
1

© Fraunhofer IESE

DEFECT-FLOW MODELS

PART 2: Defect Classification

Dr. Adam Trendowicz
adam.trendowicz@iese.fraunhofer.de

Martin Kowalczyk
martin.kowalczyk@iese.fraunhofer.de

Michael Kläs
michael.klaes@iese.fraunhofer.de

Ove Armbrust
ove.armbrust@iese.fraunhofer.de

Slide 2

Defect-Flow Modeling
© Fraunhofer IESE

FRAUNHOFER PROPRIETARY

Information contained herein is proprietary to the Fraunhofer
Institute for Experimental Software Engineering (IESE). It shall only

be used for personal purposes and may not be distributed.

2

Defect-Flow Modeling
© Fraunhofer IESE

Part 2: Defect Classification

Defect Classification Theory

Terminology

Structures for Classification

Prominent Approaches

IEEE Standard Classification Scheme

Hewlett-Packard (HP) Classification Scheme

Orthogonal Defect Classification (ODC)

Summary

Defect-Flow Modeling
© Fraunhofer IESE
Slide 4

Basic idea of defect classification

Capture semantics of a defect by classifying it
according to a few attributes

e.g., what had to be fixed, how was the
defect detected, etc.

Analyze the actual distribution of attributes for
a larger number of defects

Analyze data together with developers to
interpret data in order to

devise controlling actions or

make improvement suggestions

Basic Idea

3

Defect-Flow Modeling
© Fraunhofer IESE
Slide 5

Defect classification and defect classification schemes

Measurement of one or several attributes (e.g.,
defect type) of a defect on defined scales
(typically nominal or ordinal scale)

A set of attributes and corresponding attribute
values for defect classification

Defect
Classification

Defect
Classification
Scheme

Defect Type
Assignment
Checking
Algorithm
Function
Interface

Defect Qualifier = {missing, incorrect, extraneous}
Defect Type = {assignment, checking, algorithm, function, …}
Activity = {code inspection, unit test, integration test, …}

Attribute
Values

Attribute

Defect-Flow Modeling
© Fraunhofer IESE
Slide 6

Example: classification data

ID 1 2 3
open date 01.01.2009 03.01.2009 11.1.2009
close date 02.01.2009 10.01.2009 13.01.2009
activity inspection unit test system test
trigger conform. simple SW config
impact capability usability reliability
target code code code
type assign checking function
qualifier misssing missing incorrect
source in-house in-house outsourced
age new new refixed

4

Defect-Flow Modeling
© Fraunhofer IESE

Part 2: Defect Classification

Defect Classification Theory

Terminology

Structures for Classification
Attribute categorization scheme

Hierarchical attribute values

Hybrid scheme

Prominent Approaches

IEEE Standard Classification Scheme

Hewlett-Packard (HP) Classification Scheme

Orthogonal Defect Classification (ODC)

Summary

Slide 8

Defect-Flow Modeling
© Fraunhofer IESE

Structural alternatives for classification of attributes (1/3)

For each attribute, there is one set of attribute
values

Possible attribute values for attribute A are
independent from values of attribute B

Like table in relational database

Example: ODC

Impact Defect Type Qualifier Target
Installability Assignment/ Initializa-

tion
 Missing X Code X

Integrity/ Security Checking Incorrect GUI
Performance X Algorithm/ Method X Extraneous
Maintenance Function/ Class/ Object
Serviceability Timing/ Serialization
Migration Interface/ O-O Mes-

sages

Documentation Relationship

Attribute
categorization
scheme

5

Slide 9

Defect-Flow Modeling
© Fraunhofer IESE

Structural alternatives for classification of attributes (2/3)

Attribute values on level x can be refined on
level x+1 (hierarchical dependency)

Example: IEEE 1044

Hierarchical
attribute values

X

Attribute: Type - What type of defect/enhancement at the code level?

Sign convention fault
Mixed modes
Rounding or truncation faultPrecision loss
Parentheses used incorrectly
Operator incorrect
Operand incorrect
Missing computationEquation insufficient or incorrectComputation Problem

Iterating loop incorrectly
Check wrong variable
Missing condition test
Misinterpretation
Unnecessary function
Extreme conditions neglected
Duplicate logic

Forgotten cases or stepsLogic Problem

Slide 10

Defect-Flow Modeling
© Fraunhofer IESE

Structural alternatives for classification of Attributes (3/3)

Set of attribute values for attribute y depends
on value of attribute x

Example: HP scheme (origin determines type)

Hybrid scheme

M
o

d
e

O
rig

in

Specifications/
Requirements Design Code Environment/

Support
Documenta-

tion Other

Missing Unclear Wrong Changed Better Way

Typ
e

Specifications/
Requirements

Functionality

HW Interface

SW Interface

User Interface

Functional
Description

(Inter-)Process
Communication

Data Definition

Module Design

Logical
Description

Error Checking

Standards

Logic

Computation

Data Handling

Module
Interface/

Implementation

Standards

Test HW

Test SW

Integration SW

Development
Tools

6

Defect-Flow Modeling
© Fraunhofer IESE

Part 2: Defect Classification

Defect Classification Theory

Terminology

Structures for Classification

Prominent Approaches

IEEE Standard Classification Scheme

Hewlett-Packard (HP) Classification Scheme

Orthogonal Defect Classification (ODC)

Summary

Slide 12

Defect-Flow Modeling
© Fraunhofer IESE

Most important defect classification schemes

IEEE Standard Classification Scheme (for Software Anomalies)

Purpose: support for defect tracking

Hewlett-Packard Classification Scheme

Purpose: process improvement through reduction of defects over time

Orthogonal Defect Classification Scheme (ODC)

