A <- 4. Definitions -> C


B

   $ B1, B2, or B3 computer system
      (O) /TCSEC/ See: Tutorial under "Trusted Computer System
      Evaluation Criteria".
   $ back door
      1. (I) /COMPUSEC/ A computer system feature -- which may be (a) an
      unintentional flaw, (b) a mechanism deliberately installed by the
      system's creator, or (c) a mechanism surreptitiously installed by
      an intruder -- that provides access to a system resource by other
      than the usual procedure and usually is hidden or otherwise not
      well-known. (See: maintenance hook. Compare: Trojan Horse.)
      Example: A way to access a computer other than through a normal
      login. Such an access path is not necessarily designed with
      malicious intent; operating systems sometimes are shipped by the
      manufacturer with hidden accounts intended for use by field
      service technicians or the vendor's maintenance programmers.
      2. (I) /cryptography/ A feature of a cryptographic system that
      makes it easily possible to break or circumvent the protection
      that the system is designed to provide.
      Example: A feature that makes it possible to decrypt cipher text
      much more quickly than by brute-force cryptanalysis, without
      having prior knowledge of the decryption key.


Shirey                       Informational                     [Page 31]
RFC 4949         Internet Security Glossary, Version 2       August 2007

   $ back up
      (I) /verb/ Create a reserve copy of data or, more generally,
      provide alternate means to perform system functions despite loss
      of system resources. (See: contingency plan. Compare: archive.)
   $ backup
      (I) /noun or adjective/ Refers to alternate means of performing
      system functions despite loss of system resources. (See:
      contingency plan).
      Example: A reserve copy of data, preferably one that is stored
      separately from the original, for use if the original becomes lost
      or damaged. (Compare: archive.)
   $ bagbiter
      (D) /slang/ "An entity, such as a program or a computer, that
      fails to work or that works in a remarkably clumsy manner. A
      person who has caused some trouble, inadvertently or otherwise,
      typically by failing to program the computer properly." [NCSSG]
      (See: flaw.)
      Deprecated Term: It is likely that other cultures use different
      metaphors for these concepts. Therefore, to avoid international
      misunderstanding, IDOCs SHOULD NOT use this term. (See: Deprecated
      Usage under "Green Book".)
   $ baggage
      (O) /SET/ An "opaque encrypted tuple, which is included in a SET
      message but appended as external data to the PKCS encapsulated
      data. This avoids superencryption of the previously encrypted
      tuple, but guarantees linkage with the PKCS portion of the
      message." [SET2]
      Deprecated Usage: IDOCs SHOULD NOT use this term to describe a
      data element, except in the form "SET(trademark) baggage" with the
      meaning given above.
   $ baked-in security
      (D) The inclusion of security mechanisms in an information system
      beginning at an early point in the system's lifecycle, i.e.,
      during the design phase, or at least early in the implementation
      phase. (Compare: add-on security.)
      Deprecated Term: It is likely that other cultures use different
      metaphors for this concept. Therefore, to avoid international
      misunderstanding, IDOCs SHOULD NOT use this term (unless they also
      provide a definition like this one). (See: Deprecated Usage under
      "Green Book".)

Shirey                       Informational                     [Page 32]
RFC 4949         Internet Security Glossary, Version 2       August 2007

