be obtained by
counting the total number of lines enclosed in /* and */ as well as those
beginning with //. By determining a coding rule for writing comments, the
measurement will be more precise or easier.

Notes	on	
measurement

• Comments at the end of executable lines are not counted.
• By unifying the counting rule for Comment Lines Of Code within the

organization or project, efficient and stable measurement is possible.
• You can use a tool to count the number of comment lines, if any. Note,

however, that the measurement rules may differ from tool to tool. So,
check the rules of the tool being used and change the rule to the method
proposed by this metric if the tool supports changing of the rule. Or, you
can define your own measurement rule for the project.

Evaluation	
metrics	using	
this	metric

Ratio Of Comment Line (ROCL)

1153.6 Basic Metrics - Definition and Reference Values

Definitions	and	Meanings	of	Evaluation	

Metrics	and	How	to	Use	Them

3.1

Basic	Metrics	-	Definition	

and	Reference	Values

3.6

C
ategorization	of	

E
valuation	M

etrics

3.2

E
valuation	M

etrics	

-	N
otes	on	U

se

3.3

Process	Metrics	-	Definition	

and	Reference	Values

3.4

Product	Metrics	-	Definition	

and	Reference	Values

3.5

ID B15

Name Number of Deviation of Coding Rules

Abbreviation NDCR

Measurement	
unit Location

Measurement	
method • Count the total number of deviations from the coding rule.

Notes	on	
measurement

• Even if the deviations are identical, count them separately if they appear
in different locations in the source code. If, for example, the code deviates
from the same rule at two locations, the count value is two.

• Exclude any deviations that are processed according to the coding rule
within the organization or project from the total number of deviations.

• That is, the following deviations are included in Number of Deviation of
Coding Rules:
· Deviations not processed according to the coding rule that includes

deviation processing
· Deviations under a rule which does not permit deviations

Evaluation	
metrics	using	
this	metric

Ratio of Deviation of Coding Rules (RDCR)

Measurement	
tips

Summarizing the number of deviations for each coding rule is helpful in
reviewing the coding rule itself.

Coding	rules

In general, each organization defines unique coding rules, which the developers

are required to observe. Depending on the deployment rules within an organization,

some coding rules may prevent a development target from being achieved because

the quality characteristics on which to focus differ depending on the functionality

demanded of the system. In this case, define a rule application exception procedure to

deploy the coding rules (see Section 3.2 of Part.1 in ESCR). Among those deviations

detected as violating the coding rules, exclude those permitted according to the rule

application exception procedure from measurement of Number of Deviation of Coding

Rules.

C o l u m n

116 Chapter 3 Definition and Reference Values for Evaluation Metrics

Process	Metrics	-	Definition	

and	Reference	Values

3.4

C
ategorization	of	

E
valuation	M

etrics

3.2

Product	Metrics	-	Definition	

and	Reference	Values

3.5

E
valuation	M

etrics	

-	N
otes	on	U

se

3.3

Definitions	and	Meanings	of	Evaluation	

Metrics	and	How	to	Use	Them

3.1

Basic	Metrics	-	Definition	

and	Reference	Values

3.6

ID B20

Name Volume Of the Specifications Document

Abbreviation VOSD

Measurement	
unit Page

Measurement	
method

• This metric measures, among documents created as part of a project,
the total number of pages in the document describing the requirements
specification.

• In software development, documents are created with Word and other
text editors in various forms such as Excel and other spreadsheet tables
or figures. Also, the number of lines or characters per page in documents
created using Word varies greatly from one document to another. For this
reason, when measuring this metric, text equivalent to 2000 characters (40
horizontal characters x 50 vertical lines)(*) is regarded as being one page.
When a document is created using other tools, calculate the approximate
number of pages using this standard.

Notes	on	
measurement

• When the document contains figures, photos, or diagrams, consider what
the equivalent number of pages would be if they were to be represented by
text, and add the calculated number of pages to the total number of pages.

• When existing documents are reused as a result of using existing software,
include the number of reused pages in the total number of pages.

Evaluation	
metrics	using	
this	metric

Ratio of the Specifications Document Volume (RSDV)

Measurement	
tips

• Because the number of pages in a document can vary depending on how
it is written, this metric does not require the value to be extremely precise.
Instead, a rough value is used to evaluate the sufficiency of the document.

Supplement (For measuring the amount of document balance description)
• For the description volume for individual description items, it is acceptable

to acquire a rough quantity as the number of pages (e.g., approximately 1.5
pages) or lines. In some cases, the area or physical dimensions (vertical
and horizontal lengths) of the description text can be used to calculate the
percentage of the description volume relative to the entire volume.

(*): This reference value is based on Japanese, so it needs to be adjusted for other languages. For example, the value is
nearly doubled in the case of English.

1173.6 Basic Metrics - Definition and Reference Values

Definitions	and	Meanings	of	Evaluation	

Metrics	and	How	to	Use	Them

3.1

Basic	Metrics	-	Definition	

and	Reference	Values

3.6

C
ategorization	of	

E
valuation	M

etrics

3.2

E
valuation	M

etrics	

-	N
otes	on	U

se

3.3

Process	Metrics	-	Definition	

and	Reference	Values

3.4

Product	Metrics	-	Definition	

and	Reference	Values

3.5

ID B21

Name Volume Of the Design Document

Abbreviation VODD

Measurement	
unit Page

Measurement	
method

• This metric measures, among documents created as part of a project, the
total number of pages in the document describing the design.

• In software development, documents are created using Word and other
text editors in various forms such as Excel and other spreadsheet tables
or figures. Also, the number of lines or characters per page in documents
created using Word varies greatly from one document to another. For this
reason, when measuring this metric, text equivalent to 2000 characters (40
horizontal characters x 50 vertical lines)(*) is regarded as being one page.
When a document is created using other tools, calculate the approximate
number of pages using this standard.

Notes	on	
measurement

• When the document contains figures, photos, or diagrams, consider what
the equivalent number of pages would be if they were to be represented by
text, and add the calculated number of pages to the total number of pages.

• When existing documents are reused as a result of using existing software,
include the number of reused pages in the total number of pages.

Evaluation	
metrics	using	
this	metric

Ratio of the Design Document Volume (RDDV)

Measurement	
tips

• Because the number of pages in a document can vary depending on how
it is written, this metric does not require the value to be extremely precise.
Instead, a rough value is used to evaluate the sufficiency of the document.

Supplement (For measuring the amount of document balance description)
• For the description volume for individual description items, it is acceptable

to acquire a rough quantity as the number of pages (e.g., approximately 1.5
pages) or lines. In some cases, the area or physical dimensions (vertical
and horizontal lengths) of the description text can be used to calculate the
percentage of the description volume relative to the entire volume.

(*): This reference value is based on Japanese, so it needs to be adjusted for other languages. For example, the value is
nearly doubled in the case of English.

118 Chapter 3 Definition and Reference Values for Evaluation Metrics

Process	Metrics	-	Definition	

and	Reference	Values

3.4

C
ategorization	of	

E
valuation	M

etrics

3.2

Product	Metrics	-	Definition	

and	Reference	Values

3.5

E
valuation	M

etrics	

-	N
otes	on	U

se

3.3

Definitions	and	Meanings	of	Evaluation	

Metrics	and	How	to	Use	Them

3.1

Basic	Metrics	-	Definition	

and	Reference	Values

3.6

ID B22

Name Volume Of the Test Document

Abbreviation VOTD

Measurement	
unit Page

Measurement	
method

• This metric measures, among documents created as part of a project, the
total number of pages in the test specifications.

• In software development, documents are created using Word and other
text editors in various forms such as Excel and other spreadsheet tables
and figures. Also, the number of lines or characters per page in documents
created using Word varies greatly from one document to another. For this
reason, when measuring this metric, text equivalent to 2000 characters (40
horizontal characters x 50 vertical lines)(*) is regarded as being one page.
When a document is created using other tools, calculate the approximate
number of pages using this standard.

Notes	on	
measurement

• When the document contains figures, photos, or diagrams, consider what
the equivalent number of pages would be if they were to be represented by
text, and add the calculated number of pages to the total number of pages.

• When existing documents are reused as a result of using existing software,
include the number of reused pages in the total number of pages.

Evaluation	
metrics	using	
this	metric

Ratio of the Test Document Volume (RTDV)

Measurement	
tips

• Because the number of pages in a document can vary depending on how
it is written, this metric does not require the value to be extremely precise.
Instead, a rough value is used to evaluate the sufficiency of the document.

Supplement (For measuring the amount of document balance description)
• For the description volume for individual description items, it is acceptable

to acquire a rough quantity as the number of pages (e.g., approximately 1.5
pages) or lines. In some cases, the area or physical dimensions (vertical
and horizontal lengths) of the description text can be used to calculate the
percentage of the description volume relative to the entire volume.

(*): This reference value is based on Japanese, so it needs to be adjusted for other languages. For example, the value is
nearly doubled in the case of English.

1193.6 Basic Metrics - Definition and Reference Values

Definitions	and	Meanings	of	Evaluation	

Metrics	and	How	to	Use	Them

3.1

Basic	Metrics	-	Definition	

and	Reference	Values

3.6

C
ategorization	of	

E
valuation	M

etrics

3.2

E
valuation	M

etrics	

-	N
otes	on	U

se

3.3

Process	Metrics	-	Definition	

and	Reference	Values

3.4

Product	Metrics	-	Definition	

and	Reference	Values

3.5

ID B30

Name Review Effort in TOtal

Abbreviation RETO

Measurement	
unit Man-hour

Measurement	
method

• This metric measures the total process effort expended on all reviews of
the specifications, design, code, and testing.

• The measurement is done as follows:
· The process effort expended on specifications documentation, design,

coding, testing preparation, and testing execution are not included.
· The work process effort is calculated, in units of man-hours, according

to the work period and the total number of persons who worked on the
project.

· If the measurement unit used by your organization is "day" rather than
"hour," multiply the value by the number of working hours per day.

Notes	on	
measurement

• To obtain a precise measurement of the work time, stored records such
as process effort records and work reports are used to obtain a value.
However, considering the purpose and data precision of this metric,
extremely strict measurement of the process effort is not necessary. As
such, you can also use a rough estimate such as the work times stated by
the personnel, or even assume the process effort.

• If a reviewer has joined the review from outside the project, also include his
or her process effort.

Evaluation	
metrics	using	
this	metric

Execution Ratio Of the Review (EROR)

Measurement	
tips

Based on the review records and other information, calculate the metric value
by multiplying "time for each review" x "number of times executed" x "number
of attendees" ("∑ time" x "number of attendees").

120 Chapter 3 Definition and Reference Values for Evaluation Metrics

Process	Metrics	-	Definition	

and	Reference	Values

3.4

C
ategorization	of	

E
valuation	M

etrics

3.2

Product	Metrics	-	Definition	

and	Reference	Values

3.5

E
valuation	M

etrics	

-	N
otes	on	U

se

3.3

Definitions	and	Meanings	of	Evaluation	

Metrics	and	How	to	Use	Them

3.1

Basic	Metrics	-	Definition	

and	Reference	Values

3.6

ID B31

Name Review Effort for SPecification

Abbreviation RESP

Measurement	
unit Man-hour

Measurement	
method

• This metric measures the process effort expended on the review of the
specifications, which are output from the specifications investigation.

• The review target is the output from SYP1 (System requirements
definition) and SWP1 (Software requirements definition) of the "Embedded
System Development Process Reference" (ESPR), that is, the System
Requirements Specification, Software Requirements Specification, and
other specifications documents specific to the project.

• The measurement is done as follows:
· The process effort expended on the specifications documentation is not

included.
· The work process effort is calculated, in units of man-hours, according

to the work period and the total number of persons who worked on the
project.

· If the measurement unit used by your organization is "day" rather than
"hour," multiply the value by the number of working hours per day.

Notes	on	
measurement

• To obtain a precise measurement of the work time, stored records such
as process effort records and work reports are used to obtain a value.
However, considering the purpose and data precision of this metric,
extremely strict measurement of the process effort is not necessary. As
such, you can also use a rough estimate such as the work times stated by
the personnel, or even assume the process effort.

• If a reviewer has joined the review from outside the project, also include his
or her process effort.

Evaluation	
metrics	using	
this	metric

Ratio of the Specifications Review Effort (RSRE), Execution Ratio of the
Specifications Review (ERSR)

Measurement	
tips

Based on the review records and other information, calculate the metric value
by multiplying "time for each review" x "number of times executed" x "number
of attendees" ("∑ time" x "number of attendees")

1213.6 Basic Metrics - Definition and Reference Values

Definitions	and	Meanings	of	Evaluation	

Metrics	and	How	to	Use	Them

3.1

Basic	Metrics	-	Definition	

and	Reference	Values

3.6

C
ategorization	of	

E
valuation	M

etrics

3.2

E
valuation	M

etrics	

-	N
otes	on	U

se

3.3

Process	Metrics	-	Definition	

and	Reference	Values

3.4

Product	Metrics	-	Definition	

and	Reference	Values

3.5

ID B32

Name Review Effort for DEsign

Abbreviation REDE

Measurement	
unit Man-hour

Measurement	
method

• This metric measures the process effort expended on the review of the
design document, which is output from the design process.

• The review target is the output from SYP2 (System architectural design)
and SWP2 and SWP3 (Software architectural design and Software detailed
design) of the "Embedded System Development Process Reference"
(ESPR), that is, the System architectural design, System behavior design,
System interface design, System architectural design, Software structure
design, Software behavior design, Software interface design, Software
architectural design, Software detailed design, Program unit functional/
structure design, and other documents specific to the project.

• The measurement is done as follows:
· The process effort expended on the design is not included.
· The work process effort is calculated, in units of man-hours, according

to the work period and the total number of persons who worked on the
project.

· If the measurement unit used by your organization is "day" rather than
"hour," multiply the value by the number of working hours per day.

Notes	on	
measurement

• To obtain a precise measurement of the work time, stored records such
as process effort records and work reports are used to obtain a value.
However, considering the purpose and data precision of this metric,
extremely strict measurement of the process effort is not necessary. As
such, you can also use a rough estimate such as the work times stated by
the personnel, or even assume the process effort.

