How to Secure

Your Website

5™ Edition

Approaches to Improve
Web Application and Website Security

April 2011

IT SECURITY CENTER (ISEC)
INFORMATION-TECHNOLOGY PROMOTION AGENCY, JAPAN

Both English and Japanese edition are available for download at:

http://www.ipa.go.jp/security/english/third.html#twebsecurity (English web page)

http://www.ipa.go.jp/security/vuln/websecurity.html

(Japanese web page)

Contents

Preface ..ottt e ettt e e e bt e e e bt e e nte e e rteeebeeeenneeen 2
Organization of This BoOK ... e e 3
INtended REAETcooeeiieeieeee et ettt ettt e 3
What is Revised in the 5th Editioncccooiiiiiiiiiiii e 3
FiXing VUINErabilitiescoooiiiiiiiiiiiiiiiee e e e e e e e e e e e e eenaaneeeeas 4
—Fundamental Solution and Mitigation Measure —cccccccoovivvivveeieeeeeeeiiiiieeeeeeeeeeeeeeneneees 4

1. Web Application Security Implementationccccoeeeivviiiiiiiiieiiiiieeeee e 5
B B < (A] I e Tt (o) o WU 6
1.2 OS Command INJECTIONcoeeiiiireiieeec et eeee e e e e e e e e eannaeeeeeeeeens 10
1.3 Unchecked Path Parameter / Directory Traversal............cccoovvvvveeiiiiiiiiiiiinieeeeeeeeeens 13
1.4 Improper Session ManageImMent..........cccooeivuveeieeeeeeeeeiiieeeeeeeeeeeeecreeeeeeeeeeeeeeareaeeeeeeeeens 16
1.5 CroSS=SIte SCIIPTITE cuvvreiieiiiieeeiiiieeeeriteeeeeireeeesrtreeeestreeesesttreesesstaseeseessraeeessssressesssrens 22
1.6 CSRF (Cross-Site Request FOTZErY).......coovviiiieeiieeieeeeeeeeeeeeeeeeeeeeseeeeeeeeee e 29
1.7 HTTP Header INJeCtion. it eeeeeeaaaeaeaenns 33
1.8 Mail Header INJECTION . ..uuuueieieicccceceeeeeee e ee e e e e e e e e e e e e e e eeeeeeeeeeeaeeeeaaaaaaans 37
1.9 Lack of Authentication and Authorizationc.cceceerviieeciieecieeeee e 40

2. Approaches to Improve Website SE@CUTILYeceeiiiieeeeiiiiieeeeiiieeeeeiieeeeeciree e eeirree e erreeeeenens 42
2.1 SECUTE WED SEIVET ... iiieiiieeiiieeieeeeteeestee ettt eetteesteesstee s steesseeessseeesssaeassesssseenssnennns 42
2.2 Configure DINS SECUTIILYvveiiiiiiiiieiiieee e cieee ettt e e et e e eeire e e e etrree e eetbeeeeeetvaeeeeeavaaeeens 43
2.3 Protect against Network Sniffing..........cccooviiiiiiiiiiiiiiicce e 44
2.4 SeCUTe PASSWOTM.....ccooiiiiiiieeiieeciee ettt ettt et s e e te e et e e esaeeensaeennneeenns 45
2.5 Mitigate Phishing AtEaCKSeeeiiiiiiiiiiiieieee e 47
2.6 Protect Web Applications With WAF ..o 50
2.7 Secure Mobile WEDSITEScccuiiiiiieeiieeeie ettt et e et e et e e 56

N B 07 1T 11 F o <Y T PSPPSR 63
B 70 NS T I 50§ =Ye] o) o WUUU SRRSO 63
3.2 OS Command INJECTIONuveeeieiieieeciireeeee e et eeee et e e e e e e eeetareeeeeeeeeeeeannneeeeas 69
3.3 Unchecked Path Parameters.......ccoccveviiiiiiiiiiie e 72
3.4 Improper Session Management.........cccouveiiiiiiiiiiiiiiiieeiee e e eeeeeieeeee e e eeee e e e e e e eeeenanes 74
3.5 CroSS SIte SCIIPTIIE .ooeeiiieeiiieieiee e e e eeecre et e e e e e eeeect e e e e e eeeeeetareeeeeeeeeeeeeannreeeeeeeeeennnnes 77
3.6 CSRF (Cross-Site Request FOIErY)........ccooiiiieieeieieeeeeeeeeeeeeeeeeeeeeeseeeeeseeseseeeeasesenna 88
3.7 HTTP Header INJECtION........cccooiiiiiiiiiiiiee e e e e e e eeaeaes 93
3.8 Mail Header INJeCtionooooiiiiiiiiiieee e 94

0T 2T PR 97

L o) sy 0 Lol T PR 98

S0 BN sTo) (=4 AR 100

[0 0 1< o) 4] /PSSR 101

CWE Mapping Table......couuiiiiiiiiiie ettt ettt e ettt e e et e e e e eetva e e e e saaveeeeeebseeeeeasbeeeeseenees 105

Preface

Preface

Various websites provide a variety of services on the Internet. According to “Communications Usage

31

Trend Survey””, as of 2011, it is estimated that more than 90 million people use the Internet in Japan and

social interaction through the websites is expected to keep growing.

Meanwhile, the number of security incidents exploiting *“security holes” (vulnerabilities) in the websites
is also on the rise. Recently, they have become for-profit and are getting more vicious. More than 6,500
website vulnerabilities have been reported® to Information-technology Promotion Agency (IPA) since it
started receiving the reports in 2005. Especially, “SQL Injection” is one of the most popular vulnerabilities

reported and seen as a cause of personal information leakage via websites and virus infection of web pages.

To maintain the safety of your website, you need to take appropriate security measures on each website
component. For operating systems or software, you could refer to the security practices common to all
users provided by the vendors and make sure to securely configure the settings or apply security patches.
Web applications, however, tend to be uniquely customized for each website and you need to secure each
web application accordingly. If any security problems are found in a web application already in operation,
it is usually difficult to fix them at the design level and you may need to settle for ad-hoc solutions.
Nevertheless, remember that the best solution is to try not to create security holes when developing a web
application in the first place and achieve the fundamental solution of “vulnerability-free” as much as
possible.

This book makes use of vulnerability information on the software products and web applications
reported to IPA, picking up the vulnerabilities frequently called to attention or with serious impact, and
suggests the fundamental solutions and mitigation measures against them. In addition, it provides some
references on how to improve the security of the websites and a few case studies to illustrate where

developers may fail to secure web applications.

We hope this book will help you secure your website.

! Communications Usage Trend Survey, Ministry of Internal Affairs and Communications (MIC),
http://Avww.soumu.go.jp/johotsusintokei/statistics/statistics05.html (Japanese Only)

2 Appointed by the Ministry of Economy, Trade and Industry (METI), IPA serves as a national contact to receive reports on
security vulnerabilities from the vendors and the general public. For more information, please visit:
http://www.ipa.go.jp/security/vuln/report/index.html (Japanese Only)

2

Preface

Organization of This Book

This book mainly covers the computer software security issues that IPA, as the reporting point and
analyzing agency designated in the Information Security Early Warning Partnership framework, has
regarded as “vulnerability”.

This book consists of three chapters.

Chapter 1 “Web Application Security Implementation” addresses 9 types of vulnerabilities, including
SQL injection, OS command injection and cross-site scripting, and discusses threats these vulnerabilities
may pose and the characteristics of the websites that might be most susceptible to these vulnerabilities. It
also provides fundamental solutions that aim to eliminate the vulnerability altogether and mitigation
measures that try to reduce the damage of attacks exploiting the vulnerability.

Chapter 2 “Approaches to Improve Website Security” addresses 7 topics, including web server security
and anti-phishing measures, and discusses how to improve the security of the websites mainly from
operational perspective.

Chapter 3 picks up 8 types of vulnerability addressed in Chapter 1 and presents case studies, illustrating
what may happen to the vulnerable websites with code examples, what is wrong with them and how to fix
them.

In the appendix of this book, you will find a checklist you could use to assess the security of your

website and a CWE mapping table.

Please note that each solution shown in this book is one example of many other possible solutions and
we do not mean to force the use of them. We have performed the simple tests to evaluate the effectiveness
of the solutions we provided in this book but we do not guarantee that they produce no unexpected side
effects in your environment. Please use this book as a reference to solve the security problems and take

appropriate action accordingly to your environment.

Intended Reader

The intended reader of this book is all of those who involved in website operation, such as web
application developers and server administrators, regardless of whether one is individual or organization.

Especially targeted at the web application developers who have just come to aware of the security issues.

What is Revised in the 5th Edition

In this edition, security issues for mobile websites are added to help understand the problems often faced
when designing a website and approaches to fix the problems.

Also, 2 case studies are added to those introduced in the 4th edition and the total of 8 case studies are
provided with the code examples to help understand what is wrong and how to fix it.

As for the content of each chapter, some changes, such as layout, have been made to improve readability,
but the content and its mapping with the checklist items are unchanged.

Preface

Fixing Vulnerabilities

—Fundamental Solution and Mitigation Measure—

The outcome of security measures differ depending on what you do and what you try to achieve. You

could focus on the measures to eliminate the cause of vulnerability aiming at fundamental solution, or you

could focus on the attacking methods and prevent certain attacks, but you could be still vulnerable to other

types of attacks. Either way, what is important is that you correctly understand the nature of the measure

you have chosen to take and whether the expected result can be achieved with it.

In this book, we divided the web application security measures into two categories based on their nature:

“fundamental solution” and “mitigation measure”.

B Fundamental Solution
Fundamental Solutions discuss “the methods to realize vulnerability-free implementation”. By taking

fundamental solutions, you could eliminate vulnerabilities and thus expect to nullify the attacks

exploiting them.

B Mitigation Measure
Mitigation measures discuss “the methods to mitigate the damage of attacks”. They are different from

fundamental solutions because they do not eliminate the cause of vulnerability, but they reduce the

impact at each of the following phases, from the attack to its damage.

>

Reduce the chance of being attacked

(e.g. do not give out clues that lead to enable attacks)

Reduce the possibility that vulnerability is exploited when being attacked.
(e.g. Sanitize the data that can be used in attacks)

Minimize the damage when vulnerability is exploited

(e.g. access control)

Detect the damage promptly

(e.g. notification email)

Ideally, it is desired to implement fundamental solutions from at the design phase of a web application.

Because mitigation measures do not eliminate the fundamental causes of vulnerability, just implementing

mitigation measures is not desirable. Nonetheless, if fundamental solutions are not implemented perfectly,

mitigation measures can work as safety net. In some cases, the combined use of fundamental solutions and

mitigation measures may work well.

Likewise, when implementing vulnerability countermeasures to the web applications that are already in

operation, it is also desirable to implement fundamental solutions. But if it is not possible because of cost,

time or some other reasons, mitigation measures can work as a temporary measure.

Some mitigation measures may constrain the behavior of the expected functions. When applying

mitigation measures, you should take into account those possible side effects as well.

1.1 SQL Injection

1. Web Application Security Implementation

This chapter discusses the implementation of web application security, picking up the following nine
vulnerabilities®, and shows threats each vulnerability may pose, what types of websites might be most

vulnerable, possible fundamental solutions and mitigation measures.

1) SQL Injection

2) OS Command Injection

3) Unchecked Path Parameter / Directory Traversal
4) Improper Session Management

5) Cross-Site Scripting

6) CSRF (Cross-Site Request Forgery)

7) HTTP Header Injection

8) Mail Header Injection

9) Lack of Authentication and Authorization

% The numbering of the vulnerabilities reflects their severity or impact of possible attacks but does not indicate the priority
you should work on to secure your web site. The priority should be examined based on the environment and status of the
web site in question.

5

1.1 SQL Injection

1.1 SQL Injection

Most of web applications that use a database build an SQL statement (a command to operate the
database) based on user input. This means if the SQL statement-building process is not securely guarded,
attacking and manipulating the database would become possible. This issue is called “SQL Injection
vulnerability” and the attacking method exploiting this vulnerability is called “SQL Injection attack”.

sQL Injection]

SQL injection allows an attacker to manipulate the database with maliciously-crafted requests.

Malicious Website
Attacker

Supply input that would
result in building a
malicious command

Send the command

4

Information
Leak

Web application vulnerable
to SQL injection

B Possible Threats
This vulnerability could allow malicious attackers to:
- View sensitive data stored in the database
- e.g. Disclosure of personal information
- Falsify and/or delete data stored in the database
- e.g. Falsification of web pages, password change, system shutdown
- Bypass login authentication *

All the operations permitted under the privileges of a login account become unauthorizedly
possible.

- Execute OS commands using stored procedures

- e.g. System hijacking, making the target PC a bot (launching point) to attack others

B Websites That Need Special Attention

Regardless of what kind of website it is or who operates it, a website may fall into a victim if a website
runs web applications that interact with database®. If the website uses the database that stores highly

sensitive data, such as personal information, extreme caution is called for.

* It will be discussed also in “1.3 Improper Session Management”.
® Commonly used database engines are: MySQL, PostgreSQL, Oracle, Microsoft SQL Server and DB2.

6

1.1 SQL Injection

B Reported Vulnerabilities®

SQL injection vulnerability is more popular than other vulnerabilities and accounts for about 14 percents
of website-related vulnerabilities reported to IPA during from the time it started receiving the reports to the
end of 2009. Software products, albeit fewer than websites, are also vulnerable to SQL injection and have
been reported to IPA as well. The following are some of those software products, which are now fixed
against this vulnerability.

* MODx Evolution Vulnerable to SQL Injection
http://jvndb.jvn.jp/jvndb/IVNDB-2011-000008

» Aipo Vulnerable to SQL Injection
http://jvndb.jvn.jp/jvndb/JVNDB-2011-000003

* Movable Type Vulnerable to SQL Injection
http://jvndb.jvn.jp/jvndb/IVNDB-2010-000061

B Fundamental Solutions
1-(i)-a
< Build all SQL statements using placeholders.

Usually, the SQL has a mechanism to build an SQL statement using placeholders. It is a mechanism to
put a symbol (placeholder) at the place of the variables in the template of an SQL statement and replacing
it with an actual data value mechanically later. Compared to a method where a web application directly
builds an SQL statement through concatenation, the method that uses placeholders can eliminate the SQL
injection vulnerability since it builds an SQL statement mechanically.

The process of replacing a placeholder with an actual data value is called binding. There are two
binding methods: one is a method where an SQL statement is compiled keeping placeholders in it and the
database engine replaces them with their corresponding actual data values (static placeholder) and the
other is a method where the application’s database connection library performs escaping and replaces the
placeholders with their corresponding actual data value (dynamic placeholder). With the 1SO/IS
standard for SQL, the static placeholder is called the prepared statement.

Both methods will remove SQL injection vulnerability but the static placeholder is more secure since it
will eliminate the chance of SQL injection vulnerability in principal. For more information, see 3.2 of
this book’s supplementary volume, “How to Use SQL Calls to Secure Your Web Sites”.

1-(i)-b

<\When building an SQL statement through concatenation, use a
special API offered by the database engine to perform escaping
and make up the literals in the SQL statement correctly.

When building an SQL statement through concatenation, insert a variable value in the SQL statement

® For the latest information, please refer to: http://www.ipa.go.jp/security/vuln/report/press.html (Japanese Only)

7

1.1 SQL Injection

in the form of a literal. When inserting a value as the string type, you will bracket the value in single
quotes. In that case, you should perform escaping for the string literal to sanitize the special characters
(e.g. “ to “ and \ to \\). When inserting a value as the numeric type, makes it processed as a numeric literal
(e.g. casting it into the numeric type).

What should be done exactly is different depending on the type and settings of the database engine in
use and you should implement what it takes accordingly. Some database engines offer a special API” that
generates a literal as a string. If your engine has one of those APIs, we recommend to use it. For more
information see 4.1 of “How to Use SQL Calls to Secure Your Web Sites”.

This process should be performed not only for the values that may be affected by the external factors
but also for all literals that compose an SQL statement.

1-(ii)
= Do not write SQL statement directly in the parameter to be
passed to the web application.

This may sound absurd but it did happen nevertheless and we feel we should warn you not to directly
write an SQL statement into the parameters, such as hidden, that are to be passed to the web application.
Specifying an SQL statement in a web application parameter directly could lead to a risk of someone

falsifying the value of the parameter and manipulating the database.

B Mitigation Measures

1-(iii)
< Limit information to display in error message on the web
browser.

If an error message contains the information about database engine name or SQL statements which have
caused the error, then malicious users could get useful information for attacking the website. Error
messages can be used not only to give tips for attacking but also to show the result of an attack. It is
recommended not to show error messages related to the database operation on the user’s web browser.

1-(iv)
< Grant minimum privileges to database accounts.

If the privileges of the database account that a web application uses to access to the database is higher
than necessary, the damage the attack could inflict becomes more serious. Examine the commands the
web application needs to interact with the database and give the access account the minimum privileges

just enough to execute those commands.

By implementing these measures, security against SQL injection attacks is expected to improve. For

more information on SQL injection vulnerability and developing web applications that use database, you

7 Depending on the execution environment, some API is reported to have vulnerability where it does not perform escaping
correctly. In that case, apply security patch or use other measure.

8

1.1 SQL Injection

could refer to the following documents as well.

B References

IPA: How to Use SQL Calls to Secure Your Web Site
http://www.ipa.go.jp/security/vuln/documents/website_security_sql_en.pdf

IPA: > TWVET M ?HEHEHE (FLLe<ELY) M. saL1>Pzhiay
http://www.ipa.go.jp/security/vuln/vuln_contents/sql.html (Japanese Only)
http://www.ipa.go.jp/security/vuln/vuln_contents/sql_flash.html (Japanese Only)

IPA: ¥a7-TAYSIVJEE ISQLEA: #1 EEICEITHx%K]
http://www.ipa.go.jp/security/awareness/vendor/programmingv2/contents/502.html
(Japanese Only)

IPA: £¥a7-TAJSIVJHEE ISQLIEA: #2 REICHEITHXEK]
http://www.ipa.go.jp/security/awareness/vendor/programmingv2/contents/503.html

(Japanese Only)

IPA: Information Security White Paper 2009 Part 2: 10 Major Security Threats — Attacking Techniques
Become More and More Sophisticated -)
http://www.ipa.go.jp/security/vuln/documents/10threats2009_en.pdf

IPA: fEHRtF2)T,8E 2008 E 28 NMoXBEH FIFIETTRAGIMEL
http://www.ipa.go.jp/security/vuln/20080527_10threats.html (Japanese Only)

1.2 OS Command Injection

1.2 OS Command Injection

Web applications can be vulnerable in such a way that they allow a remote attacker to execute OS level
commands via those applications. This issue is called “*OS Command Injection vulnerability” and the
attacking method exploiting this vulnerability is called “OS Command Injection attack”.

Vs

0S Command Injection]J

\\

0S command injection allows an attacker to execute unintended OS commands on the web server
with maliciously—crafted requests, which could lead to leaking sensitive information or turning the
server into a bot (launching point) to attack others.

Malicious User

Attacker sends Website
Malicious request

Execute
OS command

containing OS
commands

Inform\;;;n%

Leak

Web application vulnerable to OS
command injection

B Possible Threats
This vulnerability could allow attackers to:
- View, falsify and delete files stored in the server
- e.g. Disclosure of sensitive information, falsification of configuration files
- Maliciously manipulate the system
= e.g. Unintended OS shutdown, adding/deleting user accounts
- Download and execute malicious programs
= e.g. Virus, worm and bot infection, backdoor implementation
- Make the system a launching point to attack others

= e.g. Denial of Service attack, reconnaissance and spamming

B Websites That Need Special Attention

Regardless of what kind of website it is or who operates it, special attention is needed if a website runs
any web applications using the functions that are capable of calling external programs®,

8 Examples of functions capable to call external programs:
Perl: open(), system(), eval()
PHP: exec(), passthru(), shell_exec(), system(), popen()

10

1.2 OS Command Injection

Bl Reported Vulnerabilities

OS command injection vulnerability is found mostly in the web application software written in Perl and

reported to IPA. The following are some of those software products, which are now fixed against this

vulnerability.

* Webservice-DIC yoyaku_v41 Vulnerble to Command Injection
http://jvndb.jvn.jp/jvndb/IVNDB-2009-000060

* Snoopy Command Injection Vulnerability
http://jvndb.jvn.jp/jvndb/JVNDB-2008-000074

* Webmin OS Command Injection Vulnerability

http://jvndb. jvn.jp/jvndb/IVNDB-2007-000730

B Fundamental Solutions

2-(i)

< Avoid using functions which could call shell commands.

Some programming languages used to write web applications have the functions that are capable to call
shell commands, such as the open() function in Perl. The open() function takes a file hame as its
argument and specifying it with “| (pipe)” would call and execute an OS command. That tells it is
dangerous to allow external input to be used as its argument. You should avoid the use of these functions
that can call shell commands® and substitute other functions for them. If you want to write a program to

open a file in Perl, you could do it using the sysopen () without calling a shell command.

B Mitigation Measures

2-(ii)

< When using functions which could call shell commands, check
all variables that make up the shell parameters and make sure
to execute only those that are granted to be executed.

Check all variables to be used as parameter of the functions capable to call shell commands before
they are passed to the parameters to make sure that the system behaves in expected ways. The
recommended method is whitelisting, which makes a list of accepted string patterns for a certain
parameter and reject all others. If a parameter should be numeric, it will see if a string consists of only
numbers. If it finds that the string does not follow the permitted patterns, it will not pass the value to the
parameter and cancel the process.

Blacklisting, on the other hand, makes a list of string patterns likely to be used in OS command
injection attacks, such as “|”, “<” and “>” to rejected and permit all others, but this method has the risk

of missing should-have-been-banned items and hence not recommended.

® See Corrective Measure #1~#3 in 3.2

11

1.2 OS Command Injection

By implementing these measures, security against OS command injection attacks is expected to improve.
For more information on OS command injection vulnerability, you could refer to the following documents

as well.