   $ bandwidth
      (I) The total width of the frequency band that is available to or
      used by a communication channel; usually expressed in Hertz (Hz).
      (RFC 3753) (Compare: channel capacity.)
   $ bank identification number (BIN)
1. (O) The digits of a credit card number that identify the issuing bank. (See: primary account number.)
      2. (O) /SET/ The first six digits of a primary account number.
   $ Basic Encoding Rules (BER)
      (I) A standard for representing ASN.1 data types as strings of
      octets. [X690] (See: Distinguished Encoding Rules.)
      Deprecated Usage: Sometimes incorrectly treated as part of ASN.1.
      However, ASN.1 properly refers only to a syntax description
      language, and not to the encoding rules for the language.
   $ Basic Security Option
      (I) See: secondary definition under "IPSO".
   $ bastion host
      (I) A strongly protected computer that is in a network protected
      by a firewall (or is part of a firewall) and is the only host (or
      one of only a few) in the network that can be directly accessed
      from networks on the other side of the firewall. (See: firewall.)
      Tutorial: Filtering routers in a firewall typically restrict
      traffic from the outside network to reaching just one host, the
      bastion host, which usually is part of the firewall. Since only
      this one host can be directly attacked, only this one host needs
      to be very strongly protected, so security can be maintained more
      easily and less expensively. However, to allow legitimate internal
      and external users to access application resources through the
      firewall, higher-layer protocols and services need to be relayed
      and forwarded by the bastion host. Some services (e.g., DNS and
      SMTP) have forwarding built in; other services (e.g., TELNET and
      FTP) require a proxy server on the bastion host.
   $ BBN Technologies Corp. (BBN)
      (O) The research-and-development company (originally called Bolt
      Baranek and Newman, Inc.) that built the ARPANET.
   $ BCA
      (O) See: brand certification authority.



Shirey                       Informational                     [Page 33]
RFC 4949         Internet Security Glossary, Version 2       August 2007

   $ BCR
      (O) See: BLACK/Crypto/RED.
   $ BCI
      (O) See: brand CRL identifier.
   $ Bell-LaPadula model
      (N) A formal, mathematical, state-transition model of
      confidentiality policy for multilevel-secure computer systems
      [Bell]. (Compare: Biba model, Brewer-Nash model.)
      Tutorial: The model, devised by David Bell and Leonard LaPadula at
      The MITRE Corporation in 1973, characterizes computer system
      elements as subjects and objects. To determine whether or not a
      subject is authorized for a particular access mode on an object,
      the clearance of the subject is compared to the classification of
      the object. The model defines the notion of a "secure state", in
      which the only permitted access modes of subjects to objects are
      in accordance with a specified security policy. It is proven that
      each state transition preserves security by moving from secure
      state to secure state, thereby proving that the system is secure.
      In this model, a multilevel-secure system satisfies several rules,
      including the "confinement property" (a.k.a. the "*-property"),
      the "simple security property", and the "tranquility property".
   $ benign
      1. (N) /COMSEC/ "Condition of cryptographic data [such] that [the
      data] cannot be compromised by human access [to the data]."
      [C4009]
      2. (O) /COMPUSEC/ See: secondary definition under "trust".
   $ benign fill
      (N) Process by which keying material is generated, distributed,
      and placed into an ECU without exposure to any human or other
      system entity, except the cryptographic module that consumes and
      uses the material. (See: benign.)
   $ BER
      (I) See: Basic Encoding Rules.
   $ beyond A1
      1. (O) /formal/ A level of security assurance that is beyond the
      highest level (level A1) of criteria specified by the TCSEC. (See:
      Tutorial under "Trusted Computer System Evaluation Criteria".)




Shirey                       Informational                     [Page 34]
RFC 4949         Internet Security Glossary, Version 2       August 2007

      2. (O) /informal/ A level of trust so high that it is beyond
      state-of-the-art technology; i.e., it cannot be provided or
      verified by currently available assurance methods, and especially
      not by currently available formal methods.
   $ Biba integrity
      (N) Synonym for "source integrity".
   $ Biba model
      (N) A formal, mathematical, state-transition model of integrity
      policy for multilevel-secure computer systems [Biba]. (See: source
      integrity. Compare: Bell-LaPadula model.)
      Tutorial: This model for integrity control is analogous to the
      Bell-LaPadula model for confidentiality control. Each subject and
      object is assigned an integrity level and, to determine whether or
      not a subject is authorized for a particular access mode on an
      object, the integrity level of the subject is compared to that of
      the object. The model prohibits the changing of information in an
      object by a subject with a lesser or incomparable level. The rules
      of the Biba model are duals of the corresponding rules in the
      Bell-LaPadula model.
   $ billet
      (N) "A personnel position or assignment that may be filled by one
      person." [JCP1] (Compare: principal, role, user.)
      Tutorial: In an organization, a "billet" is a populational
      position, of which there is exactly one instance; but a "role" is
      functional position, of which there can be multiple instances.
      System entities are in one-to-one relationships with their
      billets, but may be in many-to-one and one-to-many relationships
      with their roles.
   $ BIN
      (O) See: bank identification number.
   $ bind
      (I) To inseparably associate by applying some security mechanism.
      Example: A CA creates a public-key certificate by using a digital
      signature to bind together (a) a subject name, (b) a public key,
      and usually (c) some additional data items (e.g., "X.509 public-
      key certificate").
   $ biometric authentication
      (I) A method of generating authentication information for a person
      by digitizing measurements of a physical or behavioral