• If a reviewer has joined the review from outside the project, also include his
or her process effort.

Evaluation	
metrics	using	
this	metric

Ratio of the Design Review Effort (RDRE), Execution Ratio of the Design
Review (ERDR)

Measurement	
tips

Based on the review records and other information, calculate the metric value
by multiplying "time for each review" x "number of times executed" x "number
of attendees" ("∑ time" x "number of attendees").

122 Chapter 3 Definition and Reference Values for Evaluation Metrics

Process	Metrics	-	Definition	

and	Reference	Values

3.4

C
ategorization	of	

E
valuation	M

etrics

3.2

Product	Metrics	-	Definition	

and	Reference	Values

3.5

E
valuation	M

etrics	

-	N
otes	on	U

se

3.3

Definitions	and	Meanings	of	Evaluation	

Metrics	and	How	to	Use	Them

3.1

Basic	Metrics	-	Definition	

and	Reference	Values

3.6

ID B33

Name Review Effort for COde

Abbreviation RECO

Measurement	
unit Man-hour

Measurement	
method

• This metric measures the process effort expended on the source code
review.

• The review target is the output from SWP4 (Coding and unit testing) of the
"Embedded System Development Process Reference" (ESPR), that is, the
program unit and source code.

• The measurement is done as follows:
· The process effort expended on the coding and unit testing is not

included.
· The work process effort is calculated, in units of man-hours, according

to the work period and the total number of persons who worked on the
project.

· If the measurement unit used by your organization is "day" rather than
"hour," multiply the value by the number of working hours per day.

Notes	on	
measurement

• To obtain a precise measurement of the work time, stored records such
as process effort records and work reports are used to obtain a value.
However, considering the purpose and data precision of this metric,
extremely strict measurement of the process effort is not necessary. As
such, you can also use a rough estimate such as the work times stated by
the personnel, or even assume the process effort.

• If a reviewer has joined the review from outside the project, also include his
or her process effort.

Evaluation	
metrics	using	
this	metric

Ratio of the Code Review Effort (RCRE), Execution Ratio of the Code
Review (ERCR)

Measurement	
tips

Based on the review records and other information, calculate the metric value
by multiplying "time for each review" x "number of times executed" x "number
of attendees" ("∑ time" x "number of attendees").

1233.6 Basic Metrics - Definition and Reference Values

Definitions	and	Meanings	of	Evaluation	

Metrics	and	How	to	Use	Them

3.1

Basic	Metrics	-	Definition	

and	Reference	Values

3.6

C
ategorization	of	

E
valuation	M

etrics

3.2

E
valuation	M

etrics	

-	N
otes	on	U

se

3.3

Process	Metrics	-	Definition	

and	Reference	Values

3.4

Product	Metrics	-	Definition	

and	Reference	Values

3.5

ID B34

Name Review Effort for Test Preparation

Abbreviation RETP

Measurement	
unit Man-hour

Measurement	
method

• This metric measures the process effort expended on the review of the
output related to the testing. The review target is the output from SYP3
(System integration testing), SYP4 (System qualification testing), SWP5
(Software integration testing) and SWP6 (Software qualification testing) of
the "Embedded System Development Process Reference" (ESPR), that
is, the test specifications, test environment, test data, test result, and test
report.

• The measurement is done as follows:
· The process effort expended on the testing execution, environment

preparation, document creation, etc. are not included.
· The work process effort is calculated, in units of man-hours, according

to the work period and the total number of persons who worked on the
project.

· If the measurement unit used by your organization is "day" rather than
"hour," multiply the value by the number of working hours per day.

Notes	on	
measurement

• To obtain a precise measurement of the work time, stored records such
as process effort records and work reports are used to obtain a value.
However, considering the purpose and data precision of this metric,
extremely strict measurement of the process effort is not necessary. As
such, you can also use a rough estimate such as the work times stated by
the personnel, or even assume the process effort.

• If a reviewer has joined the review from outside the project, also include his
or her process effort.

Evaluation	
metrics	using	
this	metric

Ratio of the Test Review Effort (RTRE), Execution Ratio of the Test Review
(ERTR)

Measurement	
tips

Based on the review records and other information, calculate the metric value
by multiplying "time for each review" x "number of times executed " x "number
of attendees" ("∑ time" x "number of attendees").

12� Chapter 3 Definition and Reference Values for Evaluation Metrics

Process	Metrics	-	Definition	

and	Reference	Values

3.4

C
ategorization	of	

E
valuation	M

etrics

3.2

Product	Metrics	-	Definition	

and	Reference	Values

3.5

E
valuation	M

etrics	

-	N
otes	on	U

se

3.3

Definitions	and	Meanings	of	Evaluation	

Metrics	and	How	to	Use	Them

3.1

Basic	Metrics	-	Definition	

and	Reference	Values

3.6

ID B35

Name Process Effort in TOtal

Abbreviation PETO

Measurement	
unit Man-hour

Measurement	
method

• This metric measures the entire process effort expended on the development of a
part or all of the software targeted by the process metrics and product metrics.

• The measurement is done as follows:
· Sum up all the process effort, including direct work such as requirements

definition, design, coding, and testing, and indirect work such as quality
management related to the development.

· To calculate the process effort, the work process effort is calculated, in
units of man-hours, according to the work period and the total number of
persons who worked on the project.

· If the measurement unit used by your organization is "day" rather than
"hour," multiply the value by the number of working hours per day.

• The precise value of this metric is not fixed basically until development has
been completed. Therefore, when using this metric value for normalization
during development, temporarily use either a value assumed based on a
similar past project or estimate value.

Notes	on	
measurement

• To obtain a precise measurement of the work time, stored records such
as process effort records and work reports are used to obtain a value.
However, considering the purpose and data precision of this metric,
extremely strict measurement of the process effort is not necessary. As
such, you can also use a rough estimate such as the work times stated by
the personnel, or even assume the process effort.

• If a reviewer has joined the review from outside the project, also include his
or her process effort.

• Any work that does not produce direct deliverables, such as training of
engineers, is not included.

Evaluation	
metrics	using	
this	metric

Ratio Of the Review Effort (RORE), Ratio of the Test Work Effort (RTWE)

Measurement	
tips

It is also possible to calculate the entire process effort according to the
number of persons (planned to be) involved in each process, while estimating
the time needed for the process.

Tip	on	interpreting	metrics

If the entire process effort for software development as grasped intuitively by the
developer, project manager, or leader differs greatly from the actually measured
value for Process Effort in TOtal, the developer may have done unnecessary work
or expended too much labor on the work. Therefore, the manager must check and
review the work content as necessary.

C o l u m n

1253.6 Basic Metrics - Definition and Reference Values

Definitions	and	Meanings	of	Evaluation	

Metrics	and	How	to	Use	Them

3.1

Basic	Metrics	-	Definition	

and	Reference	Values

3.6

C
ategorization	of	

E
valuation	M

etrics

3.2

E
valuation	M

etrics	

-	N
otes	on	U

se

3.3

Process	Metrics	-	Definition	

and	Reference	Values

3.4

Product	Metrics	-	Definition	

and	Reference	Values

3.5

ID B36

Name Process Effort for SPecification

Abbreviation PESP

Measurement	
unit Man-hour

Measurement	
method

• This metric measures the process effort expended on the specifications
creation and investigation.

• The target of this metric is the output from SYP1 (System requirements
definition) and SWP1 (Software requirements definition) of the "Embedded
System Development Process Reference" (ESPR), that is, the System
requirements specification, Software requirements specification, and other
specification documents specific to the project.

• The process effort expended on the specifications review is also included.
• The measurement is done as follows:

· The work process effort is calculated, in units of man-hours, according
to the work period and the total number of persons who worked on the
project.

· If the measurement unit used by your organization is "day" rather than
"hour," multiply the value by the number of working hours per day.

Notes	on	
measurement

• To obtain a precise measurement of the work time, stored records such
as process effort records and work reports are used to obtain a value.
However, considering the purpose and data precision of this metric,
extremely strict measurement of the process effort is not necessary. As
such, you can also use a rough estimate such as the work times stated by
the personnel, or even assume the process effort.

• If a reviewer has joined the review from outside the project, also include his
or her process effort.

Evaluation	
metrics	using	
this	metric

Ratio of the Specifications Review Effort (RSRE)

Measurement	
tips

126 Chapter 3 Definition and Reference Values for Evaluation Metrics

Process	Metrics	-	Definition	

and	Reference	Values

3.4

C
ategorization	of	

E
valuation	M

etrics

3.2

Product	Metrics	-	Definition	

and	Reference	Values

3.5

E
valuation	M

etrics	

-	N
otes	on	U

se

3.3

Definitions	and	Meanings	of	Evaluation	

Metrics	and	How	to	Use	Them

3.1

Basic	Metrics	-	Definition	

and	Reference	Values

3.6

ID B37

Name Process Effort for DEsign

Abbreviation PEDE

Measurement	
unit Man-hour

Measurement	
method

• This metric measures the process effort expended on the design work.
• The target is the output from SYP2 (System architectural design) and

SWP2 and SWP3 (Software architectural design and Software detailed
design) from the "Embedded System Development Process Reference"
(ESPR), that is, the System architectural design, System behavior design,
System interface design, System architectural design, Software structure
design, Software behavior design, Software interface design, Software
architectural design, Software detailed design, Program unit functional/
structure design etc., and other design documents specific to the project.

• The process effort expended on the design review is included.
• The measurement is done as follows:

· The work process effort is calculated, in units of man-hours, according
to the work period and the total number of persons who worked on the
project.

· If the measurement unit used by your organization is "day" rather than
"hour," multiply the value by the number of working hours per day.

Notes	on	
measurement

• To obtain a precise measurement of the work time, stored records such
as process effort records and work reports are used to obtain a value.
However, considering the purpose and data precision of this metric,
extremely strict measurement of the process effort is not necessary. As
such, you can also use a rough estimate such as the work times stated by
the personnel, or even assume the process effort.

• If a reviewer has joined the review from outside the project, also include his
or her process effort.

Evaluation	
metrics	using	
this	metric

Ratio of the Design Review Effort (RDRE)

Measurement	
tips

1273.6 Basic Metrics - Definition and Reference Values

Definitions	and	Meanings	of	Evaluation	

Metrics	and	How	to	Use	Them

3.1

Basic	Metrics	-	Definition	

and	Reference	Values

3.6

C
ategorization	of	

E
valuation	M

etrics

3.2

E
valuation	M

etrics	

-	N
otes	on	U

se

3.3

Process	Metrics	-	Definition	

and	Reference	Values

3.4

Product	Metrics	-	Definition	

and	Reference	Values

3.5

ID B38

Name Process Effort for COde

Abbreviation PECO

Measurement	
unit Man-hour

Measurement	
method

• This metric measures the process effort expended on source code creation.
• The target is the output from SWP4 (Coding and unit testing) of the

"Embedded System Development Process Reference" (ESPR), that is, the
program unit and source code.

• The process effort expended on the source code review is included.
• The measurement is done as follows:

· The work process effort is calculated, in units of man-hours, according
to the work period and the total number of persons who worked on the
project.

· If the measurement unit used by your organization is "day" rather than
"hour," multiply the value by the number of working hours per day.

Notes	on	
measurement

• To obtain a precise measurement of the work time, stored records such
as process effort records and work reports are used to obtain a value.
However, considering the purpose and data precision of this metric,
extremely strict measurement of the process effort is not necessary. As
such, you can also use a rough estimate such as the work times stated by
the personnel, or even assume the process effort.

• If a reviewer has joined the review from outside the project, also include his
or her process effort.

Evaluation	
metrics	using	
this	metric

Ratio of the Code Review Effort (RCRE)

Measurement	
tips

128 Chapter 3 Definition and Reference Values for Evaluation Metrics

Process	Metrics	-	Definition	

and	Reference	Values

3.4

C
ategorization	of	

E
valuation	M

etrics

3.2

Product	Metrics	-	Definition	

and	Reference	Values

3.5

E
valuation	M

etrics	

-	N
otes	on	U

se

3.3

Definitions	and	Meanings	of	Evaluation	

Metrics	and	How	to	Use	Them

3.1

Basic	Metrics	-	Definition	

and	Reference	Values

3.6

ID B39

Name Process Effort for Test Preparation

Abbreviation PETP

Measurement	
unit Man-hour

Measurement	
method

• This metric measures the total process effort expended on, among that
work related to testing, test specifications documentation, test environment
arrangement, test result confirmation, and test review. Note that the process
effort expended on the testing execution is not included.

• The target is the output from SYP3 (System integration testing), SYP4
(System qualification testing), SWP5 (Software integration testing),
and SWP6 (Software qualification testing) of the "Embedded System
Development Process Reference" (ESPR).

• The measurement is done as follows:
· The work process effort is calculated, in units of man-hours, according

to the work period and the total number of persons who worked on the
project.

· If the measurement unit used by your organization is "day" rather than
"hour," multiply the value by the number of working hours per day.

Notes	on	
measurement

• To obtain a precise measurement of the work time, stored records such
as process effort records and work reports are used to obtain a value.
However, considering the purpose and data precision of this metric,
extremely strict measurement of the process effort is not necessary. As
such, you can also use a rough estimate such as the work times stated by
the personnel, or even assume the process effort.

• If a reviewer has joined the review from outside the project, also include his
or her process effort.

• Measure all the process effort for the work related to the testing, excluding
the testing execution.

• The SWP4 (Unit testing) items are not included.

Evaluation	
metrics	using	
this	metric

Ratio of the Test Review Effort (RTRE)

Measurement	
tips

1293.6 Basic Metrics - Definition and Reference Values

Definitions	and	Meanings	of	Evaluation	

Metrics	and	How	to	Use	Them

3.1

Basic	Metrics	-	Definition	

and	Reference	Values

3.6

C
ategorization	of	

E
valuation	M

etrics

3.2

E
valuation	M

etrics	

-	N
otes	on	U

se

3.3

Process	Metrics	-	Definition	

and	Reference	Values

3.4

Product	Metrics	-	Definition	

and	Reference	Values

3.5

ID B3A

Name Process Effort for TEst

Abbreviation PETE

Measurement	
unit Man-hour

Measurement	
method

• This metric measures the process effort expended on all work related to
the testing, for example, testing preparation, test environment arrangement,
testing execution, test result confirmation, and test review.