Purpose: enable control of verification and validation activities, enable
process improvement

Developed at IBM, usage reported from IBM, Motorola, Cisco, …

Many experience reports quasi-standard

Introduction to these three schemes due to their high relevance

7

Defect-Flow Modeling
© Fraunhofer IESE

Part 2: Defect Classification

Defect Classification Theory

Terminology

Structures for Classification

Prominent Approaches

IEEE Standard Classification Scheme

Hewlett-Packard (HP) Classification Scheme

Orthogonal Defect Classification (ODC)

Summary

Slide 14

Defect-Flow Modeling
© Fraunhofer IESE

IEEE standard classification scheme (standard 1044) [1]

Recognition

Discover a defect

Investigation

Investigate defect
to identify related
issues and propose

a solution or
determine that no
action is required

Action Disposition

Dispose defect
after completion

of actions

Plan actions to
resolve defect and
prevent it from re-

occurring

The Classification Process Steps

8

Defect-Flow Modeling
© Fraunhofer IESE
Slide 15

Action

Disposition

Example: IEEE standard scheme

Investigation

Recognition

Risk associated with implementing a fix?Project Risk
Impact on the product quality or reliability to make a fix?Project Qual./ Rel.
Impact on society of implementing the fix?Societal

Rank the importance of resolving the defect?Priority
How important is a fix to the customer?Customer Value
How bad was the defect wrt. project objectives or human
well-being?

Mission Safety

Relative effect on the project schedule to fix?Project Schedule
Relative effect on the project budget to fix?Project Cost

What actually happened to close the anomaly?Disposition

How bad was the defect in more objective engineering
terms?

Severity

What action to take to resolve the defect?Corrective Action
What to do to prevent the defect from happening again?Resolution
What type of defect/enhancement at the code level?Type

Where (part of the system and its documentation) was the
defect’s origin?

Source

What caused the anomaly to occur?Actual Cause
What is the usability of the product with no changes?Product Status
How did the defect manifest itself?Symptom
Could you make the defect appear more than once?Repeatability
What do you think might be the cause?Suspected Cause
In which life-cycle phase is the product?Project Phase
What were you doing when the defect occurred?Project Activity

Attribute MeaningAttribute Name

Defect-Flow Modeling
© Fraunhofer IESE
Slide 16

Hierarchical structure of IEEE standard scheme

Type - What type of defect/enhancement at the code level?

………

Sign convention fault

Mixed modes

Rounding or truncation faultPrecision loss

Parentheses used incorrectly

Operator incorrect

Operand incorrect

Missing computationEquation insufficient or
incorrect

Computation Problem

Iterating loop incorrectly

Check wrong variable

Missing condition test

Misinterpretation

Unnecessary function

Extreme conditions neglected

Duplicate logic

Forgotten cases or stepsLogic Problem

IEEE scheme is very exhaustive and thus application is quite complex!

9

Defect-Flow Modeling
© Fraunhofer IESE

Part 2: Defect Classification

Defect Classification Theory

Terminology

Structures for Classification

Prominent Approaches

IEEE Standard Classification Scheme

Hewlett-Packard (HP) Classification Scheme

Orthogonal Defect Classification (ODC)

Summary

Defect-Flow Modeling
© Fraunhofer IESE
Slide 18

Hewlett-Packard (HP) scheme [2]

M
o

d
e

O
rig

in

Specifications/
Requirements

Design Code Environment/
Support

Documenta-
tion

Other

Missing Unclear Wrong Changed Better Way

Typ
e

Specifications/
Requirements

Functionality

HW Interface

SW Interface

User Interface

Funct.
Description

(Inter-)Process
Communication

Data Definition

Module Design

Logical
Description

Error Checking

Standards

Logic

Computation

Data Handling

Module
Interface/

Implementation

Standards

Test HW

Test SW

Integration SW

Development
Tools

10

Defect-Flow Modeling
© Fraunhofer IESE
Slide 19

Attribute value: Origin

Origin - Where in the lifecycle phase does the defect have its origin?

O
rig

in

A mistake in any non-code material delivered to a customer. Such mistakes can
be in user manuals, installation instructions, data sheets, product demos, etc.

Documentation

Defects that arise as a result of the system development and/or testing
environment. Such mistakes can be in the build/configuration process, the
development/integration tools, the testing environment, etc.

Environmental
Support

A mistake in the implementation of a computer program. Such mistakes can
be in product or test code, JCL, build files, etc.

Code

A mistake in the design of a system or system component. Such mistakes can
be in algorithms, control logic, data structures, database access, interface
descriptions, etc.

Design

This classification should be used sparingly and when it is used, the defect
should be very carefully and extensively described in associated
documentation.

Other

A mistake in the definition of the customer/target needs for a system or system
component. Such mistakes can be in functional requirements, performance
requirements, interface requirements, design requirements, test requirements,
development standards, etc.

Specifications /
Requirements

Defect-Flow Modeling
© Fraunhofer IESE
Slide 20

Attribute value: Type (specifications, requirements) (1/4)

Typ
e

Incorrect description of what the product does. Generally discovered during
requirements or design inspection.

Functional
Description

Incorrect specification of how the product will interact with its environment
and/or users.

Hardware, Software,
and User Interface

Incorrect or incompatible product features.Functionality

The specification does not adequately describe the needs of the target users.
Includes the effects of product strategy redirection and cases where
functionality is increased to add market value.

Requirements/
Specifications

Type (specifications, requirements) – What is the type of the defect?

11

Defect-Flow Modeling
© Fraunhofer IESE
Slide 21

Attribute value: Type (design) (2/4)

Incorrect interfaces and communications between processes within the
product.