B References

IPA: FIoTWEIT M ?HFEME (FLLe<ELY) 5.0S avok-(oPzyoay
http://www.ipa.go.jp/security/vuln/vuln_contents/oscmd.html (Japanese Only)
http://www.ipa.go.jp/security/vuln/vuln_contents/oscmd_flash.html (Japanese Only)

IPA: Fa7-TOJUSIVTHE ORI AREXNEK]
http://www.ipa.go.jp/security/awareness/vendor/programmingv2/contents/501.html
(Japanese Only)

12

1.3 Unchecked Path Parameter / Directory Traversal

1.3 Unchecked Path Parameter / Directory Traversal

Some web applications allow to specify the name of files stored on the web server directly using external
parameters. If such web application is not carefully programmed, attackers may specify an arbitrary file and
have the web application execute unintended operations. This issue is called “Directory Traversal

vulnerability” and one of the attacking methods exploiting this vulnerability is called “Directory Traversal
attack”.

r

(Unauthorized Access to Files
L exploiting PathName Parameter

If not careful, web applications that allow to specify a filename as argument could be exploited to
access the files not supposed to be viewed.

ici a =
M aI|C|0 us FrTE REE FTO BRLEADG WO ALTH ‘
Attacker

TELAD I https:// example. jp fcgi—W]ﬂile:. S Ssecrettxt] v @ iBEh
=

|?fiIe=../../secret.txtv/

Contents of the secret.txt file
*Personal Information (address,
name, telephone number

-ID, Password Information
~etc. Leak

[&] R-ThiFETENELE [5 [@ sk v

B Possible Threats
This vulnerability could allow malicious attackers to:
- View, falsify and delete files stored on the server
- Disclosure of sensitive information

- Falsification and deletion of configuration files, data files and source codes

B Websites That Need Special Attention

Regardless of what kind of website it is or who operates it, a website may fall into a victim if a web

application allows to specify a filename directly using external parameters. If the web server stores
sensitive information, such as personal information, as files on the server, extreme caution is called for.

- Examples of web applications that would access the files on the server
- Read web layout templates from the files

= Write user input to a user-specified files

Bl Reported Vulnerabilities

Vulnerabilities related to path parameter account only a few percents of all website-related vulnerabilities

but keep coming up since we started receiving the reports. The following are some of the software products

13

1.3 Unchecked Path Parameter / Directory Traversal
with this issue reported to IPA. The vulnerabilities in these products are now fixed.

* MODx Evolution Vulnerable to Directory Traversal
http://jvndb.jvn.jp/jvndb/IVNDB-2011-000009

- WebCalenderC3 Vulnerable to Directory Traversal
http://jvndb.jvn.jp/jvndb/IVNDB-2010-000003

= P forum Vulnerable to Directory Traversal
http://jvndb.jvn.jp/jvndb/IVNDB-2009-000084

B Fundamental Solutions
3-(i)-a
= Do not specify name of files stored on the web server directly

using external parameter.

When a web application allows a filename to be specified directly using an external parameter, an
attacker could manipulate the parameter specifying arbitrary files and view the file contents that should
not be disclosed. For example, in an implementation case where the name of a file stored in the web
server is specified in the hidden parameter and that file is used in the web page template, an attacker can
output arbitrary file as a web page by manipulating the parameter.

It is recommended that you review the application design and specifications, reconsidering whether it
is indeed necessary to allow to specify the name of files stored in the web server in external parameters
and alternative methods are available.

3-(i)-b
= Use a fixed directory to handle filenames and nullify directory
names in filenames.

Suppose that you are to open a file called “filename” in the current directory and if the file-open
function is implemented like open(filename), an attacker could access an arbitrary file by specifying
the absolute path to the file. To prevent the use of absolute paths, you could use a fixed directory, such as
“dirname”, and code it like open(dirname+filename). However, just doing that still leaves rooms
for directory traversal attacks using “../”. To prevent it, you could use an API, such as basename(),
that extracts only the filename and removes the directory name from a given path like the following:

open(dirname+basename(filename))10,

10 See Corrective Measure in 3.3.

14

1.3 Unchecked Path Parameter / Directory Traversal

B Mitigation Measures
3-(ii)
< Manage file access permission properly.

If access permission to files on the web server is properly implemented and managed, the web server

may be able to prevent attack attempts when a web application tries to open a file in arbitrary directories.
3-(iii)
< Check filenames.

When a filename contains the character strings that are used to specify an arbitrary directory, such as
“/7 7. /7 and “. . \”, cancel the process. Note that if you are using URL encoding and decoding, the
URL encoded values like “%2F”, “..%2F” and “..%5C” or double encoded values like “%252F”,
“..%252F” and “. .%255C” can be interpreted as valid input values for a filename. Make sure to conduct

checking at the appropriate timing.

By implementing these measures, security against attacks abusing path parameters is expected to

improve. For more information on this vulnerability, you could refer to the following documents as well.

B References

IPA: #1I>oTWVETHA ?HEFEMH (FLLCHELY) 4 INRBINTA—BZDEXRF VI T4LIR) kSN

—HIL
http://www.ipa.go.jp/security/vuln/vuln_contents/dt.html (Japanese Only)
http://www.ipa.go.jp/security/vuln/vuln_contents/dt_flash.html (Japanese Only)

IPA: £¥a7-TAJSIVJEBE TOTILMNODT7AILGRERER]
http://www.ipa.go.jp/security/awareness/vendor/programmingv2/contents/402.html
(Japanese Only)

15

1.4 Improper Session Management

1.4 Improper Session Management

Some web applications issue session ID, which is the information to identify the user, to manage sessions.
If session ID is not created and managed properly, an attacker could steal the session ID of a legitimate user
and gain unauthorized access to the services pretending to be the legitimate user. The attacking method

exploiting this vulnerability in session management is called “Session Hijacking”.

Ve

Guessing Session ID]J

(.

Attacker tries to find a mechanism used to create the session ID and guess a valid session ID.

L Website

Malicious
Attacker

)
\Y session ID:sid=abcd1234 |

— ‘ v

/ NI QPSession ID:sid=abcd1235 | ES

1. Attacker . ; Web
analyzes existing 2. Legitimate user logs in] Application
session IDs and

assumes Session ID:sid=abcd1236 |

a mechanism

used to create a H\Session ID:sid=abcd1236 |

session ID) »= Spoofing

3. Attacker guess a valid session ID and }

pretend to be a legitimate user

-

| Stealing Session ID }]

| Attacker steals a legitimate user’ s session ID by setting a trap and/or sniffing network.

network sniffing

the stolen session ID

[1, Legitimate user logs in] Session ID issued to the Website
\ user by the website
7
>
< (7 —
(T) 2-a. User falls into 2-b. Attacker
the trap and gives captures
‘ away her session ID to| | network packets L
— the malicious attacker | and steals the
X;“CLOUrS X session ID V{eb_
acke U ra b set up by Application
1 the attacker
“.‘:-""“‘ m
\f "= Spoofing
Session ID obtained 3. Pretend to be the
4 through the traps and legitimate user using

16

1.4 Improper Session Management

In addition to guessing or stealing session IDs, there is another attack exploiting improper session
management called “Session Fixation”. It occurs when an attacker prepares a session ID and has a target
user use the session ID in some way™ and the target user who is unaware of it logs into the website. If
successful, the attacker could pretend to be the targeted user using his or her session ID, which has been set

up by the attacker, and access the website.

4 7\

Session Fixation]J

(.

Attacker makes a legitimate user use the session ID preobtained by the attacker and pretends to
be the user when the user logs in to the web site using that session ID.

Malicious [1. Attacker obtains a session ID Website
Attacker \
D) i

D

The session ID
issued to the

malicious attacker L

2 . Attacker sends his
session ID to the
legitimate user and

makes the user use it

User

-l“‘

3. User logs in using the session ID V{eb_
sent by the malicious attacker Application

?4 @ -

4 . Attacker's session ID is
accepted and wused by the
legitimate user

2
—,

/
5. Attacker accesses
the website using his

session ID and pretends to W @ Spoofing
\be the legitimate user /

B Possible Threats

If an attack exploiting improper session management succeeds, an attacker could pretend to be a

legitimate user and do the operations permitted to that user. For example, it could allow to:

- Access the services normally available only for the users who have properly
logged in

* e.g. Unauthorized money transfer, purchasing unintended goods, canceling the membership

against the user’s will

11 This becomes possible when session management is implemented in such a way that:
1. aweb application uses the POST method and sets session ID in a hidden parameter to pass it around.
2. a web application sets session ID in a cookie and the user’s web browser is capable to set a cross-domain cookie, which
is an issue called “Cookie Monster” (*1).
3. aweb application sets session ID in a cookie and the web application server is vulnerable to “Session Adoption” (*2).
4. a web application is vulnerable to cross-site scripting (discussed later in 1.5).
*1 “Multiple Browser Cookie Injection Vulnerabilities” http://www.westpoint.ltd.uk/advisories/wp-04-0001.txt
*2 “Session Fixation Vulnerability in Web-based Applications™ http://www.acrossecurity.com/papers/session_fixation.pdf

17

1.4 Improper Session Management

- Add and modify information normally permitted only for the users who have

properly logged in
- e.g. Unauthorized change of application settings (passwords, administrator functions etc.),
writing inappropriate entries

- View information normally available only for the users who have properly

logged in

* e.g. Unauthorized access to personal information, webmails, members-only bulletin board

B Websites That Need Special Attention

Regardless of what kind of website it is or who operates it, special attention is needed with all the
websites that require user login. If the website offers sensitive services, such as making online payment,

ramification would be huge and extreme caution is called for.
- Websites offering online payment
= e.g. Online banking, online trading, online shopping, online auction
- Websites dealing with not-to-be-disclosed/private information
- e.g. Job-hunting websites, community websites, webmails
- Other websites that might offer login feature

- e.g. Access to administrator functions, members-only bulletin board, blogs

B Reported Vulnerabilities

Reports related to improper session management account only a few percents of all website-related
vulnerabilities but it keeps coming up since we started receiving the reports. The following are some of the

software products with this issue reported to IPA. The vulnerabilities in these products are now fixed.

- e-Pares Vulnerable to Session Fixation
http://jvndb.jvn.jp/jvndb/IVNDB-2010-000023

- Active! mail 2003 Session ID Disclosure Vulnerability
http://jvndb.jvn.jp/jvndb/IVNDB-2009-000076

- Predictable Session ID Vulnerability in Serene Bach
http://jvndb.jvn.jp/jvndb/IVNDB-2009-000035

B Fundamental Solutions

4-(i)

< Make session ID hard to guess.

If session ID is generated using a simple algorithm, such as time-based one, it is easy for attackers to

18

4-(ii)

1.4 Improper Session Management

predict what the next session 1D would be' If the session ID is obtained by an attacker, it allows the
attacker to pretend to be the legitimate user and gain unauthorized access to the services limited to the
legitimate user. Make a session ID generation algorithm harder to guess using a mechanism like pseudo
random number generators.

When using a web application that offers the session management mechanism, as long as using the
mechanism, you do not have to generate session IDs on your won. It recommended not to develop a

mechanism to manage session ID but to use a web application product that offers the mechanism.

= Do not use URL parameter to store session ID.

4-(iii)

If session ID is set in a URL parameter, the user’s browser will forward the session ID-embedded URL
to the next website it is accessing through the Referer. If a malicious attacker intercepts it, s’/he could
hijack the session. Store session ID in a cookie or hidden parameter using the POST method to pass it
around.

Some web application servers may automatically turn to use a URL parameter when the user’s browser

is set to reject cookies. In that case, changer the server settings and try to disable the feature.

< Set the secure attribute of the cookie when using HTTPS.

4-(iv)-a

The cookie has the secure attribute which lets the cookie set with this attribute be sent over HTTPS
only. If the secure attribute is not set, an HTTPS cookie can be sent over unencrypted HTTP channels as
well and attackers could obtain cookie information by sniffing the channels. When using HTTPS, make
sure to set the secure attribute. In addition, if you use a cookie in the HTTP communication as well,

create a new cookie, separate from the one used in the HTTPS communication.

< Start a new session after successful login.

Some web applications start a session issuing a session 1D before the user logs in, possibly when the
user first accesses the website, and keep using the same session. This method, however, is vulnerable to
session fixation. You should avoid it and better start a new session after the user has successfully logged
in (manage the session with a new session ID). Make sure to disable the old session ID when replacing it
with the new session 1D, This will ensure that a malicious person cannot access a session newly created
after the user logs in, even if the person tries to access it with the old session ID s/he has managed to

obtain.

12 See Common Mistakes #1~#2 in 3.4

'3 When the pre-login session information needs to be succeeded by the post-login session, be careful about how to copy the
session information. If you shallow-copy an object variable, the pre-login session and post-login session will share and
refer to the same data, thus presenting a risk that a person using the pre-login session ID could access and falsify the
post-login session data. This risk itself can be vulnerability. You could take the deep-copy approach but some of the
problems still remain. We recommend that you disable the pre-login session when the user login is successfully done.

19

1.4 Improper Session Management

4-(iv)-b
= |ssue a secret after login and authenticate the user with it
whenever the user moves around the web site.

Issue a secret separate from the session ID and set it in the cookie after the user has logged in
successfully, and check whether the secret and the value in the cookie presented by the user’s browser are
the same at all web pages the user visits within the website'®. Just like the Fundamental Solution 4-(i)
“Make session ID hard to guess”, use a secure mechanism, such as pseudo random number generators to
issue a secret, or encrypt it.

In case of the following situations , this measure is unnecessary.

= The fundamental measure 4-(iv)-a is being implemented.

= Asession ID is issued only after login in the first place.

B Mitigation Measures
4-(v)
& Use random session ID.

If the session ID is fixed for each user, an attacker can perform session hijacking attacks anytime
without time limitation once the attacker obtains the session ID. Do not use a fixed session ID and create
a new session ID each time the user logs in.
4-(vi)
< Set the cookie’s expiration date with care when storing session
ID in cookie.

A cookie is retained by the browser till its expiration date. If an attacker manages to steal cookies
exploiting the browser’s vulnerability, the attacker could gain access to all the cookies retained at that
time. When creating a cookie, set the expiration date appropriately.

For example, set a short expiration date and make sure that the browser does not retain the cookie
more than necessary.

If the cookie does not need to be retained, you could skip setting the expiration date (expires=), which
results in destroying the cookie when the browser is closed. This method may not yield the expected

result, however, if the user keeps using the same browser retaining the cookie along the way.

By implementing these measures, security against session hijacking attacks is expected to improve. For

more information on session management, you could refer to the following documents as well.

' Some web application servers automatically take this approach.

20

1.4 Improper Session Management

B References

IPA: FIoTWETH ?HETEMHE (FLCwe<{ELY) 6. Eyiar EEBOTE
http://www.ipa.go.jp/security/vuln/vuln_contents/session.html (Japanese Only)
http://www.ipa.go.jp/security/vuln/vuln_contents/session_flash.html (Japanese Only)

IPA: Xa7-70535304 TeyiarvELEY
http://www.ipa.go.jp/security/awareness/vendor/programmingv2/contents/302.html
(Japanese Only)
http://www.ipa.go.jp/security/awareness/vendor/programmingv2/contents/303.html
(Japanese Only)
http://www.ipa.go.jp/security/awareness/vendor/programmingv2/contents/304.html
(Japanese Only)
http://www.ipa.go.jp/security/awareness/vendor/programmingv2/contents/305.html
(Japanese Only)
http://www.ipa.go.jp/security/awareness/vendor/programmingv2/contents/306.html
(Japanese Only)

IPA: By arEHE
http://www.ipa.go.jp/security/awareness/administrator/secure-web/chap6/6_session-1.html
(Japanese Only)

IPA: YL aVEEBDBER
http://www.ipa.go.jp/security/awareness/administrator/secure-web/chap6/6_session-2.html
(Japanese Only)

EEBMBREMERR SSRGS : TCSRFIEISession Fixation JDEEMIREIZDULNT
http://www.ipa.go.jp/security/vuln/event/documents/20060228 3.pdf (Japanese Only)

21

1.5 Cross-Site Scripting

1.5 Cross-Site Scripting

Some web applications output a web page based on user input or HTTP header information, such as
search results, the user registration confirmation page, bulletin boards and web statistics reports. If this
process is not security-conscious, an attacker could embed malicious content, such as arbitrary scripts, into
the output web page. This issue is called “Cross-Site Scripting vulnerability” and one of the attacking
methods exploiting this vulnerability is called “Cross-Site Scripting attack”. It may not harm the website

itself but it would affect the safety of the visitors of the website.

p
Cross-Site Scripting]]

(.

If a web site has a vulnerability that may allow an attacker to feed arbitrary scripts into the web
application, the attacker could exploit it and execute malicious scripts on the user's web browser.

1-a. User visits User's .
A booby-trapped|| the website = web browser Website

web site unaware of the =

trap |

L/
- | 2. Users click the
link and send the
script-embedded
string unknowingly

1-b. Attacker
sends an email
with a phony link

Malicious|

v L) pplication
- —

\”

Cooki\e/%
Disclosed

5. Targeted information
(e.g. cookie) is leaked

3. Application
outputs the
script-embedded
web page

web browser

[4. Scripts are execute

B Possible Threats
This vulnerability could allow malicious attackers to:
- Display a phony web page on the legitimate website
- e.g. Confusion caused by false information
- e.g. Disclosure of sensitive information through phishing attacks
- Steal cookies retained by the web browser

- If session 1D is stored in the stolen cookie, it could lead to spoofing®

= If personal information is stored in the stolen cookie, the sensitive data would be disclosed.

15 The same problem mentioned in “Possible Threats” in “1.4 Improper Session Management”.

22

1.5 Cross-Site Scripting

- Make the browser save arbitrary cookies

- Attacker could launch the session fixation attack making the user use arbitrary session ID*°.

B Websites That Need Special Attention

Regardless of what kind of website it is or who operates it, all websites should be cautious about this
vulnerability. If the website manages the login session using the cookie or includes the web pages that the
phishers tend to pick on, such as a login page and a user registration page asking for personal information,

extra caution should be taken.

- Web page features likely having cross-site scripting vulnerability

* Provide user-input confirmation (e.g. login, user registration and survey)

+ Display the user input values to prompt the user to re-enter data after erroneous input
» Show search results

* Show error messages

- Provide comment/entry feature (blogs, bulletin boards) etc.

Bl Reported Vulnerabilities

Cross-site scripting vulnerability is more popular than other website vulnerabilities and accounts for
about 40 percents of all the vulnerabilities reported during from the time IPA started receiving the report to
the end of 2009. Many software products have been also reported being vulnerable to cross-site scripting.

The following are some of those products, which are now fixed against this vulnerability.

» EC-CUBE Vulnerable to Cross-Site Scripting
http://jvndb.jvn.jp/jvndb/IVNDB-2011-000011

» Cross-Site Scripting Vulnerability in Multiple Rocomotion Products
http://jvndb.jvn.jp/jvndb/IVNDB-2011-000006

» SGX-SP Final and SGX-SP Final NE Vulnerable to Cross-Site Scripting
http://jvndb.jvn.jp/jvndb/IVNDB-2011-000002

B Countermeasures

In this book, we divide the countermeasures against cross-site scripting vulnerability into three

categories based on the nature of the web application.
1) Measures for the web applications that do not permit HTML text input
2) Measures for the web applications that permit HTML text input
3) Measures common to all web applications

The web applications applicable to 1) would be those that offer the features which do not require the use
of HTML tags, such as search engine or user registration. Most web applications will fall under this

category.

%8 For more information on “Session Fixation”, please refer to the page 17

23

1.5 Cross-Site Scripting

The web applications applicable to 2) could be those that require some freedom in terms of data
presentation, such as blogs or bulletin boards. For example, HTML text input may be permitted to

implement a function that lets the users choose the font size or color of the user entry.

Measures under the category 3) are required for the both types of web applications.

1.5.1 Measures for Web Applications That Do Not Permit HTML Text Input

B Fundamental Solutions

5-(i)
< Perform Escaping for everything to be outputted to the web
page.

To prevent cross-site scripting, perform escaping for all web page elements, such as the contents and
the value of the HTML attributes. One way to implement escaping is to replace the special characters
used to control the layout of a web page, such as “<”, “>” and “&”, with the HTML entities “&1t;”,
“>” and “&” respectively. If the web application needs to output the HTML tags, make sure to
enclose all attribute values in double quotation marks, then perform escaping by replacing the double
quotation mark contained in the attribute values with the HTML entity “"”.

In terms of vulnerability prevention, the data that must go through escaping process are input
character strings passed to the web application by the external entity, the values retrieved from database
or files and those generated from arithmetic operation on character strings. However, you could make
sure not to miss anything by taking more consistent approach where all text elements of a web page are
to go through escaping process regardless of whether it is necessary'’.

The output process that needs to include escaping process is not limited to that for the HTTP response.
When changing the contents of a web page dynamically, for example using the document.write
method in JavaScript or the innerHTML property, the same process is required.

5-(ii)
< When outputting URLs in HTML, permit only those that start
with certain patterns, such as “http://” and “https://”.

A URL can start with not only “http://” or “https://” but also with “javascript:”. If a URL
of the resources or the images to be inserted into an HTML page is dynamically created based on the
external input, an attacker could launch cross-site scripting attacks by embedding a script into the URL.
For example, if a web application creates a HTML output page by setting a URL specified by the user
like , the attacker could insert a script by strings that start with “http://”
or “https:://” for the URL value. Take a whitelist approach where only the strings that start with
http:// or https:// are allowed for the URL value.

'7 See 3.5.2.
24

1.5 Cross-Site Scripting

5-(iii)
< Do not dynamically create the content of the <script>...</script>
tag.
If the value for the <script> ... </script> tag is dynamically created based on the external input,

arbitrary scripts could be inserted in there. You could check and nullify risky scripts but it is
recommended not to let the application dynamically set the value for the <script> ... </script> tag

for it would be difficult to determine which scripts are indeed dangerous ones for sure.

5-(iv)
< Do not allow to import stylesheets from arbitrary websites]

= Scripts can be written into stylesheets using a function like expression(). That means that
malicious scripts can be inserted into the web page if the website design allows to import a stylesheet
from arbitrary websites. You could check the imported stylesheet and nullify dangerous scripts but you
would better not to let the application use external stylesheets for it would be difficult to clear them for

absolute sure.

B Mitigation Measures

5-(v)
= Check input values.]

Make the web application have a function to check input values and ask the user to re-enter when they
do not follow certain rules. Know that this cannot prevent a case where the input values are crafted to
generate a script string through arithmetic operation after they have passed the input check. Therefore,

you should not relay solely on this countermeasure.

1.5.2 Measures for Web Applications That Permit HTML text Input

B Fundamental Solutions
5-(vi)
< Create a parse tree from the HTML text input and extract only

the necessary elements that do not contain scripts.

Parse the HTML text input and extract only the elements permitted in the predefined whitelist. When
implementing this measure, think it through carefully for it requires complex programming and the

processing load would be high.

25

1.5 Cross-Site Scripting

B Mitigation Measures
5-(vii)
< Nullify script strings in HTML text input.

Identify script strings included in HTML text input and nullify them. We recommend you nullify those
strings by replacing them with harmless strings. For example, if you would like to replace “<script>” or
“javascript:” with something harmless, you could add an character to those strings like “<xscript>”
or “xjavascript:”. Alternatively, you could delete script strings altogether but which may present a
new risk that removing them will put together a dangerous string in turn18 and is not recommended.