• The target is the output from SYP3 (System integration testing), SYP4
(System qualification testing), SWP5 (Software integration testing),
and SWP6 (Software qualification testing) of the "Embedded System
Development Process Reference" (ESPR).

• The measurement is done as follows:
· The work process effort is calculated, in units of man-hours, according

to the work period and the total number of persons who worked on the
project.

· If the measurement unit used by your organization is "day" rather than
"hour," multiply the value by the number of working hours per day.

Notes	on	
measurement

• To obtain a precise measurement of the work time, stored records such
as process effort records and work reports are used to obtain a value.
However, considering the purpose and data precision of this metric,
extremely strict measurement of the process effort is not necessary. As
such, you can also use a rough estimate such as the work times stated by
the personnel, or even assume the process effort.

• If a reviewer has joined the review from outside the project, also include his
or her process effort.

• Measure all process effort related to the testing (Process Effort for Test
Preparation + testing execution process effort).

• Calculate the work process effort, in units of man-hours, according to the
work period and the number of persons involved in the work.
· SWP4 (Unit testing) is not included.

Evaluation	
metrics	using	
this	metric

Ratio of the Test Work Effort (RTWE), Execution Ratio of the Test Work
(ERTW)

Measurement	
tips

A rough value can be obtained by multiplying "single process effort for test" x
"number of persons involved in the test" x "number of test executions."

130 Chapter 3 Definition and Reference Values for Evaluation Metrics

Process	Metrics	-	Definition	

and	Reference	Values

3.4

C
ategorization	of	

E
valuation	M

etrics

3.2

Product	Metrics	-	Definition	

and	Reference	Values

3.5

E
valuation	M

etrics	

-	N
otes	on	U

se

3.3

Definitions	and	Meanings	of	Evaluation	

Metrics	and	How	to	Use	Them

3.1

Basic	Metrics	-	Definition	

and	Reference	Values

3.6

ID B40

Name Number Of Test Items

Abbreviation NOTI

Measurement	
unit Items

Meanings	of	
metric	value

• Number Of Test Items indicates the scale of the test (the number of items
tested).

• As the target software size is large and complicated, the value of this metric
will be high.

Measurement	
method

• Measure the number of test items executed.
• The tests targeted are SYP3 (System integration testing), SYP4 (System

qualification testing), SWP5 (Software integration testing), and SWP6
(Software qualification testing) defined in the "Embedded System
Development Process Reference" (ESPR).

• The test item varies from a sub-item to a script, depending on the target
product, organization, and/or test type. Even within the same organization,
the test items may be described in different ways depending on the test
purpose. For this reason, it is necessary to unify expressions within the
project to ensure that the descriptions of the test items are uniform, before
measuring this metric.

• The measurement method for the test items in this guide conforms to the
items in the test case details described in the test specifications/test report
in "2.3 Sample Document Templates" on P.192 - 195 of ESPR. That is, the
test details, test data, expected output, environmental condition, and test
result are expressed on one line, and this one line is treated as a single
item. You can count the number of items according to this information or
devise a counting method for your organization.

Notes	on	
measurement

• Pay attention to the following during measurement:
· SWP4 (Unit testing) items are not included.
· If test items are reused when existing software is reused, the reused test

items should be included in the measurement.
· Test items that have not been executed are not included in the

measurement.

Evaluation	
metrics	using	
this	metric

Density Of Test Items (DOTI)

Measurement	
tips

• The number of test items may be precisely determined from the test items
defined in the test specifications. It is also possible, however, to estimate
the number of test items by multiplying the number of pages describing the
test items by the number of liens per page.

• The counting method for the test items may differ depending on the format
or description granularity of the test specifications. Therefore, as a guide, it
is also acceptable to assume 100 characters (40 characters x 2.5 lines)(*) of
the test items described in the test specifications as a single unit and count
that volume as a single test item regardless of its contents.

(*): This reference value is based on Japanese, so it needs to be adjusted for other languages. For example, the value is
nearly doubled in the case of English.

1313.6 Basic Metrics - Definition and Reference Values

Definitions	and	Meanings	of	Evaluation	

Metrics	and	How	to	Use	Them

3.1

Basic	Metrics	-	Definition	

and	Reference	Values

3.6

C
ategorization	of	

E
valuation	M

etrics

3.2

E
valuation	M

etrics	

-	N
otes	on	U

se

3.3

Process	Metrics	-	Definition	

and	Reference	Values

3.4

Product	Metrics	-	Definition	

and	Reference	Values

3.5

ID B41

Name Number Of Executed Test Items

Abbreviation NOET

Measurement	
unit Items

Measurement	
method

• Measure the total number of test items that are executed.
• The tests targeted are SYP3 (System integration testing), SYP4 (System

qualification testing), SWP5 (Software integration testing), and SWP6
(Software qualification testing) of the "Embedded System Development
Process Reference" (ESPR).

• The test item varies from a sub-item to a script, depending on the target
product, organization, and/or test type. Even within the same organization,
the test items may be described in different ways, depending on the test
purpose. For this reason, it is necessary to unify expressions within the
project to ensure that the descriptions of the test items are uniform, before
measuring this metric.

Notes	on	
measurement

• Pay attention to the following during measurement:
· SWP4 (Unit testing) items are not included.
· Count the total number of items executed. For example, if the same test

set was executed for multiple times, measure the number of items as
"Number Of Test Items x Number of times of test execution."

· If the test was aborted, the subsequent (not executed) test items are not
counted.

Evaluation	
metrics	using	
this	metric

Ratio Of Fault detection in Comparison (ROFC), Ratio Of Fault Detection
(ROFD)

Measurement	
tips

• Accumulate the number of test items executed as mentioned in the test
report.

• For the execution results in the test report, you can also calculate a rough
value for Number Of Test Items with 100 characters(*) as a single unit, just
as with Number Of Test Items.

(*): This reference value is based on Japanese, so it needs to be adjusted for other languages. For example, the value is
nearly doubled in the case of English.

132 Chapter 3 Definition and Reference Values for Evaluation Metrics

Process	Metrics	-	Definition	

and	Reference	Values

3.4

C
ategorization	of	

E
valuation	M

etrics

3.2

Product	Metrics	-	Definition	

and	Reference	Values

3.5

E
valuation	M

etrics	

-	N
otes	on	U

se

3.3

Definitions	and	Meanings	of	Evaluation	

Metrics	and	How	to	Use	Them

3.1

Basic	Metrics	-	Definition	

and	Reference	Values

3.6

ID B42

Name Number Of Detected Fault

Abbreviation NODF

Measurement	
unit Faults

Measurement	
method

• Measure the number of faults detected in the review, testing, or otherwise,
after the integration testing.

• Faults detected in SWP4 (Unit testing) are not included.

Notes	on	
measurement

• This metric value can be measured by counting the number of incident
reports, etc.

• Faults having the same cause and erroneous reports must be excluded.
Ideally, faults should be managed and measured individually. If this is not
possible, calculate a rough value by, for example, multiplying the total
number of faults by a certain factor.

• Because faults vary from a severe to slight, do not simply evaluate the
number of faults, but also consider the details of those faults. For severe
faults, adjust the number by, for example, multiplying the value by a
weighting factor.

• Exclude the number of faults detected in the tests, but finally released
according to the specifications or limitations, from the total number of faults.

Evaluation	
metrics	using	
this	metric

Ratio Of Fault detection in Comparison (ROFC), Ratio Of Fault Elimination
(ROFE), Ratio Of Fault Detection (ROFD)

Measurement	
tips

• You can measure this metric value from the number of pages of incident
reports or number of entries in the fault list, if any.

• Using a fault database facilitates measurement.

1333.6 Basic Metrics - Definition and Reference Values

Definitions	and	Meanings	of	Evaluation	

Metrics	and	How	to	Use	Them

3.1

Basic	Metrics	-	Definition	

and	Reference	Values

3.6

C
ategorization	of	

E
valuation	M

etrics

3.2

E
valuation	M

etrics	

-	N
otes	on	U

se

3.3

Process	Metrics	-	Definition	

and	Reference	Values

3.4

Product	Metrics	-	Definition	

and	Reference	Values

3.5

ID B43

Name Number Of Eliminated Fault

Abbreviation NOEF

Measurement	
unit Items

Measurement	
method

• This metric measures the number of fixed faults, among those faults
detected in the review, testing, or otherwise, after the integration testing.

Notes	on	
measurement

• You can measure this metric using the incident report.
• The metric value is obtained by subtracting the number of remaining faults

from the total number of faults.
• Note that some fixed faults may not have been confirmed yet although they

are reported as being "fixed" in the incident report, or may not yet have
been reflected on the incident report although they were fixed, depending
on the measurement timing.

Evaluation	
metrics	using	
this	metric

Ratio Of Fault Elimination (ROFE)

Measurement	
tips

• Number Of Eliminated Fault is 0 at the start of development, and increases
following Number Of Detected Fault as the development proceeds. That is,
the formula "Number Of Detected Fault ≥ Number Of Eliminated Fault" is
always true.

• Preparing a list of incident reports can facilitate measurement.

13� Chapter 3 Definition and Reference Values for Evaluation Metrics

Process	Metrics	-	Definition	

and	Reference	Values

3.4

C
ategorization	of	

E
valuation	M

etrics

3.2

Product	Metrics	-	Definition	

and	Reference	Values

3.5

E
valuation	M

etrics	

-	N
otes	on	U

se

3.3

Definitions	and	Meanings	of	Evaluation	

Metrics	and	How	to	Use	Them

3.1

Basic	Metrics	-	Definition	

and	Reference	Values

3.6

ID B44

Name Ratio Of Fault Detection

Abbreviation ROFD

Measurement	
unit %

Measurement	
method

Ratio Of Fault Detection = (Number Of Detected Fault/Number Of Executed
Test Items) during a certain period

Notes	on	
measurement

• This metric is not measured directly but calculated using the above formula.
• This metric indicates the balance of the number of faults detected during a

certain period against the number of tests executed during the same period.

Evaluation	
metrics	using	
this	metric

Ratio Of Fault detection in Comparison (ROFC)

Measurement	
tips

• Evaluation metrics using this metric: Ratio Of Fault detection in Comparison
(ROFC) uses this metric in separate development periods, specifically,
the first 90% and the final 10%. Therefore, it is necessary to match the
development period, Number Of Detected Fault, and Number Of Executed
Test Items. The incident report, work report, and other information are
used for this matching, so prepare them so that you can trace the data
chronologically when using this metric.

I-Bottle	and	I-Glass

In the field of computing, bits and bytes are used to represent quantities of information.
Since the design document and test specifications are expressed in characters, their sizes
and the amount of information they contain could also be represented in bits or bytes.
However, doing so does not present a clear image of the actual volume of the specifications
or design information, as well as test item information (details). On the contrary, we tend to
say "this is equal to ten Tokyo Domes" or "this is the same as three apples" to represent
the size or weight of an object. This guide proposes a new means of representing the
amount of description in the documents created during software development (e.g., the
design document and test specifications); I-Bottle and I-Glass(3). I-Bottle mimics a bottle
capable of holding 2000 characters(*) of information. According to this concept, the amount
of information mentioned in a document such as the specifications documents is counted as
"how many I-Bottles are required to hold the information." In addition, a smaller unit, I-Glass,
is adopted for the test items in the test specifications. One I-Glass contains 100 characters of
information. So, the number of test items is counted as "how many I-Glasses are required to
accommodate the information." Note that twenty I-Glasses are equivalent to one I-Bottle.

C o l u m n

(3)	I-Bottle: Information Bottle/I-Glass: Information Glass: Proposed by M. Hirayama and S. Yoshizawa
(*): This reference value is based on Japanese, so it needs to be adjusted for other languages. For example, the value is

nearly doubled in the case of English.

Chapters 2 and 3 discussed the concept of controlling quality by using quantitative metrics
that can be measured objectively. This chapter offers a slightly different perspective. It
contains tips for checking the quality of work qualitatively from the viewpoint of improving
the quality of embedded software in each phase of its development process.
Achieving better quality requires that every stage of the development be done at
the optimum timing using the best possible means. Regarding quality improvement
technologies and techniques, there is already a wealth of knowledge publicly available. This
chapter presents several sets of questions by which you can determine whether you are
making effective use of these technologies and techniques for development, whether your
organization is sufficiently motivated, and so on. Many of the tips contained herein come
from people actually involved in development. We hope that these tips include information
that you will find useful for your development work. This chapter groups the tips into five
categories and provides a checklist for each category. Use these checklists to evaluate the
vitality and other relevant aspects of your organization.
Also, at the end of the document, you will find a list of reference books.

4.1 Communication and Decision Making in
Development .. 136

4.2 Documents ..141

4.3 Reviews ... 147

4.4 Tests .. 152

4.5 Quality Establishment Using Metrics 159

Tips	for	High	Quality	
Establishment

Chapter 4

136 Chapter 4 Tips for High Quality Establishment

Tests

4.4

D
ocum

ents

4.2

Q
uality	Establishm

ent	

Using	M
etrics

4.5

R
eview

s

4.3

Communication	and	Decision	

Making	in	Development

4.1

Communication	and	Decision	
Making	in	Development	 4.1	

 Importance of communication and decision making
When we analyze failed software development projects to determine the cause of

failure, we realize that, in many cases, the failure is due to "human errors" rather than

"technical problems." Such "human errors" include problems related to communication

within the project team and with stakeholders, as well as those related to the decision-

making process, and often lead to the failure of the project. Also, with the growth in

the scale of software development over the last few years, it is becoming increasingly

common for many people to work together in a development project, making

communication even more important.

The types of communication in a software development can be roughly divided as

follows:

• Communication for transmitting information (one-way)

• Communication for making decisions through consultation and discussion

(interactive)

When software is developed by a one person, there is no need for communication.