Process or Inter-
Process
Communications

Design does not effectively convey what the module/product should do.
Generally discovered during design inspection or coding.

Functional
Description

Problems with incorrect design of how the product will interact with its
environment and/or users. E.g., incorrect use of libraries; design does not
implement requirements; device capabilities overlooked or unused; design
does not meet usability goals.

Hardware, Software,
and User Interface

Incorrect error condition checking.Error Checking

Typ
e

Design does not adhere to locally accepted design standards.Standards

Design is incorrect in conveying the indented algorithm or logic flow.
Generally, a defect found during design inspection or coding.

Logic Description

Problems with the (logic) flow and execution within processes.Module Design

Incorrect design of the data structures to be used in the module/product.Data Definition

Type (design) – What is the type of the defect?

Defect-Flow Modeling
© Fraunhofer IESE
Slide 22

Attribute value: Type (code) (3/4)

Initialized data incorrectly, accessed or stored data incorrectly, scaling of units
of data incorrect, dimensioned data incorrectly, scope of data incorrect.

Data Handling
Problems

Equation insufficient or incorrect, precision loss, sign convention fault.Computation
Problems

Forgotten cases or steps, duplicate logic, extreme conditions neglected,
unnecessary functions, misinterpretation errors.

Logic

Typ
e

Code does not adhere to locally accepted coding standard.Standards

Problems related to the calling of, parameter definition of, and termination of
sub-processes. E.g., incorrect number of, or order of, subroutine arguments,
ambiguous termination value for a function, or data types incorrect.

Module Interface/
Implementation

Type (code) – What is the type of the defect?

12

Defect-Flow Modeling
© Fraunhofer IESE
Slide 23

Attribute value: Type (environment, support) (4/4)

Problems that are a result of development tools not behaving according to
specifications or in a predictable manner.

Development Tools

Problems with the HW used to run the test software. NOT the HW on which the
product runs.

Test Hardware

Problems in software used to test the product’s software capabilities. E.g., another
application program, operating system, simulation software.

Test Software

Typ
e

Problems that result from integration software/ tools or processes.Integration Tools

Type (environment, support) – What is the type of the defect?

Defect-Flow Modeling
© Fraunhofer IESE
Slide 24

Attribute value: Mode

Changes in a work product caused changes to other work products.Changed

The information in the work product was not correct.Wrong

Information was misleading, ambiguous, or hard to understand.Unclear

Information was left out of a work product.Missing

M
o

d
e

There was a better way to do a work product, usually for better efficiency,
performance, readability, maintainability, and supportability.

Better Way

Mode – Why did the defect occur?

13

Defect-Flow Modeling
© Fraunhofer IESE
Slide 25

HP approach to causal analysis (1/2)

Number of Defects

0
20
40
60
80

100
120
140

Code

Doc
u.

Des
ig

n
Sp

ec
.

Oth
er

En
v.

Su
p

Rework Effort

0
100
200
300
400
500

Sp
ec

.

Cod
e

Des
ig

n
Doc

u.

Oth
er

En
v.

Su
p

Rework-Effort: 66
Origin: Design Type: Data definition
Mode: Wrong Module: Disc_io
How could defect have been prevented/found earlier:
Design walkthrough, more complete test overage

Average Fix hours
Spec: 14.25
Design: 6.25
Code: 2.5
Docu/Env/Other: 1

Step 0

Data Collection and Validation

Step 1

Create Pareto Chart for Origin

Create Pareto Chart for
Rework Effort (per Origin)

Step 2

Compute Average Rework
Effort per Origin

Defect-Flow Modeling
© Fraunhofer IESE
Slide 26

HP approach to causal analysis (2/2)

Step 3

For top 2-3 origins: Create
Pareto Chart for Defect Type
(multiplied by average fix times)

Step 4

Create Pareto Chart for Modules

Step 5

Review Defect Reports for the
largest totals in Step 3 and 4 and
summarize prevention proposals

Normalized fix hours

0
20
40
60
80

100
120
140

Lo
gic

Com
p.

Pr
ocC

om
m

oth
er

 d
es

ig
n

oth
er

 co
de

HW
 In

te
rf.

SW
-In

te
rf

Defect per Module

0
20
40
60
80

100

Disc
_io

In
te

rx

Rea
d_o

ut

Cpm
re

Number of Defects

0

10

20

30

40

50

60

Lo
gic

Com
p.

oth
er

 co
de

Pr
ocC

om
m

oth
er

 d
es

ig
n

HW
 In

te
rf.

SW
-In

te
rf

How could defect have been prevented/found earlier:

Design walkthrough, more complete test coverage,

How could defect have been prevented/found earlier:

More timely data dictionary updates,

14

Slide 27

Defect-Flow Modeling
© Fraunhofer IESE

Focusing improvement actions based on Pareto chart

Select the largest column

Frequently chosen, particularly appropriate for organizations with
mature process control

Select easiest column

Easy potential for solution or most confidence in solution

Achieve early success for further motivation

Select largest normalized column

Take into account the find-and-fix effort (where can we save most)

Select a combination of columns

Select solution that can address several wedges
e.g., inspections for logic AND computation

Slide 28

Defect-Flow Modeling
© Fraunhofer IESE

Example of classification usage (1/3)

Detailed analysis based on classification

Number of defects

No clear focus for action can be
derived based solely on number of
defects

Include effort for correction

Number of defects normalized by
correction effort

Specification defects offer most cost-
saving potential

Further focus on specifications

Logic Impl.
8%

Logic Descr.
5%

SW Interface
11%

Error
Checking

16%

Documen-
tation
12%

Specifica-
tions
19%

HW Interface
12%

Module
Design

17%

HW Interface
11%

Module Design
15%

Error Checking
15%

SW Interface
10%Specifications

39%

Logic Descr.
5%

Logic Impl.
3%Documentation

2%

15

Slide 29

Defect-Flow Modeling
© Fraunhofer IESE

Example of classification usage (2/3)