This measure poses the difficulty of extracting all the dangerous strings for sure. Because some web
browsers interpret a string like “java	script:” or “java(linefeed)script:” as
“javascript:”, a simple pattern matching would not do the job. Thus, it is not recommended to relay

on this kind of blacklist approach.

1.5.3 Measures common to all web applications

B Fundamental Solutions
5-(viii)
& Set the charset parameter of the HTTP Content-Type header.

You can set the character code (charset) in the Content-Type filed of the HTTP header like:
“Content-Type:text/html; charset=UTF-8”. When the charset parameter is absent from the
Content-Type header field, the browser assumes the character code based on its own rule and
processes the strings with the assumed character set to display them on the web browser. For example,
some browsers are known to use a particular character code when the first part of the HTML text
contains a certain character string.

If the charset is not specified, an attacker could exploit this browser behavior, have the browser choose
the particular character set intentionally by inserting the certain character string and embed the character
strings that would emerge as scripts when they are processed with that character set.

For example, if the character string
“+ADW-script+AD4-alert(+ACI-test+ACI-)+AdsAPA-/script+AD4-" is inserted into the
HTML text, some browsers would recognize it as a string encoded by UTF-7. If this string is processed
using UTF-7, it becomes “<script>alert(‘test’)</script>” and the script will be executed.

Even if you do perform escaping discussed in 5-(i) and take the countermeasures against cross-site
scripting vulnerability properly, the characters shown above, such as “+ADw-", will not be escaped since
those characters are processed by the web application set with other character codes, such as UTF-8,
EUC-JP or SHIFT _JIS, and not recognized as something that should be escaped.

To prevent this problem, you could perform another escaping for the HTML text assuming it is

'8 See Common Mistake #2 in 3.5.3.
26

1.5 Cross-Site Scripting

encoded by UTF-7 as well, but assuming only UFT-7 is insufficient. There would also be some side
effects that the UTF-7-based escaping may replace a legitimate character string not to be escaped in other
character codes and interfere with the normal operations.

Thus, to solve this issue, it is effective to make sure to specify the charset parameter without omitting
it. Set the character code that the web application intends to handle the character strings when outputting

HTML pages in the Content-Type of the accompanying HTTP header™.

B Mitigation Measures

5-(ix)

= Set the HttpOnly attribute of the cookie and disable the TRACE

method to prevent disclosure of cookie information.

“HttpOnly” is an attribute you can set on the cookie and will deny the scripts within HTML text
access to the cookie. This will prevent the cookies from being stolen even if the website has cross-site
scripting vulnerabilities.

To do this, set the HttpOn1ly attribute in the Set-Cookie HTTP header when creating a cookie like:
“Set-Cookie: [snip]; HttpOnly”.

There are a few things you should know about when adopting this countermeasure.

First, you need to disable the TRACE method on the web server. When the TRACE method is enabled,
if the website has cross-site scripting vulnerability, an attacker could obtain the whole HTTP request
header the browser sends using the attacking method called “Cross-Site Tracing”. An HTTP request
header contains cookie information, thus the cookie will be ‘stolen’ even if the HttpOnly attribute is
set.

Secondly, the HttpOn1ly attribute is not supported by all browsers, thus it is not the solution that could
benefit and protect all website visitors.?.

Understand that this is not the solution that would eliminate all the vulnerabilities cross-site scripting
vulnerability may pose and other threats besides cookie information leak still remain and that it may not
work depending on the web browsers the user uses. After that, decide whether it’s worth adopting to your

website.

By implementing these measures, security against cross-site scripting attacks is expected to improve. For

more information on cross-site scripting vulnerability, you could refer to the following documents as well.

1% W3C Recommendation HTML 4.0.1 says that the browser must follow the priority defined below when deciding which
character set to use (http://www.w3.0rg/TR/html401/charset.html#h-5.2.2).
1. An HTTP "charset" parameter in a "Content-Type" field
2. AMETA declaration with "http-equiv" set to "Content-Type" and a value set for "charset"
3. The charset attribute set on an element that designates an external resource a web application uses the POST method

and sets session ID in a hidden parameter to pass it around.

Thus, it will be recommended specifying the character code in “an HTTP charset parameter in a Content-Type field”.

20 When you use the Basic authentication scheme, the user 1D and password can be stolen as well.

2L For more information on the HTTPOnly-compliant browsers, refer to the following: Browsers Supporting HTTPOnly:
http://www.owasp.org/index.php/HT TPOnly#Browsers_Supporting_ HTTPOnly

21

1.5 Cross-Site Scripting

B References

IPA: #IoTWWETM?HEFTEHE (FL\Ce<ELY) 2. YBRY AR RIYTTF4VT
http://www.ipa.go.jp/security/vuln/vuln_contents/xss.html (Japanese Only)
http://www.ipa.go.jp/security/vuln/vuln_contents/xss_flash.html (Japanese Only)

IPA: £Xa7-TAYS3045 TTa—/\voxtE]
http://www.ipa.go.jp/security/awareness/vendor/programmingv2/contents/601.html
(Japanese Only)
http://www.ipa.go.jp/security/awareness/vendor/programmingv2/contents/602.html
(Japanese Only)

IPA: EHREF1UTABE 2007 FhR 1F3FTEHRIETEHT090 0T ERERY

http://www.ipa.go.jp/security/vuln/documents/2006/ISwhitepaper2007.pdf (Japanese Only)

28

1.6 CSRF

1.6 CSRF (Cross-Site Request Forgery)

Some websites require the users to login to offer their services. Here, if a website does not have a
mechanism to verify whether a request made by a logged-in user is indeed the request intended by the user,
the website may accept a malicious request set up by other external parties. If the website has this
vulnerability, its user could suffer from doing unintended things on the website through the trap set up by
malicious attackers. This issue is called “Cross-Site Request Forgery vulnerability” and the attacking

method exploiting this vulnerability is called “Cross-Site Request Forgery attack”.

e N

CSRF (Cross-Site Request Forgery)
If the website is vulnerable to User mmmm—m| | 1. Userlogs Website
CSRF, a malicious attacker —— in as usual
could have the users execute j —r ~
unintended operations. o -
e i
— 2. A session | 4
ID is created Web application
(for login)

A booby-trapped
website User

3. User remains
logged-in

4. User visits and
views the website
unaware of the trap

5 . User clicks the link,
which sends unintended
malicious requests prepared
by malicious attacker to the
web application

Message
Posting

CSRF-Vulnerable
Application

ol .
Malicious Attacker

B Possible Threats

This vulnerability could allow malicious attackers to®*:

- Access the services normally available only for the users who have properly

logged in
- e.g. Transferring money, purchasing goods or canceling the membership unintended by the user

- Add and modify information normally permitted only for the users who have

properly logged in

+ e.g. Application settings (passwords, administrator functions etc.), writing inappropriate entries

22 Compared to the possible threats by improper session management (discussed in 1.4), one thing may differ that an attacker
may not view information available only for the users who have properly logged in. If an attacker succeeds in an attack
that could enable the further attacks, such as changing password, it could lead to information leak.

29

1.6 CSRF

B Websites That Need Special Attention

The websites that implement session management using the following technologies may be vulnerable to
CSREF attacks.

- Session management using cookies
- Basic Authentication
- SSL Client Authentication

If the website is applicable to the above and offers sensitive services, such as making online payment,

ramification would be huge and extreme caution is called for.
- Websites offering online payment
= e.g. Online banking, online trading, online shopping, online auction
- Other websites that might offer login feature

- e.g. Access to administrator functions, members-only bulletin board and blogs

B Reported Vulnerabilities

Reports related to CSRF vulnerability account only a few percents of all website-related cases but it
keeps coming up since about 2006. An example of the reported cases is a web management interface for the
embedded system, such as network hard disks, reported with this vulnerability. The following are some of

the software products with this issue reported to IPA. The vulnerabilities in these products are now fixed.

- SquirrelMail Vulnerable to Cross-Site Request Forgery
http://jvndb.jvn.jp/jvndb/IVNDB-2009-002207

* Cross-Site Request Forgery Vulnerability in Oracle iPlanet Web Server
http://jvndb.jvn.jp/jvndb/IVNDB-2010-000042

-e-Pares Vulnerable to Cross-Site Request Forgery
http://jvndb.jvn.jp/jvndb/IVNDB-2010-000022

B Fundamental Solutions

¢ 6-(i)-a N\

= Access the web page, in which certain operation is to be
executed, via the POST method with a secret having the
previous web page insert it in its hidden filed, and execute the
requested operation only when the secret is correct.

- J

Let’s see an example where the process transits like the following: “data input page = confirmation

page -> data registration”. First, when outputting the confirmation page, set a secret in a hidden
parameter. The secret can be the session ID used for session management or you can create another ID

(the second session ID) at the time of login. Firstly, when creating a session 1D, you should make sure

30

6-(i)-b

1.6 CSRF

that predicting the session ID is difficult using a mechanism like cryptographically secure pseudo-random
number generators. Secondly, when the registration process receives a request from the confirmation
page, check the value set in the hidden parameter with the secret and proceed to registration procedure
only if they match®. In this way, an attacker cannot launch attacks unless s/he somehow obtains the
secret set in the hidden parameter.

Remember to implement this measure using the POST method?*. If you use the GET method, a secret

will be seeable for the external website through the Referer.

= Ask for password right before executing requested operation

and proceed only when the password is correct.

6-(i)-c

By performing password authentication, the CSRF vulnerability can be eliminated®. This measure
requires change in user interface design specification. If you cannot change the user interface design
specification and the countermeasure you can take is limited to implementation change, consider the
measure discussed in 6-(i)-a or 6-(i)-c.

Compared to the solution 6-(i)-a, this measure may be easier to implement in some cases. For example,
If are using the Basic authentication without session management, a secret needs to be newly created to
implement the measure recommended in 6-(i)-a. In that case, if it is difficult to use a safe pseudo random

number generator or such, this measure can be easier to adopt.

< Check the referrer whether it is the expected URL and proceed

only when the URL is correct.

By checking the Referer information, you could confirm whether the user’s browsing path (transition)
is following the steps that ought to be. If you cannot confirm, do not proceed?26. If the Referer is absent,
stop proceeding as well since an attacker could launch CSRF attacks using a technique that can clear the
Referer.

Depending on the websites, however, an attacker may be able to set a tarp on the targeted website itself
and in this case, this measure may not work properly. In addition, when a user bans to send the Referer in
the browser or personal firewall settings, the user may not be able to use the website and experience

inconvenience. When adopting this measure be sure to care about these issues.

2 See Corrective Measure #1 in 3.6
24 RFC2616, which specifies specification for HTTP/1.1, says we should use the POST method instead of the GET method
when sending confidential data (15.1.3 Encoding Sensitive Information in URI's).
RFC2616 : Hypertext Transfer Protocol -- HTTP/1.1 http://www.ietf.org/rfc/rfc2616.txt
% See Corrective Measure #2 in 3.6.
% See Corrective Measure #3 in 3.6.

31

1.6 CSRF

B Mitigation Measures
6-(ii)
< Notify to the prespecified email address automatically when

important operations have been done.

Email is sent in a post-incident manner and thus cannot prevent CSRF attacks, but it could raise a red
flag that something may be amiss when the attack actually happens. Be careful not to include sensitive

information related to privacy in the body of email.

By implementing these measures, security against CSRF attacks is expected to improve. For more

information on CSRF vulnerability, you could refer to the following documents as well.

B References

IPA: Fl>TWWETH ?EFEMHE (FLCe<HELY) 3. CSRF (YARY A - JUTRL-T+—Dxl))
http://www.ipa.go.jp/security/vuln/vuln_contents/csrf.html (Japanese Only)
http://www.ipa.go.jp/security/vuln/vuln_contents/csrf_flash.html (Japanese Only)

IPA: Xa7-TOJS3VJHE)T XMEE (CSRF) X35k]
http://www.ipa.go.jp/security/awareness/vendor/programmingv2/contents/301.html
(Japanese Only)

EXEBRINHREMRA &ARIEN: [CSRF]&ISession Fixation | DFERIREIZDULNT
http://www.ipa.go.jp/security/vuln/event/documents/20060228 3.pdf (Japanese Only)

IPA: FRtEFaT+BE 2006 FEM VT Y AbEIHS CSRF DFReT]
http://www.ipa.go.jp/security/vuln/documents/2005/ISwhitepaper2006.pdf (Japanese Only)

32

1.7 HTTP Header Injection

1.7 HTTP Header Injection

Some web applications dynamically set the value of the HTTP response header fields based on the value
passed by the external parameters. For example, HTTP redirection is implemented by setting a redirected-to
URL specified in the parameter to the Location header field, or a web application may set the names
entered in a bulletin board to the Set-Cookie header filed. If the process of building an HTTP response
header in such web applications has vulnerabilities, an attacker could add header fields, manipulate the
response body and have the web application generate multiple responses. This issue is called “HTTP
Header Injection vulnerability” and the attack method exploiting this vulnerability is called “HTTP Header
Injection attack”. In particular, the attack that leads the web application to produce multiple responses is
called “HTTP Response Splitting attack”.

(N\

HTTP Header Injection]]

(.

Attacker sets a trap to inject arbitrary response header fields or generate a phony response body,
and when a user visits the booby-trapped website, a phony web page could be displayed, scripts
may be executed or arbitrary cookies can be sent and stored on the user’ s web browser.

A booby-trapped
web page set up
by malicious
attacker

-

Malicious Attacker

User's Website
web browser

1-a. User visits
and views the web
page unaware of
the trap

>
—
- 2. Users click E

* the link and
User’s —4

send malicious
_ email client requeStS Web application
-:I: unknowinalv vulnerable to
3 N

HTTP header
injection

Click !

1-b. Attacker
sends an email
with a phony link

N

Disclosed%

5. Targeted information] [

3. Web application generates
the web page tainted with the
attacker-manipulated header
and/or response body)

(. J

4. Scripts are executed on

(e.g. cookie) is leaked
the user’s web browser

B Possible Threats
This vulnerability could allow malicious attackers to:
- Present the same threats posed by the cross-site scripting vulnerability

If an arbitrary response body is injected, the user’s browser may result in displaying the false
information or be forced to execute arbitrary scripts. Those are the same threats discussed earlier in
1.5 Cross-Site Scripting”.

33

1.7 HTTP Header Injection

- Create arbitrary cookies
When an HTTP Set-Cookie header is inserted, an arbitrary cookie is created and stored in the

user’s browser.

- Poison web cache
HTTP response splitting forces a web server to generate multiple HTTP responses and could
inflict cache poisoning?’, which results in web page falsification, by having a proxy server cache an
arbitrary HTTP response and replacing the original cached web page with it. The users visiting the
victimized website are to view the replaced phony web page. Compared to the cross-site scripting
attack, in which only a targeted individual would fall victim just once right after the attack, the threat

cache poisoning poses would affect a larger number of users and last long time.

HTTP Response Splitting and Cache Poisoning]]

The Split and falsified HTTP responses are cached to a cache server, which results in users
viewing the replaced phony web page when he visits the victimized website.

| Website

1. Attacker sends the attack request to
split an HTTP response and have the
server cache the phony web page B

Web application
vulnerable to HTTP
header injection

Malicious
Attacker

(Cache Server)

Attack Request]

{Response A HResponse B |'

RN . SN

—
as the web page B

2. Attacker’s request splits
the original HTTP response
into multiple responses

3. User sends

adding arbitrary one

request for the web v
ser page B unaware of Phony
cache poisoning Web Page B Web page B
> 1
»/ /¢ SEEEEEEEEEEEER

User views

Original web page B is replaced by the
he phony web page= 9 pag p y

phony web page B |

A

B Websites That Need Special Attention
Regardless of what kind of website it is or who operates it, the websites that dynamically set the value of
the HTTP response header fields, such as the Location header field and the Set-Cookie header field, based

on the values passed by the external parameters should be cautious about this vulnerability. The websites

27 Watchfire Co. has published a paper on HTTP Response Splitting/Cache Poisoning: Watchfire: HTTP Response Splitting,

Web Cache Poisoning Attacks, and Related Topics
http://www.watchfire.com/jp/securityzone/whitepapers.asp (link broken as of January 2010)
Some of the threats discussed in the paper would stem from the vulnerabilities in proxy servers or web servers. Check for
“HTTP Request Smuggling”(*1) and “HTTP Response Smuggling”(*2)” with those products as well for they pose the
similar threats.

*1 Watchfire: “HTTP Request Smuggling” http://www.watchfire.com/jp/securityzone/whitepapers.asp (link broken)

*2 SecurityFfocus: “HTTP Response Smuggling” http://www.securityfocus.com/archive/1/425593/30/0/threaded

34

1.7 HTTP Header Injection

that use cookies for session management and that have set up a reverse proxy should take extra caution.

B Reported Vulnerabilities

Reports related to HTTP header injection vulnerability account only a few percents of all website-related
cases but it keeps coming up since we started receiving the reports. The following are some of the software
products with this issue reported to IPA. The vulnerabilities in these products are now fixed.

+ Active! mail 6 Vulnerable to HTTP Header Injection
http://jvndb.jvn.jp/jvndb/IVNDB-2010-000050

* Web Mailer from CGI RESCUE Vulnerable to HTTP Header Injection
http://jvndb.jvn.jp/jvndb/JVNDB-2009-000024

* Multiple Cybozu Products Vulnerable to HTTP Header Injection
http://jvndb.jvn.jp/jvndb/JVNDB-2007-000814

B Fundamental Solutions
7-(1)-a
< Do not print out HTTP header directly and do it through an HTTP

header API provided by execution environment or programming
lanauaae.

In some web application execution environments, a web application may directly print out an HTTP
response header specifying the fields such as Content-Type. In these cases, if the application prints out
the input value passed by the external parameter straight to the field, line feed characters may be set
along. A line feed character is used to separate the HTTP headers so that allowing line feed insertion may
become the cause of arbitrary header/body injection or response splitting. Since the header structure is
quite complex as you can see in the option of non-breaking space and difficult to take care of everything
manually, you would better use an HTTP header API offered by programming languages or execution
environments.

Note that some execution environments are reported to have vulnerabilities that their HTTP header
API does not handle line feed characters appropriately. If that is the case, apply security patches to
correct the problem, or take the measure 7-(i)-b or 7-(ii) if that is not possible.

7-(1)-b
< |f HTTP header API that offers line feed neutralization is not
available for use, implement it manually.

For example, you may add a non-breaking space after unexpected line feeds, remove the string that
follows the unexpected line feeds?, or stop printing out a web page when detecting the unexpected line

feeds.

2 See Corrective Measure in 3.7.

35

1.7 HTTP Header Injection

B Mitigation Measures

7-(i)
< Remove all line feed characters that appear in the external text
input.

Remove all line feed characters that appear in the input text passed by the external parameters. You
may even want to remove all control characters instead of just line feed characters. Note that if a web
application needs to accept character strings that may contain line feeds, such as input data in the
<textarea> ... </textarea> tags, systematically removing every single line feed from all input

data may hinder the web application’s proper operation and thus caution is advised.

By implementing these measures, security against HTTP header injection attacks is expected to improve.
For more information on HTTP header injection vulnerability, you could refer to the following documents

as well.

B References

IPA: S0 TWEIT M ?IRFTEHE (FL\Le<ELY) [T HTTP AYS (D)3
http://www.ipa.go.jp/security/vuln/vuln_contents/hhi.html (Japanese Only)
http://www.ipa.go.jp/security/vuln/vuln_contents/hhi_flash.html (Japanese Only)

IPA: £Xa7-TAYSIVJHEE THTTP LARVRIZEDF vyl 1SR ERE]
http://www.ipa.go.jp/security/awareness/vendor/programmingv2/contents/603.html
(Japanese Only)

36

1.8 Mail Header Injection

1.8 Mail Header Injection

Some web applications provide a function that sends emails to the particular email addresses about, for
example, the merchandise the users have purchased or survey replies. In general, these email addresses are
prespecified and only the web administrator can change. Depending on how it is implemented, however, an
attacker may be able to set and change them to arbitrary email addresses. This vulnerability is called “Mail
Header Injection” and the attacking method exploiting this vulnerability is called “Mail Header Injection

attack”.

/, N\
Mail Header Injection]]

.

If a web application with an email-sending function has vulnerabilities, an attacker could add
arbitrary email addresses to those registered by the administrator and turn the server into a
launching pad for spam distribution.

Normal Operation Website
Y Administrator
Ut Normal . ~ ~ “p

. Pirennnnnnnnf =G0 > (“A™)
input data P

Emal Form Email address “A” U_nder normal

T ——— specified by the circumstance,
E administrator email is sent to
- the email address
] e o /[specified by the
[administrator
Emalil is sent to
- the email
; Web application address “X”, “Y”
Attack Operation vulnerable to and “Z” specified
Malicious mail header | by malicious
injection attacker
Attacker Specially- [\4&

— crafted : EEEEEEEEEESR eye

input data Email addresses .
unknown to thes L N z
administrator

B Possible Threats

This vulnerability could allow malicious attackers to:

- Third party mail relay

Used as a launching pad for spam distribution.

B Websites That Need Special Attention

The websites that have a function to send the user input data to the administrator via email should be
warned of third party mail relay. For example, a function like the “Contact” or “Survey” form could be

susceptible.

317

1.8 Mail Header Injection

Bl Reported Vulnerabilities

Reports related to the vulnerabilities that enable Third Party Mail Relay attacks account only a few
percents of all website-related vulnerabilities but it keep coming up intermittently since we started
receiving the reports. The following are some of the software products with this issue reported to IPA. The

vulnerabilities in these products are now fixed.

 FORM2MAIL from CGl RESCUE Allows Unauthorized Email Transmission
http://jvndb.jvn.jp/jvndb/IVNDB-2009-000023

» MailDwarf Vulnerability Allows Unauthorized Sending of Emails
http://jvndb.jvn.jp/jvndb/IVNDB-2007-000229

B Fundamental Solutions
8-(i)-a
< Use the fixed values for the header elements and output all

external input to the email body.

LI T3

In a case where the value of email header elements, such as “To”, “Cc”, “Bcc” and “Subject”, is to
be set based on external input, or the data output process to the email sending function is vulnerable, if
the external input is directly used as the output value, the line feed characters included in the external
input will be inserted as unnecessary line breaks. If this is allowed, an attacker could exploit it to insert
arbitrary email headers, alter the email body or send email to arbitrary addresses. It is recommended you
do not use external parameters to set the value of the email header elements?.

8-(i)-b

< |f the fixed values cannot be used for the header, use an
email-sending API offered by the web application’s execution
environment or language.

An example of where you cannot use the fixed value for the header elements is the case that you want
to change the subject.