When multiple people are involved in the development, however, the transmission of

information and the process of making decisions based on the situation facing each of

those individuals play a particularly vital role.

Indispensable to achieving high productivity and high quality in software development

involving many people is communication for building trust between the leader and the

members of the project team, as well as among members and stakeholders, and for

ensuring smooth information transmission and decision making.

Whether such smooth communication can be accomplished depends on the skills

gained from experience and the communicative sense of each individual involved. To

ensure smooth communication and a fast, trouble-free decision-making process, the

following must be kept in mind:

• Find methods and mechanisms suited to the goal of communication.

• Communication is a human activity; think about the human aspects.

1374.1 Communication and Decision Making in Development

Tests

4.4

D
ocum

ents

4.2

Q
uality	Establishm

ent	

Using	M
etrics

4.5

R
eview

s

4.3

Communication	and	Decision	

Making	in	Development

4.1
Communication	checklist

NO. Check	item Check

1 Does your organization have a work culture that encourages smooth
communication?

2 Do you respect those with whom you communicate?

3 Are preparations and environments for meetings made?

4 Do you spend enough time on expanding and discussing the necessary themes?

5 Do you respect the past experience and knowledge of skilled individuals?

6 Is the essence of a discussion shared?

7 Is there a consensus on how decisions are made?

8 Is necessary information correctly communicated to all project members?

9 Are you over-dependent on asynchronous types of communication such as
e-mail?

10 Is communication done in ways to improve productivity and quality?

11 Are the results of meetings and communication reflected on the development
process?

12 Do meetings leave a sense of futility?

Explanation	of	each	check	item

Check	1 Does	your	organization	have	a	work	culture	that	encourages	
smooth	communication?

 Smooth communication is essential for sharing project objectives and goals and
getting work done. To facilitate smooth communication, there needs to be a work
culture (workplace environment and atmosphere) in which individual members
of the project, project teams, and stakeholders can all communicate with one
another openly for reporting, notification, and consultation. When judging whether
such a culture exists, you should look at the human aspects as well. You
may want to check: (1)	whether	project	members	make	proper	greetings;	
(2)	whether	the	project	members	are	cheerful;	(3)	whether	each	project	
member	knows	what	their	coworkers	are	doing; and (4)	whether	there	is	
open	communication	among	organizations.

Check	2 Do	you	respect	those	with	whom	you	communicate?

 To ensure smooth communication and maintain high quality, you also need to
explore ways of ensuring that project members are more satisfied with how
communication is done and that they better understand one another. It is not
acceptable to overpower project members by taking advantage of your positional

138 Chapter 4 Tips for High Quality Establishment

Tests

4.4

D
ocum

ents

4.2

Q
uality	Establishm

ent	

Using	M
etrics

4.5

R
eview

s

4.3

Communication	and	Decision	

Making	in	Development

4.1
superiority or to demoralize them by making personal attacks.

 When communicating with project members, make sure (1)	that	you	
understand	their	stance	(background) and (2)	that	you	use	wording	that	
can	be	understood	by	all	of	them.

Check	3 Are	preparations	and	environments	for	meetings	made?

 If attendees are not informed about the agenda or purpose of a meeting, they
cannot make preparations or hold prior discussions. In such a case, you will
need to waste precious time briefing the attendees on the purpose of the
meeting and the like. Making proper preparations in advance of a meeting helps
the attendees be more aware of the importance of the meeting and be more
focused, thereby leading to productive discussions. To this end, you may want
to check (1)	whether	attendees	are	informed	in	advance	about	the	purpose	
of	a	meeting;	(2)	whether	the	agenda	of	the	meeting	is	made	known	
beforehand; and (3)	whether	all	necessary	devices	and	tools	(whiteboard,	
overhead	projector,	etc.)	are	prepared.

Check	4 Do	you	spend	enough	time	on	expanding	and	discussing	the	
necessary	themes?

 In order to share project objectives and goals and attain those goals, it is
essential (1)	to	spare	enough	time	for	each	item	on	the	necessary	themes;	
(2)	to	have	thorough	discussions	on	the	relevant	topics	including	different	
opinions	and	methodologies; and (3)	to	ensure	that	all	the	members	
involved	are	convinced	of	the	decisions	made	and	stay	motivated	while	
getting	work	done. Needless to say, the propagation of information and the
holding of discussions are crucial not only for meetings but also when making
routine reports and giving instructions. It is important that conflicting opinions and
objections receive due consideration, including ideas about possible alternative
measures.

Check	5 Do	you	respect	the	past	experience	and	knowledge	of	skilled	
individuals?

 To make good decisions, it is vital to make use of the knowledge and experience
amassed within your project team or organization. To do so, you need to make
sure (1)	that	meetings	are	attended	by	the	right	people and (2)	that	there	is	
a	mechanism	in	place	for	leveraging	the	experience	of	individuals.

Check	6 Is	the	essence	of	a	discussion	shared?

 Software development entails a wide variety of processes from request
identification and design to coding and testing. These processes often involve not
only software engineers but also people with other diverse functions, including
hardware engineers, management executives, and even legal staff. For this

1394.1 Communication and Decision Making in Development

Tests

4.4

D
ocum

ents

4.2

Q
uality	Establishm

ent	

Using	M
etrics

4.5

R
eview

s

4.3

Communication	and	Decision	

Making	in	Development

4.1
reason, two things are necessary for communication in a software development
project: (1)	you	need	to	identify	the	stakeholders	and	precisely	understand	
the	needs	of	those	individuals	who	play	different	roles	in	different	stages	
of	the	development	so	that	the	software	is	designed	and	implemented	
consistently; and (2)	meeting	the	first	condition	requires	that	the	essence	
of	any	discussion	be	shared	by	all	stakeholders.

Check	7 Is	there	a	consensus	on	how	decisions	are	made?

 Decision making is a process of selecting one course of action from all the
available options, relative to a specific problem.

 In communication for software development, decision making plays a significant
role on which the success of a project hinges. When making a decision,
therefore, you not only have to produce an outcome but also ensure (1)	that	
there	is	a	consensus	on	how	the	decision	is	made;	(2)	that	whoever	is	
responsible	is	clarified; and (3)	that	objectives	and	goals	are	shared.
Even when a decision is made by the project leader in a top-down fashion, the
rationale behind that decision and other relevant details must be explained to the
project members.

Check	8 Is	necessary	information	correctly	communicated	to	all	project	
members?

 To develop high-quality software, there should be no insufficiencies or ambiguities
in the information about the specifications and any changes that are made to
them. Considering insufficiency or ambiguity in information from the viewpoints
of communication and decision making, it is important (1)	that	the	necessary	
information	is	correctly	communicated	to	all	stakeholders;	(2)	that	there	is	
a	system	in	place	to	ask	for	more	information	in	case	of	any	insufficiency	
or	ambiguity	in	the	information; and (3)	that	lines	of	communication	are	set	
up	for	transmitting	information	about	a	specification	change,	error,	etc. You
must take these factors into account and ensure that the necessary information
is adequately communicated to the pertinent project members.

Check	9 Are	you	over-dependent	on	asynchronous	types	of	
communication	such	as	e-mail?

 There are different methods and mechanisms of communication, each suited
to a specific purpose. In recent years, e-mail programs, schedulers, electronic
clearing systems, and other convenient tools have contributed to improving
productivity and management accuracy. As these communication tools become
more sophisticated, however, there is a growing tendency for them to replace
human-to-human communication, resulting in lost opportunities to gain critical
information from inter-human contacts or to make decisions based on such
information. To ensure smooth communication, it is essential to (1)	adopt	'virtual	

1�0 Chapter 4 Tips for High Quality Establishment

Tests

4.4

D
ocum

ents

4.2

Q
uality	Establishm

ent	

Using	M
etrics

4.5

R
eview

s

4.3

Communication	and	Decision	

Making	in	Development

4.1
communication'	using	electronic	tools	and	other	means	or,	alternatively,	
'real	communication'	depending	on	the	purpose.

Check	10 Is	communication	done	in	ways	to	improve	productivity	and	
quality?

 The primary purpose of smooth communication in software development is to
"improve productivity and quality." The holding of meetings is not the purpose.
It is important to define roles properly and to make the right decisions quickly
based on the experience and knowledge of your predecessors. Organizations
with excellent communication have the following traits: (1)	when	the	need	for	a	
new	task	arises,	the	staff	who	will	take	charge	are	automatically	assigned;
and (2)	younger	members	of	the	workforce	are	being	nurtured	through	
communication.

Check	11 Are	the	results	of	meetings	and	communication	reflected	on	the	
development	process?

 While the holding of meetings and the making of decisions based on smooth
communication is vital, these meetings and decisions cannot make sense unless
(1)	the	results	of	the	meetings	and	the	decisions	made	are	communicated	
to	all	the	project	members	and	reflected	on	the	relevant	stages	of	the	
development	process. To accomplish this, it is important to ensure (2)	that	
the	meeting	minutes	contain	sufficient	information	in	a	well	organized	
manner;	(3)	that	the	meeting	minutes	and	other	necessary	documents	are	
distributed	to	the	relevant	project	members; and (4)	that	any	decisions	
made	by	higher-level	staff	are	conveyed	to	lower-level	staff.

Check	12 Do	meetings	leave	a	sense	of	futility?

 A "sense of futility" refers to the feelings of emptiness, resignation, or apathy.
Meetings and any other communication tinged with a sense of futility do not
contribute to maintaining high productivity or high quality. If you see a number
of people leaving the meeting halfway, doing other work during the meeting,
or raising issues after the meeting, that is a sign that you do not have a good
communication environment. It is crucial to ensure that all attendees share the
purpose of the meeting and stay focused. You may want to consider (1)	holding	
every	meeting	with	a	definite	purpose	in	mind;	(2)	taking	the	leadership	
role	to	make	sure	a	conclusion	is	reached;	(3)	ending	the	meeting	within	
a	reasonable	timeframe; and (4)	exploring	ways	to	prevent	meetings	from	
becoming	stale.

1�14.2 Documents

Tests

4.4

D
ocum

ents

4.2

Q
uality	Establishm

ent	

Using	M
etrics

4.5

R
eview

s

4.3

Communication	and	Decision	

Making	in	Development

4.1

Communication	and	Decision	

Making	in	Development

4.1

D
ocum

ents

4.2

Documents	4.2	

 Purposes and roles of documents
Software is developed by a number of people using a number of processes such as

specification creation, design, coding, and testing. A task spanning multiple processes or

done by multiple people requires a procedure that explains what to do and how to do it.

The role of a document is to identify the input and output of the information

contained in it and tell readers (including yourself in the future) what is to be done and

what has been done. The quality of a document can be judged by "whether it lets you

understand everything you need to do next and everything that has been done." Possible

problems with a document include:

• Missing or incorrect information

• Lying

• Misleading or obsolete information or incorrect quotation

• Illegible text

• Nonexistent document

A nonexistent document is out of the question, and an unreliable document is utterly

meaningless. Avoiding these problems is a step toward creating a good document.

In addition, defining description rules for specifications and other documents offers

the benefits mentioned below.

Take a design document for example. The potential benefits are as follows.

Accurate	design

Creating a design document by using a description method that defines how to

write and read information makes for more accurate designs with fewer omissions,

ambiguities, overlaps, etc. This makes it possible to more strictly determine whether the

resultant design is appropriate.

1�2 Chapter 4 Tips for High Quality Establishment

Tests

4.4

D
ocum

ents

4.2

Q
uality	Establishm

ent	

Using	M
etrics

4.5

R
eview

s

4.3

Communication	and	Decision	

Making	in	Development

4.1

Communication	and	Decision	

Making	in	Development

4.1

D
ocum

ents

4.2

Visible	design	process	and	more	efficient	review

The software design process is easier to monitor, which allows for a more efficient

design review. Also, the various measurements, which provide the basis for quality

management, are easier to make.

Smooth	communication

An accurate and easy-to-understand design document enables smooth communication

among the people involved in software development.

Easier	reuse	of	documents	due	to	increased	standardization

Using a standard description method promotes the standardization of documents.

This makes it easier to reuse deliverables created in the software development process.

Document	checklist

NO. Check	item Check

1 Does the document define what to create and when to create it?

2 Are there rules regarding revision?

3 Is there a defined document approval procedure?

4 Are the structure and content of the document appropriate?

5 Are all the necessary documents at hand? Are any actually unnecessary?

6 Is the document written properly in a predefined format?

7 Are the terms defined?

8 Is the document created taking into consideration that it may also be read by
those not deeply involved in the project?

9 Are the source document of this document and the next document that makes
use of information in this document are clearly defined?

10 Is the number of typos and omissions within the allowable limits? Are all
abbreviations spelled out? Are there any expressions that are hard to
understand?

11 Are documents reviewed by anyone other than the author?

12 Does the document contain all the necessary information? Does the volume of
the document match the size of the system?

1�34.2 Documents

Tests

4.4

D
ocum

ents

4.2

Q
uality	Establishm

ent	

Using	M
etrics

4.5

R
eview

s

4.3

Communication	and	Decision	

Making	in	Development

4.1

Communication	and	Decision	

Making	in	Development

4.1

D
ocum

ents

4.2

Explanation	of	each	check	item

Check	1 Does	the	document	define	what	to	create	and	when	to	create	it?

 Various documents are created as part of the software development process,
and each has its own specific purpose. "What documents to create and when
to create them" should be defined based on the software development process.
You need to create a document that matches the intended purpose, and at the
right timing. Defining the creation timing of documents and their content is an
essential requirement for creating high-quality documents. You should start by
(1)	formulating	a	document	creation	plan	that	corresponds	to	the	software	
development	process.

Check	2 Are	there	rules	regarding	revision?

 Recent software development projects rarely entail developing an entirely new
system from the ground up. Rather, functions of existing systems are reused
in the design of a new system. In product development, it is not uncommon for
a failure or non-conformity to result from the use of a slightly different version
or a wrong part that performs a similar function or processing. When you
develop a system by reusing existing functions, you need to (1)	define	rules	
for	revision and (2)	create	a	revision	history. Also, ensure (3)	that	lines	of	
communication	are	established	for	making	the	revision	known and (4)	that	
traceability	is	achieved.