Ishikawa diagram

Slide 30

Defect-Flow Modeling
© Fraunhofer IESE

Example of classification usage (3/3)

Actions derived from analysis results

Root cause analysis

Unclear understanding of customer
segments

Lack of clearly assigned
responsibilities

Improvement actions

Marketing department sets up
customer visits to learn more about
customer needs

Assignment of configuration
management responsibility to one
person

Introduction of standard tool for
version control

16

Defect-Flow Modeling
© Fraunhofer IESE

Contents: Defect Classification

Defect Classification Theory

Terminology

Structures for Classification

Prominent Approaches

IEEE Standard Classification Scheme

Hewlett-Packard (HP) Classification Scheme

Orthogonal Defect Classification (ODC)

Summary

Defect-Flow Modeling
© Fraunhofer IESE
Slide 32

ODC scheme for design and code [3], [4]

Defect Type
What had to be fixed?

Defect Qualifier
Missing, extraneous or wrong?

Activity
When did you detect the defect?

Trigger
How did you detect the defect?

Impact
What would customers have noticed if defect had
escaped into the field?

Age
What is the history of the target (artifact)?

Source
Who developed the target (artifact)?

Target
What high-level entity was fixed?

Feedback to
Quality
Assurance
Activities

Feedback to
Development
Process

Feedback to
Product

17

Slide 33

Defect-Flow Modeling
© Fraunhofer IESE

Rationale behind ODC classification scheme

Opener Section - Attributes can be
classified when defect is detected

Closer Section - Attributes can be
classified when defect has been
corrected

Designed to capture as much
information in few attributes and to
perform useful analyses

Applicable to all phases

Consistent across products and projects

Small number of orthogonal attribute
values

Time to classify: 45sec-2min per defect

Note: Classical ODC attributes focus on
late development phases (design,
coding, and testing)

O
p

en

Activity/Trigger
How was defect

detected?

Impact
Customer view?

C
lo

se

Type/Qualifier
What was fixed?

Target/Source/
Age

Where located?

Development Process

Quality Assurance Process

Defect-Flow Modeling
© Fraunhofer IESE
Slide 34

ODC attributes in detail

base, new, rewritten, re-fixedWhat is the history of the target?Age

in-house, library, outsourced, portedWho developed the target?Source

requirements, design, code, build/package/merge,
information, user interfaceWhat high-level entity was fixed?Target

installability, serviceability, standard,
integrity/security, migration, reliability,
performance, documentation, requirements,
maintenance, usability, accessibility, capability

What would customer have
noticed if defect had escaped into
field?

Impact

Inspection Trigger: design conformance,
logic/flow, lateral compatibility, backward
compatibility, language dependency, concurrency,
side effects, rare situation

Unit Test Trigger

System Test Trigger

How did you detect the defect?Trigger

design inspection, code inspection, unit test,
integration test, system testWhen did you detect the defect?Activity

missing, incorrect, extraneousHow can the defect be qualified?Defect Qualifier

assignment, checking, algorithm, function, timing,
interface, relationshipWhat had to be fixed?Defect Type

Attribute ValuesAttribute MeaningAttribute

18

Slide 35

Defect-Flow Modeling
© Fraunhofer IESE

Definition of the attribute “Defect Type” (1/2)

Defect Type - What had to be fixed?

D
efect Typ

e -
A

ttrib
u

te V
alu

es

Efficiency or correctness problems that affect the task and can be fixed by (re-)implementing an
algorithm or local data structure without the need for requesting a design change. Problem in the
procedure, template, or overloaded function that describes a service offered by an object.

Examples: 1) The low-level design called for the use of an algorithm that improves throughput over the
link by delaying transmission of some messages, but the implementation transmitted all messages as soon
as they arrived. The algorithm that delayed transmission was missing. 2) The algorithm for searching a
chain of control blocks was corrected to use a linearly linked list instead of a circularly linked list. 3) The
number and/or types of parameters of a method or an operation are specified incorrectly. 4) A method or
an operation is not made public in the specification of a class.

Algorithm/
Method

Errors caused by missing or incorrect validation of parameters or data in conditional statements. It might
be expected that a consequence of checking for a value would require additional code such as a do-
while loop or branch. If the missing or incorrect check is the critical error, checking would still be the
type chosen.

Examples:1) Value greater than 100 is not valid, but the check to make sure that the value was less than
100 was missing. 2) The conditional loop should have stopped on the ninth iteration. But it kept looping
while the counter was <= 10.

Checking

Value(s) assigned incorrectly or not assigned at all; but note that a fix involving multiple assignment
corrections may be of the type Algorithm.

Examples: 1) Internal variable or variable within a control block did not have correct value, or did not
have any value at all. 2) Initialization of parameters. 3) Resetting a variable's value. 4) The instance
variable capturing a characteristic of an object (e.g., the color of a car) is omitted. 5) The instance
variables that capture the state of an object are not correctly initialized.

Assignment/
Initialization

Slide 36

Defect-Flow Modeling
© Fraunhofer IESE

Definition of the attribute “Defect Type” (2/2)

Defect Type - What had to be fixed?

Communication problems between: 1) modules 2) components 3) device drivers 4) objects 5) functions
via 1) macros 2) call statements 3) control blocks 4) parameter lists
Examples: 1) A database implements both insertion and deletion functions, but the deletion interface
was not made callable. 2) The interface specifies a pointer to a number, but the implementation is
expecting a pointer to a character. 3) The OO message incorrectly specifies the name of a service. 4) The
number and/or types of parameters of the OO message do not conform with the signature of the
requested service.