If you need to use the external input as the header values, it recommended to use an email-sending API
offered by the web application’s execution environment or language. However, some APIs cannot handle
the line feed character appropriately or can insert multiple headers. In those cases, apply security patch or
implement the necessary modification not to allow the line break on your own.

For example, to prevent the line break, you can insert a space or horizontal tab after the line feed
character to have the program process the lines as one continuous line, delete the characters after the line

feed character or stop generating a web page if the line break is detected.

2 See Corrective Measure #1 in 3.8.

38

1.8 Mail Header Injection

8-(ii)

< Do not specify the email addresses in HTML.

This may sound absurd but it did happen nevertheless and we feel we should warn you not to specify
the recipient email addresses directly in the hidden parameter.

Implementation like specifying recipient email addresses directly in a parameter that is to be passed to
the web application may be exploited by the third party mail relay attack by changing the parameter

value.

B Mitigation Measures

8-(iii)
< Remove all line feed characters that appear in the external text
input.

Remove all line feed characters that appear in the input text passed by the external parameters®. You
may even want to remove all control characters instead of just line feed characters. Note that if a web
application performs the removal process on those that may contain line feeds, such as the mail contents,
systematically removing every single line feed from all input data may hinder the web application’s

proper operation and thus caution is advised.

By implementing these measures, security against Mail Header Injection is expected to improve. For

more information on Mail Header Injection, you could refer to the following documents as well.

B References

IPA: I TWETM 2 HEFEME (FLCwo<{ELY) 110, A—)LRIEF#E)
http://www.ipa.go.jp/security/vuln/vuln_contents/mail.html (Japanese Only)
http://www.ipa.go.jp/security/vuln/vuln_contents/mail_flash.html (Japanese Only)

IPA: X277 -TOTSIVTHBE A—ILOEZFPHXIRK]
http://www.ipa.go.jp/security/awareness/vendor/programmingv2/contents/201.html
(Japanese Only)

% See Corrective Measure #2 in 3.8.

39

1.9 Lack of Authentication and Authorization

1.9 Lack of Authentication and Authorization

There are some inadequately designed websites in operation due to lack of the operator’s security
awareness. In this chapter, we will show you the vulnerabilities reported to us that stem form the lack of
important functions such as “authentication” and “authorization”.

1.9.1 Lack of Authentication

B Fundamental Solutions
9-(i)
= When a web site needs access control, implement an

authentication mechanism that requires users to enter some
kind of secret information. such as password.

Normally, when the website handles sensitive information or allows only the owner/provider of each
information to change or edit the information, it needs an authentication mechanism.

However, there was a reported case about a vulnerable website where a user could login to the website
and access the personal information by just providing his or her email address.

Email address is open information available to others and using such information to limit access to
personal information means having almost no authentication mechanism at all®".

Design a web application to require something that people think it should be kept secret, such as

password.

1.9.2 Lack of Authorization Control

B Fundamental Solutions
O-(ii)
< Implement authorization as well as authentication to make sure

that a login user cannot pretend to be other users and access
their data.

When implementing authentication into the website and allowing only the owner/provider of each
information to view or change the information, if more than one user are able to login and use the

services at the same time, you may need to implement authorization with which you control who can do
what.

% paragraph 2 of Article 2 of the Unauthorized Computer Access Law defines “identification code” and (1) says it is “A code
the content of which the access administrator concerned is required not to make known to a third party wantonly;”.
According to this definition, an email address may not be accepted as an identification code and in turn a login mechanism
that requires only email address may not be accepted as an access control mechanism.

The Unauthorized Computer Access Law: http://www.ipa.go.jp/security/ciadr/law199908.html

40

1.9 Lack of Authentication and Authorization

A typical web application equipped with authorization mechanism issues a session ID to each user
upon successful login to implement session management, and obtains the user ID from the user’s session
ID through session variables each time access is made. A simple web application can use such user ID as
a key to allow database search or data modification. In this case, each user can access only his or her
own database entries, thus it can be said that authorization control is implemented in terms of results.

Some websites, however, store the user ID in URL or POST parameters. Such implementation, where
an externally manipulatable user ID is used as a key to allow database operations, leads to the
vulnerability where any login user can pretend to be another user and access supposedly inaccessible
data.

This problem stems from the lack of authorization control. You should implement a mechanism to
verify whether a user ID requesting database access is the same as the user ID of a login user who is
supposed to be issuing that request, or avoid getting the user ID from external parameters and obtain it
through session variables.

In other cases, when a web application uses an order number as a key for database search or data
modification, if the order number is stored in URL or POST parameters, it may lead to the vulnerability
where any login user could set other user’s order number in the URL or POST parameter and gain access
to the order information of the other users, which should be kept private.

The cause of this problem is also the absence of authorization control. Always check whether an order

number used to search the database is indeed an order number the requesting user has authorization over.

4

2.1 Secure Web Server

2. Approaches to Improve Website Security

This chapter discusses the approaches to improve website security. In the previous chapter, we have
shown the solutions and countermeasures against vulnerabilities at the stage of software design and
development. In this chapter, what we provide are solutions and countermeasures you could apply at the
operational level.

2.1 Secure Web Server

To safely operate a website, the administrator should not only secure web applications but also securely
guard the web server. Use the following chapters as reference, and see if your web server’s settings and
operation are secure.

1)
& Check OS and software vulnerability information constantly and
take necessary actions accordingly.

Even though you implement an authentication mechanism to control access to the server, it can be
breached if the attackers exploit the vulnerabilities in OS or applications. Vulnerabilities have been found
on a daily basis. Check vulnerability information provided by OS and software vendors constantly and

update software or practice necessary workarounds.

2)
< Implement an authentication mechanism other than using
passwords for remote server access.

It is a common practice to allow remote access to the web server for management efficiency, but if
authentication is done by just password, its security may be breached by brute force attacks. To ensure
higher security, we recommend the use of a cryptographic authentication method, such as public key

authentication.

3)
< When using password authentication, make sure to use a
sufficiently complex string.

Make a password used to access the web server sufficiently complex. Refer to the following document

for password management as well.

4)
< Disable unused services and delete unnecessary accounts.

If the services unused in operating the website are left enabled on the web server, it is likely for the

administrators to neglect the proper maintenance over those services and keep using old versions full of
42

2.2 Configure DNS Security

vulnerabilities. Likewise, if you allow unnecessary user accounts to be kept alive, they may not be
carefully managed and used wrongly. Make sure to disable unused services and delete unnecessary

accounts.

5)
= Do not place a file you do not intend to make public under the
public directory on the web server.

= Basically, the files under the public directory on the web server are accessible from the outside world.
Even if you do not offer the direct links to those files on the web pages, people can access them by
directly specifying the path. Be careful not to place the files you do not intend others to view under the

public directory on the web server.

B References

IPAIT Security Center
http://www.ipa.go.jp/security/english/index.html

JVN (Japan Vulnerability Notes)
http://jvn.jp/en/

JVN iPedia Vulnerability Countermeasure Information Database)
http://jvndb.jvn.jp/en/

IPA: NRAT—FDEEETE
http://www.ipa.go.jp/security/fyld/contents/soho/html/chapl/pass.html (Japanese Only)

IPA: X277 Web H—/\DEBELERICETHa0 TV

http://www.ipa.go.jp/security/awareness/administrator/secure-web/ (Japanese Only)

2.2 Configure DNS Security

If the administrators are not careful in configuring and operating the domain names or the DNS servers
they are using, malicious attackers could hijack their domain names. If domain names are hijacked, the
visitors to the website can be directed to a phony website prepared by the attacker even though the visitors
type in the correct URL. Domain name hijacking will affect not only website browsing but also emailing,
and basically all Internet services. It may be a DNS issue but should be taken seriously for it will directly

affect the website.

1)

< Check on the registration status on domain names and DNS
servers and take actions accordingly.

Check on the registration status on the domain names and DNS servers and take actions accordingly. If
you are outsourcing the DNS server operation, you should ask the outsourcee to take necessary actions.

For more information, you could refer to the following document as well.

43

2.3 Protect against Network Sniffing
B References

IPA: FAS B DEERE DNS H—/ DR EICBT 5B
http://www.ipa.go.jp/security/vuln/20050627_dns.html (Japanese Only)

2.3 Protect against Network Sniffing

The information to be exchanged between the website and the user may be leaked through network

sniffing. If communication or data is unencrypted, captured information may be used for spoofing or other
malicious purposes.

Network Sniffing D

If communication is unencrypted, information being transmitted over networks may be
eavesdropped and important information can be stolen.

User l User

User transmits Website

authentication
data in plain text
I Password

EEEEEEEIad

Iogin|

Malicious
Attacker

Malicious attacker
eavesdrops and steals
authentication data
User : hanako
Password : FOoB4rbA2

Identity
Theft

Malicious attacker accesses
the website using the user’s ID
and password

Since network sniffing takes place on the communication channel between the website and the user, it is
difficult to prevent it solely by the website through configuration and operation. It is, however, possible to
prevent an attacker to obtain sensitive information even the sniffing itself has succeed by encrypting the
communication between the website and the visitor. Those websites which handle authentication

information or personal information should consider adopting the following countermeasures against
network sniffing.

1)

<= |f the website handles Iimportant
communication.

information, encrypt

A popular way to encrypt communication is to use HTTPS with SSL (Secure Socket Layer) or TLS
(Transport Layer Security). If the website handles information that needs to be securely protected, such

as personal information and authentication information, we recommend you encrypt the communication
channel.

44

2)

2.3 Protect against Network Sniffing
If you have the website on a rental server, know that some rental servers do not support HTTPS. The

websites on those servers are better not to handle important information.

Do not send important information via email to notify the user
and show it on the HTTPS encrypted web page instead.

3)

There are cases where the website needs to inform the users about something important, such as
personal information or password. If you are to send important information over the network, you should
encrypt either communication or information itself in order to counter sniffing. When you need to notify
information that requires encryption, use HTTPS and show it on the secure web page.

When you use email instead, you could encrypt the contents using S/MIME (Secure/Multipurpose
Internet Mail Extensions) or PGP (Pretty Good Privacy) but they require users to set up a use

environment and private key, thus may not be practical.

Encrypt important information that a website operator receives
via email.

When a website is set to send sensitive user input, such as personal information, to the web operator
using the email sending function of a web application, encrypt the data with S/IMIME or PGP. If those
technologies cannot be used, encrypt the email body with other methods.

It is possible to encrypt communication between the mail servers (SMTP oversell) or between the mail
server and the website operator (POP/IMAP over SSL), but it is unsafe because encryption may not be

done on some intermediate channels depending on network configuration.

B References

IPA:BFA—ILDEX21)T1 EFA—ILDREMEZEOHIEMOFIAEE

http://www.ipa.go.jp/security/fy1l8/reports/contents/email/email.pdf (Japanese Only)

2.4 Secure Password

Most common way of implementing user authentication is to use a user ID /password pair. If password

management and processing by the website are inappropriate, the risk of a malicious attacker stealing user

authentication information becomes higher.

45

2.5 Mitigating Phishing Attacks

(Y

Malicious Acquisition of Authentication Information D

(.

Attackers could wrongly obtain the user ID and password by guessing or peaking.

—— Login
Date of birth?
I DD Address?

[fest] Name?
oS Same as user ID?
Atatla(;lz::s I Paseword Dictionary words?

——10

.

i\ J

One way to wrongly obtain the user ID or password is guessing it. This is often tried for the websites
with a simple password scheme full of easy-to-guess passwords. How you display a web page may give out
even more hints for attackers to work on. If the website has an authentication mechanism, be careful about

the following points.

1)
< Set hard-to-guess default passwords.]

When issuing a default password, use secure random numbers to eliminate regularity and, if possible,
make it long and use alphabets, numbers and symbols. If password generation has regularity, an attacker
could register more than once and try to work out the generation mechanism. Some users may never

change their default password, thus making the default password difficult to guess is essential.

2)
< Require users to enter the current password to change
password.

Make sure to require the user to enter the current password to change password.

3)
< Do not give away unnecessary hints in authentication error
message.

When a user makes a mistake in providing authentication information, returning “Password doesn’t
match” on the error page would imply that “the user ID is correct”. This could help an attacker finds out
the user IDs and thus not recommended. Make the error message like “Invalid user ID or password” and

try not to give away clues possibly used to guess authentication information unnecessarily.

46

4)

2.5 Mitigating Phishing Attacks

< Mask password being entered in the password box.

= Mask the password entered by the user with asterisk (*).

B References

PA: +Fa7-T0J530) Ta—HRBARE NRT—RFT4)IL45]
http://www.ipa.go.jp/security/awareness/vendor/programmingv2/contents/101.html

(Japanese Only)

2.5 Mitigate Phishing Attacks

Phishing is malicious action to steal user authentication information and financial information like credit

card numbers by creating phony online banking or shopping websites and luring the Internet users into

visiting them to make the visitors disclose the information. Users need to be diligent to avoiding falling

victim to phishing scam, but some careless websites may hinder the users’ efforts and result in fostering

phishing.

-

\c

Phishing J

Attacker lures the users into visiting an authentic-looking phony website and disclosing
authentication information and/or personal information.

1. User believes a phony website to
be an authentic website and enters
authentication information and credit
card number

Authentic Website Phony Website Set Up by —
_I Malicious Attacker I
a A==
ivp exe wrw smcaow v e exe www smone w-ee /R
ppw,wl ,.:,:;;!m-hd{\.,.._m j SR PFI.-}.@' hetps /Y example comfirdexht j e
S | y — -l B -4
‘“’,axample.Jc example.cam
User e —
J — J_
Password Password
— —
=l =l
£ -SRI 5 | {ua-qat P £) A=-TIETINgLE BN Rt &
User Malicious Attacker

2. Attacker obtains the
valuable information
the user has
unknowingly disclosed

To protect themselves, the users need to be able to check the website they are visiting and verify that it is

the authentic one. The website operators should think of adopting the following methods to allow their

users to confirm the authenticity of the website.

47

1)

2.5 Mitigating Phishing Attacks

Get an Extended Validation (EV) SSL certificate and allow users
to verify who the website operator is.

2)

A server certificate is necessary to properly implement SSL-encrypted communication but it can be
used to verify who the operator of the website is as well. The users can check the server certificate when
a web page requires them to enter their password or credit card number and confirm who the operator of
the website they are dealing with is.

Use a server certificate that is officially issued by CA. Do not use a self-issued certificate for it is
difficult to distinguish a self-issued one from a forged one and does not offer any security.

Some CA services do not support EV SSL certificates. A non-EV SSL certificate, provided it is an
official one, does enable SSL-encrypted communication, but it indicates the website operator with the

server’s hostname, thus is not capable of showing who the operator is.

When using frames, do not generate child frame URL based on
external parameter values.

3)

If a website uses frames and sets a child frame URL based on external parameter values, it is possible
for attackers to exploit this approach for phishing. If an attacker inserts an arbitrary URL into the external
parameter, the user is redirected to a phony website set up by the attacker within the parent frame of the
authentic website. The domain name shown in the address bar will be the correct one and that makes it

difficult for the users to see that the child frame is in fact a phony web page.

When dynamically managing where to direct the user after login
using the redirect function, make sure to permit only URLs
within vour own site’s domain as a redirect-to URL.

When a user tries to access a web page that is accessible only after login, some websites retain the
URL of the web page in a parameter and after the user has logged in successfully, they will redirect the
user to that web page. If the website does not limit the value of the parameter that holds a redirect-to
URL, an attacker could exploit it by setting the URL of a phishing website in the parameter.

Under this phishing attack, a careful user may check if the login screen displayed is authentic, then
confirming that, the user will log in. The user may not, however, keep his or her diligence and check
whether or not the redirected web page is authentic. For example, if a redirected web page, which is a
set-up by the attacker, looks the same as the authentic login screen and says “Login Error. Please Try
Again”, the user would likely conclude that s/he may have mistyped the password and reenter the
authentication information without much suspicion.

Do not allow arbitrary URLS to be set in the redirect URL parameter and permit only the URLSs that are
within your own website’s domain. In addition, make sure to implement this countermeasure into all the

web pages that use the redirect function.

48

2.5 Mitigating Phishing Attacks

For more information on mitigating phishing attacks, you could refer to the following documents as well.

B References

IPA: PKI BE:@Ek iR [EREL/R B FAEBAE)
http://www.ipa.go.jp/security/pki/0@31.html (Japanese Only)

IPA: +Xa7-TOJS3VJHE TEEMHOER]
http://www.ipa.go.jp/security/awareness/vendor/programmingv2/contents/202.html
(Japanese Only)

EXEMREMER: REE Web Y MFIADEREA
http://www.rcis.aist.go.jp/special/websafety2007/ (Japanese Only)

49

2.6 Protect Web Applications with WAF

2.6 Protect Web Applications with WAF

To secure a web application, it is important to make sure to not have vulnerabilities in the first place and
to promptly remove vulnerabilities if found any. While securing the web application itself as far as possible,
the administrator could add another layer of security to its operation using a WAF (Web Application
Firewall) to protect the web application from cyber attacks that try to exploit web application
vulnerabilities.

WAF is a security software or hardware that inspects HTTP traffic (including HTTPS®) between
websites and users, and automatically cut off harmful traffic like cyber attacks. By using a WAF, the
following benefits are expected:

- Protect web applications from cyber attacks that try to exploit
vulnerabilities.
- Detect cyber attacks that try to exploit vulnerabilities.

- Prevent multiple web applications from cyber attacks.

(7 M\

WAF Operation l

HTTP Request
"o e e R ol
Body Body Body
- Message - Message Message
Body Body Body ™

HTTP Response

Net”

@ Malicious HTTP Request

Web Application

Malicious
Attacker

Website

Web Application Firewall
(WAF)

WAF

Depending on the developmental status and operational situation of a web application, making good use
of the WAF may be more effective than taking time and money in modifying the web application.

32 5ome WAF may not monitor and check HTTPS transmission,

50

2.6 Protect Web Applications with WAF

B Cases where use of WAF is more effective
- where modification of application is difficult -

Web application developers should try to make an application vulnerability-free in the first place using
the chapter 1 of this guideline “Web Application Security Implementation”. However, new vulnerabilities
could be found after completing the development of the application. The new vulnerabilities must be taken
care of promptly, but any modification of the application at that stage may be infeasible. Under such
situation, WAF can be used to mitigate the effect of cyber attacks to protect the web application. For

example, WAF would be useful in the following situations.
1) When it is difficult to have the application developer modify the application

= When a vulnerability is found in an application, sometimes it may be difficult to have the application
developer directly modify the application.

When an organization decides to develop an application, it may outsource the application development
to an outside company. When a vulnerability is found in the application, there might be a case where
having the company that developed the application modify the application is difficult (i.e. the company is
no longer in the software development business).

It is possible to have some other company modify the application, but the cost could be much higher

and over budget, making the modification infeasible.
2) When a vulnerability is found in license protected software applications

= When a website is built with commercial products or open source software, it may be difficult to be
actively involved with and make sure of modification of the application.

In recent years, web applications, like wiki and blogging applications, are available both as
commercial and open source software, enabling anyone to use a web application without developing it
oneself.

When a vulnerability is found in those software, it is up to the software developers whether and when
to modify and provide an update version or security patch. If the support period for the software is
already over, it could be possible that the vulnerability is left as it is.

As for open source software, the user organization can confirm the vulnerability and modify the
software if it has the software engineers capable to do it, but not all the user organizations may have the

luxury of the in-house talent.

51

2.6 Protect Web Applications with WAF

B WAF filtering of HTTP traffic

WAF automatically scans HTTP traffic like HTTP requests and HTTP responses between websites and
users based on the WAF rules created by the website administrator. Through its scanning, a WAF checks
whether or not the traffic are “harmful” to the website and the user and filters the traffic. The WAF rules are
set to catch things like the character strings that can be used in cyber attacks to exploit web application
vulnerabilities and parameter types and values defined in the web application specifications®.

When the scanned HTTP packets are deemed “rightful” (judged negative), the WAF forwards the HTTP
packets to the website or the user. On the other hand, when the HTTP packets are deemed “harmful”
(judged positive), the WAF proceeds to execute the preset actions, such as notifying the administrator and
cutting off the transmission, without forwarding the HTTP packets.

Because WAF does this filtering mechanically, sometimes filtering errors occur.

(7 — - N
Positiveand Negative
Judgment
Negative
HTTP Request
M 1 M
S
M ™
R = o
HTTP Response [
User
Positive N\
@ Malicious HTTP Request ¢
coo)~ 090
Web Application

Malicious

Attacker

Website
Web Application Firewall
(WAF)
AN J/

Positive and Negative Judgment

% For example, say, a web application has a parameter named “id”. If the web application expects numeric numbers as the
value for “id”, then any values other than numeric numbers (e.g. a character string “example”) are illegal for the “id”
parameter. To protect this web application with a WAF, you can set a WAF rule that allows only numeric numbers as the
value for the “id” parameter.

52

2.6 Protect Web Applications with WAF

B HTTP filtering errors

Depending on the contents of HTTP packets, sometimes filtering errors occur. There are two types of
errors: false positive and false negative.

False positive is a rightful HTTP packet that gets mistakenly judged harmful. Similarly, false negative is
a harmful HTTP packet that gets mistakenly judged rightful.

When using WAF, the website administrator should take into account the possibility of filtering errors of
false positive and false negative.

(7 N
False Positive and False Negative '

False Positive

HTTP Request

Message
T

Message

False Negative

L .4

Malicious HTTP Request

2 ¢ o [o
Measage I - Message I Message

Body Body Body
Malicious HTTP Response
Attacker

Web Application

Website

Web Application Firewall
(WAF)

False Positive and False Negative

53

2.6 Protect Web Applications with WAF

B False positive and false negative in WAF
1) False Positive
[Causes]

False positive errors in a WAF occur when the WAF rules to filter the HTTP traffic between the web

application to be protected and the user are not properly defined.
[Impact]
The availability of the website is reduced due to the filtering of rightful HTTP packets.

[Examples]
The rightful HTTP packets can be cut off by a WAF if the WAF rules are not well elaborated.

Let’s assume that a WAF rule is defined to detect HTML special characters “<” and “>” and drop
the packet if it contains them to protect the website visitors from cyber attacks that exploit cross-site
scripting vulnerability. In this case, just entering a mathematical expression including “<” and/or
(depending on the rule) “>” will make the WAF cut off the transmission.

In general, WAF rules do not include such obviously standard characters mentioned above, but false

positive is not 100 percent avoidable because of the way the WAF works.
2) False Negative
[Causes]

False negative errors in WAF occur in the following 2 situations:
a) The WAF rules are not defined appropriately to detect harmful HTTP packets.

b) The WAF rules are eased up to minimize the risk of false positive occurrence.
[Impact]

The web application cannot be properly protected from cyber attacks that try to exploit web

application vulnerabilities.