Check	3 Is	there	a	defined	document	approval	procedure?

 An approval procedure is a means of verifying that a document or deliverable
has been finalized. It clarifies the responsibility supported by work standards and
safety criteria.

 Documents should be approved by pre-assigned qualified personnel performing
inspection and verification from the aspects of quality, cost, and safety. It is
important that (1)	the	approval	procedure	be	designed	with	quality,	cost,	
and	safety	in	mind.

Check	4 Are	the	structure	and	content	of	the	document	appropriate?

 A document having an inappropriate structure or content can be misleading to
the reader.

 For example, information on cost or the project progress is of little use if it is
contained in a document entitled "Design Document." The title and structure of a
document should be consistent with its content, and (1)	it	is	essential	that	the	
purpose	of	the	document	and	what	it	intends	to	convey	be	clear.

 (2)	Documents	are	a	vital	source	of	information. Keep in mind that the
document is the only way for the reader to obtain information about the software.

1�� Chapter 4 Tips for High Quality Establishment

Tests

4.4

D
ocum

ents

4.2

Q
uality	Establishm

ent	

Using	M
etrics

4.5

R
eview

s

4.3

Communication	and	Decision	

Making	in	Development

4.1

Communication	and	Decision	

Making	in	Development

4.1

D
ocum

ents

4.2

Check	5 Are	all	the	necessary	documents	at	hand?	Are	any	actually	
unnecessary?

 In product development, it is a prerequisite that (1)	all	the	necessary	
documents	are	at	hand. The existence of unnecessary documents, on the other
hand, confuses those involved in the development. Documents under review and
those that have been turned down or scrapped should be managed separately
from those that have been officially approved. (2)	The	status	of	each	managed	
document	should	be	made	clear.

Check	6 Is	the	document	written	properly	in	a	predefined	format?

 When creating a document, it is important (1)	that	you	have	a	common	format	
defined	by	your	organization	or	project not only to boost development
efficiency but also to ensure that all members achieve a common understanding.
Every organization and project should prepare a document format or template
containing basic information that includes, at least, the title of the document,
the name of the author, a table of contents, the name of the person who gave
approval, a revision history, and the creation date. In this way, (2)	developers	
will	create	documents	according	to	description	rules, helping stabilize the
quality of documents.

Check	7 Are	the	terms	defined?

 A design document described in a natural language may contain terms like "this
system," "relevant system" and "target system," but it is often the case that the
exact meaning of these terms is clear only to the author of the document. The
use of undefined terms may mislead the reader, potentially resulting in design
mistakes or degraded quality. It is essential to avoid the use of ambiguous
terms that different readers may interpret differently. Also, technical terms and
abbreviations familiar to the author may be incomprehensible to the designers
and implementers who read the document and may invite misunderstanding.
To accomplish smooth communication, it is desirable that the document (1)	
does	not	contain	ambiguous	terms	that	different	readers	may	interpret	
differently and (2)	clearly	defines	the	technical	terms	and	abbreviations	
used.

Check	8 Is	the	document	created	taking	into	consideration	that	it	may	also	
be	read	by	those	not	deeply	involved	in	the	project?

 One important aspect of a document is the appeal that makes the reader want
to read it. Sentences should be readable and easy to understand. You may want
to check (1)	whether	expressions	are	appropriate;	(2)	whether	sentences	
are	precise	and	clear;	(3)	whether	the	passive	voice	is	avoided	where	
appropriate; and (4)	whether	the	layout	is	reader-friendly.

1�54.2 Documents

Tests

4.4

D
ocum

ents

4.2

Q
uality	Establishm

ent	

Using	M
etrics

4.5

R
eview

s

4.3

Communication	and	Decision	

Making	in	Development

4.1

Communication	and	Decision	

Making	in	Development

4.1

D
ocum

ents

4.2

Check	9 Are	the	source	document	of	this	document	and	the	next	
document	that	makes	use	of	information	in	this	document	are	
clearly	defined?

 When creating a document, you need to identify its input and output. First, it is a
prerequisite (1)	that	you	have	all	the	necessary	information	-	the	information	
to	be	input	(e.g.,	documents)	-	clearly	defined	and	prepared. Then, as the
output, you need to (2)	identify	the	next	process	(document)	with	respect	
to	the	document	you	are	creating	and	clarify	the	information	that	is	to	be	
provided	for	that	next	process	and	how	it	should	be	written. Identifying the
input and output of a document clarifies what should be written in it, preventing
necessary information from being omitted and unnecessary information from
being included.

Check	10 Is	the	number	of	typos	and	omissions	within	the	allowable	limits?	
Are	all	abbreviations	spelled	out?	Are	there	any	expressions	that	
are	hard	to	understand?

 A document riddled with typos, omissions, and ambiguous expressions can
give a sense of mistrust to the reader and end up being underused. If there are
many typos and omissions, it is often difficult to review the document thoroughly,
because merely pointing out those typos and omissions takes up most of the
allocated time. Also, a document that does not spell out the abbreviations that it
uses, or which contains ambiguous expressions that are difficult to understand,
cannot convey essential information to the reader, which makes the existence of
the document meaningless. However, demanding that a project team's internal
documents be perfect may make document creation a time-consuming process.
It is therefore necessary to (1)	define	allowable	limits	for	typos,	omissions,	
abbreviations,	and	expressions	and	keep	to	those	limits.

Check	11 Are	documents	reviewed	by	anyone	other	than	the	author?

 The review is an important task for quality establishment in the software
development process. Reviewing the deliverables created during the
development process at the relevant milestones in development improves the
accuracy and quality of those deliverables. There are many ways of reviewing
a document. One is a self review whereby the author reviews his or her own
deliverable using a checklist or other means. Other review methods include
inspection and walkthrough, which are done by a group of interested parties. Not
only the engineers who create deliverables but also (1)	other	interested	parties	
such	as	relevant	project	members	and	stakeholders	may	participate	in	
reviews, which will help find more issues and problems. It is also important to
have a system in place for (2)	retaining	the	issues	and	problems	pointed	out	
in	reviews	as	review	records	with	the	date	and	staff	in	charge	determined	
for	reliable	backup.

1�6 Chapter 4 Tips for High Quality Establishment

Tests

4.4

D
ocum

ents

4.2

Q
uality	Establishm

ent	

Using	M
etrics

4.5

R
eview

s

4.3

Communication	and	Decision	

Making	in	Development

4.1

Communication	and	Decision	

Making	in	Development

4.1

D
ocum

ents

4.2

Check	12 Does	the	document	contain	all	the	necessary	information?	Does	
the	volume	of	the	document	match	the	size	of	the	system?

 Needless to say, the quality (content) of the document is far more important
than its volume. It is important that the content to be written in the document be
correct. Even when the document describes all the required items, it is highly
likely that the document will lack the necessary information, if its volume is
excessively small. As mentioned earlier in this guide in relation to the document
volume evaluation metrics, (1)	whether	the	volume	of	the	document	matches	
the	size	of	the	system should be checked.

 Even if the volume condition is satisfied, you also need to check (2)	whether	
the	document	contains	all	the	necessary	information	with	a	reasonable	
amount	of	information	on	every	topic	covered.

1�74.3 Reviews

Tests

4.4

D
ocum

ents

4.2

Q
uality	Establishm

ent	

Using	M
etrics

4.5

R
eview

s

4.3

Communication	and	Decision	

Making	in	Development

4.1

Communication	and	Decision	

Making	in	Development

4.1

R
eview

s

4.3

D
ocum

ents

4.2

Reviews	4.3	

 Purposes and roles of reviews
It is said that there is a fixed probability of a person making a mistake, no matter

how hard they try to get things right. In product development, it is crucial to spot and

prevent such mistakes through the eyes of multiple staff before the product is passed

on to the next process. In the world of software development, reviews are employed

in addition to tests in order to find mistakes, defects, and errors. Not only are reviews

intended to improve the quality of software, but they also help in checking the software's

internal structure and compliance with the project rules and standards, which cannot

be evaluated by tests alone. What's more, reviews also serve as an educational tool that

allows developers to learn from one another by explaining their deliverables to other

people and obtaining feedback.

Reviews are often a more efficient way of detecting errors and defects than tests. Note,

however, that the efficacy of a review largely depends on how it is done. For a review to

be effective, it needs to be done:

• At the right timing;

• By appropriate participants; and

• Using an appropriate method.

Review	methods	and	how	they	are	done	(examples)

Method Description

Inspection A systematic, rigid review method whereby a host called the moderator (a
person other than the author of the deliverable) determines who will participate
in the review, what roles they will play, and so on. The review involves fixing
errors and checking that errors have been fixed.

Walkthrough The author of the deliverable briefs review participants on it and asks for
comments.

Pair review An author-reviewer pair examines the deliverable under review.

Pass around E-mail or copies of the deliverable under review are distributed to multiple
reviewers for comments. The deliverable may be circulated among reviewers.

1�8 Chapter 4 Tips for High Quality Establishment

Tests

4.4

D
ocum

ents

4.2

Q
uality	Establishm

ent	

Using	M
etrics

4.5

R
eview

s

4.3

Communication	and	Decision	

Making	in	Development

4.1

Communication	and	Decision	

Making	in	Development

4.1

R
eview

s

4.3

Review	checklist	(meeting-based	reviews)

NO. Check	item Check

1 Did the reviewee present his or her deliverable smoothly?

2 Do participants know in advance what to review and how the review will be
done?

3 Do reviewers have a participation will?

4 Has the deliverable under review been completed?

5 Is a review record template available? Are reviews properly recorded?

6 Has a conclusion been reached? Is there a system in place for informing the
pertinent project members of the results?

7 Are the opinions expressed during the review clear?

8 Does the power relationship affect the review?

9 Has an appropriate amount of time been allocated to the review? Was the
review done properly?

10 Are problems pointed out effectively?

11 Is the review followed up properly?

12 Is the review scheduled based on the progress of the entire project? Are the
right people called and collected?

Explanation	of	each	check	item

Check	1 Did	the	reviewee	present	his	or	her	deliverable	smoothly?

 A software review begins with the reviewee presenting his or her deliverable.
Therefore, the reviewee should full understand and organize the content of the
deliverable and be prepared to give a concise presentation. When presenting
a deliverable, the reviewee should avoid being ambiguous and ensure that the
presentation is (1)	easy	to	understand	so	that	it	is	interpreted	in	the	same	
way	by	all	the	participants and (2)	consistent	with	no	contradictions.
Otherwise, different review participants may interpret the presentation in different
ways, causing the discussion to wander from what should really be reviewed and
debated.

Check	2 Do	participants	know	in	advance	what	to	review	and	how	the	
review	will	be	done?

 To perform an efficient and effective review, it is essential to (1)	make	the	
subject	and	viewpoint	of	the	review	known to the review participants. For
example, when you will be doing a source code review, you should clearly inform
the participants in advance about the subject of the review, such as functions
and configuration files, and that the review will be done from the viewpoint of

1�94.3 Reviews

Tests

4.4

D
ocum

ents

4.2

Q
uality	Establishm

ent	

Using	M
etrics

4.5

R
eview

s

4.3

Communication	and	Decision	

Making	in	Development

4.1

Communication	and	Decision	

Making	in	Development

4.1

R
eview

s

4.3

D
ocum

ents

4.2

reliability. Next, it is also important to (2)	share	information	about	how	the	
review	will	be	done. That way, the reviewee will know what to prepare before
the review and the reviewers will understand their roles and to what extent to
prepare themselves.

Check	3 Do	reviewers	have	a	participation	will?

 It is important that (1)	all	participants	in	the	review	have	a	sense	of	
ownership. The level of motivation of the review participants greatly influences
the outcome of the review. The greater the number of highly motivated people,
the more the participants' brains are stimulated, prompting them to come up with
more ideas. On the other hand, participants falling asleep or doing other work
in the meeting can lower the motivation of the other participants, resulting in a
lackluster review.

Check	4 Has	the	deliverable	under	review	been	completed?

 Depending on the review method being used, the reviewers may need to (1)	
check	in	advance	the	deliverable	to	be	reviewed. If the deliverable to be
reviewed contains many blank pages or items marked TBD (To Be Determined),
the motivation of the reviewers will be lost. This may lead to the reviewers failing
to discuss the core part of the deliverable, or worse, the review itself may become
meaningless. In such cases, (2)	the	project	leader	may	need	to	have	the	
courage	to	judge	the	deliverable	as	not	being	ready	and	decide	not	to	do	
the	review (reschedule it for later), even when the date of the review has been
set.

Check	5 Is	a	review	record	template	available?	Are	reviews	properly	
recorded?

 If you take no action based on what participants say during a review, the review
will be meaningless. To ensure that appropriate action is taken after a review, it
is important to (1)	categorize	what	reviewers	have	said	into	"suggestions,"	
"requests,"	"questions,"	and	"comments"	and	to	then	record	those	
statements. It is a good idea (2)	for	the	organization	or	project	to	prepare	
a	review	record	template	so	that	reviews	can	easily	be	recorded	in	a	well	
organized	format. Also, be sure to (3)	select	a	recording	secretary	at	the	
beginning	of	every	review to prevent the omission of any records.

Check	6 Has	a	conclusion	been	reached?	Is	there	a	system	in	place	for	
informing	the	pertinent	project	members	of	the	results?

 When doing a review, you should always remember that you need to reach a
conclusion. (1)	Identifying	the	action,	deadline,	and	staff	in	charge	for	each	
suggested	item	helps	clarify	how	to	respond	to	the	review	results,	and	
who	is	responsible. One point requiring care is that if the reviewers' statements

150 Chapter 4 Tips for High Quality Establishment

Tests

4.4

D
ocum

ents

4.2

Q
uality	Establishm

ent	

Using	M
etrics

4.5

R
eview

s

4.3

Communication	and	Decision	

Making	in	Development

4.1

Communication	and	Decision	

Making	in	Development

4.1

R
eview

s

4.3

consist of ambiguous requests or comments, the staff in charge may be at a
loss as to what to do. It is necessary to (2)	discuss	and	reach	a	conclusion	on	
how	to	respond	to	the	review	results (not concrete steps to take for individual
suggested items, but who will address them and how). And (3)	review	results	
must	be	communicated	to	the	relevant	project	members.