Interface/
O-O Messages

D
efect Typ

e -
A

ttrib
u

te V
alu

es

Problems related to associations among procedures, data structures, and objects. Such associations may
be conditional.
Examples: 1) The structure of code/data in one place assumes a certain structure of code/data in
another. Without appropriate consideration of their relationship, the program will not execute or it
executes incorrectly. 2) The inheritance relationship between two classes is missing or specified
incorrectly.

Relationship

Necessary serialization of shared resource was missing, the wrong resource was serialized, or the wrong
serialization technique was employed.
Examples: 1) Serialization is missing when making updates to a shared control block. 2) A hierarchical
locking scheme is in use, but the defective code failed to acquire the locks in the prescribed sequence.

Timing/
Serialization

The error should require a formal design change, as it significantly affects capability, end-user
interfaces, product interfaces, interface with hardware architecture, or global data structure(s). The
error occurred when implementing the state and capabilities of a real or an abstract entity.
Examples:1) A database did not include a field for street address, although the requirements specified it.
2) A database included a field for postal zip code, but it was too small to contain international postal
codes as specified in the requirements. 3) A C++ or SmallTalk class was omitted during system design.

Function/
Class/Object

19

Slide 37

Defect-Flow Modeling
© Fraunhofer IESE

Rationale behind the ODC attribute “Defect Type”

Characteristic defect type profiles are different for every activity of the
development process

Unique ‘signature’ for each attribute value (i.e., values change over
time)

Unique distribution for each detection activity

Ideally, the attribute values should span the space of all possibilities they
describe

Empirical approach: requires experience, many pilot projects to
determine the appropriate values for an attribute

Design Inspections Unit Test Integration Test System Test

Function

Assignment

Interface

Timing

Defect Types

%

10

20

30

40

Slide 38

Defect-Flow Modeling
© Fraunhofer IESE

ODC attribute “Defect Type”

Developer fixing the defect determines the defect type according to the
nature of the change

Each defect type can be associated with a software development phase

XXTiming/Serialization: problem with shared resources

Relationship: associations among procedures, data
structures

Checking: no proper validation of data, loop conditions

Algorithm: errors wrt. efficiency, correctness problems

Interface: interaction with other components, modules

Assignment: few LoC changed (e.g., initialization)

Function: requires formal design change

Defect Type

X

X

HLD

XX

XX

XXX

XXX

STITUTCode LLD

20

Slide 39

Defect-Flow Modeling
© Fraunhofer IESE

Start
Development

Start
Development ReleaseRelease

Development Process

Defects

Design Inspections Unit Test Integration Test System Test

Function

Assignment

Interface

Timing

Defect Types

%

10

20

30

40

Distribution tells us “where we are” in the process

Measuring progress with Defect Type

Expected
distributions
over time

Actual
distribution for
one point in time

Slide 40

Defect-Flow Modeling
© Fraunhofer IESE

Percentage of defects found in Integration Test

4,35

39,13

10,67

17,78

1,19

Function

Interface

Checking

Assignment

Timing

0 5 10 15 20 25 30 35 40 45

Should have already been found

Should also detect these

In
te

gr
at

io
n

Te
st

Example: Analyze Defect Type (1/2)

Conclusion - Product entered integration test too early

More should be found

21

Slide 41

Defect-Flow Modeling
© Fraunhofer IESE

Example: Analyze Defect Type (2/2)

Result

Too few defects associated with integration test

Too many defects associated with unit test

Product not mature enough for integration test

Cause

Unit test completed too early

Implication

Integration test is hampered by defects that it is not supposed to find

Action

Go back to unit testing

Validation

During repeated unit test: more defects associated with unit test should
be detected

Slide 42

Defect-Flow Modeling
© Fraunhofer IESE

ODC attributes in detail

base, new, rewritten, re-fixedWhat is the history of the target?Age

in-house, library, outsourced, portedWho developed the target?Source

requirements, design, code, build/package/merge,
information, user interfaceWhat high-level entity was fixed?Target

installability, serviceability, standard,
integrity/security, migration, reliability,
performance, documentation, requirements,
maintenance, usability, accessibility, capability

What would customer have
noticed if defect had escaped into
field?

Impact

Inspection Trigger: design conformance,
logic/flow, lateral compatibility, backward
compatibility, language dependency, concurrency,
side effects, rare situation

Unit Test Trigger

System Test Trigger

How did you detect the defect?Trigger

design inspection, code inspection, unit test,
integration test, system testWhen did you detect the defect?Activity

missing, incorrect, extraneousHow can the defect be qualified?Defect Qualifier

assignment, checking, algorithm, function, timing,
interface, relationshipWhat had to be fixed?Defect Type

Attribute ValuesAttribute MeaningAttribute

22

Slide 43

Defect-Flow Modeling
© Fraunhofer IESE

ODC attribute trigger

A trigger activates and/or discovers
defects. It is the catalyst that helps a
defect to surface.

Inspector or Tester classifies according
to the condition that allows a defect to
surface.

What did you think about?

Why did you write the test case?

Knowing the best triggers for specific
defect types enables earlier detection.

Fault Failure

Trigger1

Trigger3

Trigger2

Defect lifecycle

Error Fault Activation Failure

Slide 44

Defect-Flow Modeling
© Fraunhofer IESE

Triggers for different activities

Recovery

Start / Restart

Workload / Stress

HW Configuration

SW Configuration

Normal Mode
(Block Test)

Coverage

Sequencing

Interaction

Variation

Simple Path

Complex Path

Backward
Compatibility

Lateral Compatibility

Design Conformance

Logic Flow

Side Effects

Documentation

Rare Situation

System TestUnit TestInspection

23

Slide 45

Defect-Flow Modeling
© Fraunhofer IESE

Example: typical Unit Test triggers (1/3)

What was the purpose of the test case (white box)?