[Examples]
WAF cannot detect harmful HTTP packets because of the behavioral difference between the
WAF and the web application.

When the parameters with the same name exist in the different fields of an HTTP request, such as
a query string, message body and Cookie, how to process the parameters differs depending on the
programming language the web application is written, its middleware and how the web server is
configured. It is reported that taking advantage of this difference® and sending an HTTP request
where a malicious character string built to exploit the web application vulnerability is split into the
same-named multiple parameters may work to avoid the WAF detection.

34 The attacking method that exploits the software’s behavioral difference in handling the same-named parameters is called
HTTP Parameter Pollution (HPP).

54

2.6 Protect Web Applications with WAF

A reference material at the end of this guideline, “HTTP Parameter Pollution”

, shows an example of
this scenario with an open source software ModSecurity. It points out that a WAF rule “select 1, 2, 3”

cannot detect the following HTTP request as harmful .

index.aspx?page=select 1&page=2,3 from table where id=1

When the specifications of a protocol are not clearly defined by the RFC or equivalent documents, the
developers of programming languages, middleware and web servers are left to implement those parts of
the protocol based on their own interpretation. The differences in interpretation and implementation lead
to the differences in the behavior of the software as well as the WAF. Taking advantage of those
differences, the attackers may succeed in avoiding the WAF detection of the attacks that try to exploit

web application vulnerabilities.

B To securely employ WAF

To reduce the risk of false positive and false negative occurrence, it is useful to have a test period during
which the WAF is set not to drop the positive HTTP packets that have matched the WAF rules and just
monitor HTTP traffic. The administrator should use the test period to see if the rightful HTTP traffic is not
mistakenly cut off by the WAF and the WAF rules are appropriately defined to protect the web applications.
Confirming the adequateness of the WAF operation requires good understanding of the web applications to
be protected and expertise on the HTTP and related protocols, and time to test thoroughly. Using the
outside entity capable for the task is a good option, too.

For more information on protecting web application with WAF, you could refer to the following
document as well.

B References

IPA Web Application Firewall (WAF) Guide
http://www.ipa.go.jp/security/vuln/documents/waf_en.pdf

% Luca Carettoni, Stefano diPaola, "HTTP Parameter Pollution”, OWASP AppSec Europe 2009
http://www.owasp.org/images/b/ba/AppsecEU09_CarettoniDiPaola_v0.8.pdf
% The latest version of ModSecurity v2.5.10 + Core Rule Set v2.0.2, as of October 2009, supports the rules to detect HPP.

95

2.7 Secure Mobile Web Sites

2.7 Secure Mobile Websites

Security measures addressed in this book is necessary regardless of whether the website is a PC website
or mobile website®’. However, when creating mobile websites, sometimes the mobile websites require the
different design from those for the PCs due to the restriction of the available functions. This section
discusses the problems often found with the mobile websites and things to take care of. When creating a
mobile website, take into account the issues addressed in this section and consider modifying the design of

the website if necessary.

2.7.1 Issues with Session Management

Until May 2009, the mobile browsers for all models of some mobile phone service providers (hereafter
called “carriers”) did not support the basic HTTP functions like the cookie and Referer. Hence, the mobile

websites were required to design without the use of those functions.

After May 2009, some models of those carriers began to support the cookie and Referer and some still do

not.

The models that do not support the cookie are forced to store the session ID in the URL to manage
sessions. As shown in the fundamental solution 4-(ii) in 1.4, storing a session ID as an URL parameter
generally poses a risk of session hijacking attacks since the browser sends the URL that includes a session
ID through the function that passes the Referer to the linked website. To prevent the risk, some mobile
websites avoid including external links in them or, even if included, the websites are designed to first
redirect to a web page whose URL does not include the session ID before allowing to access external
websites. However, those measures do not solve the fundamental cause and personal information leakage
incidents have kept occurring due to the case where the user publishes the URL and it is reflected by search

engines.

Implementing the workarounds like the above should be avoided as much as possible. It used to be
adequate to decide the implementation method at the carrier level and apply such workarounds only for the
carriers that did not support the cookie, and implement the same, common cookie-based session
management as that for PCs for other carriers. After May 2009, however, one carrier may offer both
cookie-supported and unsupported models, and thus the implementation method should be chosen at the
model level instead of the carrier level.

Under the current circumstance, creating a website using old know-hows that are unique to mobile
environment may endanger the safety of the website. It is necessary to revise the old know-hows.

2.7.2 Issues with Cross-Site Scripting

Moabile phones released before 2009 mostly did not support JavaScript, but after 2009, the models that

supported JavaScript, XMLHttpRequest and some other functions began to come out, getting advanced just

%7 In this section, a mobile website means a web service provided by Japanese mobile carriers (e,g, i-mode and EZweb).

56

2.7 Secure Mobile Web Sites

like PCs.

In the days when mobile browsers did not support JavaScript, it was said that implementing the
countermeasures against cross-site scripting attacks was unnecessary for the mobile websites. However,
not-so-small number of mobile browsers start to support JavaScript these days and implementing the

countermeasures against cross-site scripting attacks is necessary just like for PCs.

2.7.3 Issues with Mobile ID

B What is Mobile ID?

When the users access a website using their mobile phone, sometimes an identifier allocated to the
mobile phone or mobile phone service user (hereafter called “mobile ID”) is sent to the website. The
official name for the mobile ID differs depending on the carriers. Popular examples are “i-mode ID”, "EZ
Number”, “User ID”, “FOMA Terminal Serial Number”, “FOMA Card Serial Number” and “Terminal
Serial Number”. The mobile ID has the following characteristics.

(1) The same mobile ID is sent to all websites.

(2) Itis sent to all websites regardless of whether or not they are the carrier-certified official websites.

(3) It is stored in the HTTP request header (User-Agent header or an extension header unique to each
carrier) and sent to the website.

(4) By changing the settings, the user can stop sending the mobile ID. The default setting is to send the
mobile ID.

57

2.7 Secure Mobile Web Sites

' ™y
[lMobile 1D Transaction ﬂ

/The same Maobile 1D is sent)

This terminal's - __tD all websit_ea]
_Mnl:rile ID =ABCD1234 -

h e
T T T vy

P

\
' Mobile ID = ABCD1234 |—:—>website A

¢ 1 I
Website A | r
|
Welcome | |
OO0 | l':
User Cell Phone |New mails!! :
|

 Mobile ID = ABCD1234 Website B

T

_|

Website B

Fortune Telling
—how is your day

_-_T______..

f--- 8 8 8 8 8 &8 B _§B B | & &8 B B _§ _§ _§ -Il“

going to be?
[Mobile ID = ABCD1234 Website C
(¥l oy B o L
. B2 B
Website C :.L L
i
 Mobile ID = ABCD1234 H—»Website D
: 1 :
e J

At first, some carriers set to send out the mobile ID only to their official websites. After March 2008,
however, all carriers set to send out the mobile ID to all websites. This sped up the use of the mobile 1D
rapidly and the websites with mobile 1D vulnerabilities have been surfaced.

B Vulnerable Authentication using Mobile ID

Some websites authenticate the users using only the mobile ID. Such authentication method is often
called “easy login”. However, since the mobile ID is sent to all websites, it is a public information.
Therefore, just checking if a user entered the correct mobile 1D is not enough to authenticating the user. In
the past, there were two premises to support the validity of the authentication using the mobile ID.

(&) Access to a mobile website is made only through a mobile browser or a mobile website can
distinguish whether the access is made from a mobile browser or other medium.

(b) A user cannot modify the HTTP request header through the mobile browser.
However, these premises do not stand anymore these days.
To meet the premise (a), the websites often implement access control based on the source IP address

using the list of IP addresses provided by the carriers. However, the list is not very reliable because the

58

2.7 Secure Mobile Web Sites

carriers do not guarantee the accuracy, authenticity or recency. In addition, some carriers allow to access

the mobile websites through the PC using the same source IP addresses.

To ensure the safety of the user authentication using the mobile ID, it is necessary that the mobile ID sent
to the mobile website cannot be faked. In reality, due to the broken premise (a), it is known that some
carriers cannot prevent the mobile ID allocated to each terminal from being faked, and depending on the
implementation of the web applications, the mobile ID allocated to each mobile phone service user can be
faked as well®. For that matter, a mobile ID is easily faked with smartphones®.

As described, authenticating the user using the mobile ID is not that easy. We recommend implementing
the same user authentication methods as PCs, such as using the cookie or password, or other safe methods
provided by the carriers. The carriers may give out the information about how to use the mobile ID safely
to the websites that are officially certified by the carriers (so-called “official websites”), but non-official
websites cannot obtain the information. As a result, the safety of the websites may be neglected. For more
information about authentication, see the next section, too.

2.7.4 Issues with Authentication Information

In this section, the issues about authentication information (the information the website uses to

authenticate the user) that are often seen in the mobile websites.

B Use Non-Secret Information as Authentication Information

Authentication information, such as password and PIN, should be secret between the user and the

website.

(30 hitp:/ O login

Login

Email Ipa@exam...
Birthday | 1980| 2| 4

Login

Some websites use a non-secret information like the date of birth as the authentication information, but
people other than the user him- or herself likely know the user’s birth date and it cannot be used as the
authentication information. The safe authentication cannot be achieved with such non-secret information®.

% Session Management Vulnerabilities in Mobile Web Application
http://staff.aist.go.jp/takagi.hiromitsu/paper/scis2011-1B2-2-takagi.pdf

% In this book, smartphones means the mobile devices whose browser directly accesses the mobile services using the HTTP
protocol instead of through the carrier’s gateway.

0 The date of birth and telephone number do not meet the definition of identification code (the code that is not to be easily
shared with the third parties) defined in the Article 2 of the Unauthorized Computer Access Law. Thus, the websites solely
using such information as the authentication information may be considered that they do not offer an access control
protection.

59

http://staff.aist.go.jp/takagi.hiromitsu/paper/scis2011-IB2-2-takagi.pdf�

2.7 Secure Mobile Web Sites

B Issues of Authentication Strength

To prevent the third parties from guessing or finding the authentication information by trial and error, the
websites need to provide the environment where the users could set up and use a sufficiently sophisticated

authentication information.

The mobile phone’s user interface is different from PC and unsuitable for entering a long character string.
For that reason, the mobile websites often end up accepting only the numbers as the authentication

information. However, such authentication can be easily broken.

E
O C) http://1OO/login

Login
Email ipa@exam...
PIN 2648

Login

For example, in the case of using a 4-digit number as the authentication information, there are only

10,000 combinations and the correct combination is very likely obtained by trial and error.

The 4-digit authentication may seem safe since it is widely adopted as a form of identification by the
banks for the ATM transactions or the access to the call centers, but it is valid because the number of times
a user can authenticate him- or herself by try and error is restricted. If it is not restricted, the safety of this

method is lost.

For the websites, restricting the number of times one can try to authenticate by trial and error is quite
difficult in most cases. For example, it can be implemented by locking up the user account after the
authentication attempt is continuously failed for the certain number of times, but such a simple measure
cannot prevent the reverse brute force attack where a third party tries to break the authentication by trial

and error changing the user IDs instead of passwords.

The authentication information is the one and only factor the web service can use and rely on. Do not
limit the authentication information to the numbers and allow the users to use a sophisticated, long

password that consists of alphabets, numbers and symbols.

60

2.7 Secure Mobile Web Sites

B Security and Convenience

A strong password that has a higher password pattern takes time to enter and is burdensome for the users.
For that, when designing a website, the developer may be tempted to design one with a lower password
pattern for convenience instead of security. However, considering the safety of the users, keep the strength
of the password with a higher password pattern and reduce the frequency of entering the password.

£) http:/i 23 /ogin
Login

D ipakun
F]a 5 SWG rd EEREETRERR

Auto-login next time

Login

There are some ways to reduce the frequency to enter the password. A popular example measure is to use
the cookie to issue a session ID effective for the certain period of time*! and consider that the user has
successfully logged-in while the session ID is valid. PC websites often offer the choices to the users
whether or not to use this function with the explanation such as “next time you do not have to log in “ or “it
will keep the logged-in status”

The longer the validity period of the session ID is, the lesser the entry of the password. Consider an

adequate time of period depending on the services provided by the websites.

B Types of Characters Used for Password and Password Pattern

For the PC websites, the users are often recommended to use a password that consists of alphabets,
numbers and symbols in combination. Such password is strong but can be unpractical to be used for the
mobile phone. For the mobile phone, a number-only password is feasible but in that case, we recommend
you increase the number of digits and make sure that the password has a sufficient password patterns. The
figure next page shows that the number of password patterns per popular character combinations for the
password. Use the graph to keep the adequate level of password patterns.

#1 The session ID use here cannot be guessed by the third party. For more information, see Fundamental Solution 4-(i) on
page 18.

61

2.7 Secure Mobile Web Sites

For example, to achieve the same level of the password pattern as an 8-character password that consists
of alphabets (do not discriminate the upper/lower case letters), numbers and symbols, 16 digits are
required. Also, you can see that a 4-digit password has only the same level of the password pattern as a
2-character password that consists of alphabets (do not discriminate the upper/lower case letters), numbers

and symbols.

15 Chars

Pattern 11
(10m) 10

N W 1O N 0 ©

Number Alphabet Alphabet Alphabet Alphabet
(Lower Case (Upper/Lower) (Upper/Lower) (Upper/Lower)

Only) +Number +Number

+Symbol

Type of Characters

62

3.1 Case Studies (SQL Injection)

3. Case Studies

Up to this chapter, we have shown the vulnerability measures for the web application and the approaches
to improve the website security. In this chapter, we will present two cases of failure where vulnerabilities
were not properly taken care of and show some examples of how to fix them.

3.1 SQL Injection

In this section, we will show sample user authentication programs, which fail to properly counter the
SQL Injection vulnerability.

Bl PHP and PostgreSQL

[Vulnerable Implementation]

$query
$result

“"SELECT * FROM usr WHERE uid = '$uid' AND pass = '$passh’;
pg_query($conn, $query);

PHP

The above is part of source code implementing user authentication.

$uid in the first line is the user ID to be provided by the user. $passh is a hash value the web
application calculates based on the password the user enters. In the first line, the web application uses
these variables to compose an SQL statement and assigns them to $query. The pg_query () function®
in the second line is a PostgreSQL function provided by PHP and executes $query, which is the SQL
statement set in the first line. This sample program, however, lacks escaping process for the $uid value,
which allows an attacker to launch SQL injection attacks by inserting a specially-crafted value that would

turn into a malicious SQL statement.
[What’'s Wrong?]

Like in this case, if a web application does not perform escaping for the values passed by the external
parameters, it may cause execution of unexpected SQL statements.
For example, suppose a user enters “taro'--" as user ID, the SQL statement to be sent to the

database will be the following:

SELECT * FROM usr WHERE uid = 'taro'--' AND pass ='eefd5bc2...'

SQL

The single quote () used in the SQL statement above is a special character, which defines a string
literal by enclosing a data string within a pair of single quotes. Likewise, two consecutive hyphens (--)
are a special character which tells the database to ignore everything that comes after it as comments.
Which means the database will ignore [AND pass = eefd5bc2..] when the value [taro’ --] is set in $uid.

As a result, the SQL statement to be sent to and executed by the database would become like this.

42 ng_query: http://jp.php.net/manual/en/function.pg-query.php
63

3.1 Case Studies (SQL Injection)

SELECT * FROM usr WHERE uid = 'taro’'--

SQL

What it means is that if a user account "taro” does exist in the database, the attacker could log in
without knowing taro’s corresponding password. What’s more, not only bypassing user authentication but
also arbitrary database manipulation becomes possible by just changing a string to feed into $uid. This
problem is caused by the fact that the web application does not perform escaping for the value of the
elements that compose an SQL statement.

The pg_query () function is capable of executing multiple SQL queries. If this function is vulnerable
to SQL injection, an attacker could insert more queries in addition to the original one, which will

heighten the threats. The below is an example illustrating this issue.

// Set two SQL queries in $query

$query = "SELECT item FROM shop WHERE id = 1;
SELECT item FROM shop WHERE id = 2;"

$result = pg_query($conn, $query);

PHP

[Corrective Measure #1]
Use the prepared statements

Use the pg_prepare() function®® or the pg_execute() function® instead of the pg_query()

function.

$result = pg_prepare($conn, "query", 'SELECT * FROM usr WHERE uid= $1 AND pass=$2);
$result = pg_execute($conn, "query", array($uid, $passh));

PHP

The pg_prepare() function and the pg_execute () function are PostgreSQL functions provided in
PHP 5.1.0 and later and supported only by PostgreSQL 7.4 and later.

The pg_prepare() function generates a prepared statement. Its third argument is an SQL statement
where the variables are referred to using the placeholders (bind variables) $1, $2... without actual value.

The pg_execute() function executes the prepared statement the pg_prepare() function has
created. When the placeholders are used in a prepared statement, the pg_execute() function converts
each element of the third argument ($uid and $passh in this case) into a string and set them in the
corresponding placeholders (called “binding”) and executes the completed SQL statement. The use of

placeholders saves you from explicitly performing escaping.

3 pg_prepare: http:/jp.php.net/manual/en/function.pg-prepare.php
44 pg_execute: http:/jp.php.net/manual/en/function.pg-execute.php

64

http://jp.php.net/manual/ja/function.pg-prepare.php�
http://jp.php.net/manual/ja/function.pg-execute.php�

3.1 Case Studies (SQL Injection)

[Corrective Measure #2]
Use the function equipped with a placeholder capability

Use the pg_query_params () function® instead of the pg_query () function.

$result = pg_query_params($conn, 'SELECT * FROM usr WHERE uid = $1
AND pass = $2', array($uid, $passh));

PHP

The pg_query_params() function is a PostgreSQL function provided in PHP 5.1.0 and later*® and
supported only by PostgreSQL 7.4 and later.

The pg_query_params() function does not create a prepared statement but is equipped with a
placeholder capability. It takes an SQL statement in which placeholders ($1, $2, ...) are used as the
second argument and the actual values for the placeholders as the third argument. The use of placeholders

saves you from explicitly perform escaping.

[Corrective Measure #3])

Use an escape function

Use the pg_escape_string() function*” and perform escaping for all elements in an SQL statement

to be executed by the pg_query () function.

$query = "SELECT * FROM usr WHERE uid = '".pg_escape_string($uid)."’

AND pass = '".pg_escape_string($passh). 5
$result = pg_query($conn, $query);

PHP

The pg_escape_string() function is a PostgreSQL function provided in PHP 4.2.0 and later and
supported only by PostgreSQL 7.2 and later. It will escape the special characters designated in
PostgreSQL.

You can write an escape function yourself but it will be difficult to cover all the special characters that
have a unique meaning in PostgreSQL, thus not recommended. Use pg_escape_string() and it will
perform necessary escaping automatically.

In the code above, $passh goes through escaping process as well. $passh is a hash value calculated
from the password and unlikely to be exploited in SQL injection attempts. Nevertheless, we recommend
performing escaping for these internally processed elements like $passh as well. This will save you
from checking all elements whether or not you should perform escaping for them. With a complex
program, doing that may be impractical and even create a cause of vulnerability by missing what you
should have performed escaping for. We recommend that you uniformly perform escaping for all the

elements that make up an SQL statement.

5 pg_query_params: http:/jp.php.net/manual/en/function.pg-query-params.php
6 Support for PHP4 has been discontinued since December 31, 2007. All PHP4 users are encouraged to upgrade to PHP5.
PHP4 end of life announcement: http://www.php.net/index.php#2007-07-13-1
4" pg_escape_string: http:/jp.php.net/manual/en/function.pg-escape-string.php
65

http://jp.php.net/manual/ja/function.pg-query-params.php�
http://www.php.net/index.php#2007-07-13-1�
http://jp.php.net/manual/ja/function.pg-escape-string.php�

3.1 Case Studies (SQL Injection)

B PHP and MySQL

[Vulnerable Implementation]

$query = "SELECT * FROM usr WHERE uid = '$uid' AND pass = '$passh'";
$result = mysql query($query);

PHP
This is part of source code implementing user authentication.
Same as the problematic implementation shown above in 1-1) PHP and PostgreSQL, this sample
program also lacks escaping process for the input value for $uid, which allows an attacker to launch

SQL injection attacks by inserting a specially-crafted value that would turn into a malicious SQL

statement.

[Corrective Measure #1])

Use the prepared statements

Instead of the mysql_query() function, use the mysqgli extension®, such as mysqli_prepare()*,

mysqli_stmt_bind_param()* and mysqli_stmt_execute()®.

// Create a prepared statement

$stmt = mysqli_prepare($conn, "SELECT * FROM usr WHERE uid= ? AND pass = ?");
// Bind $uid and $passh to the SQL statement (corresponding placeholders)
mysqli_stmt_bind_param($stmt, "ss", $uid, $passh);

// Execute the SQL statement

mysqli_stmt_execute($stmt);

PHP

The mysqli_prepare(), mysqli_stmt_bind_param() and mysqli_stmt_execute()
function are MySQL functions provided in PHP mysqli extension and supported only by MySQL 4.1.3
and later.

The mysqli_prepare() function generates a prepared statement. The second argument is the
prepared statement where an SQL statement is expressed using the placeholder “?” without actual value.

The mysqli_stmt_bind_param() function binds the actual data value (bind value) to the
placeholders within the prepared statement created by the mysqli_prepare() function. The third and
later arguments ($uid and $passh in this case) are the bind values. The second argument “ss” indicates
the type of the bind values (s for string). Since both elements, $uid and $passh, are the “string” type,
two ss are set.

The mysqli_stmt_execute() function executes the completed prepared statement. The use of

these functions saves you from explicitly performing escaping.

8 Mysqli extension: http:/jp2.php.net/manual/en/ref.mysqli.php

49 mysqli_prepare: http://jp.php.net/manual/en/function.mysqli-prepare.php

% mysqli_stmt_bind_param: http://jp.php.net/manual/en/mysgli-stmt.bind-param.php
%! mysqli_stmt_execute: http:/jp.php.net/manual/en/function.mysgli-stmt-execute.php

66

http://jp.php.net/manual/ja/function.mysqli-prepare.php�
http://jp.php.net/manual/en/mysqli-stmt.bind-param.php�
http://jp.php.net/manual/ja/function.mysqli-stmt-execute.php�

3.1 Case Studies (SQL Injection)

[Corrective Measure #2]

Use an escape function

Use the mysql_real_escape_string() function® to perform escaping for all elements that make up

an SQL statement to be executed by the mysql_query () function.