Shirey                       Informational                     [Page 35]
RFC 4949         Internet Security Glossary, Version 2       August 2007

      characteristic, such as a fingerprint, hand shape, retina pattern,
      voiceprint, handwriting style, or face.
   $ birthday attack
      (I) A class of attacks against cryptographic functions, including
      both encryption functions and hash functions. The attacks take
      advantage of a statistical property: Given a cryptographic
      function having an N-bit output, the probability is greater than
      1/2 that for 2**(N/2) randomly chosen inputs, the function will
      produce at least two outputs that are identical. (See: Tutorial
      under "hash function".)
      Derivation: From the somewhat surprising fact (often called the
      "birthday paradox") that although there are 365 days in a year,
      the probability is greater than 1/2 that two of more people share
      the same birthday in any randomly chosen group of 23 people.
      Birthday attacks enable an adversary to find two inputs for which
      a cryptographic function produces the same cipher text (or find
      two inputs for which a hash functions produces the same hash
      result) much faster than a brute-force attack can; and a clever
      adversary can use such a capability to create considerable
      mischief. However, no birthday attack can enable an adversary to
      decrypt a given cipher text (or find a hash input that results in
      a given hash result) any faster than a brute-force attack can.
   $ bit
      (I) A contraction of the term "binary digit"; the smallest unit of
      information storage, which has two possible states or values. The
      values usually are represented by the symbols "0" (zero) and "1"
      (one). (See: block, byte, nibble, word.)
   $ bit string
      (I) A sequence of bits, each of which is either "0" or "1".
   $ BLACK
      1. (N) Designation for data that consists only of cipher text, and
      for information system equipment items or facilities that handle
      only cipher text. Example: "BLACK key". (See: BCR, color change,
      RED/BLACK separation. Compare: RED.)
      2. (O) /U.S. Government/ "Designation applied to information
      systems, and to associated areas, circuits, components, and
      equipment, in which national security information is encrypted or
      is not processed." [C4009]
      3. (D) Any data that can be disclosed without harm.


Shirey                       Informational                     [Page 36]
RFC 4949         Internet Security Glossary, Version 2       August 2007

      Deprecated Definition: IDOCs SHOULD NOT use the term with
      definition 3 because the definition is ambiguous with regard to
      whether or not the data is protected.
   $ BLACK/Crypto/RED (BCR)
      (N) An experimental, end-to-end, network packet encryption system
      developed in a working prototype form by BBN and the Collins Radio
      division of Rockwell Corporation in the 1975-1980 time frame for
      the U.S. DoD. BCR was the first network security system to support
      TCP/IP traffic, and it incorporated the first DES chips that were
      validated by the U.S. National Bureau of Standards (now called
      NIST). BCR also was the first to use a KDC and an ACC to manage
      connections.
   $ BLACK key
      (N) A key that is protected with a key-encrypting key and that
      must be decrypted before use. (See: BLACK. Compare: RED key.)
   $ BLACKER
      (O) An end-to-end encryption system for computer data networks
      that was developed by the U.S. DoD in the 1980s to provide host-
      to-host data confidentiality service for datagrams at OSIRM Layer
      3. [Weis] (Compare: CANEWARE, IPsec.)
      Tutorial: Each user host connects to its own bump-in-the-wire
      encryption device called a BLACKER Front End (BFE, TSEC/KI-111),
      through which the host connects to the subnetwork. The system also
      includes two types of centralized devices: one or more KDCs
      connect to the subnetwork and communicate with assigned sets of
      BFEs, and one or more ACCs connect to the subnetwork and
      communicate with assigned KDCs. BLACKER uses only symmetric
      encryption. A KDC distributes session keys to BFE pairs as
      authorized by an ACC. Each ACC maintains a database for a set of
      BFEs, and the database determines which pairs from that set (i.e.,
      which pairs of user hosts behind the BFEs) are authorized to
      communicate and at what security levels.
      The BLACKER system is MLS in three ways: (a) The BFEs form a
      security perimeter around a subnetwork, separating user hosts from
      the subnetwork, so that the subnetwork can operate at a different
      security level (possibly a lower, less expensive level) than the
      hosts. (b) The BLACKER components are trusted to separate
      datagrams of different security levels, so that each datagram of a
      given security level can be received only by a host that is
      authorized for that security level; and thus BLACKER can separate
      host communities that operate at different security levels. (c)
      The host side of a BFE is itself MLS and can recognize a security
      label on each packet, so that an MLS user host can be authorized