Path failed because one part of the
subroutine released memory that
subsequently was used in another
part of that subroutine.

In white-/gray-box testing, the test case that
found the defect was executing some
contrived combinations of code paths. In
other words, the tester attempted to invoke
the execution of several branches under
several different conditions. This trigger
would only be selected for field-reported defects
under the same circumstances as those described
under Simple Path.

Complex Path

Tried executing the "default" path of
a case statement, but since it didn't
exist, the test failed.

The test case was motivated by the
knowledge of specific branches in the code
and not by the external knowledge of the
functionality. This trigger would not typically be
selected for field-reported defects, unless the
customer is very knowledgeable of the code and
design internals, and specifically invokes a specific
path (as is sometimes the case when the customer
is a business partner or vendor).

Simple Path

ExampleDefinitionAttribute Value

Slide 46

Defect-Flow Modeling
© Fraunhofer IESE

Example: typical Unit Test triggers (2/3)

What was the purpose of the test case (black box)?

When the tester tried to add one
more character than the maximum
allowable, the software hung.

If an assignment of an operation to a
work position is made, and on the
operation details screen no work rule
is specified, upon saving details, the
client application crashes.

During black-box testing, the test case that
found the defect was a straightforward
attempt to exercise code for a single
function but using a variety of inputs and
parameters. These might include invalid
parameters, extreme values, boundary conditions,
and combinations of parameters.

Variation

The tester tried to delete a city from
the database but it couldn't be
deleted.

Every latch set gets messages
'MSGISG101141' Formatting
incomplete. Code='10'. This message
is issued incorrectly because an error
condition does not really exist.

During black-box testing, the test case that
found the defect was a straightforward
attempt to exercise code for a single function,
using no parameters or a single set of parameters.

Coverage

ExampleDefinitionAttribute Value

24

Slide 47

Defect-Flow Modeling
© Fraunhofer IESE

Example: typical Unit Test triggers (3/3)

What was the purpose of the test case (black box)?

Created a UWIP of type 'Serialized
Unit'. Saved the UWIP without
assigning a serial to the part.
Reopened the UWIP from the UWIP
distance view, went to parts and
selected 'Edit'. Now the list of
available serials comes up empty.
Can't assign any serial to that part
anymore.

During black-box testing, the test case that
found the defect initiated an interaction
among two or more bodies of code. This
trigger is only chosen when each function
executes successfully when run independently,
but fails in this specific combination. The
interaction was more involved than a simple
serial sequence of the executions.

Interaction

The test case first added a record,
then deleted it, and finally tried to
add it again but got the message
"You cannot add a record that
already exists.”

The "+" key was pressed twice and
the program crashed.

During black-box testing, the test case that
found the defect executed multiple
functions in a very specific sequence. This
trigger is only chosen when each function
executes successfully when run independently,
but fails in this specific sequence. It may also be
possible to execute a different sequence
successfully.

Sequencing

ExampleDefinitionAttribute Value

Slide 48

Defect-Flow Modeling
© Fraunhofer IESE

Example: typical System Test triggers (1/2)

ISGQSCAN recovery routine ISGQSCNR
converts unexpected error in ISGQSCAN
to ABEND09A and RCA220, instead of
ABEND322.

After an abend, a DISPLAY GRS
Contention command is entered, the
MASID/MTCB issuer has
JOBNAME/*UNKNOWN in the
MSGISG020I output. The bit RIBESDIV has
been set in an invalid manner.

The system is being tested with the intent
of invoking an exception handler or some
type of recovery code. The defect would not
have surfaced if some earlier exception had not
caused exception or recovery processing to be
invoked. From a field perspective, this trigger
would be selected if the defect is in the system's
or product's ability to recover from a failure, not
the failure itself.

Recovery/
Exception

What was the purpose of the test case?

After pulling the plug on the CPU, the
software was not able to start up again
until some files left in one of the
directories were cleaned out.

The system or subsystem was being
initialized or restarted following some earlier
shutdown or complete system or subsystem
failure.

Startup/
Restart

When the system is idle for 10 minutes, it
hangs.

ISGGRP00 should not hold lock for so
long that it causes the rest of the complex
to hang. After processing a certain
number of requests, it should release and
then re-obtain the lock in order to give
other units of work, specifically ring
processing, a chance to execute.

The system is operating at or near some
resource limit, either upper or lower. These
resource limits can be created by means of a
variety of mechanisms, including running small or
large loads, running a few or many products at a
time, letting the system run for an extended
period of time.

Workload/
Stress

ExampleDefinitionAttribute Value

25

Slide 49

Defect-Flow Modeling
© Fraunhofer IESE

Example: typical System Test triggers (2/2)

TRYJOIN does not work in a non-
sysplex environment.

The system is being tested to ensure functions
execute correctly under specific software
configurations.

Software
Configuration

What was the purpose of the test case?

During system test, wanted to check
for workload stress by printing 1000
jobs. However, when Print was
clicked, nothing happened. No screen
appeared to prompt for input.

The product is operating well within
resource limits and the defect surfaced
while attempting to execute a system test
scenario. This trigger would be used when the
scenarios could not be run because there are
basic problems that prevent their execution. This
trigger must not be used in customer-reported
defects.

Blocked Test
(previously
Normal Mode)

Found a defect when sending any job
to a particular brand printer.

The system is being tested to ensure functions
execute correctly under specific hardware
configurations.