$query = "SELECT * FROM usr WHERE uid = '".
mysql_real_escape_string($uid)."' AND pass =

mysql_real_escape_string($passh). ;
$result = mysql query($query);

PHP

The mysql_real_escape_string() function is a MySQL function provided in PHP 4.3.0 and

later. It will escape the MySQL special characters.
You can write an escape function yourself but it will be difficult to make sure to cover everything and

thus not recommenced.
Likewise, to make sure you escape everything you need to, we recommend that you uniformly perform

escaping for all the elements that make up an SQL statement including internally processed ones, such as

$passh.
H Perl (with DBI)

[Vulnerable Implementation]

$query = "SELECT * FROM usr WHERE uid = '$uid’' AND pass = '$passh'";
$sth =$dbh->prepare($query);
$sth->execute();

\Perl

This is part of source code implementing user authentication. This example uses a standard database
interface module called DBI*® commonly used with Perl.

To access the database, it uses database handles (e.g. the prepare method) or statement handles (e.g. the
execute method). This sample program, however, lacks escaping process for the input value for $uid and

allows an attacker to launch SQL injection attacks by inserting a specially-crafted value that turns into a

malicious SQL statement.

[What’'s Wrong?]

This sample demonstrates a common but dangerous coding error when using Perl DBI.

The prepare() method in the DBI module generates a prepared statement and does support
placeholders. Likewise, the execute() method executes the prepared statement created by the
prepare () method and it is also capable of binding if the prepared statement contains the placeholders.

What’s wrong in this sample program is that it does not use the placeholders nor perform escaping

even though a composed SQL statement contains exploitable variables, which makes this application

vulnerable to SQL injection attacks.

%2 mysql_real_escape_string: http:/jp.php.net/mysql_real_escape_string
%% DBI: http://dbi.perl.org/about/
67

http://jp.php.net/mysql_real_escape_string�
http://dbi.perl.org/about/�

3.1 Case Studies (SQL Injection)

[Corrective Measure #1]

Use prepared statements with placeholders

$sth =$dbh->prepare("SELECT * FROM usr WHERE uid = ? AND pass = ?");
$sth->execute($uid, $passh);

\Perl

When composing an SQL statement in the prepare() method of the DBI module, use the
placeholder “?” in the place of variables. Then, specify the bind values to be set to the placeholders in the

execute() method.

[Corrective Measure #2]

Use an escape function

Use the quote () method in the DBI module and perform escaping for the variables.

$sth = $dbh->prepare("SELECT * FROM usr
WHERE uid =".$dbh->quote($uid)." AND
pass =".$dbh->quote($passh));

$sth->execute();

~Per|

The quote () method will take in a string specified in its argument, escape the special characters in

the string and return the output after enclosing it with double quotes.

What it recognizes as the special characters differs from database engine to database engine and it is an
issue that must be dealt with when performing escaping. DBI provides a set of drivers, called DBD
(DataBase Drivers) to adapt to various database engines. The quote() method in DBI lets DBD handle

the database engine differences and offers the user transparency to this issue.

68

3.2 Case Studies (OS Command Injection)

3.2 OS Command Injection

In this section, we will present a sample mail sending program that is vulnerable to OS command
injection.

B A Perl program that invokes the sendmail command

[Vulnerable Implementation]

$from =~ s/"[;|"[<|>I\|| //ig;
open(MAIL, "|/usr/sbin/sendmail -t -i -f $from");

\Perl

The above is part of a program that sends an email with the email address that the user has input in the
web form as the sender.
The input email address is stored in the variable $from. The first line removes the special shell

characters ", ;, ', <, >, | and space from the content of $from. The second line invokes the OS’s
sendmail command to start a mail sending process and passes the content of $from to a command line
option.

Despite the sanitization in the first line, this implementation is still vulnerable to OS command

injection.
[What’'s Wrong?]

In this implementation, if the value of $from is someone@example.jp, the following command is

executed as it is meant to be.

/usr/sbin/sendmail -t -i -f someone@example.jp

sh

However, if the value of $from is maliciously crafted and " touch[@x09]/tmp/foo™ (where
[0x09] means horizontal tabulation) is entered, the following command will be executed and an OS

command injection attack could be successfully done.

/usr/sbin/sendmail -t -i -f “touch[©x@9]/tmp/foo”

il

The back quote () is a shell meta-character that executes any sell command put between the back
quotes and returns the command output to the command line. In the sample program, the double quote
and single quote are sanitized but the back quote is left untouched. This neglect resulted in allowing an
attacker to execute arbitrary command.

In addition, removing the space in the first line of the sample program may give a false sense of
assurance that an attacker cannot freely specify command line options even if s/he could execute
arbitrary command. However, using the horizontal tabulation [0x09] like the above enables the attacker
to specify arbitrary command line options as well. Here, the horizontal tabulation works as a separating

character just like the space.

69

3.2 Case Studies (OS Command Injection)

What character has what sell functionality differs depending on the kind of shells. Do not sanitize the

characters with wild guess or the sanitization will likely end up incomplete.

[Corrective Measure #1]
Use libraries

By stopping invoking OS commands, the underlying cause of the OS command injection vulnerability
will be removed. See if the functionality presently enabled by invoking OS commands can be done using

the existing libraries.

use Mail::Sendmail;
%mail = (From => $from, ..);
sendmail(%mail);

\Perl

The task of the sample program is to send an email. With a mail sending library MAIL: :Sendmail,

you can still execute the task while fundamentally removing OS command injection vulnerability.

[Corrective Measure #2]
Not to put the parameter value in the command line

If substitutable libraries are unavailable and you cannot stop using the commands, there is still a
chance you can remove the OS command injection vulnerability by changing the way to invoke the

command.

$from =~ s/\r|\n//ig;
open(MAIL, '|/usr/sbin/sendmail -t -i');

print MAIL "From: $from\n";

\Perl

In the sample program, specifying the sender’s email address using the command line option was what
it led to the vulnerability. However, it is not mandatory to specify the sender’s email address through the
command line option and it could be specified in the email header through the command’s standard input.
This way, the value of $from is not used in the command line and therefore remove the OS command
injection vulnerability.

Note that if you modify the program like the above, you may make the program vulnerable to email
header injection now. Make sure that the value of $from does not contain the link break characters. See

the corrective measure #2 in 3.8 as well.

[Corrective Measure #3]
Invoke the commands without shell access

If substitutable libraries are unavailable and you cannot stop using the commands, there is still a
chance you can remove the OS command injection vulnerability by invoking the command without shell

access.

open(MAIL, '|-') || exec '/usr/sbin/sendmail', '-t', '-i', '-f', '$from';

70 |Perl

3.2 Case Studies (OS Command Injection)

In Perl, you can invoke the command directly without shell access. The code above executes the same
functionality as the second line of the sample program. Even if the value of $from contains the special

shell characters, the OS command injection vulnerability is harmless because the shell commands are not
to be executed.

1

3.3 Case Studies (Unchecked Path Parameters)

3.3 Unchecked Path Parameters

In this section, we present a sample file display program with unchecked path parameter vulnerability.

B A PHP program that opens and displays the file content to the screen

[Vulnerable Implementation]

$file_name = $ GET['file_name'];
if(!file_exists($file name)) {

$file_name = 'nofile.png’;
}
$fp = fopen($file_name, 'rb');
fpassthru($fp);

PHP

The above is part of a program that opens and displays the contents of the specified file to the screen.
The $file_name variable in the first line is replaced by the name of a file specified in the file_name
parameter in a URL. If the file indeed exists, the fopen() function in the fifth line opens it and the
fpassthru() function in the sixth line outputs its contents to the screen. If the file does not exist, the
contents of the nofile.png file is outputted. The fundamental premise here is that only the files stored
in the server’s public directory are to be specified in a URL.

This implementation simply ignores the possibility where a file name set in a URL may be an absolute

path or contain . ./, which makes the program vulnerable to directory traversal.

[What's Wrong?]

In this implementation, if the file_name parameter in a URL is set with /etc/passwd, the contents
of /etc/passwd will be outputted to the screen.

By predefining an accessible directory like the following, you could prevent an absolute path from
being set for a file path parameter. However, setting a relative path that refers to the upper directories in a
URL, like ../../../etc/passwd, still allows the contents of /etc/passwd to be disclosed on the

screen.

$file_name = $ GET['file_name'];
$dir = '/home/www/image/'; //predefine the directory
$file path = $dir . $file_name;
if(!file_exists($file path)) {

$file_path = $dir . 'nofile.png';

}
$fp = fopen($file path,'rb');
fpassthru($fp);

PHP

[Corrective Measure]

Extract only the file name from the path parameter

By extracting just the file name from the path parameter using the functionalities that come with OS or

programming languages, the underlying cause of the path parameter directory traversal vulnerability will

12

3.3 Case Studies (Unchecked Path Parameters)

be removed.

$dir = '/home/www/image/"';
$file name = $ GET['file_name'];

if(!file_exists($dir . basename($file_name))) {

$file_name = 'nofile.png';
}
$fp = fopen($dir . basename($file_name), 'rb');
fpassthru($fp);

PHP

basename() is a function that extracts only a file name (excl. directories) from the path parameter
value. By using the basename () function, only the file name is extracted for use even if an absolute path
or relative path using ../ is specified, and the path parameter directory traversal vulnerability will be

removed.

13

3.4 Case Studies (Improper Session Management)

3.4 Improper Session Management

In this section, we present a sample session ID generation program with session management

vulnerability.
B Session ID Generation with Perl

[Vulnerable Implementation]

sub getNewSessionId {
my $sessid = getlLastSessionId ('/tmp/.sessionid');
$sessid++;
updatelLastSessionId ('/tmp/.sessionid', $sessid);
return $sessid;

}

\Perl

The above is part of a program that generates a session ID. This program calls the
getNewSessionId() function and generates a session ID. The getNewSessionId() function returns
a session ID as incrementing the number stored in the /tmp/.sessionid file.

With this implementation, the session ID can be easily guessed, making it vulnerable to session

hijacking.
[What’'s Wrong?]

In this implementation, the session ID is a number and issued in sequence from 1, and then 2, 3, 4, and
so on. The program stores the latest session ID in the /tmp/.sessionid file. When an attacker
accesses the website, a new session ID is issued to the attacker as well. For example, if the session ID
issued for the attacker is “3022”, it is quite likely that the session ID “3021” is also valid at that time. By
accessing the website using the session ID “3021”, the attacker could hijack the other user’s session that
are allocated with the session 1D “3021”.

To prevent such session hijacking attacks, the session ID should be generated using a pseudo random

number generators.

[Common Mistake #1]
Generate a session ID based on the information easily guessable by the third party

sub getNewSessionId {
my $sessid = time() . '_' . $%;

return $sessid;

}

\Perl

This program uses a value that is made up by combining the UNIX timestamp>* and the process ID as

the session ID. Here, a new process is created upon access to the website through CGI.

% The number of seconds since midnight, January 1, 1970. Also called “the Epoch”.

14

3.4 Case Studies (Improper Session Management)

When the getNewSessionId() function is called, the program concatenates the UNIX timestamp
(the time() function), an underscore (_), and the process ID (the variable “$$™), and returns the
resulting string as a session ID. For example, a session ID of “1295247752_27554" will be returned.

This program is vulnerable to session hijacking attacks that exploit the easiness of guessing the session
IDs.

Let’ s suppose that 10 sessions were created in one minute after the time the attacker established his or
her session. The attacker can figure out the process ID used in his or her session to connect the web
application from the session ID issued for the attacker. In general, a process ID is issued in sequence for
new processes. If the process ID issued for the attacker’ s session was “27554”, the attacker can guess
that the process ID for other users’ session would be “27555”, “27556 ... “27564”. Next, if the
attacker’s UNIX timestamp was “1295247752”, the UNIX timestamp for the next one minute after the
attacker’s session establishment had to be a value between *“1295247753” and *1295247812”. The
number of possible session ID combinations based on the guess of the process ID and the UNIX
timestamp is 600. By going through these 600 possible session IDs, it is possible that the attacker

succeeds in the session hijacking attack.

[Common Mistake #2]
Generate a session 1D based on the information easily obtainable by the third party

use Digest::SHA qw(sha256_hex);

sub getNewSessionId {

my $sessid = '';
$sessid = $sessid . $ENV{'REMOTE_ADDR'};

$sessid = $sessid . $ENV{'REMOTE_PORT'};
$sessid = $sessid . time();
$sessid = Digest::SHA::sha256_hex($sessid);

return $sessid;

\Peﬂ

This program calculates a hash of the value that is made up by combining the user’s source IP address,
the source port number and the UNIX timestamp, and uses it as a session 1D.

When the getNewSessionId() function is called, the getNewSessionId() function concatenates
the user’s source IP address ($ENV{'REMOTE_ADDR'}), the source port number
($ENV{ 'REMOTE_PORT'}) and the UNIX timestamp (the time() function), and generates a string.
Then, the getNewSessionId() function calculates a SHA-256 hash of the resulting string and returns
the hash as a session ID. For example, a session ID
of ”093a2031a79cb4904b1466ee7ad5faaa3afe7b787db66712f407326b213cc2a4” will be returned.

The use of a hash may give an impression that it is a safe method. But if the mechanism to generate a
session ID is disclosed to the third party®®, the third party may manage to guess the session IDs.

By luring the user to a malicious website, the attacker can obtain the user’s source IP address*®. On the

other hand, the source port number will be unobtainable information for the attacker. Yet, the scope of the

%% For example, this program is an open-source software or the source code is leaked to the public.
% Depending on the network path to access the website, an IP address may not be specified.

15

3.4 Case Studies (Improper Session Management)

possible source port number is between 1024 to 65535, and depending on the user’s network
environment, the scope can be narrowed down to around 20,000.

For the network environment where the number of the possible source port number is limited to 20,000,
suppose that an user establishes a session with this web application and the attacker obtains the user’s
source IP address within 10 seconds before and after the user’ s session establishment, the number of the
possible session ID combination is 200,000 (20,000 possible source port numbers times 10 possible
UNIX timestamps). By going through these 200,000 possible session IDs, it is possible that the attacker

succeeds in the session hijacking attack.

16

3.5 Case Studies (Cross-Site Scripting)

3.5 Cross-Site Scripting

In this chapter, we show sample programs in which the cross-site scripting vulnerability is not properly
taken care of.

The cross-site scripting vulnerability is difficult to eradicate because of its nature. In many cases,
however, the problem stems from the fact such that the developers did not implement basic

countermeasures to begin with nor did so in a mistaken way. We will divide the sample cases into three
categories and explain each one.

1. Countermeasures unimplemented
2. Insufficient countermeasures

3. Misguided countermeasures

3.5.1 Countermeasures Unimplemented

B No escaping is done
[Vulnerable Implementation]

By extracting just the file name from the path parameter using the functionalities that come with OS or

programming languages, the underlying cause of the path parameter vulnerability will be removed.

I
ISR

| PA Search

Search results for “IPA”

1. Information Promo...

use CGI gw/:standard/;
$keyword = param('keyword');

print ... <input name="keyword" type="text" value="$keyword">
. The search results for ”$keyword”

\Perl

This is part of source code implementing outputting of the search results.

A string entered into the search form, “IPA” is sent to the web application and set to $keyword. This
web application embeds the $keyword value in multiple places, such as in the form or title when it
outputs a search result page. However, it does not perform escaping for the $keyword value before

outputting it. This will be a cause that allows an attacker to insert arbitrary scripts.

11

3.5 Case Studies (Cross-Site Scripting)

[What’'s Wrong?]

How a web application should output strings differs depending on whether it outputs a string as text or
HTML tags. In this sample case, $keyword is a search keyword and supposed to be outputted as text.

Therefore, the special characters, such as &, <, >, " and ">

, that may be included in $keyword need to
be escaped.
Neglecting this process results in a defect of incorrect page display due to the control characters

included in $keyword. The cross-site scripting attack exploits this defect.

[Corrective Measure #1]
Use an escape function

Use the escapeHTML () function in the CGI module.

use CGI gw/:standard/;
$keyword = param('keyword');

.escapeHTML ($keyword) ."\"...";
print "The Search results for

print "<input ... value=\

'.escapeHTML($keyword)."...";

\Perl

The escapeHTML () function is a Perl function provided in a Perl module CGI. The CGI module is
part of the standard Perl 5 distribution.

The escapeHTML() function takes in a string specified in its argument, escapes all HTML special
characters in the string and returns the result. The table below shows the special characters the

escapeHTML () function escapes and their corresponding escape sequence®.

Special Character Escape Sequence
& &
< <
> >
" "
! '

57 The commonly used quotation mark in the tags is “ (double quote) but * (single quote) is widely used as well , thus we
address both of them here.

%8 CGl.pm finely defines what characters are to be escaped depending on character codes. For example, with 1SO-8859-1 and
WINDOWS-1252, 0x8B (Single Left-Pointing Angle Quotation Mark) and 0x9b (Single Right-Pointing Angle Quotation
Mark) will be escaped, too.

18

3.5 Case Studies (Cross-Site Scripting)

[Corrective Measure #2]
Use a self-made escape function

print "<input ... value=\"".&myEscapeHTML($keyword)."\"...";

print "The search results for ".&myEscapeHTML($keyword)."...";

Self-made escape function: myEscapeHTML
sub myEscapeHTML($){

my $str = $_[0];

$str =~ s/&/8&/g;

$str =~ s/</&L1t;/g;

$str =~ s/>/8>/g;

$str =~ s/"/"/g;

$str =~ s/'/8'/g;

\Perl

B No character code is set
[Vulnerable Implementation]

Response from web application

HTTP/1.1 200 OK

<HTML>
<HEAD> fmm—————
<META http-equiv="Content-Type" content="text/html"> !

(2) No character code is set in HTML META declaration

\ HTTP Response

This is part of the HTTP response from a web application.

The value of “Content-Type” field is used to tell the browser the media type of the entity-body sent
to it. The response shown above, however, does not provide that information. In such a case, the browser
decides what character code to use on its own based on its preimplemented rule. For example, the
browser will guess what to use from the entity-body, and this behavior could be exploited by attackers in

cross-site scripting attacks.
[What's Wrong?]

This sample program has no defense against the cross-site scripting attacks that exploit the browser’s
character-code handling behavior. To solve this problem, you need to make sure to set a character code in
the “Content-Type” field of HTTP response header.

For more information, see 5-(viii) in 1.5.3 “Measures common to all web applications”.

19

3.5 Case Studies (Cross-Site Scripting)

[Corrective Measure]
Set a character code in the “Content-Type” field of HTTP response header

HTTP/1.1 200 OK

Content-Type: text/html; charset=UTF-8

\ HTTP Response

3.5.2 Insufficient Countermeasures

B Perform escaping for the text input at the timing of data entry

[Vulnerable Implementation]

. e
C) hitp:/l. CJC) http/f

The message below
will be posted:

Comment

A 4

I
Hello! Hello!

@onfirm
POST POST

This sample program has no defense against the cross-site scripting attacks that exploit the browser’s
character-code handling behavior. To solve this problem, you need to make sure to set a character code in
the “Content-Type” field of HTTP response header.

Message Posting Form

<textarea name="comment"
<input name="agree" type="checkbox" value="yes">...
<input name="uid" type="hidden" value="12345678">...

\HTML

Confirmation Screen

$comment = escapeHTML(param('comment'));
$agree = param('agree');
$uid = param('uid');

print "The message below will be posted:
".$comment."...
print "<input ... hidden ... =\"".$uid ...

\Peﬂ

This is part of source code outputting a confirmation page using the HTML source code of a message
posting form and the data entered in the form.

The message posting form has three elements: a comment field in which a user can enter comments, a
check box and the user ID which is not to be displayed on the web page.

These three values entered in the message posting form are passed to the web application and only two

80

3.5 Case Studies (Cross-Site Scripting)

of them, the comments ($comment) and the user ID ($uid), are to be outputted onto the confirmation
page. While the web application performs escaping for the comments when they are entered, it does not
do so on the user ID. This is an example where the developers implement some but insufficient measures

due to not properly knowing what elements should go through escaping process.

[What's Wrong?]

One of the common misunderstandings over escaping is that the text enterable fields are the only
elements that need to go through escaping process.

Attacks are not limited to text enterable fields, such as a comment field in a message posting form.
Focusing on particular elements, such as text enterable fields, leads to missing other elements. Likewise,
performing escaping for the values when they are entered right away, albeit it could be a good display of
countering attacks at the earliest possible opportunity, could lead to missing what really needs to be done.
The elements that should go through escaping process to prevent cross-site scripting attacks are the
“output elements”. If you perform escaping for the “input elements”, you will miss the cases where an
arithmetic operation right before outputting the web page is used to generate malicious HTML tags and
scripts. It also makes it costly to determine from the source code whether escaping is done for indeed all

the necessary elements.

[Corrective Measure]
Perform escaping focusing on “output elements”

$agree = param('agree');
$uid = param('uid');

print escapeHTML($commen’c);{

print "<input ... hidden ... =\"".escapeHTML($uid)."...

$comment = param("comment"); T Do not mind input elements

Escape all output elements

\Perl

Do not mind the input elements. Rather, focus on the output elements and perform escaping for them.

[Common Mistake #1]
Did not perform escaping for the elements that would make up links (URLS)

000
CIC) http://..

Products

J {a href="http://. .. list.cgi?
cid=1dpage=2dpmax=10008&s=al |
\ .. .» Next

Previous 1 2 3 Next AN

In the picture above, “cid”, “page”, “pmax” and “1s” are used as the parameters to make up a URL
of the links, such as “Previous” and “Next”. These elements outputted in the tags should go through

escaping process too, but this operation is often forgotten.
81

3.5 Case Studies (Cross-Site Scripting)

[Common Mistake #2]
Did not perform escaping for the URL to display on the “404 Not Found” error page

N
CIED hitp:/i...

Not Found

http:/fexamp|e. com
examp e, html

The requested file does
not exist on the server.

In the picture above, the web application outputs the URL originally requested by the user on the error
page for the HTTP status code 404. This URL information should go through escaping process too, but
many web applications miss it.

For example, cross-site scripting attacks will succeed by luring the user to a booby-trapped URL like

shown below.

http://example.com/<script>...</script>

URL

[Common Mistake #3]

Did not perform escaping for access log information to be outputted

CIED) hitp//..

Access Logs
lzer-bzent

Referer

&

This could be a web application that outputs the statistics information about a web page based on

web server access logs. For example, it may show the pages the users have requested, the
User-Agent and Referer information. In many cases, a web application likely does not perform
escaping when it uses the server’s internal data.

For example, a malicious attacker could send a request where scripts are set in the elements, such
as the User-Agent and Referer, and have them logged in to the access log.

GET /example.html / HTTP/1.1

Host: example.com

User-Agent: Mozilla/5.0...<script>...
Referer: http://example.net/<script>...

\ HTTP Request

82

3.5 Case Studies (Cross-Site Scripting)

Provided that, if escaping is not done, the users who view the access log page will keep accessing the
script-embedded web page almost permanently.