Check	7 Are	the	opinions	expressed	during	the	review	clear?

 Lively discussion is important to a review. However, the staff in charge may not
be able to understand abstract suggestions, such as that expressed by saying, "I
feel something is wrong," misguided suggestions lacking an explanation of what
the problem really is, and excessively wide-ranging suggestions. You should
steer away from the abstract and make suggestions more concrete and specific
so that the staff in charge can (1)	understand	what	the	problem	or	issue	
really	is and (2)	consider	ways	to	address	the	problem.

Check	8 Does	the	power	relationship	affect	the	review?

 While not peculiar to reviews, a specification or change policy may be decided
based on the power relationship between people - e.g., user/developer or
superior/subordinate. A review requires that all its participants discuss matters
from a purely technical perspective on an equal footing. Often, however, the
discussion is influenced by those who speak louder than the others. Review
participants should maintain a sincere attitude when engaging in discussion.
(1)	Do	not	decide	on	a	policy	based	solely	on	the	power	relationship	or	
compromise.

Check	9 Has	an	appropriate	amount	of	time	been	allocated	to	the	review?	
Was	the	review	done	properly?

 With a large-scale system, there may not be enough time to review all the
deliverables for all the processes.

 In some cases, therefore, you may want to review only those newly created parts
of the design and specification documents while omitting the review of the other
parts that are reused. If, however, you are not sufficiently careful when selecting
the parts to omit, there is a chance that you will exclude the essential parts from
the review. To prevent such inadvertent exclusion, you need to (1)	prioritize	
what	to	review and (2)	allocate	an	appropriate	amount	of	time	to	the	review.
Note that merely prolonging the review process is not necessarily a good thing.
From an efficiency perspective, it is also important that (3)	the	review	be	no	
longer	than	necessary. You should also avoid omitting a scheduled review
due to lack of time or switching to a pass-around review without thoroughly
considering the importance or content of the deliverable to be reviewed.

1514.3 Reviews

Tests

4.4

D
ocum

ents

4.2

Q
uality	Establishm

ent	

Using	M
etrics

4.5

R
eview

s

4.3

Communication	and	Decision	

Making	in	Development

4.1

Communication	and	Decision	

Making	in	Development

4.1

R
eview

s

4.3

D
ocum

ents

4.2

Check	10 Are	problems	pointed	out	effectively?

 In cases where the document under review is poorly written, a review may
end up with only formal errors, such as incorrect document format, typos and
omissions, improper numbering, or inadequate indentation being pointed out,
while more critical specification and design problems remain undiscovered. Of
course, these formal errors should not be neglected (a pass-around review is
effective for checking a document for formal errors). It is essential that (1)	the	
review	be	focused	on	the	content	of	the	specifications	and	design. The
reviewers should always ensure that their suggestions are effective, and the
reviewees should strive to understand and fix the identified problems.

Check	11 Is	the	review	followed	up	properly?

 Even when the action, person in charge, and deadline have been decided, a
review will be meaningless if it is not followed up by subsequent checking and
implementation. You need to examine the review results and, if many problems
are pointed out or if the result of making suggested corrections will be critical,
take appropriate steps such as repeating the review. Regarding the action to be
taken after the review, it is important that the review record or other appropriate
document (1)	record	the	action/deadline	check	results and (2)	indicate	
that	the	action	has	been	checked	by	the	leader	and	other	members	of	the	
project	team.

Check	12 Is	the	review	scheduled	based	on	the	progress	of	the	entire	
project?	Are	the	right	people	called	and	collected?

 (1)	A	review	should	be	scheduled	in	advance and done at the optimum
timing. To ensure that your project proceeds smoothly, it is also important to (2)	
manage	the	schedule	so	that	the	project	can	be	implemented	as	planned,
by using the review as a milestone. (3)	Involving	those	people	needed	for	the	
subject	of	the	review (e.g., legal experts in the case of safety issues) in addition
to the development project members improves the quality of the review.

152 Chapter 4 Tips for High Quality Establishment

Tests

4.4

D
ocum

ents

4.2

Q
uality	Establishm

ent	

Using	M
etrics

4.5

R
eview

s

4.3

Communication	and	Decision	

Making	in	Development

4.1

Tests

4.4

Communication	and	Decision	

Making	in	Development

4.1

Tests	4.4	

 Purposes and roles of tests
In a broad sense, a test performed as part of software development is the process of

running the software to see if it operates normally, with the aim of finding as many

errors in the software as possible.

In the development phase of software development, tests are done for many different

purposes. For example, a regression test is intended to check an added or modified

program for any unexpected impact caused by the change. The purpose of a usability

test is to check and evaluate software in terms of usability and other sensory elements.

To perform an effective test requires that the purpose and role of the test be identified,

followed by the formulation of a test plan based on the identified purpose and role.

Test	types	and	examples	of	purposes	and	roles
<Breakdown	by	phase>

Test	type Purpose	and	role

Unit testing This test is intended to check each individual unit of software, such as a
program function or class, to identify errors.

Functional testing This test verifies whether each implemented function operates as intended.

Integration testing This test verifies whether an execution unit combining some of the
software components operates as intended and whether the interfaces
function properly when handling exceptions.

System qualification
testing

This test verifies whether the software operates normally in a finished
product by building it into hardware, performing communication, etc.

Regression testing This test verifies whether a change or changes to the program have had
any unexpected impact on the software.

Documentation
testing

This test verifies whether the product can be operated as described in the
documentation (operation manual).

1534.4 Tests

Tests

4.4

D
ocum

ents

4.2

Q
uality	Establishm

ent	

Using	M
etrics

4.5

R
eview

s

4.3

Communication	and	Decision	

Making	in	Development

4.1

Tests

4.4

Communication	and	Decision	

Making	in	Development

4.1

R
eview

s

4.3

D
ocum

ents

4.2

<Breakdown	by	purpose>
Test	type Purpose	and	role
Performance testing This test verifies whether the processing speed and data throughput

correspond to the expected values.
Stress testing This test verifies whether the software operates normally when a load is

applied to the I/O, CPU, communication, etc.
Usability testing This test evaluates the usability of the software from the user's point of view.
Durability testing This test verifies whether the software operates normally after prolonged

product operation.
Recovery testing This test evaluates the recoverability of the software after a failure.

<Breakdown	by	method>
Test	type Purpose	and	role
Structural testing This test checks for logical inconsistencies, with the focus on the program's

internal structure.
Black box testing This test examines results based solely on the input and output, without

considering the program's internal structure.
Path analyzing This test analyzes and verifies the program behavior based on coverage

(coverage ratio of written code).

The above lists software test types and examples of their purposes and roles. These

tests may be given different names or positioned differently, depending on the company

or product domain. The test staff must have a full understanding of the purpose of each

test and perform the test using an appropriate method.

Tests	checklist
NO. Check	item Check

1 Do the test staff enjoy performing tests?

2 Are the test staff independent?

3 Is the test target clearly defined? Is an appropriate test method adopted for each
test phase?

4 Are errors recorded? Are fixed errors checked?

5 Are sufficient test items covered for checking the system functions?

6 Are tests performed on non-functional requirements (e.g., performance)?

7 Is the test environment the same as or equivalent to the actual system operation
environment?

8 Is there a clear test plan? Is an appropriate amount of time allocated to the
tests?

9 Are test results checked based on clear judgment criteria?

10 Is the cause of each detected error analyzed?

11 Are there clear test completion criteria?

12 Are you attempting to assure quality based on testing alone? Are you expecting
too much from the tests?

15� Chapter 4 Tips for High Quality Establishment

Tests

4.4

D
ocum

ents

4.2

Q
uality	Establishm

ent	

Using	M
etrics

4.5

R
eview

s

4.3

Communication	and	Decision	

Making	in	Development

4.1

Tests

4.4

Communication	and	Decision	

Making	in	Development

4.1
Explanation	of	each	check	item

Check	1 Do	the	test	staff	enjoy	performing	tests?

 To software engineers, the most enjoyable part of programming is to "figure
out how to make the program work." What about testing? A test involves two
tasks: running the program to detect errors and confirming that the quality
requirements for the product and software are fully satisfied. Both tasks require
that a test strategy be developed and that a series of processes from test design
to execution be implemented according to plan. However, there are still many
organizations where tests are done on an ad hoc basis. Particularly, in the
case of tests focused on the latter task, the menial work for functional checking
tends to be stressed and excessive emphasis is sometimes placed on duty and
responsibility, making the tests "no fun." Such "no fun tests" are not desirable
from the perspectives of work efficiency and work quality. Effectively breaking
down the test strategy helps to keep the test staff motivated as in development.
To make the testing fun, it is necessary (1)	to	make	the	test	results	visible	so	
that	the	test	staff	remain	highly	motivated, by appropriate means such as
appreciating the work of staff members who have done excellent tests, and (2)	
to	establish	a	system	in	which	the	test	staff	enjoy	doing	tests.

Check	2 Are	the	test	staff	independent?

 Generally, there are two types of organization: one in which dedicated test
staff work separately from developers and one in which developers perform all
the work, including testing. In the former type of organization, products can be
evaluated objectively in product tests, because test staff and developers are
separated. This type of organization is also superior since it is easier to check
compliance with standards and rules. The latter type of organization, in which
developers are well versed in the whole series of work from specification creation
and design to coding and testing, allows a flexible schedule and is also said to
be highly productive. This guide does not adopt a dogmatic approach where one
is claimed to be better than the other. What is important is to ensure that (1)	the	
test	staff	understand	the	purpose	and	role	of	the	test	when	performing	it
and that (2)	coding	is	not	confused	with	testing. In an organization with no
independent test staff, time should be systematically allocated for testing and
those engaged in testing should carry out tests from standpoints and viewpoints
that differ from those of the developers.

Check	3 Is	the	test	target	clearly	defined?	Is	an	appropriate	test	method	
adopted	for	each	test	phase?

 As shown in the tables provided at the beginning of this section, there are many
types of test, each of which is suited to a specific phase, purpose, and method.
The actual test work is done by using some of these tests in combination. This

1554.4 Tests

Tests

4.4

D
ocum

ents

4.2

Q
uality	Establishm

ent	

Using	M
etrics

4.5

R
eview

s

4.3

Communication	and	Decision	

Making	in	Development

4.1

Tests

4.4

Communication	and	Decision	

Making	in	Development

4.1

R
eview

s

4.3

D
ocum

ents

4.2

means that numerous on-site test variations are available for actual development.
To select the test combination that is most effective for the target system or
software from these diverse test variations, you need to (1)	clearly	define	the	
test	target	and	scope	and	gather	the	documents	necessary	for	test	design	
and	test	result	judgment	(system	specifications,	interface	specifications,	
etc.) for each test phase. Then, you need to identify the purpose of the test,
select an appropriate method, and design the test. In other words, it is essential
that, (2)	in	each	phase,	you	carry	out	the	type	of	test	appropriate	for	the	
purpose. Also, you need to (3)	clearly	define	the	test	target	and	scope for the
test of each phase.

Check	4 Are	errors	recorded?	Are	fixed	errors	checked?

 Needless to say, a test would be meaningless unless its results are recorded. It
is necessary to (1)	create	and	maintain	detailed	records	of	detected	errors,
including test repeat procedures, in preparation for future fixes and retests.
Judgments and fixes made in response to such errors should also be recorded.
Many projects reuse existing program source code or use derived versions.
Therefore, you need to check the scope of the impact on related systems in
addition to the information specific to the target product (version) and (2)	record	
and	manage	the	action	policies	and	measures	if	there	is	any	impact	on	
other	versions.

Check	5 Are	sufficient	test	items	covered	for	checking	the	system	
functions?

 Those requirements that software needs to satisfy with regard to functions
in order to satisfy user requirements are called functional requirements. With
system functions increasing in recent years, the number of software functional
requirements has been growing consistently. The functions that software is
required to implement vary depending on the system operation context (operation
environment, operating conditions, etc.). In some cases, you even need to
consider function overlaps and parallel operation. From this perspective, it is
necessary to (1)	prepare	sufficient	test	items,	taking	into	consideration	the	
relevant	factors	such	as	possible	operation	variations of the functions to
be implemented by the system and software. It is important that, for each test,
you prepare and execute test items appropriate for the purpose of the test. You
should also ensure that test results are checked. As with software development
deliverables (documents, source code, etc.), it is ideal to (2)	have	test	items	
reviewed	by	a	third	party	for	omissions	and	validity. Also, you need to
prepare and execute test items that are appropriate for the development target.
In the case of those systems having many user interfaces, in particular, (3)	
extensive	test	items	should	be	prepared	based	on	appropriate	operations	
and	scenarios,	considering	potential	uses	of	the	system	by	the	user.

156 Chapter 4 Tips for High Quality Establishment

Tests

4.4

D
ocum

ents

4.2

Q
uality	Establishm

ent	

Using	M
etrics

4.5

R
eview

s

4.3

Communication	and	Decision	

Making	in	Development

4.1

Tests

4.4

Communication	and	Decision	

Making	in	Development

4.1
Check	6 Are	tests	performed	on	non-functional	requirements	(e.g.,	

performance)?

 As opposed to the functional requirements explained in the preceding paragraph,
all other elements (performance, capacity, data security, expandability, etc.)
are called non-functional requirements. In many embedded systems, non-
functional requirements are as significant as functional requirements, and it is
not uncommon for their volume or importance to exceed that of the functional
requirements. Developers need to consider and test not only functional
requirements but also these non-functional requirements. Non-functional
requirement tests include (1)	performance	consideration	and	testing, (2)	
capacity	consideration	and	testing, (3)	data	security	consideration	and	
testing, and (4)	expandability	consideration	and	testing. These tests differ
considerably depending on factors such as the target system's characteristics
and system characteristics profile. You need to check the items regarding non-
functional requirements in the specification creation and design stages and
execute testing from the necessary non-functional aspects.