Hardware
Configuration

ExampleDefinitionAttribute Value

Slide 50

Defect-Flow Modeling
© Fraunhofer IESE

Example of triggers: Inspection Trigger

Each trigger value can be associated with a certain skill level of people

XBackward Compatibility (to previous version of product)

XLateral Compatibility (to other systems/services)

XXXDocumentation (code comments, user guides, manuals)

Rare Situation (unusual sets of circumstances)

Side Effects (potential impact on another function/product)

Logic Flow (operational semantics in question)

Concurrency (simultaneous use of resources)

Understanding Details (of structure, operation)

Design Conformance (compare design with specification)

Inspection Trigger

X

Novice

XXX

X

X

X

XX

XXX

Expert
Cross-
product
experience

Product
experience

26

Defect-Flow Modeling
© Fraunhofer IESE
Slide 51

Trigger application: evaluate inspection effectiveness (1/3)

First HLD-Inspection

Rare Situation

Operational Semantic

Backward Compatibili

Document Consistency

Design Conformance

Lateral Compatibilit

0 10 20 30 40 50 60 70 80 90
Algorithm Documentation Timing/Serialize Interface Function

expected:completeness
and correctness addressed

unexpected:too few interface and
lateral comp. for middleware

Number of defects

H
ig

h-
Le

ve
l D

es
ig

n
In

sp
ec

tio
n

Slide 52

Defect-Flow Modeling
© Fraunhofer IESE

Trigger application: evaluate inspection effectiveness (2/3)

Result

Too few defects associated with lateral compatibility and interface

Cause

Inspection team consisted mainly of inexperienced inspectors; thus,
compatibility issues were not considered adequately

Implication

Many crucial defects still remain, causing existing customer applications
to fail

Action

Re-inspect with more experienced inspectors concentrating on
deficiencies

Validation

see next slide

27

Slide 53

Defect-Flow Modeling
© Fraunhofer IESE

Trigger application: evaluate inspection effectiveness (3/3)

Second HLD-Inspection with Experts

Rare Situation

Operational Semantic

Backward Compatibili

Document Consistency

Design Conformance

Concurrency

Lateral Compatibilit

0 5 10 15 20 25 30 35 40 45

Assignment
Checking
Build/Package
Algorithm
Documentation
Timing/Serialize
Interface
Function

Many defects more

more defects
more types

Se
co

nd
 H

LD
-In

sp
ec

tio
n

a lot more defects

Number of defects

Slide 54

Defect-Flow Modeling
© Fraunhofer IESE

ODC attributes in detail

base, new, rewritten, re-fixedWhat is the history of the target?Age

in-house, library, outsourced, portedWho developed the target?Source

requirements, design, code, build/package/merge,
information, user interfaceWhat high-level entity was fixed?Target

installability, serviceability, standard,
integrity/security, migration, reliability,
performance, documentation, requirements,
maintenance, usability, accessibility, capability

What would customer have
noticed if defect had escaped into
field?

Impact

Inspection Trigger: design conformance,
logic/flow, lateral compatibility, backward
compatibility, language dependency, concurrency,
side effects, rare situation

Unit Test Trigger

System Test Trigger

How did you detect the defect?Trigger

design inspection, code inspection, unit test,
integration test, system testWhen did you detect the defect?Activity

missing, incorrect, extraneousHow can the defect be qualified?Defect Qualifier

assignment, checking, algorithm, function, timing,
interface, relationshipWhat had to be fixed?Defect Type

Attribute ValuesAttribute MeaningAttribute

28

Slide 55

Defect-Flow Modeling
© Fraunhofer IESE

ODC attribute impact (1/2)

Logged in as Read Only, Profiles enabled.
Was able to save changes from the System
Component Assignment Panel. Was also
able to delete a component.

The protection of systems, programs, and data
from inadvertent or malicious destruction,
alteration, or disclosure.Integrity/Security

Co-requisite information with regard to
other products is not made available to
customers.

The ease of upgrading to a current release,
particularly in terms of the impact on existing
customer data and operations.

Migration

While invoking modem software, system
crashed and had to be rebooted.

The ability of the software to consistently
perform its intended function without
unplanned interruption.

Reliability

A module should not hold a local lock for
so long that it causes the rest of the
complex to hang.

The speed of the software as perceived by the
customer and the customer's end users, in
terms of their ability to perform their tasks.

Performance

The degree to which the software complies
with established pertinent standards.Standards

The diagnostics software number error
messages rather than indicating where the
problem actually occurred.

The ability to diagnose failures easily and
quickly, with minimal impact on the customer.Serviceability

What would customer have noticed if defect had escaped into field?

During automated installation, got an
error message saying installation failed
because a file was missing.

The ability of the customer to prepare and
place the software in position for use. (Does
not include Usability.)

Installability

ExampleDefinitionAttribute Value

Slide 56

Defect-Flow Modeling
© Fraunhofer IESE

ODC attribute impact (2/2)

Customer needs the software to have the
ability to take input either from the
keyboard, mouse, OR flat files.

A customer expectation with regard to
capability, which was not known, understood,
or prioritized as a requirement for the current
product or release.

Requirements

Fixes cannot be applied due to a bad
medium.

The ease of applying preventive or corrective
fixes to the software. Maintenance

When running several jobs in system test,
the system was flooded with messages.
They scrolled by so quickly they couldn't be
read.

The degree to which the software and
publication aids enable the product to be
easily understood and conveniently employed
by its end user.

Usability

No reading support available.Ensuring that successful access to information
and use of information technology is provided
to people who have disabilities.Accessibility

When save was clicked on, nothing
happened.