Shirey                       Informational                     [Page 37]
RFC 4949         Internet Security Glossary, Version 2       August 2007

      to successively transmit datagrams that are labeled with different
      security levels.
   $ blind attack
      (I) A type of network-based attack method that does not require
      the attacking entity to receive data traffic from the attacked
      entity; i.e., the attacker does not need to "see" data packets
      sent by the victim. Example: SYN flood.
      Tutorial: If an attack method is blind, the attacker's packets can
      carry (a) a false IP source address (making it difficult for the
      victim to find the attacker) and (b) a different address on every
      packet (making it difficult for the victim to block the attack).
      If the attacker needs to receive traffic from the victim, the
      attacker must either (c) reveal its own IP address to the victim
      (which enables the victim to find the attacker or block the attack
      by filtering) or (d) provide a false address and also subvert
      network routing mechanisms to divert the returning packets to the
      attacker (which makes the attack more complex, more difficult, or
      more expensive). [R3552]
   $ block
      (I) A bit string or bit vector of finite length. (See: bit, block
      cipher. Compare: byte, word.)
      Usage: An "N-bit block" contains N bits, which usually are
      numbered from left to right as 1, 2, 3, ..., N.
   $ block cipher
      (I) An encryption algorithm that breaks plain text into fixed-size
      segments and uses the same key to transform each plaintext segment
      into a fixed-size segment of cipher text. Examples: AES, Blowfish,
      DEA, IDEA, RC2, and SKIPJACK. (See: block, mode. Compare: stream
      cipher.)
      Tutorial: A block cipher can be adapted to have a different
      external interface, such as that of a stream cipher, by using a
      mode of cryptographic operation to package the basic algorithm.
      (See: CBC, CCM, CFB, CMAC, CTR, DEA, ECB, OFB.)
   $ Blowfish
      (N) A symmetric block cipher with variable-length key (32 to 448
      bits) designed in 1993 by Bruce Schneier as an unpatented,
      license-free, royalty-free replacement for DES or IDEA. [Schn]
      (See: Twofish.)




Shirey                       Informational                     [Page 38]
RFC 4949         Internet Security Glossary, Version 2       August 2007

   $ brain-damaged
      (D) /slang/ "Obviously wrong: extremely poorly designed. Calling
      something brain-damaged is very extreme. The word implies that the
      thing is completely unusable, and that its failure to work is due
      to poor design, not accident." [NCSSG] (See: flaw.)
      Deprecated Term: It is likely that other cultures use different
      metaphors for this concept. Therefore, to avoid international
      misunderstanding, IDOCs SHOULD NOT use this term. (See: Deprecated
      Usage under "Green Book".)
   $ brand
      1. (I) A distinctive mark or name that identifies a product or
      business entity.
      2. (O) /SET/ The name of a payment card. (See: BCA.)
      Tutorial: Financial institutions and other companies have founded
      payment card brands, protect and advertise the brands, establish
      and enforce rules for use and acceptance of their payment cards,
      and provide networks to interconnect the financial institutions.
      These brands combine the roles of issuer and acquirer in
      interactions with cardholders and merchants. [SET1]
   $ brand certification authority (BCA)
      (O) /SET/ A CA owned by a payment card brand, such as MasterCard,
      Visa, or American Express. [SET2] (See: certification hierarchy,
      SET.)
   $ brand CRL identifier (BCI)
      (O) /SET/ A digitally signed list, issued by a BCA, of the names
      of CAs for which CRLs need to be processed when verifying
      signatures in SET messages. [SET2]
   $ break
      (I) /cryptography/ To successfully perform cryptanalysis and thus
      succeed in decrypting data or performing some other cryptographic
      function, without initially having knowledge of the key that the
      function requires. (See: penetrate, strength, work factor.)
      Usage: This term applies to encrypted data or, more generally, to
      a cryptographic algorithm or cryptographic system. Also, while the
      most common use is to refer to completely breaking an algorithm,
      the term is also used when a method is found that substantially
      reduces the work factor.