[Common Mistake #4])

Did not perform escaping for web mail information to be outputted

N
CIED hitp:l...

WebMail

O Revised! “Secure Web. . .
O [ipa-121] XXXXXXXXX
O Hey, how is your day. . .

This could be a web application that outputs email information on the web page. For example, it may

show the sender, subject and contents of email. In many cases, web applications neglect escaping when
they use the server’s internal data.

For example, a malicious attacker could send an email crafted like below.

To: jiro@example.com

From: taro@example.com

Subject: Revised!”’Secure Web Site...<script>...
Body: IPA hopes you have been...<script>...

\Email

Provided that, if escaping is not done, the users who view the webmail page will keep accessing the
script-embedded web page almost permanently.

83

3.5 Case Studies (Cross-Site Scripting)

3.5.3 Misguided Countermeasures

B Implement checking function for user input

[Vulnerable Implementation]

Askretry wheninvalid

) nttps:/1... Web

. . <{script ... Passto web Application
Registration function Check () application)
. when valid
Name []| </soript>

.<.i ﬁput value= “Confirm”
Confirm onGClick="Check () ; ">

Output
Confirmation Page

Confirmation Page

This sample program embeds a user input check mechanism into the input form page using JavaScript.
Through this checking function, only permitted values are to be passed over to the outputting process of
the web application. This tends to make us think no unintended characters would be outputted on the
confirmation page, but in fact this input checking does not work well against cross-site scripting

vulnerability.
[What's Wrong?]

This sample is implementing the right measure in the wrong place. Client-side input validation is
effective for reducing user input error but not for countering cross-site scripting vulnerability. In most
cross-site scripting attacks, malicious requests are sent directly to the vulnerable web application through
the trap (hyperlinks in email or on web page) set up by malicious attackers, and thus bypass client-side
input validation like shown above.

In addition, input validation could not be a fundamental solution for it is almost impossible to cover
everything you should not accept to counter cross-site scripting vulnerability. Read Chapter 1-5

“Cross-Site Scripting” and take appropriate action.
B Take blacklist approach only

[Vulnerable Implementation]

if ($a =~ /(script|expression|...)/i){ # check input
error_html(); # if detecting dangerous value, return error message
exit;

} else {
print $a; # if no dangerous value is detected, then proceed

\Perl

84

3.5 Case Studies (Cross-Site Scripting)

This sample program takes blacklist approach for implementing input validation. The blacklist here
defines potentially dangerous characters often used in cross-site scripting as unacceptable values. For
example, when an input value $a includes suspicious strings, such as “script”, the web application
cancels processing and returns an error.

At the first look, it may look like this works well to nullify cross-site scripting attacks, but this

implementation has a vulnerability an attacker could exploit to bypass the input validation function.

[What's Wrong?]
Bypass input checking using control characters

Input validation does not offer a fundamental solution to cross-site scripting vulnerability.
For example, if the following string is entered to $a, input validation against a string “script” will

be bypassed.

<s%@ocript>alert(0)</s%00cript>

TXT

After bypassing input validation, “%00” in $a will be decoded and outputted to the web page as a
NULL character. Web browsers often ignore the NULL character, and as a result, the value of $a will be
interpreted as a script. That says a simple pattern-matching input validation function cannot prevent
scripts from being inserted. There are more control characters attackers could use to bypass input

checking besides the NULL character.

[Common Mistake #1]
Bypass input checking using input concatenation

N U
) hitps://_.. CJE) hitps://_._

Confirmation Page

Addres L“Honkomagome| =4
s Address:
| Bunkyo-ku |
...Honkomagome
Tokyo Bunkyo-ku Tokyo

— 7O
7\ <
Enter separately Concatenate

in multiple fields related field valus

This problem occurs with a web application that takes blacklist approach for implementing input
validation. The input form offers multiple fields for the address information where a user enters it in
some units, such as prefecture and municipality. The input validation function checks whether an input
value contains the unacceptable strings defined by the blacklist, such as “script”, and if positive, have
the application stop processing further. After input checking, those multiple field values are concatenated

to form address information like the following.

85

3.5 Case Studies (Cross-Site Scripting)

if ($addrl =~ /script/i){ # check input (same for $add2 and $add3)
error_html(); # if detecting dangerous value,
exit; # return error message

} else {

print $addrl.$addr2.$addr3; # concatenate checked values

\Peﬂ

Let’s see what will happen when the input data shown below are entered.

Variable Value
$addrl | <scr

$addr2 | ipt>alert(1)</s
$addr3 | cript>

None of these parameters on its own contains a string “script”, thus each parameter value will be

accepted. After passing input checking, these three values are concatenated and form the following string.

<script>alert(1)</script>

TXT

This issue still remains even if you have solved the previous problem of bypassing input validation
using the control characters.

Input checking cannot in nature deal with the cases where scripts are to be formed as a result of
arithmetic operations after checking is performed. We recommend that you complement input checking

with some other fundamental solutions.

[Common Mistake #2]

Bypass input checking abusing match-then-delete reaction

$a =~ s/(script]|expression|...)//gi;

print $a;

\Peﬂ

This sample program implements input validation in a way that a web application deletes strings that
match the unacceptable values defined in the blacklist. For example, if $a contains a string “script”,
the input checking function removes the string and outputs the rest.

Suppose that the following string is entered to $a.

<script>alert(1l)</script>

TXT

The application will perform deletion based on the blacklist and output the result shown in the

following box. The script tags are nullified and the attack fails.

<>alert(1)</>

TXT

86

3.5 Case Studies (Cross-Site Scripting)

Let’s see what will happen with this one.

<sscriptcript>alert(1)</sscriptcript>

TXT

The application performs deletion and outputs the following result, which turns out to be a script.

<script>alert(1)</script>

\HTML

As you see, simply deleting dangerous strings is not recommended for that very operation may be
exploited to help the formation of scripts. When removing the dangerous strings, we recommend
replacing them with harmless strings instead of deleting them.

For more information, see 1.5.2 Mitigation Measure 5-(vii).

817

3.6 Case Studies (CSRF)

3.6 CSRF (Cross-Site Request Forgery)

In this section, we present a sample user registration program that is vulnerable to CSRF (Cross-Site

Request Forgery).
B A PHP program that registers user information
[Vulnerable Implementation]

The following figures shows an example of typical web page flow when updating the user information

registered for a members-only website. Here, the user is changing his address from New York to Los

Angeles.
Pagel Page 2
R R
)) http://OOIview.php)) http://OO/edit.php
UserInformation EditUser Information
Name John Doe Name John Doe
Address NY Address LA v
—>
Please enterthe password.
*kkkkkkkkk
Edit Back Confirm
Page 3 <Confirmation Page > Page4 <Update Page>
R R
)) http://OO/confirm.php) http://OO/commit.php
Confirmthe Edit Update Completed
Name John Doe Name John Doe
Address LA

Address LA
—>

Back Update Back

In this website’s structure, the user first confirms his user information currently registered on the Page
1 (view.php) and clicks the “Edit” button to proceed to Page 2 (edit.php) if he wants to change his
profile. There, he edits the information, enters the password and moves to Page 3 (confirm.php). On
Page 3, the user is required to confirm the changes he has made and click the “Update” button, which
executes the changes and puts the process forward to Page 4 (commit . php) where the result of editing is
presented.

On Page 2, the password is required to authenticate the user and only if the password is correct, then

88

3.6 Case Studies (CSRF)

the user can proceed to Page 3.

Let’s assume that the HTML source code for Page 3 is written like the following.

<form action="commit.php" method="post">
<input type="hidden" name="new_name" value="John Doe">
<input type="hidden" name="new_address" value="LA">
<input type="submit" name="back" value="Back">
<input type="submit" name="commit" value="Update">
</form>

\HTML

When the user clicks the “Update” button on Page 3, the following code in commit. php, the source
code for Page 4, executes the update. The $ SESSION['authenticated'] variable stores the

information whether the user has logged in as a true or false value.

session_start();
if(! $ SESSION['authenticated']) { exit(); }
update_userinfo($_SESSION['uid'],$_POST['new_name'], $_POST['new_address']);

PHP

The second line checks if the user has logged in, but it does not check whether the profile change
request has indeed been made by the logged-in user, which makes the whole process vulnerable to

cross-site request forgery.

[What’'s Wrong?]

If the user is lured to a malicious website while logged in to this members-only website, an attacker
could forge and redirect a user request to Page 4 and execute the profile change without and against the

user’s will.

Malicious Website Page 4 < Update Page>

€9 http..f.-’OCl).-’commit php
O000OO0OO0 Update Completed

Name Cracker Joe

) http//AA/

EEEEEEREEEEE | Address NY
EEEEEE -
EEEEEEEEEEER
ENEEENEEEEER

EEEEEE Back

The following is an example of an HTML source code embedded in malicious websites. It is similar to
the source code for Page 3, but the lines written in red are different. In this case, a CSRF attack is

executed just by accessing the malicious website.

89

3.6 Case Studies (CSRF)

<form action="http://0o/commit.php" method="post" name="f1">
<input type="hidden" name="new_name" value="Cracker Joe">
<input type="hidden" name="new_address" value="NY">

</form>

<script>document.forms['f1'].submit();</script>

\HTML

The commit.php program in the sample program cannot discern the difference between a rightful
request made by the user and a request forged by an attacker and executes the change request.
When implementing the feature where logged-in users change the settings or post stuff, be aware of

cross-site request forgery and implement necessary measures.

[Corrective Measure #1]
Embed a secret information in the confirmation page and check it in the update page

By embedding a secret in the confirmation page and later confirming it in the update page, the
underlying cause of the CSRF vulnerability will be removed.

In the sample code, Page 3 corresponds to the confirmation page and Page 4 corresponds to the update
page. With the following sample modified program, the PHP session ID is used as a secret

First, embed the session ID to Page 3 (shown in red).

<form action="commit.php" method="post">
<input type="hidden" name="new_name" value="John Doe">
<input type="hidden" name="new_address" value="LA">
<input type="hidden" name="sid" value="6a0752gpmhignmng9f5iah8h71">
<input type="submit" name="back" value="Back">
<input type="submit" name="commit" value="Update">
</form>

\HTML

Next, the commit.php program for Page 4 checks the value of the secret. Make sure to check it before
executing the changes. If the secret is not correct, stop the process. The modified commit.php program

would be like the following (added the line written in red).

session_start();

if(! $ SESSION['authenticated']) { exit(); }

if($_POST['sid'] != session_id()) { exit(); }

update_userinfo($_SESSION['uid'],$_POST['new_name'], $ POST['new_address']);

PHP

This measure requires that you can generate a secret in the way that the third parties cannot figure out
and store it safely, and that you can use the POST method to pass the secret to the update page. If you

cannot satisfy all three of them, then other measures should be considered.

[Corrective Measure #2]
Check the password in the update page

By requiring the password on the confirmation page and confirming the password in the update page

right after that, the underlying cause of the CSRF vulnerability will be removed.
90

3.6 Case Studies (CSRF)

In the sample program, the password is required in Page 2 and checked in Page 3. By changing it to

require the password in Page 3 and check it in Page 4, the CSRF vulnerability will be removed.

Pagel Page 2
N N
)) http://OOlview.php)) http://OO/edit.php
User Information EditUser Information
Name John Doe Name John Doe
Address NY Address | LA v
—>
Edit Confirm
Page 3 <Confirmation Page> Page 4 <Update Page>
R R
OO http://OO/confirm.php OO http://OO/commit.php
Confirm the Edit Update Completed
Name John Doe Name John Doe
Address LA <| Address LA
7

Please enterthe password.

kkkkkkkkkk

Update Back

91

3.6 Case Studies (CSRF)

Page 1 Page 2
(60 http O view php £ 0 hitp:/f o edit.php
User Information Edit User Information|
MName John Doe Mame John Doe
Address NY ~ | Address | LA v
-
Edit Confirm

Page 3 < Confirmation Pagel;_ Page 4 < Update Page>

) http://C3 2 confirm.php £ 6 http:/f0C /commit.php

Confirm the Edit Update Completed
Name John Doe Name John Doe
Address LA ~ | Address LA

-

Please enterthe password.

| LI I LTI TTLT] |

Update Back

This measure requires the modification of the user interface. If it is not feasible, then another measure

should be considered.

[Corrective Measure #3]
Check the Referer in the update page

By checking the Referer in the update page, the underlying cause of the CSRF will be removed. Here,
the commit.php program in the sample code was modified like the following (added the line written in

red).

session_start();

if(! _SESSION['authenticated']) { exit(); }

if($_SERVER['HTTP_REFERER'] != 'http://oo/confirm.php') { exit(); }
update_userinfo($_SESSION['uid'],$_POST['new_name'], $ POST['new_address']);

PHP

As a side effect, note that this measure cannot execute the change requests if the user’ s browser is set
not to send the Referer field or the user is accessing the website through the proxy server that removes

the Referer from the HT TP requests made by the user’ s browser.

92

3.7 Case Studies (HTTP Header Injection)

3.7 HTTP Header Injection

In this section, we present a sample redirector program that is vulnerable to HTTP header injection.
B A Perl program that executes URL redirection

[Vulnerable Implementation]

$cgi new CGI;
$num = $cgi->param('num');
print "Location: http://example.jp/index.cgi?num=$num\n\n";

\Perl

The above is part of a program that redirects a website visitor to a predefined URL using the Location
header. The sample program above first inputs the value of the num parameter into the $num variable (the
second line). The program then creates the Location header based on the value of $num and outputs an
HTTP response. The program assumes that only numerical numbers are entered as the value of the num
parameter.

This implementation simply ignores the possibility where a value that includes the line break
characters may be specified for the num parameter and allows an attacker to create unexpected HTTP

responses.
[What’'s Wrong?]

In this implementation, if a visitor accesses the URL where its num parameter is set with
3%0D%OASet -Cookie:SID=evil, malicious arbitrary cookie will be issued. Moreover, the visitor may

be redirected to a fraudulent web page depending on the way the parameter value is crafted.

HTTP/1.x 302 Found

Date: Sat, 07 Mar 2009 ©01:49:48 GMT

Server: Apache/2.2.3 (Unix)

Set-Cookie: SID=evil

Location: http://example.jp/index.cgi?num=3
Content-Length: 292

Connection: close

Content-Type: text/html; charset=iso0-8859-1

\ HTTP Response

[Corrective Measure]
Forbid the line break characters as the parameter values used to create the header

By properly restricting the use of the line break characters, the underlying cause of the HTTP header

injection vulnerability will be removed.

The function that returns the first line of a multi-line string
Parameter: String. Ignore anything other than the first parameter
Return value: A string before the line breaker (\r, \n, \r\n)
sub first_line {

$str = shift;

return ($str =~ /~([*\r\n]*)/)[0];

9 {Per

}

3.7 Case Studies (HTTP Header Injection)

The above is a function that returns the first line (without the line break character at the end of the
line) of the string passed by the parameter. By having the parameter value entered externally go through
this function, the program can ensure the output value is appropriate as the value for the HTTP response
header field and therefore remove the vulnerability.

The HTTP header field does allow a multi-line string as its value but the function above is written in
the way that does not support it. Note that the use of this function is inappropriate for the web application
with which a multi-line string is expected for the HTTP header filed value since the second line and the

lines after that will be discarded by it.

3.8 Mail Header Injection

In this section, we present a sample enquiry form program that is vulnerable to mail header injection.
B An email sending function with Perl

[Vulnerable Implementation]

EnquiryForm Enquiry Form

Name Thank you for your enqguiry.
Email

Back to Engquiry Form Page

v

Enquiry

Send Reset

Page 1 Page 2

open (MAIL, "| /usr/sbin/sendmail -t -i");
print MAIL << "EOF";

To: info\@example.com

From: $email

Subject: Enquiry ($name)

Content-Type: text/plain; charset="IS0-2022-JP"

$inquiry
EOF
close (MAIL);

\Perl

The above is part of a program that sends the user’s input into the enquiry form as an email to the
website administrator®. When the user enters the value to the name, email address and enquiry field on
the Page 1 and clicks the send button, the program calls the sendmail command provided by OS and
sends an email to the website administrator’s email address info@example.com. When the program

sends the email, the user input for each header is stored into the $name, $email and $inquiry variable

% When using a character set other than US-ASCII in the mail header, it must be encoded following RFC2047.
94

3.8 Case Studies (Mail Header Injection)

and then creates the mail headers and body using those variables. After completing sending the email, the
program outputs the Page 2.
This implementation is vulnerable to mail header injection since it outputs the user input value directly

into the mail header.
[What's Wong?]

In this implementation, the program passes the mail headers and body to the sendmail’s standard input
to send email. The sendmail command determines the destination email addresses based on the input for
the To, Cc and Bcc header. If the user input on the Page 1 is “anzen” (the name field)
“anzen@example.net” (the source IP address field) and “Hello, World” (the body field), the

program sends the email shown below to info@example.com.

To: info@example.com

From: anzen@example.net

Subject: Enquiry(anzen)

Content-Type: text/plain; charset="IS0-2022-JP"

Hello, World

However, if a user feeds the input value including a line feed character and mail headers to the name
field or the email address field, the user can sends the email to arbitrary destination addresses. For
example, if the user input for the mail address field is
“anzen@example.net%0d%0aBcc%3a%20user@example.org”, the passing data from the program
to the sendmail command will be the following. The sendmail command will send the email to
user@example.org in addition to info@example.com based on the user input passed from the

program.

To: info@example.com

From: anzen@example.net

Bcc: user@example.org

Subject: Enquiry(anzen)

Content-Type: text/plain; charset="IS0-2022-JP"

Hello, World

TXT

[Corrective Measure #1]

Do not output the user input value into the mail header

By not outputting the user input into the mail headers, the underlying cause of the mail header

injection vulnerability will be removed.

95

3.8 Case Studies (Mail Header Injection)

open (MAIL, "| /usr/sbin/sendmail -t -i");
print MAIL << "EOF";

To: info\@example.com

From: webform\@exmaple.com

Subject: Enquiry

Content-Type: text/plain; charset="IS0-2022-JP"

Name: $name
Email Address: $email

$inquiry
EOF

\Peﬂ

With this corrective measure, the input value stored in the $name and $email variable is not outputted
into the mail headers but into the mail body. The value for the From and Subject header is fixed to
webform@exmaple.com and Enquiry, respectively. If line feed character is included in the value for
the $name or $email valuable, the layout of the body will be disrupted a little but this measure can

prevent arbitrary mail headers from being inserted®.

[Corrective Measure #2]
Remove line feed character from the value for the mail header variables

Removing the line feed characters from the values for the mail header variables will mitigate the risk

of mail header injection vulnerability.

$name =~ s/\r|\n//g;
$email =~ s/\r|\n//g;

\Peﬂ

In this corrective measure, the line feed characters (\r and \n) are removed from the value of the

$name and $email variable using regular expressions.

5 |f the program is written to reply to the user automatically upon receiving the enquiry, the program can still be exploited to
send out spam mails even if this corrective measure is implemented.

96

Postface

Postface

Security practices to secure web applications and websites we have presented in this book will help you
mitigate the threats the website operators are facing. Once security implementation and internal checking
are done, it is beneficial to have a third-party entity perform penetration test or code review to assure secure
implementation. It is recommended a website undergo an external vulnerability testing depending on the

importance the website has on you or your organization’s success.

We hope this book will help you secure your website.