The ability of the software to perform its
intended functions, and satisfy KNOWN
requirements, where the customer is not
impacted in any of the previous categories.

Capability

MSGISG015I RCAAE78 is not documented
in the system messages manual.

The degree to which the publication aids
provided for understanding the structure and
intended uses of the software are correct and
complete.

Documentation

What would customer have noticed if defect had escaped into field?
ExampleDefinitionAttribute Value

29

Slide 57

Defect-Flow Modeling
© Fraunhofer IESE

Example: Improve customer satisfaction through impact (1/2)

Analyze the attribute Impact to
improve customer satisfaction

Impact analysis shows major problem:
deficiencies with functionality

83%

1%

5%

3%
0%1%0%4% 3%

Capability Usability Performance

Reliability Installability Documentation

Serviceability Security/Integrity Standards

Slide 58

Defect-Flow Modeling
© Fraunhofer IESE

Example: Improve customer satisfaction through impact (2/2)

Defect-type analysis shows:

>50% missing function hints at incomplete design or requirements

Algorithm defects hint at poor low-level design

0

50

100

150

200

250

300

350

Ass
ig

nm
en

t
Chec

kin
g

Alg
orit

hm
/M

et
hod

Fu
ncti

on
In

te
rfa

ce

Tim
in

g
Rela

tio
nsh

ip

of

 d
ef

ec
ts

Incorrect

Missing

30

Slide 59

Defect-Flow Modeling
© Fraunhofer IESE

Example: Usage of attributes Trigger and Impact for System Test (1/5)

Defects can be everywhere in the defect space.

How can we plan/control system test?

Defect Space

Trigger and Impact can be used to partition the defect space.

Slide 60

Defect-Flow Modeling
© Fraunhofer IESE

Example: Usage of attributes Trigger and Impact for System Test (2/5)

Attributes Trigger and Impact partition defect space

Install
abil.

Normal
Mode

HW/SW
Config.

Workload/
Stress

Start/
Restart

Recovery

Docu
men.

Capa
bility

Usabi
lity

Servic
abil.

Stand
ards

Migra
tion

Integr
ity

Perfor
mance

Reliabi
lity

31

Slide 61

Defect-Flow Modeling
© Fraunhofer IESE

Example: Usage of attributes Trigger and Impact for System Test (3/5)

Identification of relative “defectiveness“ of each partition

Mapping of defects within the defect space

Install
abil.

Normal
Mode

HW/SW
Config.

Workload/
Stress

Start/
Restart

Recovery

Docu
men.

Capa
bility

Usabi
lity

Servic
abil.

Stand
ards

Migra
tion

Integr
ity

Perfor
mance

Reliabi
lity

1

5 1 2

1 2

1

8

1

9

Slide 62

Defect-Flow Modeling
© Fraunhofer IESE

Example: Usage of attributes Trigger and Impact for System Test (4/5)

Classification of test cases according to Trigger and Impact

2

Install
abil.

1Normal
Mode

2HW/SW
Config.

4Workload/
Stress

Start/
Restart

Recovery

Docu
men.

Capa
bility

Usabi
lity

Servic
abil.

Stand
ards

Migra
tion

Integr
ity

Perfor
mance

Reliabi
lity

Identification of gaps in testing

17468

24

2

122

2

1

4

High number of test cases Medium number of test cases

32

Slide 63

Defect-Flow Modeling
© Fraunhofer IESE

Example: Usage of attributes Trigger and Impact for System Test (5/5)

Combination of test cases and defects enables focused action

2

Install
abil.

1Normal
Mode

2HW/SW
Config.

4Workload/
Stress

Start/
Restart

Recovery

Docu
men.

Capa
bility

Usabi
lity

Servic
abil.

Stand
ards

Migra
tion

Integr
ity

Perfor
mance

Reliabi
lity

Identify areas where more testing is needed
Identify saturated areas – inefficient testing

High number of test cases Medium number of test cases

1

5 1 2

1 2

1

8

1

9

Defect-Flow Modeling
© Fraunhofer IESE

Part 2: Defect Classification

Defect Classification Theory

Terminology

Structures for Classification

Prominent Approaches

IEEE Standard Classification Scheme

Hewlett-Packard (HP) Classification Scheme

Orthogonal Defect Classification (ODC)

Summary

33

Slide 65

Defect-Flow Modeling
© Fraunhofer IESE

Summary

Defect Classification Theory
Basic terminology
Structures for classification (categorization, hierarchical, hybrid)

Most Prominent Approaches
IEEE 1044 Standard Classification Scheme

Defect classification scheme compliant to a standard
Hewlett-Packard (HP) Classification Scheme

Focus on improvement of development process by reducing the number of
defects
Three descriptors for each defect: origin, type of defect, and mode

Orthogonal Defect Classification (ODC)
Can also be used to improve development process by reducing the number of
defects
Original purpose is to give project teams feedback on the progress of the current
project
Highest industry acceptance

Slide 66

Defect-Flow Modeling
© Fraunhofer IESE

References

[1] Institute of Electrical and Electronics Engineers, IEEE Standard Classification for
Software Anomalies, IEEE Std. 1044-1993, 1994.

[2] Robert B. Grady, Practical Software Metrics for Project Management and Process
Improvement. Prentice Hall, 1992.

[3] Ram Chillarege, Inderpal S. Bhandari, Jarir K. Chaar, Michael J. Halliday, Diane S.
Moebus, Bonnie K. Ray, and Man-Yuen Wong, Orthogonal defect classification -- A
concept for in-process measurements, IEEE Transactions on Software Engineering,
vol. 18, pp. 943--956, Nov. 1992

[4] IBM, Center for Software Engineering
http://www.research.ibm.com/softeng/ODC/ODC.HTM