Shirey                       Informational                     [Page 39]
RFC 4949         Internet Security Glossary, Version 2       August 2007

   $ Brewer-Nash model
      (N) A security model [BN89] to enforce the Chinese wall policy.
      (Compare: Bell-LaPadula model, Clark-Wilson model.)
      Tutorial: All proprietary information in the set of commercial
      firms F(1), F(2), ..., F(N) is categorized into mutually exclusive
      conflict-of-interest classes I(1), I(2), ..., I(M) that apply
      across all firms. Each firm belongs to exactly one class. The
      Brewer-Nash model has the following mandatory rules:
      -  Brewer-Nash Read Rule: Subject S can read information object O
         from firm F(i) only if either (a) O is from the same firm as
         some object previously read by S *or* (b) O belongs to a class
         I(i) from which S has not previously read any object. (See:
         object, subject.)
      -  Brewer-Nash Write Rule: Subject S can write information object
         O to firm F(i) only if (a) S can read O by the Brewer-Nash Read
         Rule *and* (b) no object can be read by S from a different firm
         F(j), no matter whether F(j) belongs to the same class as F(i)
         or to a different class.
   $ bridge
      (I) A gateway for traffic flowing at OSIRM Layer 2 between two
      networks (usually two LANs). (Compare: bridge CA, router.)
   $ bridge CA
      (I) A PKI consisting of only a CA that cross-certifies with CAs of
      some other PKIs. (See: cross-certification. Compare: bridge.)
      Tutorial: A bridge CA functions as a hub that enables a
      certificate user in any of the PKIs that attach to the bridge, to
      validate certificates issued in the other attached PKIs.
      For example, a bridge CA (BCA)                 CA1
      could cross-certify with four                   ^
      PKIs that have the roots CA1,                   |
      CA2, CA3, and CA4. The cross-                   v
      certificates that the roots            CA2 <-> BCA <-> CA3
      exchange with the BCA enable an                 ^
      end entity EE1 certified under                  |
      under CA1 in PK1 to construct                   v
      a certification path needed to                 CA4
      validate the certificate of
      end entity EE2 under CA2,           CA1 -> BCA -> CA2 -> EE2
      or vice versa.                     CA2 -> BCA -> CA1 -> EE1





Shirey                       Informational                     [Page 40]
RFC 4949         Internet Security Glossary, Version 2       August 2007

   $ British Standard 7799
      (N) Part 1 of the standard is a code of practice for how to secure
      an information system. Part 2 specifies the management framework,
      objectives, and control requirements for information security
      management systems. [BS7799] (See: ISO 17799.)
   $ browser
      (I) A client computer program that can retrieve and display
      information from servers on the World Wide Web. Examples: Netscape
      Navigator and Microsoft Internet Explorer.
   $ brute force
      (I) A cryptanalysis technique or other kind of attack method
      involving an exhaustive procedure that tries a large number of
      possible solutions to the problem. (See: impossible, strength,
      work factor.)
      Tutorial: In some cases, brute force involves trying all of the
      possibilities. For example, for cipher text where the analyst
      already knows the decryption algorithm, a brute-force technique
      for finding matching plain text is to decrypt the message with
      every possible key. In other cases, brute force involves trying a
      large number of possibilities but substantially fewer than all of
      them. For example, given a hash function that produces an N-bit
      hash result, the probability is greater than 1/2 that the analyst
      will find two inputs that have the same hash result after trying
      only 2**(N/2) randomly chosen inputs. (See: birthday attack.)
   $ BS7799
      (N) See: British Standard 7799.
   $ buffer overflow
      (I) Any attack technique that exploits a vulnerability resulting
      from computer software or hardware that does not check for
      exceeding the bounds of a storage area when data is written into a
      sequence of storage locations beginning in that area.
      Tutorial: By causing a normal system operation to write data
      beyond the bounds of a storage area, the attacker seeks to either
      disrupt system operation or cause the system to execute malicious
      software inserted by the attacker.
   $ buffer zone
      (I) A neutral internetwork segment used to connect other segments
      that each operate under a different security policy.