Check	7 Is	the	test	environment	the	same	as	or	equivalent	to	the	actual	
system	operation	environment?

 In cases where the operation/connection environment of the target system
has many hardware components to be tested - e.g., when a cellular phone
application is tested - it may be difficult to select the test target from among
an enormous number of cellular phone models. Also, in embedded software
development, software is developed in parallel with the hardware of the target
system, which often leads to a thorny situation where you need to perform a
software test before the corresponding hardware even exists. In a situation like
this, it is important to (1)	prepare	a	test	environment	appropriate	for	each	
phase, considering factors such as what is the optimal operation environment
and what should be prepared and built as a temporary operation environment.

Check	8 Is	there	a	clear	test	plan?	Is	an	appropriate	amount	of	time	allocated	
to	the	tests?

 In software development, it is a good idea to draw up a test plan together with
a project plan. If creating a test plan independently is difficult, one solution is to
include it in a project plan. In either case, you should ensure that (1)	the	type,	
scope,	and	schedule	of	the	test	to	be	done	are	defined	when	a	project	plan	
is	formulated. Also, the time available for testing is often restricted because of
a tight development schedule. It is essential to clarify a test plan when creating
a project plan and (2)	allocate	an	appropriate	amount	of	time	for	testing in
advance.

1574.4 Tests

Tests

4.4

D
ocum

ents

4.2

Q
uality	Establishm

ent	

Using	M
etrics

4.5

R
eview

s

4.3

Communication	and	Decision	

Making	in	Development

4.1

Tests

4.4

Communication	and	Decision	

Making	in	Development

4.1

R
eview

s

4.3

D
ocum

ents

4.2

Check	9 Are	test	results	checked	based	on	clear	judgment	criteria?

 Testing usually involves three tasks - preparation, execution, and result
confirmation. Of these, you should check the content of the test items prepared
in the test preparation task and those actually executed, while keeping the test
target in mind. As with software development deliverables (documents, source
code, etc.), it is ideal to (1)	have	test	items	reviewed	by	a	third	party	for	
omissions	and	validity.

 It is important to identify the applicable test items and test method, with the test
target in mind, before conducting a test. The confirmation of test results entails
making a judgment by comparing the actual test results with the expected test
results indicated in the test procedures, test items, etc. To do so, you need
to include clear judgment criteria for the test results when creating the test
procedures, test items, etc. You should also ensure that, after a test is done, (2)	
test	results	are	recorded. Particularly, (3)	in	the	case	of	those	events	that	are	
difficult	to	reproduce,	as	much	detail	as	possible,	including	the	situations	in	
which	the	events	occurred,	should	be	recorded so that accurate information
can be provided to developers and other related parties.

Check	10 Is	the	cause	of	each	detected	error	analyzed?

 It is essential to (1)	analyze	the	cause	of	each	error	detected in testing. The
analysis of error causes helps find similar errors and prevent errors in derived
products under development. Furthermore, providing feedback on the true cause
of an error to a subsequent product development project greatly contributes to
improving the quality of the upcoming product. In the case of a critical error or an
error having an extensive impact, in particular, it is vital to identify its underlying
cause, share information on the error across the organization, and (2)	consider	
ways	to	prevent	its	recurrence	on	an	organization-wide	basis.

Check	11 Are	there	clear	test	completion	criteria?

 One aspect of testing that is difficult to determine is how far to proceed with the
test. A perfect test plan is difficult to create, and the amount of time available for
testing is limited. You must, therefore, perform testing efficiently within a limited
timeframe. It is necessary to understand that a software or system test is done
by running the test target temporarily for testing purposes and, in this respect,
it can be said to be a "snapshot" test that is focused on part of the life cycle of
the system. This means that a software test is subject to limits. Therefore, it is
essential to gain a full understanding of the quality and reliability requirements
for the system and consider what to check in the test. You should (1)	decide	
on	test	completion	criteria	and	draw	up	an	appropriate	test	plan in the test
planning phase so as to (2)	avoid	the	wasteful	repetition	of	tests.

158 Chapter 4 Tips for High Quality Establishment

Tests

4.4

D
ocum

ents

4.2

Q
uality	Establishm

ent	

Using	M
etrics

4.5

R
eview

s

4.3

Communication	and	Decision	

Making	in	Development

4.1

Tests

4.4

Communication	and	Decision	

Making	in	Development

4.1
Check	12 Are	you	attempting	to	assure	quality	based	on	testing	alone?	Are	

you	expecting	too	much	from	the	tests?

 Various test types were discussed at the beginning of this section, but none is
superior to any of the others. While testing is the last chance to assure quality
before the shipment of software, there is a limit to how much you can improve
low-quality software, no matter how many times you test it. It is, of course,
necessary to combine multiple tests when creating a test plan. To improve
the quality of software, however, you also need to formulate and implement
a comprehensive strategy, taking advantage of the merits of many different
techniques such as testing, review, and specification checking. Of course,
these are premised on more essential activities required for the improvement of
software quality, including procurement and improvement of skills of personnel
in charge of development or testing as well as process improvement. You need
to keep all this in mind while (1)	creating	and	executing	a	comprehensive,	
integrated	quality	management	plan.

1594.5 Quality Establishment Using Metrics

Tests

4.4

D
ocum

ents

4.2

Q
uality	Establishm

ent	

Using	M
etrics

4.5

R
eview

s

4.3

Communication	and	Decision	

Making	in	Development

4.1

Q
uality	Establishm

ent	

Using	M
etrics

4.5

Communication	and	Decision	

Making	in	Development

4.1

D
ocum

ents

4.2

R
eview

s

4.3

Tests

4.4

Quality	Establishment	Using	
Metrics	4.5	

 Ensuring that evaluation metrics are adopted by your
organization

This guide has discussed how to understand the product to be developed (system

characteristics profiling: SCP), how to understand the situation of the project (project

characteristics profiling: PCP), and how to define evaluation metrics for quality

establishment based on an understanding of these profiles. For quality establishment

efforts using evaluation metrics to take effect, you not only need to define and measure

evaluation metrics but also have the results adopted into your project. To ensure more

effective quality establishment efforts, it is also essential to ensure that the contents of

this guide are understood across the organization and that its concepts are adopted.

Note that evaluation metrics are merely objective and indirect indicators. Applying

various methods and improving the quality of the work itself is indispensable.

To summarize this guide, this section offers tips on how to define effective evaluation

metrics and how to leverage these metrics to benefit your organization.

160 Chapter 4 Tips for High Quality Establishment

Tests

4.4

D
ocum

ents

4.2

Q
uality	Establishm

ent	

Using	M
etrics

4.5

R
eview

s

4.3

Communication	and	Decision	

Making	in	Development

4.1

Q
uality	Establishm

ent	

Using	M
etrics

4.5

Communication	and	Decision	

Making	in	Development

4.1
Checklist	for	quality	establishment	using	metrics
NO. Check	item Check

1 Are you obsessed exclusively with evaluating quantitative data?

2 Is system characteristics profiling done properly?

3 Is project characteristics profiling done properly?

4 Do you select evaluation metrics based on their effectiveness? Is the selected
measurement method appropriate?

5 Are the target values for the evaluation metrics appropriate?

6 Do you make effective use of existing proven methods in your project?

7 Do you have a system in place for reflecting the measurement results on your project
and providing feedback to subsequent development projects?

8 Do all the project members understand the importance of using this guide and
how to use it?

9 Do the project members have the time and opportunities to learn?

10 Are the project members clearly aware of their skill levels?

11 Did you perform reviews during the process from system characteristics profiling
to quality target value setting?

12 Do you intend to make the findings of your quality quantification widely available to
the public?

Explanation	of	each	check	item

Check	1 Are	you	obsessed	exclusively	with	evaluating	quantitative	data?

 This guide has explained how to adapt the reference values to match your
project through a series of processes of system characteristics profiling, project
characteristics profiling, and evaluation metric setting. Once numerical targets are
set, people tend to become obsessed with numbers. In this guide, however, we
want to suggest the need to understand what those numerical values represent
and then to use them for quality establishment. You should not react nervously
to changes in numerical values; it is essential to act based on an understanding
of what they really mean.

 First, (1)	do	not	use	reference	values	as	is. The reference values shown
herein are purely for reference purposes and should not be interpreted as being
absolute target values. There is a tendency for management staff to focus solely
on numbers. When using the reference values, make sure that you understand
the meaning of those values.

 Next, (2)	do	not	make	it	a	goal	to	achieve	numerical	targets	alone. In this
guide, those elements that can be measured objectively are used as evaluation
metrics. These metrics help you to evaluate the quantitative aspects, but not the
quality of the work. For example, repeating any one test raises the value of the

1614.5 Quality Establishment Using Metrics

Tests

4.4

D
ocum

ents

4.2

Q
uality	Establishm

ent	

Using	M
etrics

4.5

R
eview

s

4.3

Communication	and	Decision	

Making	in	Development

4.1

Q
uality	Establishm

ent	

Using	M
etrics

4.5

Communication	and	Decision	

Making	in	Development

4.1

D
ocum

ents

4.2

R
eview

s

4.3

Tests

4.4

test process effort, as well as the work effort ratio and work execution ratio of the
test work. However, merely repeating a test does not change the quality of the
software being tested. Similarly, if you do a system specification review slowly
or have it done by more people than necessary, the value of the specification
review process effort will increase, leading to greater work effort ratio and work
execution ratio of the specification review. As demonstrated by these cases,
manipulating numerical values is easy. However, doing so does not give you any
control over quality, which was the original aim, and the target values you set will
become meaningless. When attempting to control quality, keep in mind what you
were attempting to do in the first place.

Check	2 Is	system	characteristics	profiling	done	properly?

 The most important aspect of system characteristics profiling is to (1)	identify	
the	quality	requirements	from	the	viewpoint	of	the	user for what is supplied.
What criteria does your organization use when setting quality targets? Do
you rely solely on intuition? Are your decisions affected by development-side
constraints, such as limited manpower, an imminent release date, or intolerance
of bugs? While numerical values that are set in these ways often turn out to be
correct as empirical values, they can still cause problems. Since quality targets
are not appropriate, for example, the required level of quality cannot be secured
and many bugs are not found until after shipment. Or, because more effort than
necessary is put into quality assurance, the developers become exhausted or the
software cannot be released on schedule. System characteristics profiling (SCP)
is a means of supporting the rationale for the quality targets you regard as being
appropriate.

 Doing system characteristics profiling properly and gaining an objective
understanding of the product to be developed allows you to think about quality
targets rationally. It will also make members of those departments only partially
involved in the development able to consider which part of the system will
be impacted by the software they are developing, what kind of impact will be
caused, and ultimately how the quality will be affected. (2)	Seeing	quality	as	
part	of	a	bigger	picture can further improve quality.

 Also, when doing system characteristics profiling, do you (3)	hold	discussions	
with	stakeholders	such	as	the	customer	and	hardware	development	
members? We believe that such discussions build a common understanding
among the system stakeholders. Since system characteristics profiling involves
checking not only the quality of the software but also the quality of the system as
a whole, (4)	hardware	quality	targets	can	also	be	set during this process. Use
system characteristics profiling as an opportunity to think about the kind of quality
the public expects from the product.

162 Chapter 4 Tips for High Quality Establishment

Tests

4.4

D
ocum

ents

4.2

Q
uality	Establishm

ent	

Using	M
etrics

4.5

R
eview

s

4.3

Communication	and	Decision	

Making	in	Development

4.1

Q
uality	Establishm

ent	

Using	M
etrics

4.5

Communication	and	Decision	

Making	in	Development

4.1

Manufacturers'	economic	cost	upon	the	
occurrence	of	system	trouble

There have been discussions within SEC as to whether "manufacturers' economic

cost upon the occurrence of system trouble" - the 10th item for project characteristics

profiling - should be covered by system characteristics profiling. We have also received

public comments arguing that any recall cost should be added to the economic cost.

After considering this matter from the user's point of view, however, we have come to

the conclusion that system characteristics profiling is not applicable to this item. We

suggest that system characteristics profiling should be done with a focus on the level

of quality demanded by the user, rather than the convenience of the developers.

C o l u m n

Check	3 Is	project	characteristics	profiling	done	properly?

 Project characteristics profiling involves identifying factors that hinder quality
establishment and those that promote it. In other words, it is the process of
(1)	determining	and	expressing	weak	points	and	strong	points	from	the	
perspective	of	quality	establishment. As discussed in Chapter 2, for example,
if the project is assigned entirely to new recruits, then it is necessary to step
up the review process by having many people participate in checking whether
the software has been created properly, so as to assure quality. If the software
size is extremely small, the project may require much less process effort for
review and testing than would normally be necessary for such a size. Project
characteristics profiling is a means of expressing what a competent manager
does naturally as a numerical value. It allows you to express what you normally
decide as the project proceeds as a numerical value in advance, which makes it
easer to gain a consensus on your decisions from other project members.

 Whether you can perform effective project characteristics profiling depends on
(2)	whether	you	have	an	accurate	grasp	of	your	project	situation. Holding
hearings and discussions with developers for project characteristics profiling
helps you recognize the problems that your project faces. Also, by considering
what to use as the project characteristics profiling factors for calculating
adjustment coefficients, you can find values that are better suited to your project.
Note that the adjustment coefficients given in this guide are for reference
purposes only. Note that not all of the project characteristics profiling factors will
necessarily affect all the work. You may want to consider only those factors that
greatly impact your work.

1634.5 Quality Establishment Using Metrics

Tests

4.4

D
ocum

ents

4.2

Q
uality	Establishm

ent	

Using	M
etrics

4.5

R
eview

s

4.3

Communication	and	Decision	

Making	in	Development

4.1

Q
uality	Establishm

ent	

Using	M
etrics

4.5

Communication	and	Decision	

Making	in	Development

4.1

D
ocum

ents

4.2

R
eview

s

4.3

Tests

4.4

Check	4 Do	you	select	evaluation	metrics	based	on	their	effectiveness?	Is	
the	selected	measurement	method	appropriate?