97

References

References

Ministry of Internal Affairs and Communications,
Japan: Communications Usage Trend Survey
http://www.soumu.go.jp/johotsusintokei/sta
tistics/statistics@5.html (Japanese Only)

IPA: HE55 4R EFERDfEH
http://www.ipa.go.jp/security/vuln/report/
index.html (Japanese Only)

IPA: 1o TWWET M ?HESHME (EL Lol
Ly
http://www.ipa.go.jp/security/vuln/vuln_co
ntents/ (Japanese Only)

IPA: £Fa7-T0J 327 FE (FhR)
http://www.ipa.go.jp/security/awareness/ve
ndor/programmingv2/web.html (Japanese Only)

IPA: RE551EREERICE Y HE IR
http://www.ipa.go.jp/security/vuln/report/
press.html (Japanese Only)

IPA: £¥a7-TOJS3I07#E TLYRW
Web 77)/r—2a & EtDE R]
http://www.ipa.go.jp/security/awareness/ve
ndor/programmingv2/contents/003.html
(Japanese Only)

IPA: %2 7-TRISIUJHEE
EA # REITH T HK]
http://www.ipa.go.jp/security/awareness/ve
ndor/programmingv2/contents/502.html
(Japanese Only)

IPA: £F27-7OJ33VT8E TSQL &
A#2 BEICHEITH3EK]
http://www.ipa.go.jp/security/awareness/ve
ndor/programmingv2/contents/503.html
(Japanese Only)

rsqL

IPA:
Part 2
http://www.ipa.go.jp/security/vuln/documen
ts/10threats2009_en.pdf

IPA: EREF1)T,8E 2008 5 2 &)
http://www.ipa.go.jp/security/vuln/2008052
7_10threats.html (Japanese Only)

IPA: £Fa17-TOJSIVJHFE aTUk
FEARERE]
http://www.ipa.go.jp/security/awareness/ve
ndor/programmingv2/contents/501.html
(Japanese Only)

IPA: £%a7-TRVSIVIHEE 17055
LoD I7AIVTRH]
http://www.ipa.go.jp/security/awareness/ve
ndor/programmingv2/contents/402.html
(Japanese Only)

Information Security White 2009 Paper

98

Westpoint : Multiple Browser Cookie Injection
Vulnerabilities
http://www.westpoint.ltd.uk/advisories/wp-
04-0001.txt

ACROS Security Session
Vulnerability in Web-based Applications
http://www.acrossecurity.com/papers/sessio
n_fixation.pdf

IPA: BIEOEX1ITAERBICEXF1THE
wial EEE
http://www.ipa.go.jp/security/ciadr/200308
08cookie-secure.html (Japanese Only)

IPA: Xa7-TOJSIVTHEE tyiay
FEOmY]
http://www.ipa.go.jp/security/awareness/ve
ndor/programmingv2/contents/302.html
(Japanese only)
http://www.ipa.go.jp/security/awareness/ve
ndor/programmingv2/contents/303.html
(Japanese Only)
http://www.ipa.go.jp/security/awareness/ve
ndor/programmingv2/contents/304.html
(Japanese Only)
http://www.ipa.go.jp/security/awareness/ve
ndor/programmingv2/contents/305.html
(Japanese Only)
http://www.ipa.go.jp/security/awareness/ve
ndor/programmingv2/contents/306.html
(Japanese Only)

IPA: yia EE
http://www.ipa.go.jp/security/awareness/ad
ministrator/secure-web/chap6/6_session-1.h
tml (Japanese Only)

IPA: Y avEENBER
http://www.ipa.go.jp/security/awareness/ad
ministrator/secure-web/chap6/6_session-2.h
tml (Japanese Only)

EXRAERMHER SKREL TCSRFI&
I'Session Fixation | D F&fEREIZDULVT
http://www.ipa.go.jp/security/vuln/event/d
ocuments/20060228 3.pdf (Japanese Only)

W3C : HTML 4.01 Specification
http://www.w3.0rg/TR/html401/

Fixation

Microsoft : Mitigating Cross-site Scripting With
HTTP-only Cookies
http://msdn2.microsoft.com/en-us/library/m
s533046.aspx

Bugzilla@Mozilla : MSIE-extension: HttpOnly
cookie attribute for cross-site scripting
vulnerability prevention
https://bugzilla.mozilla.org/show_bug.cgi?
id=178993

WhiteHat Security: Cross-Site Tracing
http://www.cgisecurity.com/whitehat-mirror
/WH-WhitePaper_XST_ebook.pdf

IPA: £Xa7-7O5S53 5 #EE TDa—N
VIREK]
http://www.ipa.go.jp/security/awareness/ve
ndor/programmingv2/contents/601.html
(Japanese Only)
http://www.ipa.go.jp/security/awareness/ve
ndor/programmingv2/contents/602.html
(Japanese Only)

RFC2616 :
HTTP/1.1
http://www.ietf.org/rfc/rfc2616.txt

IPA: +Xa7-TJnJ 330 #E)T X
S E (CSRF) x5k |
http://www.ipa.go.jp/security/awareness/ve
ndor/programmingv2/contents/301.html
(Japanese Only)

Hypertext Transfer Protocol --

Amit Klein: HTTP Response Smuggling
http://www.securityfocus.com/archive/1/425
593/30/0/threaded

IPA: £¥a7-TAJSIVJH#EE THTTP L
ARV RIZEDF vy 1B ER K]
http://www.ipa.go.jp/security/awareness/ve
ndor/programmingv2/contents/603.html
(Japanese Only)

IPA: £Ha7-TOJSIVTHE TA—)LD
BE=EH PR
http://www.ipa.go.jp/security/awareness/ve
ndor/programmingv2/contents/201.html
(Japanese Only)

The Unauthorized Computer Access Law
http://www.npa.go.jp/cyber/english/legisla
tion/ucalaw.html

99

References

JVN (Japan Vulnerability Notes)
http://jvn.jp/en/index.html

JVN iPedia Vulnerability —Countermeasure
Information Database
http://jvndb.jvn.jp/index_en.html

IPA: NRAD—FDEBETE
http://www.ipa.go.jp/security/fyl4/content
s/soho/html/chapl/pass.html (Japanese Only)

IPA: £%a7-TOJSIVJHEE %27
& Web H—/\DBELERICEYT ST
V1
http://www.ipa.go.jp/security/awareness/ad
ministrator/secure-web/ (Japanese Only)

IPA: RASLZDEERE DNS —/\DEREIC
B9 4B ML
http://www.ipa.go.jp/security/vuln/2005062
7_dns.html (Japanese Only)

IPA: BFA—ILDEFa)T+
http://www.ipa.go.jp/security/fyl8/reports
/contents/email/email.pdf (Japanese Only)

IPA: £Ha17-TOJSITHE 1—H2
FEXER NRT—RFD4ILA]
http://www.ipa.go.jp/security/awareness/ve
ndor/programmingv2/contents/101.html
(Japanese Only)

IPA: PKI BEEHMTAZER [REEH & EFALEA
£l
http://www.ipa.go.jp/security/pki/@31.html
(Japanese Only)

IPA: £¥a7-TOJSIVJEE [EEHED
FiR]
http://www.ipa.go.jp/security/awareness/ve
ndor/programmingv2/contents/202.html
(Japanese Only)

EEEBNTAZAT: RE4G Web YA MRIFA D
|
http://www.rcis.aist.go.jp/special/websafe
ty2007/ (Japanese Only)

Terminology

Terminology

Web Application

A software system that runs on a website. Usually
written in Java, ASP, PHP and Perl, and allows to
produce and offer dynamic web pages to users.

Escaping

A process to neutralize the characters that have a
special meaning, which signifies an alternative
interpretation and triggers a special processing
depending on languages and environments,
generally by replacing them with another
characters and makes them non-special.

Encoding

A process of putting a sequence of characters
(letters, numbers, symbols etc) into a specialized
format based on a predefined rule. For example,
the characters that cannot appear in a URL, such
as Japanese letters, must be “encoded” into %
and hexadecimal numbers based on RFC2396.

Line Break Codes

Control codes that signify line break in text. In
general, CR (Carriage Return), LF (Line Feed),

or a combination of these two is used. In the
ASCII Code Table, CR and LF are defined “0x0D”
and “Ox0A”, respectively.

Shell

The program that interprets user input then runs
and controls other programs. cmd.exe is an
example for Windows shell and bash and csh for
UNIX/LINUX shell.

Vulnerability

A security weakness that computer software, such
as web applications, could have. It could be a
cause of a web application losing its normal
functions or performance due to unauthorized
access or computer virus exploiting the security
weakness. It could also mean a situation in which
web application security is no longer maintained,
as seen in the cases where personal information is
not protected by appropriate access control
because of improper website operation.

100

Session Management

A mechanism with which a website tracks a
user’s activities across web pages (requests) to
identify the user and keep the state of his or her
operations.

Directory Traversal

An attacking method that exploits relative paths
to move around and access arbitrary files in a
target system. The name originates from its
ability to freely traverse directories in the system.
Also known as path traversal.

Decoding
A process of converting an encoded format back
into the original sequence of characters.

Blacklist

A filtering mechanism opposite to whitelist. Deny
those strings that are predefined on the list and
allow everything else. It cannot cope with
unknown attacks, which cannot be defined on the
list beforehand.

Whitelist

A filtering mechanism opposite to blacklist.
Allow those strings on the list and deny
everything else. It can well cope with unknown
attacks and safer than blacklist, but may be
difficult to implement in some cases.

Cookie

A mechanism to exchange information, such as
user data and access data, between a web server
and browser.

SQL

A programming language designed for the
manipulation and management of data in
relational database (RDB). Divided into two
major categories: DDL (Data Definition
Language) for defining the database objects, such
as structure and scheme, and DML (Data
Manipulation Language) for manipulating and
controlling access to data, such as SELECT,
UPDATE and GRANT.

Checklist

Checklist

The checklist provided here is a list of countermeasures against the web application vulnerabilities

discussed in this book. When you perform security checking for your website, make use of this checklist

and write down whether or not you need to implement countermeasures and if you have implemented

countermeasures or not, to make sure that you have secured your website.

B How to use the checklist
Check one that describes your situation best.

o Done

Select this one when countermeasures have been already implemented.

o Not Yet
Select this one when you realize you need to implement countermeasures but for some reason

have not done yet.

o No Need
Select this one when the vulnerabilities do not apply to your website or you judge your website
is well protected in other ways and does not require these countermeasures.

B Note

It depends on web applications whether they require all, part of or none of the countermeasures
discussed in this book. Please remember that the countermeasures discussed in this book are some
examples of many possible solutions out there. Read the explanations carefully and understand the
effects the countermeasure you are going to act on may have on your system before implementing
it.

Some countermeasures say “implement either one of them” or “implement this alternative when
said countermeasure is not implementable (e.g.: the fundamental solutions to SQL Injection
vulnerability 1-(i)-a and 1-(i)-b). We have put these countermeasures together into one check item.
Check the “Done” box when you have implemented either one of the countermeasures listed and
mark which one you have adopted.

The fundamental solutions aim to enable a web application not to have vulnerability to begin with

and thus most recommended. In the checklist, the fundamental solutions are bolded and colored so
that you can see which ones are the fundamental solutions.

101

Checklist

Type of Refer
Types ofVulnerabilit: Measure
o v Measure To
. O Build all SQL statements using placeholders. 1-(i)-a
[Done
Fundamental O Not Done — - .
O N/A When building an SQL statement through concatenation, use a special
O API offered by the database engine to perform escaping and make up | 1-(i)-b
the literals in the SQL statement correctly.
oz Do not write SQL statement directly in the parameter to be passed to
1 | SQL Injection Fundamental | [NotDone S Y P P 1-(ii)
the web application.
ON/A
O Done
Mitigation [Not Done Limit information to display in error message on the web browser. 1-(iii)
O N/A
O Done
Mitigation [Not Done Grant minimum privileges to database accounts. 1-(iv)
O N/A
[Done
Fundamental O Not Done O Avoid using functions which could call shell commands. 2-(i)
ON/A
2 | OS Command Injection
O Done When using functions which could call shell commands, check all
Mitigation O Not Done O variables that make up the shell parameters and make sure to execute only 2-(ii)
O N/A those that are granted to be executed.
o Do not specify name of files stored on the web server directly using 3-(i)-a
* external parameter.
O Done
Fundamental O Not Done
ON/A o Use a fixed directory to handle filenames and nullify directory names 3-(i)-b
in filenames.
3 Unchecked Path Name Parameter
/ Directory Traversal [
Mitigation O Not Done Manage file access permission properly. 3-(ii)
O N/A
O Done
Mitigation O Not Done Check filenames. 3-(iii)
ONA
O Done
Fundamental O Not Done Make session ID hard to guess. 4-(i)
ON/A
O Done
Fundamental O Not Done Do not use URL parameters to store session ID. 4-(ii)
ON/A
O Done
Fundamental O Not Done Set the secure attribute of the cookie when using HTTPS. 4-(iii)
ONA
4 | ImproperSession Management . O Start a new session after successful login. 4-(iv)-a
O Done
Fundamental O Not Done
O nN/A Issue a secret after login and authenticate the user with it whenever .
(m] . 4-(iv)-b
the user moves around the web site.
O Done
Mitigation O Not Done Use random session ID. 4-(v)
O N/A
O Done . i
Mitigation 0 Not Done Set the cookie’s expiration date with care when storing session ID in 4-i)
O NA cookie.

* Check if either one of the measures has been implemented

102

Checklist

o Type of Refer
Types ofVulnerability P Checkbox Measure
Measure To
O Done
Fundamental O Not Done Perform Escaping for everything to be outputted to the web page. 5-(i)
O N/A
Dei: When outputting URLs in HTML, permit only those that start with
Fundamental O Not Done 1outp 9 w pe « Y o 5-(ii)
certain patterns, such as “http://” and “https://”.
O N/A
Measures for Web
Applications That Do O Done
Not Permit HTML Fundamental O Not Done Do not dynamically create the content of the <script>...</script> tag. 5-(iii)
Text Input O N/A
O Done
Fundamental O Not Done Do not allow to import stylesheets from arbitrary websites. 5-(iv)
O N/A
Cross-Site
e O Done
Sc”ptmg Mitigation [Not Done Check input values. 5-(v)
O N/A
Dl IE Create a parse tree from the HTML text input and extract only the
Measures for Web FIEEGEE] || D DE(ees necessary elements that do not contain scripts. S
Applications That ON/A
Permit HTML text
Input O Done
Mitigation O Not Done Nullify script strings in HTML text input. 5-(vii)
O N/A
O Done
Fundamental O Not Done Set the charset parameter of the HTTP Content-Type header. 5-(viii)
Measures common to all ON/A
web applications
O Done . . .
Mitigation 01 Not Done Set the HFtpOnIy attribute (_Jf _the cook!e and disable the TRACE method to 5-(i%)
prevent disclosure of cookie information.
O N/A
Access the web page, in which certain operation is to be executed, via
the POST method with a secret having the previous web page insert it 6-(i)-a
in its hidden filed, and execute the requested operation only when the
secret is correct.
*
Fundamental [Done Ask for password right before exgcutlng requested operation and 6-()-b
[Not Done proceed only when the password is correct.
CSRF
. O N/A
(Cross-Site Request Forgery)
Check the Referer whether it is the expected URL and proceed only 6-(i)-c
when the URL is correct.
O Done Notify to the prespecified email address automatically when important
Mitigation D Not Done operations ha\’je bzen done Y P 6-(ii)
O N/A P :
Do not print out HTTP header directly and do it through an HTTP
. header AP provided by execution environment or programming 7-(i)-a
language.
Fundamental BBl
[Not Done
HTTP Header Injection 0 N/A If HTTP header AP that offers line feed neutralization is not 7-(i)b
available for use, implement it manually.
O Done
Mitigation O Not Done Remove all line feed characters that appear in the external text input. 7-(ii)
O N/A
Use the fixed values for the header elements and output all external 8-(i)-a
* input to the email body.
o0 Done
Fundamental 4 Not Done - _ _
aN/A 1f 8-(i) is not implemented, the fixed values cannot be used for the
header, use an email-sending AP offered by the web application’s 8-(i)-b
) . execution environment or language.
Mail Header Injection
O Done
Fundamental O Not Done Do not specify the email addresses in HTML. 8-(ii)
ON/A
O Done
Mitigation O Not Done Remove all line feed characters that appear in the external text input. 8-(iii)
O N/A

103

* Check if either one of the measures has been implemented

Types ofVulnerability

Lack of Auhtentication
and Authorization

Type of
Measure

Checkbox

Measure

Checklist

O Done When a web site needs access control, implement an authentication
Fundamental O Not Done mechanism that requires users to enter some kind of secret 9-(i)
O N/A information, such as password.
O Done . L
Implement authorization as well as authentication to make sure that a .
Fundamental O Not Done . . 9-(ii)
ONA login user cannot pretend to be other users and access their data.

104

* Check if either one of the measures has been implemented

CWE Mapping Table

CWE Mapping Table

CWE (Common Weakness Enumeration) is a system to identify the types of vulnerabilities that come in
a wide variety. CWE gives a hierarchically structured list of vulnerability types and allocates a CWE
identifier (CWE-ID) to each type. The use of CWE will enable software developers and security experts to:
+ Have a common language to discuss vulnerability in software architecture, design and code.
+ Use as a standard measuring rule for security tools, such as vulnerability scanning tool, to enhance
software security.
» Use as a common foundation to understand, mitigate and prevent vulnerability.
The table in the following page shows the mapping between the vulnerabilities addressed in this book
and CWE. When implementing countermeasures individually based on CWE or checking the completeness

of the countermeasures implemented, use the table as reference.

B References

IPA: CWE (Common Weakness Enumeration) Overview
http://www.ipa.go.jp/security/english/vuln/CWE_en.html

105

CWE Mapping Table

CWE Version 1.5 CWE Version 1.11

“How to Secure Your Website”

No

Types of Vulnerability

SQL Injection

(Japanese)

SQL Injection (CWE-89)

(English)
Improper Neutralization of Special
Elements used in an SQL
Command
('SQL Injection”) (CWE-89)

OS Command Injection

OS Command Injection
(CWE-78)

Improper Neutralization of Special

Elements used in an OS Command

('OS Command Injection’)
(CWE-78)

Unchecked Path Parameters /
Directory Traversal

Path Traversal (CWE-22)

Improper Limitation of a Pathname
to a Restricted Directory ('Path
Traversal’) (CWE-22)

Improper Session Management

Use of Insufficiently
Random Values (CWE-330)

Insufficiently Protected
Credentials (CWE-522)

Sensitive Cookie in HTTPS
Session Without 'Secure’
Attribute (CWE-614)

Session Fixation
(CWE-384)

Cross—Site Scripting

Cross—Site Scripting (XSS)
(CWE-79)

Improper Neutralization of Input
During Web Page Generation
('Cross-site Scripting’) (CWE-79)

CSRF
(Cross—Site Request Forgery)

Cross—Site Request
Forgery (CWE-352)

Cross—Site Request
Forgery (CSRF)
(CWE-352)

HTTP Header Injection

Improper Neutralization of
CRLF Sequences in HTTP
Headers (CWE-113)

Third Party Mail Relay

Improper Neutralization of
CRLF Sequences (CWE-
93)

Lack of Authentication and
Authorization

Permissions, Privileges,
and Access Controls
(CWE-264)

Permissions, Privileges,
and Access Controls
(CWE-264)

Improper Authentication
(CWE-287)

Improper Authentication
(CWE-287)

106

[Produced and Copyrighted by]

[Editor]
[Author]

[Advisor]

Hideaki Kobayashi
Yukinobu Nagayasu

Hiromitsu Takagi

Koji Yoshioka
Tetsushi Tanigawa
Tadashi Yamagishi
Masashi Fujiwara
Tadashi Kusama
Noriko Totsuka
Kosuke Ito
Kazunao Wakai
Shingo Otani
Michio Sonoda
Motokuni Soma
Takeshi Hasegawa

IPA: Information-technology Promotion Agency, Japan
Naoto Katsumi Hiroshi Tokumaru

National Institute of Advanced Industrial Science and
Technology (AIST)

NEC System Technologies, Ltd.

NEC Corporation

Hitachi Ltd.

Hitachi, Ltd.

Fujitsu Limited

Fujitsu Limited

LAC: Little eArth Corporation Co., Ltd.

LAC: Little eArth Corporation Co., Ltd.

LAC: Little eArth Corporation Co., Ltd.

Masashi Omori Hiroyuki Itabashi
Shunsuke Taniguchi Yasuo Miyakawa

*Affiliation omitted for the personnel of IPA

How to Secure Your Website

Approaches to Improve Web Application and Website Security

[Publication |

Jan. 31, 2006
May 11, 2006
Nov. 1, 2006
Mar. 1, 2007
Sep. 10, 2007
Mar. 6, 2008
Aug.1, 2008
Jan.20, 2010
Aug.5, 2010
Apr.6, 2011

[Produced and Copyrighted by]

[Collaborated

with |

First Edition, First Printing

First Edition, Second Printing
Second Edition, First Printing
Second Edition, Second Printing
Second Edition, Third Printing
Third Edition, First Printing
Third Edition, Second Printing
Forth Edition, First Printing
Forth Edition, Second Printing
Fifth Edition, First Printing

IT Security Center, Information-technology Promotion
Agency, Japan

Research Center for Information Security, National Institute of

Advanced Industrial Science and Technology

107

How to Report Information Security Issues to IPA

Designated by the Ministry of Economy, Trade and Industry, IPA IT Security Center
collects information on the discovery of computer viruses and vulnerabilities, and
the security incidents of virus infection and unauthorized access.

Make a report via web form or email. For more detail, please visit the web site:
URL: http://www.ipa.go.jp/security/todoke/ (Japanese only)

Computer Viruses Unauthorized Access

When you discover computer viruses When you detect unauthorized access
or notice that your computers have to your computers via network (e.g. the
been infected by viruses, please Internet, LANs, WANs and PC

report to IPA. communications), please report to IPA.
Software Vulnerability and Web Application Vulnerability and
Related Information Related Information

When you discover vulnerabilities in When you discover vulnerabilities in
client software (e.g. OS and browser), systems that provide their customized
server software (e.g. web server) and services to the public, such as websites,
software embedded into hardware please report to IPA.

(e.g. printer and IC card) , please

report to IPA.

Framework for Handling Vulnerability-Related Information
~ Information Security Early Warning Partnership ~

Tr i1 Al
r, Vulnerabili of Software Products ';ng:g e diponenE IPA, JPCERT/CC \
announcement date, etc. Countermeasure

! £ Motify : : !

leports o o 5 [
: wvulnerabilityt R—IPA. Tulperability _JPCERT ,.r‘{._“.c Site (JVI) . |

related 1= related [Coordination System iy et I
. imformation| Body | ntormatios Body | Software intro- Me.l:caslm
1 - - Content M| - s e e duction | > c-l I
I confirmatiorn announcement etc. supporte 1
1 of the reported date, rs, etc. I
1 vulnerability- ct?l.laborating 1
| related with overseas Security [Promotion Wisren |8
I information ~ coordination Realizing sEcurity 1
\ Finder nmstitutions, etc. measures - Government

| Analysis Distribution, etc. - Companies
— — — 4|Instruction] AIST | = e o o o e o o o o e o o e o o e e - Individuals

- Verification [Analysis _ _ The fact
o of the support Website Manager [relevance is
; reported = ization] Notification dnnounced i
H Reports of (| yinerabilit of - Werification and case of
E vulperability: v-related vulnerability- Countermeasure personal
: = relatec.l information| related Implementation information
H information information leakase
H ., . .
H L L
5_ Vulnerability of Websites
% ' s

JPCERT/CC: Japan Computer Emergency Response Team Coordination Center, AIST: National Institute of Advanced Industrial Science and technology

INFORMATION-TECHNOLOGY PROMOTION AGENCY, JAPAN
2-28-8 Honkomagome, Bunkyo-ku, Tokyo 113-6591 JAPAN
http://www.ipa.go.jp/index-e.html

IT SECRITY CENTER

Tel: +81-3-5978-7527 FAX: +81-3-5978-7518

http://www.ipa.go.jp/security/english/

	Contents
	Preface
	Organization of This Book
	Intended Reader
	What is Revised in the 5th Edition
	Fixing Vulnerabilities
	－Fundamental Solution and Mitigation Measure－

	1. Web Application Security Implementation
	1.1 SQL Injection
	1.2 OS Command Injection
	1.3 Unchecked Path Parameter / Directory Traversal
	1.4 Improper Session Management
	1.5 Cross-Site Scripting
	1.5.1 Measures for Web Applications That Do Not Permit HTML Text Input
	1.5.2 Measures for Web Applications That Permit HTML text Input
	1.5.3 Measures common to all web applications
	1.6 CSRF (Cross-Site Request Forgery)
	1.7 HTTP Header Injection
	1.8 Mail Header Injection
	1.9 Lack of Authentication and Authorization
	1.9.1 Lack of Authentication
	1.9.2 Lack of Authorization Control

	2. Approaches to Improve Website Security
	2.1 Secure Web Server
	2.2 Configure DNS Security
	2.3 Protect against Network Sniffing
	2.4 Secure Password
	2.5 Mitigate Phishing Attacks
	2.6 Protect Web Applications with WAF
	2.7 Secure Mobile Websites
	2.7.1 Issues with Session Management
	2.7.2 Issues with Cross-Site Scripting
	2.7.3 Issues with Mobile ID
	2.7.4 Issues with Authentication Information

	3. Case Studies
	3.1 SQL Injection
	3.2 OS Command Injection
	3.3 Unchecked Path Parameters
	3.4 Improper Session Management
	3.5 Cross-Site Scripting
	3.5.1 Countermeasures Unimplemented
	3.5.2 Insufficient Countermeasures
	3.5.3 Misguided Countermeasures
	3.6 CSRF (Cross-Site Request Forgery)
	3.7 HTTP Header Injection
	3.8 Mail Header Injection

	Postface
	References
	Terminology
	Checklist
	CWE Mapping Table