Shirey                       Informational                     [Page 41]
RFC 4949         Internet Security Glossary, Version 2       August 2007

      Tutorial: To connect a private network to the Internet or some
      other relatively public network, one could construct a small,
      separate, isolated LAN and connect it to both the private network
      and the public network; one or both of the connections would
      implement a firewall to limit the traffic that could pass through
      the buffer zone.
   $ bulk encryption
      1. (I) Encryption of multiple channels by aggregating them into a
      single transfer path and then encrypting that path. (See:
      channel.)
      2. (O) "Simultaneous encryption of all channels of a multichannel
      telecommunications link." [C4009] (Compare: bulk keying material.)
      Usage: The use of "simultaneous" in definition 2 could be
      interpreted to mean that multiple channels are encrypted
      separately but at the same time. However, the common meaning of
      the term is that multiple data flows are combined into a single
      stream and then that stream is encrypted as a whole.
   $ bulk key
      (D) In a few published descriptions of hybrid encryption for SSH,
      Windows 2000, and other applications, this term refers to a
      symmetric key that (a) is used to encrypt a relatively large
      amount of data and (b) is itself encrypted with a public key.
      (Compare: bulk keying material, session key.)
      Example: To send a large file to Bob, Alice (a) generates a
      symmetric key and uses it to encrypt the file (i.e., encrypt the
      bulk of the information that is to be sent) and then (b) encrypts
      that symmetric key (the "bulk key") with Bob's public key.
      Deprecated Term: IDOCs SHOULD NOT use this term or definition; the
      term is not well-established and could be confused with the
      established term "bulk keying material". Instead, use "symmetric
      key" and carefully explain how the key is applied.
   $ bulk keying material
      (N) Refers to handling keying material in large quantities, e.g.,
      as a dataset that contains many items of keying material. (See:
      type 0. Compare: bulk key, bulk encryption.)
   $ bump-in-the-stack
      (I) An implementation approach that places a network security
      mechanism inside the system that is to be protected. (Compare:
      bump-in-the-wire.)


Shirey                       Informational                     [Page 42]
RFC 4949         Internet Security Glossary, Version 2       August 2007

      Example: IPsec can be implemented inboard, in the protocol stack
      of an existing system or existing system design, by placing a new
      layer between the existing IP layer and the OSIRM Layer 3 drivers.
      Source code access for the existing stack is not required, but the
      system that contains the stack does need to be modified [R4301].
   $ bump-in-the-wire
      (I) An implementation approach that places a network security
      mechanism outside of the system that is to be protected. (Compare:
      bump-in-the-stack.)
      Example: IPsec can be implemented outboard, in a physically
      separate device, so that the system that receives the IPsec
      protection does not need to be modified at all [R4301]. Military-
      grade link encryption has mainly been implemented as bump-in-the-
      wire devices.
   $ business-case analysis
      (N) An extended form of cost-benefit analysis that considers
      factors beyond financial metrics, including security factors such
      as the requirement for security services, their technical and
      programmatic feasibility, their qualitative benefits, and
      associated risks. (See: risk analysis.)
   $ byte
      (I) A fundamental unit of computer storage; the smallest
      addressable unit in a computer's architecture. Usually holds one
      character of information and, today, usually means eight bits.
      (Compare: octet.)
      Usage: Understood to be larger than a "bit", but smaller than a
      "word". Although "byte" almost always means "octet" today, some
      computer architectures have had bytes in other sizes (e.g., six
      bits, nine bits). Therefore, an STD SHOULD state the number of
      bits in a byte where the term is first used in the STD.

A <- 4. Definitions -> C