 Gathering and analyzing data properly during a development project is difficult
for an organization that is not familiar with such activities. If obtaining data for
basic metrics places a huge burden on the developers, the project itself may fail.
If you have never gathered data for a project, you first need to understand what
each evaluation metric means, define the minimum evaluation metrics required
for your project, and then begin by measuring the necessary basic metrics. (1)	
Starting	by	doing	what	you	can	and	then	improving	little	by	little leads to
long-term project success.

 To make effective use of the gathered data, it is important to (2)	decide	in	
advance	how	to	gather	data (gathering method, timing, reporting method, etc.).
To prevent the creation of irregular reports, it is a good idea to (3)	prepare	a	
standard	form. Providing a means of gathering data with ease, such as having
data gathered automatically by a tool, is also effective.

Check	5 Are	the	target	values	for	the	evaluation	metrics	appropriate?

 Defining the evaluation metrics determines the basic metrics whose data is to
be collected and the evaluation metrics to be evaluated. The next step involves
setting quality target values. Initially setting targets that are too high, irrespective
of the project situation, makes it difficult to continue the project. (1)	Are	the	
results	of	project	characteristics	profiling	properly	reflected? Considering
what and how accurately you can measure, judge whether (2)	the	set	
evaluation	metrics	are	appropriate. While it is essential to try to achieve the
target values derived from the reference values, you should decide on a margin
of error based on your experience and past data. After setting appropriately high
target values, do not forget to establish a means of attaining them.

Check	6 Do	you	make	effective	use	of	existing	proven	methods	in	your	
project?

 This guide describes how to define evaluation metrics for quality control and how
to measure basic metrics for evaluating those evaluation metrics. If, however,
your organization already has a method in place that is used for a similar
purpose, you do not need to change those existing rules. (1)	If	there	is	any	
gathered	data,	compare	it	to	the	data	shown	in	this	guide	and	select	an	
effective	method	while	replacing	the	metrics	appropriately.

 For example, this guide uses the physical number of lines of source code as a
metric that indicates the program scale. If your organization uses FP as a scale
indication metric, you can set the target value of the metric normalized to the
scale (execution ratio of the work, document volume, etc.) by comparing it with
the actual value for your organization. You can also adopt the target value shown

16� Chapter 4 Tips for High Quality Establishment

Tests

4.4

D
ocum

ents

4.2

Q
uality	Establishm

ent	

Using	M
etrics

4.5

R
eview

s

4.3

Communication	and	Decision	

Making	in	Development

4.1

Q
uality	Establishm

ent	

Using	M
etrics

4.5

Communication	and	Decision	

Making	in	Development

4.1
in this guide by converting the FP to a code. The FP-to-code conversion ratio
may be set based on the knowledge of your organization or the reference values
presented in multiple reference books (e.g., those written by Capers Jones). Also,
this guide sets the control statement description ratio for the source code as a
metric for simple measurement of the source code complexity. If, however, your
organization measures and evaluates complexity (e.g., cyclomatic complexity) by
using a tool, it is not necessary to perform control statement measurement.

 If you have gathered data but feel that it is not being used effectively for
evaluation, you may want to review your evaluation process based on this guide.

Check	7 Do	you	have	a	system	in	place	for	reflecting	the	measurement	
results	on	your	project	and	providing	feedback	to	subsequent	
development	projects?

 The use of values obtained using evaluation metrics should not be limited to the
evaluation of a single development project. Using those values for subsequent
development projects ensures continuous quality improvement for products and
allows project members to step up their skills. After the end of your development
project, check the evaluation metrics to determine whether they have been
achieved. If any metric falls short of or exceeds the target value, analyze
the cause of the failure, the validity of the target value, etc. and (1)	provide	
feedback	on	the	results	to	subsequent	development	projects. At first, you
may feel at a loss as to how to handle project characteristics profiling factors,
reference values for evaluation metrics, and other data. We ask that you stay
the course. Once the development is complete, look back and, if there are any
evaluation metrics that you have failed to achieve or had difficulty in achieving,
(2)	analyze	the	cause	after	the	development	and	make	sure	the	result	is	
reflected	on	subsequent	development	projects.

 Furthermore, as described in Section 2.6, you can always compare the analysis
results of system characteristics profiling with the results for the actual project by
using the ST-SEISMIC scale and feeding back those results to the project so that
the values become appropriate (this does not involve making compromises).

 Accumulating data helps reinforce the project experience. It also means
enhancing the capabilities of the organization. Do not be nervous when faced
with changes in numerical values; take a long-term view and provide continuous
feedback to the project.

Check	8 Do	all	the	project	members	understand	the	importance	of	using	
this	guide	and	how	to	use	it?

 The quality of software is invisible. As discussed in Section 1.2 using an example
of apples, this guide uses a common measure, called evaluation metrics, in a
project in order to make quality as visible as possible.

1654.5 Quality Establishment Using Metrics

Tests

4.4

D
ocum

ents

4.2

Q
uality	Establishm

ent	

Using	M
etrics

4.5

R
eview

s

4.3

Communication	and	Decision	

Making	in	Development

4.1

Q
uality	Establishm

ent	

Using	M
etrics

4.5

Communication	and	Decision	

Making	in	Development

4.1

D
ocum

ents

4.2

R
eview

s

4.3

Tests

4.4

 The use of a measure allows you to (1)	recognize	the	level	of	quality	of	
what	you	are	creating and (2)	understand	what	you	should	be	creating.
To use a measure properly, you need to know what that measure is. Also, by
understanding how to use the measure (how to measure things) and what it is
used for, you can use it more effectively.

 If the project members understand the evaluation metrics and are committed
to the use of those metrics, you can have the members (3)	accumulate	data	
without	forcing them to do so. This will be even more effective.

Processes	and	conventions

In software development, adopting appropriate processes and conventions leads

to higher quality. The reference values for the evaluation metrics are rule-of-thumb

values assumed to be obtained when "appropriate work" is done in the individual

processes. Here, "appropriate work" refers to the act of creating something properly

by means of a defined process according to a defined procedure. The "Embedded

System Development Process Reference" (ESPR) published by SEC will help

you learn about how to define and implement processes and how to write related

documents. If you want to know about the coding practices, the "Embedded System

Development Coding Reference" (ESCR) published by SEC will provide you with the

necessary information. For information about the use of other technical methodologies,

see the individual sections of Chapter 4 in this guide, as well as the list of reference

books at the end.

C o l u m n

Check	9 Do	the	project	members	have	the	time	and	opportunities	to	learn?

 Of course, controlling quality through the application of evaluation metrics is
necessary for quality improvement. It is more important, however, to meet
required specifications and prevent errors or, in other words, to ensure quality
establishment. To do so, the project members need to be constantly improving
their technical skills. Creating a proper system or software requires not only
software engineering technology but also a knowledge of domains, human skills,
and many other kinds of knowledge and technology including management skills,
quality management technology, and element technology. It is also necessary
for your organization to be able to develop technologies needed to create new
products.

 One solution to this is to gather together people having all the necessary
knowledge and skills, but that is difficult to achieve in most cases. There are

166 Chapter 4 Tips for High Quality Establishment

Tests

4.4

D
ocum

ents

4.2

Q
uality	Establishm

ent	

Using	M
etrics

4.5

R
eview

s

4.3

Communication	and	Decision	

Making	in	Development

4.1

Q
uality	Establishm

ent	

Using	M
etrics

4.5

Communication	and	Decision	

Making	in	Development

4.1
a number of ways for project members to gain the necessary knowledge and
skills - e.g., reading books, holding study sessions in the workplace, participating
in seminars, and asking customers for advice. On-the-job training is another
effective method.

 As is evident from the list of reference books given at the end of this document,
many good books are available on the topic. Do your best to obtain and read
some of these books. Also, (1)	the	project	members	should	keep	improving	
their	technical	skills	and	abilities	by	taking	part	in	seminars	or	by	other	
means.

Check	10 Are	the	project	members	clearly	aware	of	their	skill	levels?

 In order for the project members to make effective use of evaluation metrics
and accomplish quality control in ways commensurate with their ability, it is vital
that they have a basic understanding of what they can do. We think that going
through the processes of project characteristics profiling and quality target value
setting will help project members better understand their skill levels.

 Implementing projects, conducting reviews, testing, measuring processes
and products, and summarizing the measured data, which are techniques for
developing products, all require different skills. It is necessary to (1)	identify	
what	kind	of	skill	is	needed	for	each	phase	of	development and (2)	
understand	which	skills	you	possess. If you find that your skills or abilities
is not enough to implement your project, you should consider taking adequate
steps, such as introducing the necessary technology or holding study sessions.

Check	11 Did	you	perform	reviews	during	the	process	from	system	
characteristics	profiling	to	quality	target	value	setting?

 In this guide, we have suggested that you check whether processes and
deliverables have been reviewed thoroughly as a way of measuring quality. Of
course, you should also perform reviews when using this guide. Ensure that (1)	
a	review	is	conducted	whenever	system	characteristics	profiling	or	project	
characteristics	profiling	has	been	done	or	quality	target	values	have	been	
set. Going through the review process or holding discussions with stakeholders
may bring you a new awareness. We think that what is even better is that
(2)	reviews	will	promote	communication	among	the	project	members,	
potentially	helping	them	improve	their	skills	and	raise	their	awareness.

Check	12 Do	you	intend	to	make	the	findings	of	your	quality	quantification	
widely	available	to	the	public?

 In this world, there are many techniques for establishing quality. However,
the knowledge of the target values adopted to evaluate how effectively those
techniques are used and to determine the extent to which they are to be
employed has been confined to individual organizations and has rarely been

1674.5 Quality Establishment Using Metrics

Tests

4.4

D
ocum

ents

4.2

Q
uality	Establishm

ent	

Using	M
etrics

4.5

R
eview

s

4.3

Communication	and	Decision	

Making	in	Development

4.1

Q
uality	Establishm

ent	

Using	M
etrics

4.5

Communication	and	Decision	

Making	in	Development

4.1

D
ocum

ents

4.2

R
eview

s

4.3

Tests

4.4

made public. Through hearings and surveys conducted by SEC, we have also
heard many people say that they want to know how other companies deal
with evaluation metrics or that they are not sure about how to set targets.
We therefore prepared this guide to suggest the metrics to measure, when to
measure them, and their target values. We also understand, however, that these
values, calculated based on the results of hearings with companies, are likely to
change with advances in the rapidly evolving software industry and technology.
We are aware that there is still room for scrutiny and that values in the field will
play a critically important role. We asked a number of companies to submit such
data when preparing this guide but, unfortunately, some declined our request.
We would like the readers of this guide to (1)	provide	feedback	to	SEC on the
actual data for the metrics suggested in this guide, as well as any other relevant
metric data. Your feedback will be reflected in the next version of the guide. In
addition to submitting data to the SEC, you are also encouraged to contribute
to the academic community for the benefit of society. In recent years, there
has been a significant drop in the number of research papers contributed to
academic circles. Paper-driven information disclosure and discussion has been
in the doldrums. Submitting research papers to the academic community not only
makes a major technical contribution but also helps you organize your activities
and provides you with opportunities to hear opinions from more people. It will
benefit both your organization and yourselves.

A
ppendix

168 Appendix

Reference	Books	Appendix	A	

Listed below are the books that we referenced when writing this document, as well as

those that we believe to be useful references for the process from software development

to quality assurance. In recent years, a host of books on software engineering and other

related topics have been published. Of these publications, the list includes books on the

basics and classics that have been read for many years.

Title Author Published	by Published	in

Engineering

Software Engineering:
A Beginner's Guide Roger S. Pressman

McGraw-Hill Science/
Engineering/Math

1988

Software Engineering Ian Sommerville Addison Wesley 2006

SOFTWARE ENGINEERING:
A Practitioner's Approach Roger S. Pressman McGraw-Hill Inc., US

Software testing

The Art of Software Testing
(Business Data Processing) Glenford J. Myers John Wiley & Sons 2004

Software Testing Techniques Boris Beizer
Intl Thomson Computer
Pr (T)

1990

Metrics

Software Quality Analysis and
Guidelines for Success Capers Jones

Intl Thomson Computer
Pr (T)

2000

Applied Software Measurement Capers Jones
Global Analysis of
Productivity and Quality

2008

Practical Software Measurement:
Objective Information for
Decision Makers

John McGarry, David Card,
Cheryl Jones, Beth Layman,
Elizabeth Clark, Joseph
Dean, Fred Hall

Addison-Wesley
Professional

2001

Metrics and Models in Software
Quality Engineering Stephen H. Kan

Addison-Wesley
Professional

2002

Five Core Metrics: The
Intelligence Behind Successful
Software Management

Lawrence H. Putnam and
Ware Myers

Dorset House 2003

Creating a software engineering
culture Karl E. Wiegers Dorset House 1996

Reviews

Software Inspection Tom Gilb, D. Graham
Addison-Wesley
Professional

1993

General

Peopleware
Tom Demarco, Timothy
Lister

Dorset House 1999

Editors
Masayuki HIRAYAMA IPA Software Engineering Center

Satomi YOSHIZAWA IPA Software Engineering Center

Sayuri YAMAGUCHI IPA Software Engineering Center

Yutaka UKON IPA Software Engineering Center

People who attended Article review
Sumio IZAWA NEC Corporation

Naoko UEDA FUJITSU LIMITED

Katsumi OHNO Toyota Technical Development Corp.

Keiko KOGA Hitachi Systems & Services, Ltd.

Fumio SHISHIDO eSOL emBex Inc.

Makoto NONAKA TOYO UNIVERSITY

Fusako MITSUHASHI NEC Corporation

Taro YAMAZAKI Nihon Unisys, Ltd.

ESQR
Embedded System development Quality Reference Guide
Ver.1.0

August 1, 2010
Written and edited by Software Engineering Center,
Information-technology Promotion Agency, Japan

http://www.ipa.go.jp/english/sec/

Copyright © 2010, IPA/SEC

	000iii_hinsitu_tobira_1s
	ESQR)_E_ⅲ-168
	169_QR_oku_

